
Legal Information

Messaging Application Programming Interface (MAPI) Programmer's Reference
Information in this document is subject to change without notice. This document is provided for
informational purposes only and Microsoft Corporation makes no warranties, either express or implied,
in this document. The entire risk of the use or the results of the use of this document remains with the
user. Companies, names, and data used in examples herein are fictitious unless otherwise noted. No
part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1996 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Press, MS, MS-DOS, Visual Basic, Visual C++, Windows, Win32, Win32s, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. OS/2 is a registered trademark licensed to Microsoft Corporation.

3+Mail, 3+Open and 3Com are registered trademarks of 3Com Corporation.

AT&T and AT&T Easylink Services are registered trademarks of American Telephone and Telegraph
Company.

Macintosh is a registered trademark of Apple Computer, Inc.

ObjectVision is a registered trademark of Borland International, Inc.

cc:Mail is a trademark of cc:Mail, Inc.

CompuServe is a registered trademark of CompuServe, Inc.

All-In-1 and DEC are trademarks of Digital Equipment Corporation.

Intel is a registered trademark of Intel Corporation.

OS/2 is a registered trademark of International Business Machines Corporation.

MCI MAIL is a registered service mark of MCI Communications Corp.

Motorola is a registered trademark of Motorola, Inc.

NetWare and Novell are registered trademarks of Novell, Inc.

Starnine Technologies is a registered trademark of Starnine Technologies, Inc.

Unicode is a trademark of Unicode, Inc.

Actor is a registered trademark of The Whitewater Group, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.

 About the MAPI SDK

The Messaging Application Programming Interface (MAPI) Programmer's Reference is the
documentation that accompanies the MAPI Software Development Kit (SDK).

Intended Audience

The MAPI Programmer's Reference is written for C and C++ developers with a wide range of needs
and experience with messaging. For those developers who want to use MAPI to augment their
nonmessaging applications with messaging features, no specific prerequisite knowledge is required.
However, for developers intending to use MAPI to create full-scale workgroup applications or drivers for
specialized messaging system services, a background in messaging and a familiarity with the
Component Object Model (COM) used with OLE is recommended.

How This Document is Organized

The MAPI Programmer's Reference is organized in the following parts:

· Guide
· Reference
· Appendixes
· Glossary

The Guide is organized in sections, beginning with a discussion of key concepts and an architecture
overview. There is an introduction to MAPI programming, that includes information for developers of
client applications and service providers. There are tutorials for application developers writing with the
Simple MAPI and CMC set of API functions. For developers working with the object-based MAPI
interface, there are sections that describe, at a conceptual level, the use and implementation of
objects, interfaces, and properties. There are also guides to implementing and using some of the
common MAPI objects and to writing a transport provider.

The Reference is divided into several sections. Each section is devoted to a different type of item within
MAPI and contains entries with brief descriptions of the purpose of the item, and if appropriate, the
correct syntax, parameters, and return values. The Reference includes the following sections:

· MAPI Interfaces
· MAPI Functions and Related Macros
· MAPI Properties
· MAPI Structures and Related Macros
· MAPI Data Types
· Common Messaging Calls (CMC)
· Simple MAPI

The Appendixes are:

· MAPI Versions of 32-Bit Windows Functions
· Address Types
· Transport-Neutral Encapsulation Format (TNEF)
· Mapping of X.400 P2 Attributes to MAPI Properties
· Mapping of Internet Mail Attributes to MAPI Properties
· Regular Expressions
· Functionality Groups

The Glossary provides definitions for commonly used MAPI terms and cross references to related
topics in the Guide and Reference.

Document Conventions

This manual uses the following typographic conventions:

Convention Description
monospace Indicates source code, structure syntax, examples, user input, and program output. For

example,
ptbl->SortTable(pSort, TBL_BATCH);

Bold Indicates an interface, method, structure, or other keyword in MAPI, the Microsoft® Windows®
operating system, the OLE application programming interface, C, or C++. For example,
SpoolerYield is a MAPI method. Within discussions of syntax, bold type indicates that the text
must be entered exactly as shown.

Italic Indicates placeholders, most often method or function parameters; these placeholders stand for
information that must be supplied by the implementation or the user. For example, lpMAPIError
is a MAPI method parameter.

UPPERCASE Indicates MAPI flags, return values, and properties. For example, MAPI_UNICODE is a flag,
S_OK is a return value, and PR_DISPLAY_NAME is a property. In addition, uppercase letters
indicate filenames, segment names, registers, and terms used at the operating-system
command level.

() Indicate one or more parameters that you pass to a function, in syntax.
[] Indicate optional syntax items. Type only

the syntax within the brackets, not the brackets themselves.
Indicates that code continued from one line to the next should be typed all on one line. For
example,
SharedExtensionsDir= \\SERVER1\SHARE1\MAILEXTS

Note The interface syntax in this book follows the variable-naming convention known as Hungarian
notation, invented by the programmer Charles Simonyi. Variables are prefixed with lowercase letters
that indicate their data type. For example, lpszProfileName is a long pointer to a zero-terminated string
name ProfileName. For more information about Hungarian notation, see Programming Windows 95 by
Charles Petzold and Code Complete by Steve McConnell.

For More Information

For more information about OLE programming, see Inside OLE, Second Edition, by Kraig
Brockschmidt (Redmond, WA: Microsoft Press, 1995) and the OLE Programmer's Reference in the
Microsoft® Win32® Software Development Kit (SDK).

For more information about programming with Microsoft® Visual Basic® programming system, see your
Visual Basic documentation.

 Quick Start Procedures

Each topic has three sections: design tasks, implementation tasks, and references to sample source
code. The goal is to call out design decisions and refer the reader to other topics for the necessary
information, not to provide details right here.

 Adding a Send Command to an Application

This topic explains the work necessary to add a Send command to a document-based application's
File menu. This is a Microsoft Windows 95 logo requirement. The same logic applies to sending a
message from any application.

Design Tasks

1. Decide whether to use Simple MAPI, CMC, MAPI, or the OLE Messaging Library. See Selecting a
Client Interface.

2. Decide when to load and unload the selected interface, and when to create and destroy its session.
You should share the messaging client's session, if it is active. See MAPI Sessions.

Implementation Tasks

1. Determine whether the Send command should be enabled. Installation of messaging support in the
operating system is optional, and your Send command should be disabled if the selected interface is
not available.

2. Load the selected interface DLL and the entry points you will need. See one of the following topics,
depending upon which interface you have selected:
· For Simple MAPI, see Initializing a Simple MAPI Client.
· For CMC, see Starting a CMC Session.
· For MAPI, see Initializing the MAPI Libraries and Initializing the OLE Libraries.
· For the OLE Messaging Library, no explicit load step is necessary. Simply instantiate one of the

top-level objects, MAPI.Session or MAPI.Message.
3. Send a document using the selected interface. See one of the following topics, depending upon

which interface you have selected:
· For Simple MAPI, see Sending Messages with Simple MAPI.
· For CMC, see Sending Messages with CMC.
· For the OLE Messaging Library, see Creating and Sending a Message.
· For MAPI, several steps are necessary:

1. Open the default message store. See Opening a Message
Store.

2. Open the Outbox. See About Opening Folders.
3. Add recipients to the message's recipient table. See About

Message Recipients.
4. Add the document to the message as an attachment. See

About Message Attachments.
5. Optionally, add text to the message. See PR_BODY.
6. Send the message. See About Sending Messages.
7. Release all the objects created in the preceding steps.

About Sample Source Code

CMC client. Demonstrates the use of all CMC calls in a very simple messaging client. It can send and
read messages, list the contents of the Inbox, and view the address book. The executable is named
CMCCLI.EXE; the sample source code is in the CMC.CLI directory. It is written in C and supports all
platforms.

Routing client. Constructs and sends a message with an attachment using MAPI. You can ignore the
parts that deal with named routing properties. The executable is named ROUTE.EXE; the sample
source code is in the ROUTE.CLI directory. It is written in C and supports all platforms.

Send RTF utility. Sends a message with a Rich Text Format content based on command line
parameters. The executable is named SNDRTF.EXE; the sample source code is in SENDRTF.CLI. It is
written in Microsoft Visual C++ and supports Microsoft Win32 platforms only.

Simple MAPI client. Demonstrates the use of all Simple MAPI calls in a very simple messaging client.
It can send and read messages, list the contents of the Inbox, and view the address book. The
executable is named SMPCLI.EXE; the sample source code is in the SIMPLE.CLI directory. It is written
in C and supports all platforms.

Timecard application. Demonstrates creating and sending messages with custom fields using the
OLE Messaging Library. The executables are named TMCLI.EXE and TMSRV.EXE; the sample source
code is in the TIMECARD.CLI directory. It is written in Microsoft Visual Basic 4.0 and supports all
platforms.

 Adding Document Routing to an Application

This topic explains the work necessary to add a Route command ¾ or another form of document
routing support ¾ to a File menu in a document-based application. Document routing can be used for
many purposes, but all involve defining a list of people who are to read and act on information in the
document in a specific order.

The following discussion assumes you want to base your routing application on an existing document-
based application. If you prefer to base it on a messaging client, see also Creating a New Interpersonal
(IPM) Message Class.

Note Work is in progress on a companion standard to MAPI for document routing and other workflow
activities. Send e-mail to mapi@microsoft.com to receive further information or to become involved in
the open design process for this technology.

Design Tasks

1. Decide whether to use Simple MAPI, CMC, MAPI, or the OLE Messaging Library. See Selecting a
Client Interface.
If your application requires routing across messaging domain boundaries, you must use MAPI or the
OLE Messaging Library and store the routing information in named properties on the message. See
About Sending Across Messaging Domains. If you use the OLE Messaging Library, the routing
information must be stored in the message's Fields collection, using five special property sets. See
Customizing a Folder or Message and Fields Collection Object.
If you choose to use Simple MAPI or CMC, the routing information can be stored in a file attached to
your message. For Simple MAPI, see Handling Attachments with Simple MAPI. For CMC, see
Handling Attachments with CMC.

2. Design the message properties and the commands ¾ called "verbs" in MAPI ¾ specific to your
routing functionality.

Implementation Tasks

1. Choose the message class name. It should begin with IPM. See About Message Classes.
2. Use the MAPI address book dialog box to let the user add names to the routing list. See the

IAddrBook::Address method, About ADRPARM Structures and About ADRLIST Structures .
3. Store the routing list in the message, an attached file, or the document itself, as appropriate.
4. Support your routing verbs with message ¾ or document ¾ properties that refer to entries in the

routing list.

About Sample Source Code

Routing client. Creates a message with an attached document and a simple linear route using MAPI.
The only routing verb is "Route to Next." The executable is named ROUTE.EXE; the sample source
code is in the ROUTE.CLI directory. It is written in C and supports all platforms.

Timecard application. Does not implement routing, but it demonstrates creating and sending
messages with custom fields using the OLE Messaging Library. The executables are named
TMCLI.EXE and TMSRV.EXE; the sample source code is in the TIMECARD.CLI directory. It is written
in Visual Basic 4.0 and supports all platforms.

 Creating a New Interpersonal (IPM) Message Class

This topic explains several ways to create a new message class used for person-to-person
communication. By using MAPI properties to structure message content, you avoid writing code to
parse message text or a binary attachment.

Design Tasks

1. Decide whether yours is an interpersonal messaging (IPM) application or a species of interprocess
communication (IPC) application. There is an enormous variety of applications; following is a basic
list of types and examples. For more information about IPC applications, see Creating a New
Interprocess (IPC) Message Class.
· Person-to-person. A person initiates the exchange of messages, and another person responds.

This includes traditional e-mail as well as more structured exchanges such as document routing
or expense approval.

· Person-to-machine. A person initiates the exchange of messages, and a machine responds.
Examples include submitting a database query by e-mail and subscribing to a mailing list.

· Machine-to-person. A machine initiates the exchange of messages, and a person responds.
Examples include news feeds and other types of document distribution, and opinion surveys.

· Machine-to-machine. A machine initiates the exchange of messages, and another machine
responds. Examples include link heartbeat monitoring, directory and database replication.

· A more complex pattern with both people and machines in the route.
· A more complex pattern where, instead of being transmitted, the message may be posted directly

into a public folder or bulletin board forum supported by a message store, for consumption by
other readers, an administrator, or a software agent.

Logically, person-to-person applications, machine-to-person applications, and applications that post
to public forums should be designated IPM, while person-to-machine and machine-to-machine
applications are IPC message classes. The only real difference is that IPM messages in a message
store are visible to messaging clients, while IPC messages usually are not. Anything that requires a
person to respond must use an IPM message class. Applications involving a more complex pattern
including people and machines often involve a mix of IPM and IPC messages.

2. Choose the message class name, beginning it with IPM. or IPC. according to the preceding
guidelines.

3. Choose the application framework for sending and reading your messages. Alternatives include:
· A form. A form is a MAPI object that is integrated into messaging clients; it can create, display,

print, and perform custom commands ¾ called "verbs" in MAPI ¾ on a particular type of
message. Forms take maximum advantage of integration with the messaging client. See MAPI
Form Architecture.

· A standalone application. This gives you the greatest control over the user interface to your
messages but also requires the most work in creating and distributing your application and in
making it easy for your users to find.

· A client extension. This is a compromise. An extension is easier for users to discover than a
standalone application and in some respects easier to write than a form, but the integration with
the client is less complete than with a form. See Advantages of Extending Microsoft Exchange.

4. Decide whether to use Simple MAPI, CMC, MAPI, or the OLE Messaging Library. See Selecting a
Client Interface. In addition to the considerations listed there, you must think about whether that
interface fits well into the application framework you have chosen. For instance, both forms and
extensions must use or furnish several COM interfaces which are not easily supported by Visual
Basic programs.

5. Define properties specific to your message class. Decide whether to use named properties or
properties from the 0x6800-0x7fff range. See About Property Identifiers and About Named
Properties. Properties that contain e-mail addresses should be stored in a special way to provide for

translation when changing messaging domains. See About Sending Across Messaging Domains.
Consider the need for interoperability with messaging clients that can be only message text. It may
be advisable to duplicate some or all of your message's properties in the message text if you expect
the message to be read by people using such messaging clients.

6. Define the commands ¾ called "verbs" in MAPI ¾ specific to your message class, and choose which
standard verbs to implement. See About Form Verbs.

7. Choose a distribution mechanism. For a standalone application, this generally involves making an
executable and any necessary auxiliary files available to your users. Additional steps are necessary
if you are implementing a form, including which library to register it in. See About Form Libraries.
Additional steps are also necessary if you are implementing a client extension. See Registering
Extensions.

Implementation Tasks

All IPM message classes should honor common IPM client options for disposition of sent messages
and other features.

To implement a form
1. Choose a class identifier (CLSID) for the form. You can use the tool UUIDGEN.EXE for this purpose.

See Using UUIDGEN.EXE.
2. Choose a message class name for the form. See About Message Classes.
3. Create an .EXE file that acts as a COM server for the form, registered with the form's class identifier.

It must implement the OLE interface IClassFactory, and the IMAPIForm and IPersistMessage
interfaces; it may optionally implement the IMAPIFormAdviseSink and IMAPIFormFactory
interfaces. See Implementing the IClassFactory Interface for Form Servers and Implementing the
IMAPIForm Interface for Form Servers . The class factory's CreateInstance method must return an
IMAPIForm interface; that form object's QueryInterface method must be capable of returning an
IPersistMessage interface.

4. Create a .CFG file listing the form's class identifier, message class, properties, verbs, extensions,
and so forth. See Configuration File Format.

5. For each user of your form, make the .EXE file and any auxiliary files available, and register
the .CFG file in a form library using PDKIN.EXE (MAPISDK), INSTFORM.EXE (EDK), or your own
code. See About Form Libraries. If using the local form library, you must also register your .EXE file
as a COM server for the form's class identifier, using REGEDIT.EXE.

For more information, see Developing MAPI Form Servers.

To add an extension to the messaging client
1. Decide which client contexts your extension should be available in, and whether your extension

requires a specific message service to be available. See How Extensions Work.
2. Create a DLL with an entry point that returns an extension object ¾ an object that implements the

IExchExt interface and any other required interfaces. Implement the IExchExt interface and any
other required interfaces.

3. For each user of your extension, make the DLL and any auxiliary files available, and register your
extension in the system registry or WIN.INI file. See Registering Extensions.

For more information, see Command Extensions.

To create a standalone application using MAPI
1. Verify that MAPI is installed before proceeding if your installation process does not guarantee that

MAPI is installed. See About MAPI Installations.
2. Load and initialize the MAPI DLL. See Initializing the MAPI Libraries and Initializing the OLE

Libraries.
3. Log on to MAPI using the messaging client's session if available. See Logging On a MAPI Client.

4. Open the user's default message store, Inbox and Outbox folders. See Opening a Message Store
and About Opening Folders.

5. Create and send a message using the following steps:
a. Create a message in the Outbox folder, using the IMAPIFolder::CreateMessage method.
b. Add recipients to the message's recipient table. See About Message Recipients.
c. Add the document to the message as an attachment. See About Message Attachments.
d. Optionally, add text to the message. See the PR_BODY property.
e. Send the message. See About Sending Messages.

6. Scan the Inbox for new messages using the following steps:
a. Optionally, force any incoming messages to be downloaded. See About Controlling Message

Transmission.
b. Open the Inbox folder's contents table.
c. Restrict the contents table to messages of interest to your application.
d. Optionally, register for new mail notifications on the message store object to be advised of further

incoming messages.
7. For each user of your application, make the .EXE file and any auxiliary files available.

About Sample Source Code

Checkers form. Implements the MAPI form interfaces and a more elaborate message. Each message
represents a move in a game of checkers between two players. The executable is named
WCHECK.EXE; the sample source code is in the CHECKERS.FRM directory. It is written in C++ and
supports all platforms.

Command extension. Adds a simple command to the client's menu. The executable is named
CMDEXT.DLL; the sample source code is in the COMMAND.EXT directory. It is written in C++ and
supports Win32 platforms only.

Routing client. A standalone application that implements a message class (the routing message)
using MAPI. It can also send and read forms; you might find this helpful in testing your form. The
executable is named ROUTE.EXE; the sample source code is in the ROUTE.CLI directory. It is written
in C and supports all platforms.

Simple form. Implements the MAPI form interfaces and a very simple message containing only text
and recipients. It is a good basis for reuse in a more complicated form. The executable is named
SMPFRM.EXE; the sample source code is in the SIMPLE.FRM directory. It is written in C++ and
supports Win32 platforms only.

Timecard application. Creates and sends messages ¾ one IPM type and one IPC type ¾ with custom
fields using Visual Basic and the OLE Messaging Library. It's also an interesting example of how to
distribute a standalone application through e-mail. The executables are named TMCLI.EXE and
TMSRV.EXE; the sample source code is in the TIMECARD.CLI directory. It is written in Visual Basic
4.0 and supports all platforms.

 Creating a New Interprocess (IPC) Message Class

This topic explains how to send and read structured messages between programs, or between
programs and users. By using MAPI properties to structure message content, you avoid writing code to
parse message text or a binary attachment.

Design Tasks

1. Decide whether yours is an interpersonal messaging (IPM) application or a type of interprocess
communication (IPC) application. There is an enormous variety of applications; following is a basic
list of types and examples. For more information about IPM applications, see Creating a New
Interpersonal (IPM) Message Class.
· Person-to-person. A person initiates the exchange of messages, and another person responds.

Examples include traditional e-mail as well as more structured exchanges such as document
routing or expense approval.

· Person-to-machine. A person initiates the exchange of messages, and a machine responds.
Examples include submitting a database query by e-mail and subscribing to a mailing list.

· Machine-to-person. A machine initiates the exchange of messages, and a person responds.
Examples include news feeds and other types of document distribution, and opinion surveys.

· Machine-to-machine. A machine initiates the exchange of messages and another machine
responds. Examples include link heartbeat monitoring, directory and database replication.

· A more complex pattern with both people and machines in the route.
· A more complex pattern where, instead of being transmitted, the message may be posted directly

into a public folder or bulletin board forum supported by a message store, for consumption by
other readers, an administrator, or a software agent.

Logically, person-to-person applications, machine-to-person applications, and applications that post
to public forums should be designated IPM, while person-to-machine and machine-to-machine
applications are IPC message classes. The only real difference is that IPM messages in a message
store are visible to messaging clients, while IPC messages usually are not. Anything that requires a
person to respond must use an IPM message class. Applications involving a more complex pattern
including people and machines often involve a mix of IPM and IPC messages.

2. Decide whether to use Simple MAPI, CMC, MAPI, or the OLE Messaging Library. See Selecting a
Client Interface.

3. Decide whether your application can use the same profile as the messaging client or whether you
must create one. See Creating and Configuring a Profile.

4. Choose the message class name, beginning it with IPM. or IPC. according to the guidelines
established previously.

5. Define properties specific to the message class. Decide whether to use named properties or
properties from the 0x6800-0x7fff range. See About Property Identifiers and About Named
Properties. Properties that contain e-mail addresses should be stored in a special way to provide for
translation when changing messaging domains. See About Sending Across Messaging Domains.
One difference between IPM and IPC applications is that machines are much less tolerant of
variations in message format than people are. Compatibility with messaging clients that can view
only message text is often required for IPM applications, but IPC applications typically use MAPI
properties to structure information in their messages and require MAPI everywhere. Nevertheless,
for machine-to-person applications it may be necessary to duplicate some or all of the properties in
the message text for compatibility with messaging clients that can view only message text.

6. Define the commands ¾ called "verbs" in MAPI ¾ specific to your message class, and choose which
standard verbs to implement.

7. Decide how to handle sent messages and reports. It is usually not appropriate for IPC applications
to save outbound messages in the IPM Sent Items folder, but the application may need to save
outbound messages in a hidden folder for tracking purposes. See About Hidden Folders.

Implementation Tasks

1. Load the selected interface DLL and the entry points you will need. See one of the following topics,
depending upon which interface you have selected.
· For Simple MAPI, see Initializing a Simple MAPI Client.
· For CMC, see Starting a CMC Session.
· For MAPI, see Initializing the MAPI Libraries and Initializing the OLE Libraries.
· For the OLE Messaging Library, no explicit load step is necessary; simply instantiate one of the

top-level objects, MAPI.Session or MAPI.Message.
2. Log on to MAPI. IPM message classes should use the messaging client's session if available. IPC

applications may need to use a specific profile they've created themselves.
· For Simple MAPI, see Starting a Simple MAPI Session and related topics.
· For CMC, see Starting a CMC Session.
· For MAPI, see Logging On a MAPI Client.
· For the OLE Messaging Library, see Session Handling.

3. For MAPI only, access the default message store. See About Opening Folders.
4. Create folders and receive folder mappings for your message class. For an IPC application the

folders should be children of the message store's root folder, not of the IPM subtree. Include receive
folder mappings for reports associated with your message class, if necessary. These steps can only
be done using MAPI; if you have chosen a different interface, you can still write this code using
MAPI and put it in your installation program.
a. Open the root folder by calling the IMsgStore::OpenEntry method with a null entry identifier.
b. Call the IMAPIFolder::CreateFolder method to create the folder.
c. Call the IMsgStore::SetReceiveFolder method to establish a receive folder mapping for your

message class. Several message classes can use the same receive folder; when processing
incoming messages, you can restrict the folder's contents table on the PR_MESSAGE_CLASS
property to isolate the messages you're interested in.

d. Locate your folder. The most efficient way to find your folder once you've created it is a receive
folder mapping. Even if you don't intend for the folder to receive messages, you can map it to a
string that is not used as a message class. Named properties on the store object ¾ the most
obvious alternative ¾ are not always supported by message store providers, and MAPI does not
define a range of message store properties for application use.

5. Open the send and receive folders for your message class.
· For Simple MAPI, this step is not necessary. Simply specify the message class in your call to the

MAPIFindNext function.
· For CMC, this step is not necessary. Simply specify the message class in your call to the

cmc_list function.
· For MAPI, see About Opening Folders, and note the following.

To open the receive folder:
1. Call the IMsgStore::GetReceiveFolder method.
2. Pass the entry identifier returned to the

IMsgStore::OpenEntry method.
To open the Outbox (Send folder) for IPM only:

1. Call the message store's IMAPIProp::GetProps method to
retrieve the PR_IPM_OUTBOX_ENTRYID property.

2. Pass the entry identifier to the IMsgStore::OpenEntry
method.

· For the OLE Messaging Library, see Accessing Folders and InfoStores Collection Object.

6. Send outgoing messages.
Remember to handle the disposition of submitted messages. IPM message classes should honor
common IPM client options for disposition of sent messages and the message store's
PR_IPM_SENTMAIL_ENTRYID property.
· For MAPI, see About Sent Message Processing and related topics.
· For Simple MAPI, see Sending Messages with Simple MAPI.
· For CMC, see Sending Messages with CMC.
· For the OLE Messaging Library, see Creating and Sending a Message.

7. Handle incoming messages.
· For Simple MAPI, call the MAPIFindNext function in a loop, specifying your message class.
· For CMC, call the cmc_list and cmc_read functions in a loop, specifying your message class to

cmc_read.
· For MAPI, use the following steps:

1. Open the contents table on the receive folder, using the
IMAPIContainer::GetContentsTable method.

2. Register for notification of new mail, using the
IMsgStore::Advise method, the fnevNewMail event, and a
null entry identifier. Do this before retrieving any messages
to avoid a race condition that would result in missing
messages.

3. Create a property restriction to match
PR_MESSAGE_CLASS with your message class and apply
it to the contents table by calling IMAPITable::Restrict.
Consider also limiting your contents table view to unread
messages by creating a bitmask restriction with the
MSGFLAG_UNREAD flag as the mask for the
PR_MESSAGE_FLAGS property. See About Restrictions.

4. Retrieve all the messages from the table, using the
HrQueryAllRows function or the IMAPITable::QueryRows
method, and process them.

5. Rely on new mail notifications to advise you of further
incoming messages. Your notification handler should check
the lpszMessageClass member of the
NEWMAIL_NOTIFICATION structure and ignore any
messages that are not of your class.

· For the OLE Messaging Library, access the Messages collection of your receive folder, and use
the GetFirst and GetNext methods to retrieve the messages.

8. For each user of your application, make the .EXE file and any auxiliary files available.

About Sample Source Code

Timecard application. Creates and sends messages ¾ one IPM type and one IPC type ¾ with custom
fields using Visual Basic and the OLE Messaging Library. It's also an interesting example of how to
distribute a standalone application through e-mail. The executables are named TMCLI.EXE and
TMSRV.EXE; the sample source code is in the TIMECARD.CLI directory. It is written in Visual Basic
4.0 and supports all platforms.

 Creating and Configuring a Profile

This topic explains how to create a profile using MAPI, how to add messaging services to it and
configure them, and how to establish certain default settings in the profile. See Message Services and
Profiles.

Design Tasks

1. Understand what message services your profile requires, and whether you wish to give your user
any choice of services.

2. Choose your tool. There are several tools available for creating profiles. Alternatives include:
· Not creating one and using the messaging client's profile. This is usually the best choice for

interpersonal (IPM) applications, especially if you want to use the same message store as the
messaging client.

· Using the New Profile wizard to create a profile and having your user select message services
interactively. For this technique to succeed, the services you require must all support Wizard-
based configuration, and your application must tolerate uncertainty in its configuration. See the
LAUNCHWIZARDENTRY function.

· Using the NEWPROF.EXE utility and a template contained in a .PRF file to create a profile from a
setup program or batch environment, or by spawning the utility from your own program.

· Writing C or C++ code to create a profile. This is often the best choice for a non-interactive
application which requires a specific set of message services. See About Profile Administration.

3. Understand in what order to add services. Following are guidelines for ordering service providers.
These guidelines will occasionally conflict; when they do, you will have to write C or C++ code to
configure one or more of the provider orders. You can use the Delivery and Addressing pages of the
Mail and Fax control panel applet to inspect a profile you have created and see if the providers have
been ordered as you expected.
· Default message store. The first message store added to a profile which is capable of being the

default store becomes the default store. Ordinarily, the service you intend to contain the default
store should be listed first. See IMAPISession::SetDefaultStore.

· Personal address book (PAB), default directory, and address book search order. The PAB, if not
set explicitly, is the first container that is writeable and can contain names (according to its
PR_CONTAINER_FLAGS property). The default directory is the first container in the hierarchy
that contains names and is not the PAB (unless the PAB is the only container that can contain
names). The default search path is the PAB, followed by each directory that is of display type
DT_GLOBAL, has names, and does not have the AB_NOT_DEFAULT flag set in
PR_CONTAINER_FLAGS. If there are no directories of type DT_GLOBAL, the default search
path is just the PAB and the default directory. See Resolving a Name, IAddrBook::SetPAB, and
IAddrBook::SetSearchPath.

· Transport order. If the transport order is not explicitly set, MAPI services transports in the same
order they were added to the profile, except that transports which set the
STATUS_XP_PREFER_LAST flag are serviced last. The transport order is unimportant unless
your profile contains two or more transports which handle the same e-mail address type. See
IMsgServiceAdmin::MsgServiceTransportOrder.

If your application must run unattended, perhaps as a background application or a Windows NT
service, some special cautions apply. See Writing an Automated Client and Windows NT Service Client
Applications.

If your application requires a specific profile other than the default profile, you must save its name in
your own configuration database or use a specific naming convention. MAPI does not expose any
profile attributes other than the name and default flag in the profile table, and the default profile flag is
reserved for the messaging client and related IPM applications.

Implementation Tasks

To create a .PRF file for use with the NEWPROF.EXE utility
1. Assemble information from existing .PRF files. For each service you plan to use, copy the section

that lists the name, type, and property identifier for each configuration property. The section must
have the same name as the service. Services implemented by Microsoft are listed in Section 4 of the
DEFAULT.PRF file that is installed with MAPI.

2. Place the profile name in the ProfileName= line of the [General] section.
3. Create the [Service List] section, in Section 2 of the file. In this section, list each service you require

and the name of the section that contains its configuration properties. Refer to the earlier guidelines
to establish the order of services.

4. For each service listed in the [Service List] section, create a section that lists the value for each
configuration property; the section must have the same name as the service. This information
appears in Section 3 of the file.

5. Invoke the utility. On 32-bit operating systems, it can be run from a command line or batch file. On
16-bit Windows, NEWPROF.EXE cannot be run from an MS-DOS shell; it can be run by a Windows-
based setup script, by the Run command on the File menu in Program Manager or File Manager, or
by the WinExec system call. It takes command line parameters as follows:
· -P descriptor-file-path

An absolute path to the .PRF file. The default value is DEFAULT.PRF in the Windows directory.
· -S

If this option is present, NEWPROF.EXE displays a logging window showing what is being
executed and any errors it encounters. By default no window is displayed.

· -X
If this option is present, NEWPROF.EXE immediately creates the profile. By default, it waits until
the user chooses the Execute button in its window. This option is required if NEWPROF.EXE is to
run without displaying its window.

· -Z
If this option is present, NEWPROF.EXE displays error messages and other debugging
information in its window. By default this information is not displayed.

Note References to Sections 1, 2, 3, and 4 in the preceding procedure refer to comments in the
DEFAULT.PRF file distributed with the MAPI SDK.

To write custom C or C++ code to create a profile
1. Read the header file for each service. Understand what properties you need to configure and what

values you will use.
2. Call the MAPIAdminProfiles function to obtain an IProfAdmin interface. Call the CreateProfile

method to create your profile, and the AdminServices method to obtain an IMsgServiceAdmin
interface.

3. Add message services to the profile. Refer to the previous guidelines for the order you should use.
For each service, use the IMsgServiceAdmin interface to:
a. Call the CreateMsgService method.
b. Obtain the MAPIUID structure of the service you just created.

1. Call the GetMsgServiceTable method to obtain an
IMAPITable interface.

2. Call the HrQueryAllRows function to retrieve all rows from
the table.

3. Get the PR_SERVICE_UID column from the last row. This
is the MAPIUID structure of the last service added. You
may wish to check with an assertion that other properties of

the service are as you expect.
c. Call the ConfigureMsgService method, passing the MAPIUID structure of the service you just

created and a property value array with its configuration properties.
4. If you must make configuration calls that require an IMAPISession interface, such as

IMAPISession::SetDefaultStore, IAddrBook::SetPAB, or IAddrBook::SetABSearchPath, pass
the MAPI_NO_MAIL flag to the MAPILogonEx function.

5. To make your profile temporary, call the IProfAdmin::DeleteProfile method immediately after
logging on to the profile. It will be deleted after you log off, and will not be visible to other
applications in the meantime.

About Sample Source Code

None available at this time.

 Incorporating Formatted Text and Attachments

This topic explains what is necessary for a client application to do to send or receive a mesage that
includes formatted text and attachments. Clients that want to work with formatted text must use the
MAPI client interface. CMC, Simple MAPI, and the OLE messaging library do not support formatted
text in messages.

Design Tasks

1. Decide on a mechanism for displaying formatted text. You can use the Rich Text Format (RTF)
supported by Microsoft or your own customized format. See About Supporting Formatted Text.

2. Decide on the types of attachments that your client will handle. See About Message Attachments.
3. Decide if and how your client will activate and save its attachments. See Adding a Message

Attachment.

Implementation Tasks

To send a message with formatted text
1. Call the IMAPIProp::OpenProperty method to open the PR_RTF_COMPRESSED property, setting

both the MAPI_CREATE and MAPI_MODIFY flags. MAPI_CREATE insures that any new data
replaces any old data and MAPI_MODIFY enables your client to make those replacements.

2. Call the WrapCompressedRTFStream function, passing STORE_UNCOMPRESSED_RTF if the
message store sets the STORE_UNCOMPRESSED_RTF bit in its PR_STORE_SUPPORT_MASK
property, to get an uncompressed version of the PR_RTF_COMPRESSED stream returned from
OpenProperty.

3. Write the message text data to the uncompressed stream returned from
WrapCompressedRTFStream.

4. If the message data is an attachment, write the character token "\objattph" followed by a space to
the stream instead of the attachment.

5. Set the PR_RENDERING_POSITION property of the attachment to a value that will increase with
each attachment. For example, the first attachment could be assigned 1 as its
PR_RENDERING_POSITION, the second one 2, and so on.

6. Commit and release both the uncompressed and compressed streams.
7. If the message store does not support RTF as indicated by the absence of the STORE_RTF_OK

setting in the PR_STORE_SUPPORT_MASK property, call RTFSync and pass the
RTF_SYNC_RTF_CHANGED flag.

For more information, see Supporting Formatted Text in Outgoing Messages: Client Responsibilities.

To read a message with formatted text
1. Call RTFSync to synchronize the message text with the formatting if the message store is not RTF-

aware and the PR_RTF_IN_SYNC property is missing or set to FALSE. The
RTF_SYNC_BODY_CHANGED flag should be passed in the ulFlags parameter. Clients working
with RTF-aware message stores need not make the RTFSync call because the message store
takes care of it.

2. Call IMAPIProp::SaveChanges if the message has been updated.
3. Call IMAPIProp::OpenProperty to open the PR_RTF_COMPRESSED property.
4. Call the WrapCompressedRTFStream function, passing the STORE_UNCOMPRESSED_RTF flag

if the message store sets the STORE_UNCOMPRESSED_RTF flag in its
PR_STORE_SUPPORT_MASK property, to create an uncompressed version of the compressed
RTF data.

5. Display the uncompressed RTF data.

If there are attachments in the message, perform the following tasks in addition to the preceding steps:

1. Before reading from the uncompressed RTF stream, sort the message's attachment table on the
value of the PR_RENDERING_POSITION property. The attachments will now be in order by how
they appear in the message.

2. As your client scans through the RTF stream, check for the token "\objattph". The character
following the token is the place to put the next attachment from the sorted table. Handle attachments
that have set their PR_RENDERING_POSITION property to -1 separately.

For more information, see Supporting Formatted Text in Incoming Messages: Client Responsibilities.

About Sample Source Code

Send RTF utility. Sends a message with formatted text based on command line parameters. The
executable is named SNDRTF.EXE; the sample source code is in SENDRTF.CLI. It is written in C++
and supports 32-bit platforms only.

 Finding a Message in a Message Store

This topic explains how to perform various tasks related to finding a message in a message store. The
tasks are different, depending on the client interface you are using for your client and the message
store. Some message stores support searching; others do not. Create a prototype to determine
whether or not a particular search strategy will work.

If the message store supports searches, your client can use a search-results folder to locate
messages. Clients written with the MAPI client interface can either create a new search-results folder
or use a pre-existing one. Clients written with the OLE Messaging Library must use a pre-existing
search-results folder.

If the message store does not support searches, your client will have to traverse the message store
hierarchy, looking through each folder for the target message rather than using search criteria.

Specifically, this topic explains how to:

· Create a search-results folder using the MAPI client interface.
· Locate an existing search-results folder using the OLE Messaging Library.
· Perform a search in a searchable message store using the MAPI client interface.

Design Tasks

1. Determine whether or not the message store supports searches, meaning the ability to create
search-results folders. Clients using message stores that support searches can use a search-results
folder to find a message; clients using non-searchable message stores must traverse the folder
hierarchy.

2. For clients using message stores that support searches, determine whether or not the message
store supports the type of restrictions you will be imposing. For example, if you want to use a
property restriction, make sure that the message store supports the specific property.

Implementation Tasks

1. Retrieve the PR_STORE_SUPPORT_MASK property from the message store by calling its
IMAPIProp::GetProps method. If the STORE_SEARCH_OK flag is set, proceed. If this flag is not
set, there are two choices:
· Fail because the message store does not support searches.
· Attempt the alternate strategy of enumerating the message store hierarchy.

2. Create a search-results folder if possible. See the following procedure and About Creating Folders.
3. If creating a search-results folder is not possible, locate an existing search-results folder. MAPI

creates a default search-results folder called Search Root when it initializes a message store.
Creating search-results folders is not allowed if you are using the OLE Messaging Library. See the
following procedure.

4. Build a restriction that reflects your search criteria. See About Restrictions. If you are searching on a
named property, call the IMAPIProp::GetIDsFromNames method to create a searchable property
tag from the name. See About IMAPIProp::GetIDsFromNames.

5. Start the search by calling the search-results folder's IMAPIContainer::SetSearchCriteria method.
Pass the BACKGROUND_SEARCH or FOREGROUND_SEARCH flag as appropriate, the
restriction, and the entry identifier of the folder in which to search.

6. Retrieve the search results by opening the search-results folder's contents table and querying the
rows. You can process this incrementally or wait for an fnevSearchComplete notification from the
message store.

To create a search-results folder using the MAPI client interface
1. Locate and open the target message store. See Opening a Message Store or Opening the Default

Message Store.
2. Retrieve the message store's PR_FINDER_ENTRYID property, the entry identifier of the root

search-results folder.
3. Open the root search-results folder by calling IMsgStore::OpenEntry with the entry identifier from

the PR_FINDER_ENTRYID property.
4. Create a new folder in the root search-result folder by calling the root folder's

IMAPIFolder::CreateFolder method. Set the ulFolderType parameter to FOLDER_SEARCH. See
About Search-Results Folders.

To locate an existing search-results folder using the OLE Messaging Library
1. Locate and open the target message store using the Session.InfoStores collection. An InfoStore

object provides access to the root folder for a message store.
2. Retrieve the Folder's FolderID property to identify its parent folder and pass this identifier in a call to

Session.GetFolder to open the parent folder.
3. Work up through the folder hierarchy by repeating the previous step until the FolderID property is the

same in two sequential iterations. When this occurs, you will be at the root folder of the message
store.

4. Retrieve the Folders collection and browse for the folder whose name is Search Root. MAPI always
creates a folder by that name when it initializes a message store.

5. Retrieve the root search-results folder's Folders collection and browse for your own search-results
folder by name.

To locate an existing search-results folder using the MAPI client interface
1. Locate and open the target message store. See Opening a Message Store or Opening the Default

Message Store.
2. Retrieve the message store's PR_FINDER_ENTRYID property, the entry identifier of the root

search-results folder.
3. Open the root search-results folder by calling IMsgStore::OpenEntry with the entry identifier from

the PR_FINDER_ENTRYID property.
4. Access the folder's hierarchy table by calling IMAPIFolder::GetHierarchyTable.
5. Look for a row in the table that has a PR_FOLDER_TYPE column set to FOLDER_SEARCH and a

PR_DISPLAY_NAME set to Search Root. MAPI always creates a folder by that name when it
initializes a message store.

About Sample Source Code

Spooler hook provider. Includes a function called HrInitUnreadSearch that shows how to create and
initialize a search-results folder in the root folder of a message store's IPM subtree. The executable is
named SMH.DLL. It supports 32-bit Windows platforms only.

 Using Message Filtering to Manage Messages

The MAPI spooler makes calls to two different types of extensions by which code can be inserted in the
message transmission process. These extensions, known as preprocessors and spooler hooks, can be
used for a wide variety of purposes, including altering the recipient list or content of an outbound
message; archiving outbound messages in local storage or on a central server; directing inbound
messages to a particular folder based on arbitrary criteria; and responding automatically to inbound
messages.

Design Tasks

1. Decide whether to use a preprocessor or a spooler hook.
A preprocessor is called for outbound messages only. It may choose to be called for all messages,
or for messages that have recipients of a particular type. Those recipients can be selected based on
the address type (PR_ADDRTYPE), on the MAPIUID which qualifies the recipient's entry identifier,
or both. See IMAPISupport::RegisterPreprocessor.
A preprocessor can create new messages based on the input message, returning them through its
lpppMessage parameter. In no case should the input message be placed in the lpppMessage
parameter. If a preprocessor does not want the input message to be sent, it should delete all the
recipients and set the PR_DELETE_AFTER_SUBMIT property; the input message should not be
deleted using message store calls.
A spooler hook may choose to be called for all inbound messages, all outbound messages, or both,
by setting the HOOK_INBOUND flag, the HOOK_OUTBOUND flag, or both in its
PR_RESOURCE_FLAGS property on the provider profile section, in MAPISVC.INF. See About the
MAPISVC.INF File.
To delete an inbound or outbound message, a hook should set the HOOK_DELETE flag in its
lpulFlags parameter. It should not use message store calls to delete the message presented to it
through its interface; it may use message store calls to create, modify, or delete other messages. A
hook can prevent processing of a message by other hooks, including the default hook that
processes receive folder settings, by setting the HOOK_CANCEL flag in lpulFlags.
When working with a tightly coupled message store and transport, the store itself can transmit a
message that is not destined for any spooler-based transports. Whether preprocessors and hooks
are called in this situation depends upon the message store implementation. Microsoft Exchange
Server, for example, calls preprocessors on outbound messages but does not call either inbound or
outbound spooler hooks. See About Sending Messages.
On an outbound message, hooks and preprocessors participate in a complicated sequence of
events. The following steps involve hooks and preprocessors.

a.The PreprocessMessage entry point of each preprocessor is called before any transport provider
handles the message. It can update the recipient list, alter message content, or even create
additional messages. The order in which preprocessors are called is the same as the order in
which the transports that registered them are called to handle outbound messages. See Creating
and Configuring a Profile.

b.Transport providers are called to transmit the message. If any transport defers message
processing, no hooks are called until the deferred processing is complete.

c.The RemovePreprocessInfo entry point of each preprocessor is called after all transports have
handled the message.

d.The ISpoolerHook::OutboundMsgHook method is called for each hook that sets the
HOOK_OUTBOUND flag in the PR_RESOURCE_FLAGS property. The order in which hooks are
called is the same as the order in which they were installed into the profile; it does not follow the
transport order, because a hook does not necessarily have an associated transport provider.

For inbound messages, preprocessors are not called. Hooks are called as follows.
a. The receiving transport provider completes its work.

b. The ISpoolerHook::InboundMsgHook method is called for each hook that sets the
HOOK_INBOUND flag in the PR_RESOURCE_FLAGS property. The order in which hooks are
called is the same as the order in which they were installed into the profile; it does not follow the
transport order, because a hook does not have an associated transport provider.

c. For inbound messages, the receive folder assignment is honored only if a hook has not moved
the message to another folder. Conceptually, the MAPI spooler implements an internal hook
which is always called last and only if no previous hook returns the HOOK_CANCEL flag; it finds
the receive folder based on the message's PR_MESSAGE_CLASS and places the message in
that folder. See IMsgStore::GetReceiveFolder.

2. Define configuration parameters and understand how your hook or preprocessor is to be installed. A
spooler hook is a distinct service provider type and is added to the user's profile as part of a
message service, either alone or together with other, related service providers. Any configuration
parameters are normally stored in the profile and edited using the property pages for the message
service. A preprocessor is not a distinct service provider type; it must be registered by a transport
provider. If necessary, a minimal transport provider can be created for this purpose alone.

Implementation Tasks

To implement a preprocessor
· Create a DLL containing the PreprocessMessage and RemovePreprocessInfo entry points. It is

strongly recommended, though not required, that all the code and entry points listed here be
implemented in the same DLL; this minimizes the delay in loading MAPI applications.

· Create a call to the IMAPISupport::RegisterPreprocessor method in a transport provider.
· Create a transport provider entry point, and the remainder of a minimal transport, if there is no

existing transport. The minimal transport should initialize as recommended in the topic Required
Functionality for Transport Providers. In response to the IXPLogon::AddressTypes call, the
transport provider should return a single zero-length string in lpppszAdrTypeArray and NULL in
lpppUIDArray.

· Create a MAPISVC.INF fragment for the transport provider and the message service that contains it.
See Implementing a Message Service.

· Optionally, but strongly recommended, create a message service entry point for configuration. See
About Message Service Entry Point Functions.

· Optionally, create an online Help file linked to your configuration property pages, wizard pages, or
both, providing full details about all configuration options.

· Optionally, create a header file for custom programmatic configuration by MAPI clients.
· Optionally, create a service wizard entry point for interactive configuration by users. See Supporting

the Profile Wizard.
· Optionally, create a .PRF file detailing configuration properties for the message service.

To implement a spooler hook
· Create a DLL containing the HPProviderInit entry point. It is strongly recommended, though not

required, that all the code and entry points listed here be implemented in the same DLL; this
minimizes the delay in loading MAPI applications. See About Provider DLL Entry Point Functions.

· Create a MAPISVC.INF fragment for the hook provider and the message service that contains it.
See Implementing a Message Service.

· Optionally, but strongly recommended, create a message service entry point for configuration. See
About Message Service Entry Point Functions.

· Optionally, create a header file for custom programmatic configuration by MAPI clients.
· Optionally, create a service wizard entry point for interactive configuration by users. See Supporting

the Profile Wizard.
· Optionally, create an online Help file linked to your configuration property pages, wizard pages, or

both, providing full details about all configuration options.

· Optionally, create a .PRF file detailing configuration properties for the message service.

About Sample Source Code

Peer-to-peer transport service. Uses files and directories to transmit and receive messages. It
implements and registers a very simple preprocessor that appends a line of text to each outbound
message. The executable is named SMPXP.DLL; the sample source code is in the PEER.XP directory.
It is written in C and supports all platforms.

Sample spooler hook. Processes inbound and outbound messages. It can archive sent and deleted
messages into folders by month and year, place incoming messages into folders based on variable
criteria, and automatically respond to inbound messages with formatted text. The executable is named
SMH.DLL; the sample source code is in the MANAGER.SH directory. It is written in C and supports
Win32 platforms only.

 Finding Information About a User in the Address Book

This topic explains how to find a user in the address book given a name, part of a name, or other
information about the user; how to retrieve information from that entry; and how to search for several
users at a time.

Design Tasks

1. Decide whether you're searching the entire address book, one or more containers belonging to a
specific message service, or a particular type of container such as a personal or global address list.

2. Decide what properties are in your search criteria. The only property you can rely on being
searching with acceptable performance is PR_DISPLAY_NAME. If you want to use another property
such as an account name, employee identification number, or organization name, you must
experiment with the address book providers you expect to use to verify that searching on those
properties is supported and the performance is acceptable.

3. Understand whether or not the information you are given should identify each user uniquely. If it may
be ambiguous ¾ if it may match more than one entry in the address book ¾ then decide whether
your program should:
· Prompt its user to choose the right entry.
· Choose the right entry itself based on further information retrieved about each entry.
· Fail.

Implementation Tasks

To search the entire address book by display name for one or more entries
· Use the IAddrBook::ResolveName method. You can optionally request a dialog box that prompts

the user to choose the correct entry in case the information you were given matches more than one
entry.

To open the user's personal address book (PAB)
1. Retrieve its entry identifier by calling the IAddrBook::GetPAB method.
2. Call the IAddrBook::OpenEntry method passing the PAB's entry identifier.

To open a specific container other than the PAB
1. Open the address book's root container by calling the IAddrBook::OpenEntry method with a NULL

entry identifier. The root container is constructed by MAPI and contains the top-level containers of all
the address book providers in the profile.

2. Get the list of top-level containers by calling the IMAPIContainer::GetHierarchyTable method.
3. If you want a specific container type such as the global address list, restrict the table on

PR_DISPLAY_TYPE:
a. Create a property restriction to match PR_DISPLAY_TYPE with the value for the particular type of

container you want to open. For example, to open the Global Address Book, build a property
restriction that matches PR_DISPLAY_TYPE with the DT_GLOBAL value.

b. Create an SPropTagArray including PR_ENTRYID, PR_DISPLAY_TYPE, and any other columns
of interest.

c. Call the HrQueryAllRows function passing your property tag array and restriction. Ordinarily
there will be a single global address list, but the call can return zero, one, or more rows
depending on the address book providers in your profile. Be prepared to handle all these cases,
not just one row.

d. Call the IAddrBook::OpenEntry method with the PR_ENTRYID column from the row you want to
open the container.

4. If you want a container belonging to a specific address book provider, restrict the table on
PR_AB_PROVIDER_ID:

a. Create a property restriction to match PR_AB_PROVIDER_ID with the value that represents the
target address book provider. You will find this property value in a header file created by the
service provider. In the MAPI SDK, for instance, the value for the flat file address book sample is
SAB_PROVIDER_ID in SMPAB.H.

b. Create an SPropTagArray structure including PR_ENTRYID, PR_AB_PROVIDER_ID, and any
other columns of interest.

c. Call the HrQueryAllRows function passing your property tag array and restriction. The call will
return zero rows if the provider you want is not in the profile. It can return one or more rows
depending on the provider's containers are organized, but it will only return the top-level rows.

d. Call the IAddrBook::OpenEntry method with the PR_ENTRYID column from the row you want to
open the container. If the container you want is not a top-level container, you will then have to
navigate down through the latter's hierarchy table.

To search in a specific address book container
1. Open its contents table by calling its GetContentsTable method.
2. Use IMAPITable::FindRow, IMAPITable::SortTable, and IMAPITable::Restrict to search the

contents table just as you can any MAPI table. See Table Positioning and About Restrictions. These
methods are subject to limitations in the provider's implementation, and their speed is unpredictable;
careful testing against any providers you expect to use is indispensible. In addition to the normal
IMAPITable methods, there are two search techniques specific to address book containers:
· Restriction on PR_ANR (ambiguous name resolution). Although formatted as an ordinary

SPropertyRestriction structure, this restriction actually invokes a special display name matching
algorithm based on separating the string you give it into words and prefix-matching those words
against display names in the address book. See Implementing the PR_ANR Property Restriction.

· IABContainer::ResolveNames. This method does the same work as a PR_ANR restriction for
multiple names, and can be much faster. Providers are not required to implement it, and generally
do not unless it carries a significant performance benefit. It is not necessary to open the contents
table in order to user this method. See Implementing IABContainer::ResolveNames .

3. After applying any of the restriction methods listed above, call the IMAPITable::QueryRows method
to retrieve any rows that match the restriction. You may get back zero, one, or more rows that match.

4. Retrieve additional information for a single address book entry by calling the
IAddrBook::OpenEntry method passing its entry identifier, then call GetProps on the resulting
IMAPIProp interface. To retrieve additional properties for multiple address book entries, you can of
course call OpenEntry for each one, but it is usually much more efficient to call the
IAddrBook::PrepareRecips method. PrepareRecips requires an ADRLIST structure.

 About the Sample Code and SDK Tools

Note All executable names have "32" appended to them when built for 32-bit platforms. The routing
client, for instance, is named ROUTE.EXE when built for 16-bit Windows, but ROUTE32.EXE when
built for 32-bit Windows.

Address book viewer. Displays address book container, user, and distribution list properties in raw
form as well as through the standard address book dialog box, and exercises nearly all methods on
address book provider interfaces. It is useful both for exercising address book providers and for
understanding what properties are present on objects in an address book. The executable is named
ABVIEW.EXE; the sample source code is in the ABVIEW.CLI directory. It is written in C++ using the
Microsoft Foundation Classes and supports all platforms.

Checkers form. Implements the MAPI form interfaces and a more elaborate message; each message
represents a move in a game of checkers between two players. The executable is named
WCHECK.EXE; the sample source code is in the CHECKERS.FRM directory. It is written in C++ and
supports all platforms.

CMC client. Demonstrates the use of all CMC calls in a very simple messaging client. It can send and
read messages, list the contents of the Inbox, and view the address book. The executable is named
CMCCLI.EXE; the source code is in the CMC.CLI directory. It is written in C and supports all platforms.

Command extension. Adds a simple command to the messaging client's menu. The executable is
named CMDEXT.DLL; the sample source code is in the COMMAND.EXT directory. It is written in C++
and supports Win32 platforms only.

Docfile message store. Uses directories as folders and OLE 2.0 docfiles as messages (with the MAPI
message-on-storage utility). It supports all features required of a default message store. Neither its
IMAPIProp nor its IMAPITable interfaces are native; they are provided by the message-on-storage
facility and ITableData respectively. The executable is named SMPMS.DLL; the sample source code is
in the DOCFILE.MS directory. It is written in C and supports all platforms.

Event extension. Adds a new-mail event handler to the messaging client. The executable is named
EVEXT.DLL; the sample source code is in the EVENT.EXT directory. It is written in C++ and supports
Win32 platforms only.

Flat file address book service. Supports a single read-only container with names read from a flat
binary file containing display names and e-mail addresses. It supports one-off templates and all
configuration options except the wizard. The executable is named SMPAB.DLL; the sample source
code is in the FLATFILE.AB directory. It is written in C and supports all platforms.

Property viewer. Displays the properties directly accessible through an IMAPIProp interface
implementation, and exercises all methods of the interface. The executable is named PROPVU.DLL;
the sample source code is in the PROPVU.CLI directory. It is written in C++ using the Microsoft
Foundation Classes and supports all platforms.

Table viewer. Displays the properties directly accessible through an IMAPITable interface
implementation, and exercises all methods of the interface. The executable is named TBLVU.DLL; the
sample source code is in the TABLEVU.CLI directory. It is written in C++ using the Microsoft
Foundation Classes and supports all platforms.

Message store viewer. Displays message, folder, and message store properties in raw form, and
exercises nearly all methods on message store provider interfaces. It is useful both for exercising
message store providers and for understanding what properties are present objects in a store. The
executable is named MDBVU.EXE; the sample source code is in the MDBVIEW.CLI directory. It is
written in C++ using the Microsoft Foundation Classes and supports all platforms.

Peer-to-peer transport service. Uses files and directories to transmit and receive messages. It
illustrates how to split message content between TNEF and text. It also supports all configuration

options (property sheets, wizard, and programmatic configuration) and message options. It does not
support the remote transport interfaces. The executable is named SMPXP.DLL; the sample source
code is in the PEER.XP directory. It is written in C and supports all platforms.

Property sheet extension. Adds to the messaging client's standard message property sheets, for
messages belonging to the IPM.Document class. The new property sheet displays the document's
summary properties ¾ the author, title, date, and so forth. The executable is named PRSHEXT.DLL;
the sample source code is in the PROPSH.EXT directory. It is written in C++ and supports Win32
platforms only.

Remote transport service. Uses named pipes to communicate with a server process running on
Windows NT. It uses TNEF exclusively to encode message content. It supports all configuration options
and the remote transport interfaces. The transport executable is named XPWDSR.DLL, and the source
code is in the REMOTE.XP directory. The sample server source code is in the REMOTE.SRV directory.
Both are written in C++; the transport supports Win32 platforms only, and the server supports Windows
NT only.

Routing client. Creates a message with an attached document and a simple linear route using MAPI.
It can also send and read forms. The executable is named ROUTE.EXE; the sample source code is in
the ROUTE.CLI directory. It is written in C and supports all platforms.

Sample profile tool. MKPROF.EXE, creates and configures a profile using some of the Microsoft
message services. Its source code is in the PROFILE.CLI directory. It is written in C++ and supports all
platforms.

Sample spooler hook. can archive sent and deleted messages into folders by month and year, place
incoming messages into folders based on variable criteria, and automatically respond to incoming
messages with a rich-text message. The executable is named SMH.DLL; the sample source code is in
the MANAGER.SH directory. It is written in C and supports Win32 platforms only.

Send RTF utility. Sends a message with Rich Text Format content based on command line
parameters. The executable is named SNDRTF.EXE; the sample source code is in SENDRTF.CLI. It is
written in C++ and supports Win32 platforms only.

Simple form. Implements the MAPI form interfaces and a very simple message, containing only text
and recipients. It is a good basis for reuse in a more complicated form. The executable is named
SMPFRM.EXE; the sample source code is in the SIMPLE.FRM directory. It is written in C++ and
supports Win32 platforms only.

Simple MAPI client. Demonstrates the use of all simple MAPI calls in a very simple messaging client.
It can send and read messages, list the contents of the Inbox, and view the address book. The
executable is named SMPCLI.EXE; the sample source code is in the SIMPLE.CLI directory. It is written
in C and supports all platforms.

Simple MAPI stress mailer. Generates message traffic using Simple MAPI. It can send a message
any number of times, at any interval, with message text and attachments of any size. The executable is
named SEND.EXE; the sample source code is in the SEND.CLI directory. It is written in C++ using the
Microsoft Foundation Classes and supports all platforms.

Status table viewer. Displays the MAPI status table in raw form, and exercises provider IMAPIStatus
interfaces. The executable is named STATVU.DLL; the sample source code is in the STATUSVU.CLI
directory. It is written in C++ using the Microsoft Foundation Classes and supports all platforms.

Timecard application. Demonstrates creating and sending messages with custom fields using the
OLE Messaging Library. The executables are named TMCLI.EXE and TMSRV.EXE; the sample source
code is in the TIMECARD.CLI directory. It is written in Visual Basic 4.0 and supports all platforms.

 Concepts and Architecture

As business becomes more competitive, the success of an organization increasingly depends on how
quickly, smoothly, and efficiently people within that organization work together. The key to a successful
organization is how well that organization manages and distributes information. Networking is an
important part of teamwork because it enables fast and efficient information exchange. But networking
is only part of the solution; organizations must also keep track of the information and manage its
distribution. Electronic messaging systems provide these capabilities.

Electronic messaging has become critically important to enterprise computing. In fact, many
organizations are looking to their electronic messaging systems to take on the role of a central
communications backbone, used not only for electronic-mail (e-mail) messages, but to integrate all
types of information. Electronic messaging provides a way for users in organizations to retrieve
information from a variety of sources, to exchange information automatically, and to store, filter, and
organize the information locally or across a network.

Today, powerful enterprise-wide workgroup applications that manage group scheduling, forms routing,
order processing, and project management are built on electronic messaging systems. Hundreds of
different messaging systems are offered by different vendors, and a wide range of applications have
been built to use them. But each of these messaging systems has a different programming interface,
making an extensive development effort necessary to enable an application to interact with more than
one system.

To solve this problem, Microsoft, along with more than 100 independent software vendors (ISVs),
messaging system suppliers, corporate developers, and consultants from around the world, has
created the Messaging Application Programming Interface (MAPI). MAPI is a messaging architecture
that enables multiple applications to interact with multiple messaging systems seamlessly across a
variety of hardware platforms.

MAPI is made up of a set of common application programming interfaces and a dynamic-link library
(DLL) component. The interfaces are used to create and access diverse messaging applications and
messaging systems, offering a uniform environment for development and use and providing true
independence for both. The DLL contains the MAPI subsystem, which manages the interaction
between front-end messaging applications and back-end messaging systems and provides a common
user interface for frequent tasks. The MAPI subsystem acts as a central clearinghouse to unify the
various messaging systems and shield clients from their differences.

About MAPI Features

MAPI has several key features that enable it to provide a consistent way for developers to work with
and use different messaging systems in a seamless fashion. These features are:

· An open programming interface
· A dual-purpose interface, separated into two independent parts
· A comprehensive interface
· Integration with the operating system
· Support for industry standards

Because MAPI is an open programming interface, it provides services in a generic way, allowing its
users to add any necessary customization now and in the future. The users of the MAPI interface
include all levels and types of applications, also called client applications or clients, and service
providers, or driver-like components that translate the features of a specific messaging system into
features that any MAPI client application can access. Applications with such diverse messaging needs
as a word processing application requiring only the ability to send documents and a workgroup
application requiring the ability to share and store different types of data can use the MAPI
programming interface to fulfill their needs. In fact, any application that has to either exchange or store
information in a particular format can benefit from using the MAPI programming interface. Any service
provider can use the interface to expose the unique features of its messaging system, selecting those
features that provide the most benefit to application users.

MAPI provides separation between the programming interface used by the front-end messaging client
applications and the programming interface used by the back-end service providers. Separating the
client interface from the service provider interface enables a single application to use multiple
messaging systems and a single service provider to be used by multiple applications. Every
component works with a common, Windows-based user interface. This is a great benefit to users.
Users can select from a variety of systems, depending on their needs at any one time, and be able to
work consistently with each selected system, thereby providing true independence from specific
messaging systems.

For example, one messaging client application can be used to receive messages from a fax, a bulletin
board system, a host-based messaging system, and a LAN-based system. Messages from all of these
systems can be placed in a single location upon arrival, or universal inbox. Having a single application
handle all of these systems lessens the cost of development, user training, and system administration.

Separating the client interface from the provider interface removes any programming dependencies
placed on the application by the messaging system and vice versa. Developers of client applications
and service providers code to a standard set of MAPI features, rather than a diverse set of application-
specific or messaging system-specific features. Developers focus only on their component, whether it
be a client or service provider, and MAPI handles the rest, thereby reducing development time and
costs.

The MAPI programming interface provides a comprehensive set of features. MAPI is aimed at the
powerful, new market of workgroup applications ¾ applications that communicate with such different
messaging systems as fax, DEC All-In-1, voice mail, and public communications services such as
AT&T Easylink Services, CompuServe, and MCI MAIL. The MAPI interface allows service providers to
be made available for all of these systems.

Because workgroup applications demand more of their messaging systems, MAPI offers much more
than basic messaging in the programming interface and supports more than local area network (LAN) -
based messaging systems. Applications can, for example, format text for a single message with a
variety of fonts and present to their users a customized view of messages that have been filtered,
sorted, or preprocessed.

MAPI is built into the Microsoft Windows family of operating systems, currently a component of

Microsoft® Windows® 95 operating system and soon to be a component of Microsoft® Windows NT®
operating system. Because MAPI is an integrated part of the operating system, developers of 16-bit
and 32-bit Windows-based applications can have access to a consistent interface. This approach is
similar to the approach used by the Windows printing system. Just as a word-processing program can
print to many different printers through the Windows printing system as long as the necessary drivers
are installed, so can any MAPI-compliant application communicate with any messaging system as long
as the appropriate service providers are installed.

The programming interface and subsystem contained in the DLL are based on the object oriented
concepts introduced with another integrated part of the Windows operating systems, OLE. MAPI-
compliant objects conform to the OLE methodology known as the Component Object Model (COM).
COM objects implement a set of methods that belong to one or more interfaces, or collections of
related functions that define how objects behave and operate within the COM world. Users of COM
objects access them only through pointers to these interfaces.

In addition to the DLL and programming interface, several other components are included with the
operating system as part of MAPI. There are standard messaging client applications that demonstate
different levels of messaging support. There are sample address book, message store, and transport
providers written in both C and C++. You can use these components either for testing your own client
or service provider or as a learning tool.

MAPI provides cross platform support through such industry standards as SMTP, X.400, and Common
Messaging Calls (CMC). MAPI applications can be run on all 16-bit Windows 3.x platforms and both
16-bit and 32-bit platforms on Windows 95 and Windows NT. MAPI is the messaging component of an
open architecture standard known as the Microsoft Windows Open Services Architecture (WOSA).
WOSA standards exist or are being developed in the areas of database, directory, security, and
messaging technology among others. WOSA programming interfaces allow developers to create front-
and back-end components with the confidence that these products can be easily connected in a
distributed computing environment.

About the MAPI Architecture

MAPI defines a modular architecture, as shown in the following illustration.

{ewc msdncd, EWGraphic, groupx827 0 /a "MAPI_43.WMF"}

There are basically three types of client applications: messaging-aware, messaging-enabled, and
messaging-based. These applications are known as client applications because they are clients of the
MAPI subsystem. Messaging-aware and messaging-enabled applications are typically applications not
primarily focused on messaging; these are word processing or spreadsheet applications, for example,
that incorporate messaging as an added feature. Messaging-based applications employ messaging as
a central part of their processing and offer extensive messaging features, such as the exchange of
information of various types in various formats and the ability to save and organize the information
locally. Electronic mail, scheduling, and work flow applications are examples of messaging-based
applications.

The MAPI subsystem is made up of the MAPI spooler, a common user interface, and the programming
interfaces. The MAPI spooler is a separate process responsible for sending messages to and receiving
messages from a messaging system. The common user interface is a set of dialog boxes that gives
client applications a consistent look and users a consistent way to work.

MAPI has programming interfaces that are used by the MAPI subsystem, by client application writers,
and by service provider writers. The main programming interface is an object-based interface known as
the MAPI programming interface. Based on the OLE Component Object Model, the MAPI programming
interface is used by the MAPI subsystem and by messaging-based client applications and service
providers written in C or C++.

Client application writers have a choice of three other interfaces:

· Simple MAPI. An API function-based client interface for applications written in C, Microsoft Visual C+
+, or Microsoft Visual Basic.

· Common Messaging Calls (CMC). An API function-based client interface for applications written in C
or C++.

· OLE Messaging Library. An object-based client interface for applications written in C, C++, Visual
Basic, or Visual Basic for Applications.

The Simple MAPI, CMC, and OLE Messaging Library client interfaces are primarily for messaging-
aware and messaging-enabled client applications. These interfaces are less complex; applications that
require fewer messaging features can use Simple MAPI, CMC, or the OLE Messaging Library to
implement these features quickly and easily.

Client application writers have the option of making MAPI calls either directly through the MAPI
programming interface or indirectly through one of these three client-only interfaces. Messaging can be
implemented with a single MAPI client interface or a combination of interfaces. A single application can
make calls to methods or functions belonging to any of the interfaces.

The service provider programming interface is the part of the object-based MAPI programming
interface that applies specifically to service providers. Service providers, positioned between the MAPI
subsystem and the underlying messaging systems, translate requests from MAPI-compliant client
applications into tasks a specific messaging system can understand. When tasks are complete, the
service providers translate again, converting status and information that is messaging system-specific
into a MAPI format. As with client applications, there are different types of service providers. Each type
handles a different messaging system service. The address book provider, for example, works with
directory information while the transport provider handles message transmission and reception.

About Client Applications

A MAPI client application is any application that uses one of the three MAPI client interfaces (Simple
MAPI, CMC, and the OLE Messaging Library) or the MAPI programming interface. Client applications
implement messaging tasks as either their primary or secondary focus. Messaging client applications,
such as applications that send and receive electronic mail, implement messaging as their primary focus
while for non-messaging client applications, such as inventory or configuration applications, it is a
secondary feature.

Client applications can be organized into one of the following three categories:

· Messaging-aware applications
· Messaging-enabled applications
· Messaging-based workgroup applications

A messaging-aware application does not require the services of a messaging system, but includes
messaging options as an additional feature. For example, a word processing application that includes a
Send command in its File menu to allow documents to be sent is considered messaging-aware.

A messaging-enabled application requires the services of a messaging system and typically runs on a
network or an on-line service. An example of a messaging-enabled application is Microsoft Mail.

A more advanced client application is the messaging-based workgroup application. The workgroup
application requires full access to a wide range of messaging system services, including storage,
addressing, and transport services. These applications are designed to operate over a network without
users having to manage the applications' network interaction. Examples of such applications include
work flow automation programs and bulletin board services.

Client applications can either include the user to create an interactive environment or operate without a
user in an automated environment. While MAPI supplies a set of common dialog boxes with its
standard user interface, client applications are not required to present a user interface. In fact, all
processing can be handled within the application if desired. An example of an automated client
application would be an inventory management application that is programmed to route items of a
particular type to standard recipients on a regular basis.

About the MAPI Subsystem

The MAPI subsystem consists of the following parts:

· Client and service provider programming interfaces
· MAPI spooler
· Common user interface

The MAPI programming interface is based on a powerful, object-oriented interface that subscribes to
OLE's Component Object Model, a model for object interaction. MAPI defines a set of objects that
share structure and behavior, enabling developers to create and use objects in a consistent manner.
There is a large feature set available, enabling client developers, for example, to provide their users
with access to message or recipient properties and customized views of message and address book
information. Although all types of client applications can use the object-oriented MAPI interface,
typically only messaging-based applications and service providers need its power and complexity. A
simpler, more restrictive API is usually sufficient for messaging-aware and messaging-enabled
applications.

To support a wider audience of client application developers, there are three other API sets on top of
MAPI: Common Messaging Calls (CMC), Simple MAPI, and the OLE Messaging Library. Simpler to
use and understand, these API sets provide messaging functionality through either C standard function
calls or Visual Basic. Client application developers can choose the API that is most suitable for their
needs.

The following table describes each of the interfaces available to client applications.

Client interface Description
Simple MAPI Supports existing messaging-

enabled and messaging-aware
applications. For C, C++, or
Visual Basic client applications.

CMC Supports cross-platform
applications written in C or C++.

OLE Messaging Library Supports OLE automation
controllers written in C, C++,
Visual Basic, or Visual Basic for
Applications.

MAPI Supports full-featured client
applications and service
providers written in C or C++.

The following illustration shows how Simple MAPI, CMC, and the OLE Messaging Library are layered
between MAPI and client applications. Messaging-based clients call directly into MAPI while
messaging-aware and messaging-enabled clients call into Simple MAPI, the OLE Messaging Library or
CMC. Calls to these higher level APIs are forwarded to MAPI.

{ewc msdncd, EWGraphic, groupx827 1 /a "MAPI_45.WMF"}

About the MAPI Spooler

The MAPI spooler is a separate process within the MAPI subsystem, responsible for sending
messages to and receiving messages from a messaging system. The MAPI spooler plays a vital role in
message receipt and delivery. When a messaging system is unavailable, the MAPI spooler stores the
messages and automatically forwards them at a later time. This ability to hold onto or send data when
necessary is known as store and forward, a critical feature in environments where remote connections
are common and network traffic is high. The MAPI spooler runs as a background process, doing much
of its work when a client application is idle, thus improving the responsiveness of the client application.

The MAPI spooler has additional responsibilities related to message distribution. These extra duties
include:

· Keeping track of the recipient types that are handled by specific transport providers.
· Informing a client application when a new message has been delivered.
· Invoking message preprocessing and postprocessing.
· Generating reports that indicate that message delivery has occurred.
· Maintaining status on processed recipients.

The following illustration shows at a high level how a message flows from a client to the messaging
system. The user of a client application sends a message to one or more recipients. The message
store provider initiates the sending process, formatting the message with additional information needed
for transmission. Unless the message store is tightly coupled with a transport provider that can handle
all of the recipients to whom the message is addressed, the MAPI spooler receives the message,
performs any required preprocessing, and delivers it to the appropriate transport provider. The
transport provider gives the message to its messaging system which sends it to its intended recipient.

With incoming messages, the flow is reversed. The transport provider receives a message from its
messaging system and notifies the MAPI spooler. The spooler performs any necessary postprocessing
and informs the message store provider that a new message has arrived. This notification causes the
client to refresh its message display, enabling the user to read the new message.

{ewc msdncd, EWGraphic, groupx827 2 /a "MAPI_46.WMF"}

About Service Providers

Between the MAPI subsystem and the messaging systems are the various service providers. Service
providers are drivers that connect MAPI client applications to an underlying messaging system. There
are several types of service providers, but not all types are common. Most messaging systems include
three types of services: message store providers, address book or directory providers, and message
transport providers. Other less typical service providers include messaging hook providers and profile
providers. MAPI supports each type of service independently, allowing a vendor to offer one or more
custom service providers. For example, a vendor might want to create an address book provider that
uses a corporate telephone book directory of employees or create a message store provider that uses
an existing database.

Service providers are typically written by software developers with specialized knowledge or
experience with a messaging system. In many cases, this is the company or organization which
promotes a specific messaging system. For instance, CompuServe supplies address, message store,
and transport providers for the CompuServe Information Service. MAPI supplies two of its own service
providers: a message store provider known as Personal Folders and an address book provider known
as the Personal Address Book (PAB). These providers can be used in isolation, as a client's only
message store or address book provider, or in combination with other service providers.

MAPI presents client applications with a unified view of address book and transport provider
information. This integrated approach saves the client application from having to map data to the
appropriate provider and the user from having to negotiate among addressing schemes used by
multiple address book and transport providers. Message store provider information, however, is not
unified and clients that use multiple message store providers are responsible for handling them
individually.

The service providers work with MAPI to create and send messages in the following way. Messages
are created using a form that is appropriate for the specific type, or class, of message. Many messages
are made with the standard note form that comes with the MAPI subsystem, either by the user of a
client application or programmatically without user interaction. The completed message is addressed to
one or more recipients, a user or group of users designated to receive the message. A recipient might
or might not have an entry in a directory owned by one of the installed address book providers.
Recipients that are not associated with an installed address book provider are called custom recipients.
A custom recipient can be temporary, lasting only until the message is submitted, or more permanent if
it is saved in the Personal Address Book (PAB) or another modifiable address book.

When the client application sends the message, the message store provider checks that each recipient
has a unique and valid address and that the message has all of the information necessary for
transmission. If there is a question about a recipient, such as can occur when there are multiple
recipients with the same name, an address book provider takes care of resolving the ambiguity. The
message is then placed in the outbound queue.

If the message store is tightly coupled to a transport provider that can handle all of the recipients and
there is no required preprocessing, the message goes directly to the transport provider without
intervention from the MAPI spooler. Otherwise the MAPI spooler performs preprocessing if necessary
and attempts to route the message to a transport provider based on the address type of the recipient. If
the appropriate transport provider is available, the MAPI spooler transfers the message and the
transport provider delivers it. If the transport provider is not available, the MAPI spooler either holds on
to the message until the transport provider becomes available or sends it using another appropriate
transport provider.

About Address Book Providers

Address book providers handle access to directory information. Directory information consists of data
for two types of message recipients: individual messaging users and groups of messaging users who
are commonly addressed together called distribution lists. Depending on the type of recipient and the
address book provider, there is a wide range of information that can be made available. For example,
all address book providers store a recipient's name, address, and address type.

Each address book provider organizes this data using one or more containers. The number and
structure of the containers is dependent on the address book provider's implementation. For example,
one address book provider might use a single container to hold all of the information, another might
use one top-level container that holds subcontainers, a third might use several top-level containers,
each holding subcontainers. An address book container hierarchy can be quite deep; there is no limit to
the number of subcontainers that can be used.

The following illustration shows the typical MAPI address book organization.

{ewc msdncd, EWGraphic, groupx827 3 /a "MAPI_04.WMF"}

MAPI integrates all the information supplied by the installed address book providers into a single
address book, presenting a unified view to the client application. The integrated list shows the top-level
containers displayed by each of the installed address book providers. Most address book providers
expose only a few containers (typically one to three) at the top level for inclusion in the top level of
MAPI's integrated address book. For example, an address book provider might make available All
Users and Local Users as two containers at the top level.

The users of client applications can view the contents of address book containers and in some cases
modify it. Address book containers can be created with different access levels, depending on the
address book provider. MAPI's Personal Address Book (PAB) is an example of a modifiable address
book container that allows new entries to be added and existing entries to be modified or deleted. The
PAB is a special container because it allows users to store copies of frequently used addresses and
maintains custom recipient entries, or new entries that do not exist in the information maintained by
one of the installed address book providers. Custom recipients may be created for the duration of the
session only or be stored in the PAB for greater longevity.

Whereas the PAB is an address book provider supplied by MAPI, it is also a role that any modifiable
address book container can play. A user can take another modifiable address book container and
assign it as the PAB, replacing the MAPI Personal Address Book as the default PAB.

About Message Store Providers

Message store providers handle the storage and retrieval of messages and other information for the
users of client applications. The message information is organized using a hierarchical system known
as a message store. The message store is implemented in multiple levels, with containers called
folders holding messages of different types. There is no limit to the number of levels in a message
store; folders can contain many subfolders.

The hierarchical message store architecture is shown in the following illustration. There are two folders,
one with a subfolder. Client application users can access a summary view of the messages contained
within each folder or view them individually with a form. Whether the client displays a standard form
supplied by MAPI or a custom form supplied by a form developer depends on the type, or class, of the
message. The first folder contains note messages and uses the MAPI standard note form. The second
folder contains inventory request messages and uses a custom inventory form. The information on
both forms represents the properties of the message.

{ewc msdncd, EWGraphic, groupx827 4 /a "MAPI_03.WMF"}

Message store data can be used in a variety of ways. Besides the traditional electronic mail usage,
folders can be used as a forum for public discussion, as a repository for reference documents, or as a
container for bulletin board information, to name a few. A single message store can hold many types of
information, some modifiable and some not. Multiple clients can install the same message store,
making the sharing of data easy and fast.

Message store folders provide the means for sorting and filtering messages and for customizing their
view in a user interface display. Links to filtered messages are held in special folders called search-
results folders. The user of a client application enters filtering criteria, which MAPI refers to as a
restriction, and the criteria is applied to the messages stored in one or more folders. For example, a
user might want to view only those messages dealing with a particular subject with arrival dates that
are more recent than last week. References to the messages that match the criteria are listed in the
search-results folder and the real messages remain in their regular folders.

Messages are the units of data transferred from one user or application to another user or application.
Every message contains some message text, formatted simply or more intricately, and message
envelope information that is used for transmission. Some messages include one or more attachments,
or additional data related to and transported with a message in the form of a file, another message, or
an OLE object.

Depending on the message store provider, a user can save a new message currently under
composition as well as messages that have been sent or received. Messages can be copied or moved
from one folder to another with each copy becoming a separate message that can be copied, deleted,
or modified individually. Another feature that some message store providers allow is the ability to
change a message, once it has been received, and store it back in its folder. A user might take
advantage of this feature for rotating a fax message that has arrived upside down. The correct view
can be stored in the folder for later viewing.

About Transport Providers

Transport providers handle message transmission and reception; they control the interaction between
the MAPI spooler and the underlying messaging system and implement security if necessary. They
also take care of any preprocessing and postprocessing tasks that are necessary. There is typically
one transport provider for every active messaging system.

Client applications communicate with the transport provider through a message store provider. The
message store and transport provider communicate through the MAPI spooler. When an incoming
message is detected, the transport provider informs the MAPI spooler and the message is delivered to
the appropriate message store. To handle outgoing messages, the processing happens in reverse: the
message store provider moves the message to the outbound queue, informs the MAPI spooler, and the
MAPI spooler transfers it to the appropriate transport provider. When possible, calls to the transport
provider are made when client applications are idle. Transport providers and the MAPI spooler operate
in the background except at logon time and when prompted by the client application to flush the
transmit and receive queues.

Transport providers register with MAPI to handle one or more particular types of recipient entries.
When a message is ready to be sent, the MAPI spooler looks at each recipient and determines which
transport provider should handle the transmission. Depending on the type of recipient, the MAPI
spooler can even call upon more than one transport provider. If the MAPI spooler's first choice is
unavailable, and another transport provider has also registered to handle the specific recipient type, the
MAPI spooler sends the message to the alternate provider. If the unavailable transport provider is the
only one that can handle the recipient, there is no choice except to wait until a connection with that
provider can be reestablished.

Some messaging systems are secure systems; all potential users are required to enter a set of valid
credentials before access is permitted. MAPI prevents unauthorized access to such secure messaging
systems by having the transport provider validate credentials at logon time.

About Message Services

A message service defines a group of related service providers, typically service providers that work
with the same messaging system. Whereas service providers perform the work of interfacing between
messaging systems and the MAPI subsystem, message services perform the work of interfacing
between service providers that work with a common messaging system and the user.

Message services exist to make the installation and configuration of service providers easier for users.
Users never directly install or configure a service provider; this installation and configuration is
completely handled by the message service, making knowledge of service provider configuration
requirements unnecessary. For example, when a user wants to install the service providers for the
CompuServe Information Service, that user installs a single message service. The installation
component in the message service handles the installation of each of the service providers that belong
to the service.

The following illustration shows the relationship between a messaging-based client application and two
message services. The user invokes the installation code of each message service to add the service
and its service providers to a profile. In one of the message services, there are three service providers
and in the other there are two. At some later time after installation is complete, typically at logon time,
the service providers in each message service are configured. The configuration code in each
message service handles the configuration of the providers in the service.

{ewc msdncd, EWGraphic, groupx827 5 /a "MAPI_44.WMF"}

When a message service is installed, its installation program copies necessary files from the
installation source to the user's local disk and updates a configuration file, MAPISVC.INF. The
MAPISVC.INF file holds configuration settings for all of the message services and service providers
that can be installed on the computer. It is organized in hierarchical sections, with links between each
section at each level. The section at the top level contains information relevant for the MAPI
subsystem, such as a list of all available message services, and for the online help installation. The
next level has sections for each message service, with information such as the DLL filename of the
message service and the name of its configuration entry point function. The third level has sections
with configuration data for each service provider in the message services.

To handle configuration, a message service implements an entry point function that conforms to a
prototype defined by MAPI and a tabbed dialog box known as a property sheet. MAPI calls the entry
point function to service client requests that relate to profile management and the management of
service providers within the message service. Property sheets are used for viewing and changing
message service and service provider configuration properties.

About Profiles

A profile is a collection of information about the message services and service providers that a user of
a client application wants to be available during a particular MAPI session. Every user has at least one
profile; many users keep several. For example, a user might have one profile to work with a server-
based message store service and another profile to work with a message store service on the local
computer. A user might want to access one set of messaging systems using the appropriate transport
services for part of the day and another set for the rest of the day. Profiles provide a flexible way to
select combinations of messaging system services.

Profiles can be given names up to 64 alphanumeric characters in length. The names can include
accent characters, the underscore, and embedded spaces and cannot include leading or trailing
spaces. Profiles can have passwords, but are not required to have them because not all operating
systems support them. Currently, Windows NT and Windows 95 do not support passwords, but
Windows version 3.1 does.

Profiles are organized hierarchically and divided into sections, with one section for each message
service and one section for each service provider within a service. The related sections are linked,
making it easier to navigate through the information. Each section contains a series of entries that
MAPI or a client application uses for configuration.

The entries included in a profile vary from message service to message service. Some of the common
entries include:

· Name of each message service or service provider
· Name of the DLL files that contain service providers and message services
· Name of each message service's entry point function
· A list of the service providers that make up each message service

Profiles can be created at installation time, when MAPI or a message service is loaded onto a
computer workstation, or at any time after. MAPI provides three programs for profile administration: the
Control Panel applet, the Profile Wizard, and the NEWPROF utility.

The Control Panel applet is a full-featured configuration application, allowing a user to create new
profiles and maintain existing profiles either by deleting them or adding, modifying, or deleting entries.

The Profile Wizard is an application that creates new profiles with a minimum amount of work. Default
values for settings are used wherever possible, saving users time and effort. Users enter values only
when absolutely necessary.

The NEWPROF utility is a tool for creating new profiles with a template file similar to MAPISVC.INF
called DEFAULT.PRF. The entries that are placed in DEFAULT.PRF are written into the new profile as
properties. NEWPROF can be invoked from the command line, a message service installation
program, or from within a client application.

About MAPI Forms

A MAPI form is a viewer for a message. Every message has a message class that dictates the
particular form that is used as its viewer. MAPI defines a few message classes and has implemented
the forms for viewing messages of these classes. Client application developers can create new
message classes and custom forms for viewing messages created with the new classes.

Every custom form implements a set of standard menu commands, such as open, create, delete, and
reply and a set of commands that are specific to the particular form. Some of the form commands are
integrated with the user interface of the client application when the form is active; other form
commands totally replace the client commands.

The MAPI form architecture involves three main components:

· Form library provider
· Form server
· Form viewer

The form library provider maintains a library of information about all of the forms available on the
computer, enabling the client to select the form suitable for the message to be displayed.

The form server is responsible for displaying the form and providing the information for the display. The
form server manages the user's interaction with the form, interpreting the menu selections and
processing the messages. A form server is similar in implementation to an OLE compound document
application.

The form viewer is a component within a client application that contains the display and presents it to
the user.

The following illustration shows the relationship between the various components that make up the
MAPI form architecture.

{ewc msdncd, EWGraphic, groupx827 6 /a "MAPI_53.WMF"}

 Introduction to MAPI Programming

Before beginning serious development work, you need to consider the following information about
using the MAPI Software Development Kit (SDK), the logon process, and how profiles and message
services are created and configured. Client application developers need to consider how to choose
between the four client APIs (MAPI, Simple MAPI, CMC, and the OLE Messaging Library) and how to
create a client application that takes advantage of more than one client API.

 About MAPI Installations

Information about a computer's MAPI installation can be found in the system registry on 32-bit client
applications and in the Windows initialization file, WIN.INI, for 16-bit client applications. The system
registry and WIN.INI file contain the same information about the MAPI libraries that are installed on the
computer and options about use. All values in the registry entries are character strings.

Message service installation programs are responsible for creating the installation information in the
[Mail] section of the WIN.INI file and in the following system registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Messaging Subsystem

Message services can add entries to either the WIN.INI file, the system registry, or both resources
depending on the installation.

The following table summarizes how clients retrieve version information and determine if Simple MAPI,
CMC, MAPI, or the OLE Messaging Library are available on their machine.

To check Registry/WIN.INI entry
Availability of Simple MAPI Look for MAPI=1
Availability of MAPI Look for MAPIX=1
Availability of CMC Look for CMC=1
Availability of OLE Messaging
Library

Look for OLEMessaging=1

Available version of MAPI Look for MAPIXVER string of
the form:
 x.x.x"

Note Client applications that are running Windows NT 3.51 or earlier must check the WIN.INI file
rather than the registry for the MAPIX=1 entry to determine the availability of Simple MAPI.

 Determining Which Client Interfaces are Installed

The information that is added to the [Mail] section of the WIN.INI file or the system registry specifies the
types of MAPI client application programming interfaces (APIs) that are installed on a computer. These
types include Simple MAPI, MAPI, the OLE Messaging Library, and CMC. If CMC is installed, another
entry exists to identify the name of the CMC DLL file that should be loaded for your system.

The entries that identify client API installations are as follows:

[Mail]
MAPI=0 or 1
MAPIX= 0 or 1
OLEMessaging=0 or 1
CMC=0 or 1

Each entry that represents an installed MAPI client API is set to 1. If a particular client API is not
installed, its entry either is missing from the WIN.INI file or the registry or is set to 0. The MAPI entry
identifies a Simple MAPI installation, the MAPIX entry identifies a MAPI installation, and the OLE
Messaging Library and CMC entries indicate the client API of the same name.

Computers with CMC installations can also set the CMCDLLNAME or CMCDLLNAME32 entries to
specify the filename of the CMC DLL. CMCDLLNAME identifies the 16-bit version; CMCDLLNAME32
identifies the 32-bit version. If these entries are omitted and a CMC installation exists, MAPI searches
for a file named CMC.DLL regardless of whether the installation is for a 16-bit or 32-bit platform. The
format of the CMCDLLNAME entries is as follows:

CMCDLLNAME=full path to file
CMCDLLNAME32=full path to file

Simple MAPI, MAPI, and the OLE Messaging Library installations always reside in a standard DLL file.
For MAPI, the DLL is called MAPIX.DLL for 16-bit platforms and MAPIX32.DLL for 32-bit platforms. For
Simple MAPI, the DLL is called MAPI.DLL for 16-bit platforms and MAPI32.DLL for 32-bit platforms.
Both 16-bit and 32-bit Simple MAPI client applications can run in an environment that supports both
platforms (for example, the Windows 95 and Windows NT operating systems) if there is a Simple MAPI
installation available for at least one of the platforms.

If the OLE Messaging Library is installed, the type library resides in MDISP.TLB for 16-bit platforms and
MDISP32.TLB for 32-bit platforms. Client applications do not need the name of the server executable
file; information contained in the OLE registry automatically binds the appropriate file.

For CMC installations, MAPI places the 16-bit CMC DLL into MAPI.DLL and the 32-bit CMC DLL into
MAPI32.DLL.

Microsoft supplies an import library for MAPI. Client applications can load the MAPI DLL statically using
the import library or load it dynamically using the Windows API functions LoadLibrary and
GetProcAddress.

There is no import library for either the Simple MAPI DLLs or the CMC DLLs. These DLLs must always
be loaded dynamically by calling the Windows functions LoadLibrary and GetProcAddress.
Applications that use these Windows functions to load a CMC, Simple MAPI, or MAPI DLL should
always check either the appropriate CMC, MAPI, or MAPIX entry to determine whether the API is
installed before attempting to load the DLL.

The specific version of MAPI is indicated by another string value, which is a four-part number as
follows:

MAPIXVER=w.x.y.z

 About Installation Defaults

MAPI supplies a default profile provider implementation and a set of common dialog boxes. Typically
service providers will use what MAPI provides. However, it is possible to replace either the profile
provider implementation or the set of common dialog boxes. A provider can specify versions of these
components in the [MAPI] section of the WIN.INI file or the system registry. Service providers that use
the default components need not include this section.

The following entries can be included in the [MAPI] section:

Profile DLL=full path to file
Dialogs=full path to file
ProfileDirectory16=full path to file

The Profile DLL entry specifies the name of the DLL for the MAPI profile provider. The default setting is
MAPIX.DLL for 16-bit platforms and MAPIX32.DLL for 32-bit platforms. The filename included in the
path should be the profile provider's base DLL name, that is the DLL name without the suffix.

The Dialogs entry specifies the name of the DLL that contains the implementation for the common
dialog boxes. The default setting is WMSUI.DLL for 16-bit platforms and WMSUI32.DLL for 32-bit
platforms.

The ProfileDirectory16 entry specifies the path to the directory where the profile files are kept. This
entry is supported for 16-bit Windows environments only. The default location is a subdirectory named
MAPI under the Windows directory. The ProfileDirectory16 entry can be set either by the user or
automatically ¾ for example, by a network logon script. Specifying an explicit path for profile files
allows you as a service provider to store these files on a server computer rather than locally, allowing
them to be accessed from anywhere in the network.

 About Time Zone Installation Information

The [MAPI 1.0 Time Zone] section stores information that is used by the MAPI 16-bit implementation of
the time-zone API functions provided by 32-bit Windows. The entries that appear in this section are as
follows:

[MAPI 1.0 Time Zone]
Bias=minutes
StandardName=string
StandardStart=time structure
StandardBias=minutes
DaylightName=string
DaylightStart=time structure
DaylightBias=minutes

The TIME_ZONE_INFORMATION structure is defined as follows in the Microsoft Win32 SDK
documentation.

typedef struct _TIME_ZONE_INFORMATION
{
 LONG Bias;
 WCHAR StandardName[32];
 SYSTEMTIME StandardDate;
 LONG StandardBias;
 WCHAR DaylightName[32];
 SYSTEMTIME DaylightDate;
 LONG DaylightBias;
} TIME_ZONE_INFORMATION;

Using the MAPI SDK

The MAPI Software Development Kit (SDK) includes tools to help in the development of MAPI-
compliant client applications, service providers, and message services. The MAPI SDK is distributed
with the Microsoft Developer's Network (MSDN) Level 2. There are two versions of the MAPI SDK: one
for 16-bit developers and one for 32-bit developers.

You can install and use the MAPI SDK on any computer that meets the minimum qualifications for
Microsoft Windows version 3.1 (enhanced mode only), Microsoft Windows NT, or Microsoft Windows
95.

The MAPI SDK contains the following components:

· MAPI setup program
· MAPI header files
· MAPI libraries and DLLs
· MAPI executable files
· Sample client applications and service provider DLLs
· MAPI spooler
· Help files

For configuration, MAPI provides two applications: a Control Panel applet for full configuration support
and the Profile Wizard for basic profile administration.

The 32-bit version of the MAPI SDK is installed with the Win32 SDK. To install the MAPI SDK, select
the check boxes for MAPI in the Win32 installation dialog box.

To install the 16-bit version of the MAPI SDK, insert the CD-ROM disk into the appropriate drive and
run the setup program, SETUP.EXE, in the root directory. SETUP.EXE will automatically perform the
rest of the installation, decompressing and copying the SDK software from the CD to the local disk. The
setup program will also add a MAPI program group to the Program Manager window.

The SETUP.EXE program prompts you to choose a complete or a custom installation. A complete
installation copies all of the MAPI files to the appropriate directories. A custom installation enables you
to select specific files to be copied. SETUP.EXE displays information about each individual component
and prompts for a decision on whether or not to install each one.

Using the Samples

The MAPI SDK contains a variety of samples and tools in C, C++, and Visual Basic. There are samples
for different types of client applications, service providers, and extensions to the Microsoft Exchange
client. There are also several tools for accessing some of the basic MAPI objects.

The following table describes the MAPI SDK samples and tools in order by type:

SDK
component

Type Description

FLATFILE.AB Address book
provider

Address book provider written in
C.

SIMPLE.CLI Client application Simple MAPI client application.
CMC.CLI Client application CMC client application.
ROUTE.CLI Client application MAPI client application for

routing.
EVENTS.EXT Client extension Extends the Microsoft Exchange

client with message send and
read hooks.

COMMAND.EX
T

Client extension Extends the Microsoft Exchange
client with a folder command.

PROPSH.EXT Client extension Extends the Microsoft Exchange
client with a new property sheet
for document messages.

SIMPLE.FRM Form Simple form.
CHECKERS.FR
M

Form Form for playing checkers by e-
mail.

DOCFILE.MS Message store
provider

Message store provider written
in C.

MANAGER.SH Messaging hook
provider

Messaging hook provider written
in C.

REMOTE.SRV Server Server-based messaging host.
ABVIEW.EXE Tool Tool for displaying and changing

address book objects.
MDBVU.EXE Tool Tool for displaying and changing

message store objects.
PROPVU.DLL Tool Tool for displaying and changing

properties.
SEND.EXE Tool Tool for generating message

traffic.
STATUSVU.DL
L

Tool Tool for displaying the status
table.

TBLVU.DLL Tool Tool for displaying tables.
PEER.XP Transport provider Transport provider written in C.
REMOTE.XP Transport provider Remote transport for server-

based host written in C++.
For developers interested in writing a profile provider, SAMPLE.PR is available upon request.
SAMPLE.PR is a sample profile provider written in C.

Using Functions

The MAPI SDK contains two sets of functions: a core set that is needed to implement the MAPI basic
functionality and a set that can be used to implement auxiliary features. Client applications and service
providers can find alternate ways, if necessary, to implement the features supported by this latter set of
functions. All of the messaging features required by clients and service providers can be implemented
using the set of basic functions. Because the auxiliary set of functions are regarded as nonessential
and used predominately to implement utility features, it is possible that MAPI will not support them in
future releases.

As a developer of a MAPI-compliant client application or service provider, be aware that the use of
auxiliary functions might result in code having to be re-implemented for future versions. You can ensure
the portability of your client or service provider code by using only the core MAPI functions.

The following is a list of the auxiliary functions:

ChangeIdleRoutine CloseIMsgSession
DeinitMapiUtil EnableIdleRoutine
FBadColumnSet FBadEntryList
FBadProp FBadPropTag
FBadRestriction FBadRglpNameID
FBadRglpszW FBadRow
FBadRowSet FBadSortOrderSet
FBinFromHex FEqualNames
FNIDLE FPropCompareProp
FPropContainsProp FPropExists
FtAddFt FtgRegisterIdleRoutine
FtMulDw FtMulDwDw
FtNegFt FtSubFt
GetInstance HexFromBin
HrAllocAdviseSink HrComposeEID
HrComposeMsgID HrDecomposeEID
HrDecomposeMsgID HrEntryIDFromSz
HrGetOneProp HrSetOneProp
HrSzFromEntryID HrValidateIPMSubtree
LPropCompareProp MAPIDeInitIdle
MAPIInitIdle MapStorageSCode
NOTIFCALLBACK OpenIMsgSession
PpropFindProp PreprocessMessage
PropCopyMore RemovePreprocessInfo
ScBinFromHexBounded ScCopyNotifications
ScCopyProps ScCountNotifications
ScCountProps ScLocalPathFromUNC
ScRelocNotifications ScRelocProps
ScUNCFromLocalPath UlAddRef
UlPropSize UlRelease

Using UUIDGEN.EXE

UUIDGEN.EXE is a Microsoft utility that generates unique, byte-order independent identifiers.
UUIDGEN.EXE has several uses in the MAPI environment. The following table indicates some of the
ways that MAPI components can use this utility.

MAPI component Use of UUIDGEN.EXE
Service provider Creating new hardcoded

MAPIUIDs.
Form Creating new class identifiers for

forms.
Client application or service
provider

Identifying hardcoded global
profile section.

Client application or service
provider

Creating new property sets for
named properties.

Selecting a Client Interface

Client application developers can choose to use one or more of the MAPI client interfaces: Simple
MAPI, CMC, MAPI, and the OLE Messaging Library. Consider the following factors before making a
decision:

· Programming language
· Time constraints
· Resource constraints
· Type of client application

The language in which your client application will be written or is written is an important issue. If you
are modifying an existing application, you must use a client interface that supports your application's
language. If you are writing a new client application, the choice of language depends on your
experience with the supported languages and any requirements for interoperability that might exist with
other components. All of the client interfaces work with C and C++, whereas Visual Basic developers
are limited to using the OLE Messaging Library and Simple MAPI.

The amount of time you need to create or modify your client application is also a consideration. A
simple API such as Simple MAPI or CMC is more appropriate if you have limited time. Resource
constraints might also be an issue. To successfully develop a client application, you should have
experience with messaging and the appropriate programming language.

Messaging-enabled and messaging-aware client applications have different requirements than
messaging-based applications. Messaging-enabled and messaging-aware applications have fewer and
simpler messaging features to implement. Messaging-based applications have more complex
messaging requirements because they have more direct contact with and control over the underlying
messaging system services like address books, message stores, and transports. These applications
often implement a wide variety of messaging features, such as rules processing, automatic forwarding,
and supporting Rich Text Format. Shared group applications like schedulers and calendars, work flow
and message management applications, electronic mail clients, and rules-based inbox managers are
examples of messaging-based applications. Complex messaging-based applications like these require
the MAPI client interface.

The OLE Messaging Library is a good choice for applications that require a moderate amount of
messaging support. The OLE Messaging Library is an object oriented API used primarily by Visual
Basic and Visual C/C++ client application developers. It provides programmable objects that publish
properties and methods which can then be managed by Visual Basic and Visual Basic for Applications
programs or other OLE Automation controllers. The OLE Messaging Library is based on the
capabilities provided by OLE Automation. In terms of messaging functionality, it offers more than CMC
and Simple MAPI offer, but less than MAPI offers.

Simple MAPI or CMC is the best choice for messaging-enabled and messaging-aware applications.
These interfaces provide a fast and easy way to build basic applications from scratch or add
messaging functionality to existing applications.

 About the Client Interfaces

The following table summarizes the differences between the characteristics of the four client interfaces.

Issues CMC
Simple
MAPI MAPI

OLE
Messaging
Library

Messaging
support

Low Low High Medium

Prerequisit
e
knowledge

None None COM and
OLE

OLE automation
and Visual Basic
programmable
objects

Forms
support

None None Full
support

Some support

Language
support

C and
C++

C, C++,
Visual
Basic

C and C++ C, C++,
Visual Basic

Platform
support

Cross-
platfor
m

Window
s-
based

Windows-
based

Windows-
based

 Choosing Between Simple MAPI and CMC

The features provided by Simple MAPI and CMC are nearly identical, but CMC is slightly more
compact, combining multiple features in a single function. Both interfaces provide a straightforward
function call interface that enables users to create, send, receive, reply to, forward, and edit messages.

The following table lists all the functions in the CMC and Simple MAPI APIs together with the features
they provide.

Purpose Simple MAPI
function

CMC function

Establish a session MAPILogon cmc_logon
Terminate a session MAPILogoff cmc_logoff
Free memory MAPIFreeBuffer cmc_free
Send a message with or
without a user interface

MAPISendMail cmc_send

Send a message with a
user interface

MAPISendDocume
nts

cmc_send_docume
nts

Find messages that match
a set of search criteria

MAPIFindNext cmc_list

Save a message MAPISaveMail cmc_act_on
Delete a message MAPIDeleteMail cmc_act_on
Assign recipients to a
message

MAPIAddress cmc_look_up

Show recipient details MAPIDetails cmc_look_up
Resolve ambiguous names
in recipient list

MAPIResolveName cmc_look_up

Retrieve configuration data - cmc_query_config
uration

The main difference between the two APIs is that CMC is designed to be independent of the operating
system. CMC was developed in conjunction with the X.400 Application Programming Interface
Association (XAPIA) standards organization and electronic mail vendors and users. Because CMC
runs on Windows, MS-DOS, and UNIX systems, it is a good choice for client applications that need to
use multiple messaging systems on multiple platforms. Because Simple MAPI runs on Windows-based
platforms only, it is a good choice for single platform Windows-based client applications that require a
feature CMC lacks or that need to be compatible with an existing Simple MAPI application.

Using Multiple Client Interfaces

Most client applications will use one client API ¾ either the OLE Messaging Library, Simple MAPI,
CMC or MAPI. However, some clients will want to take advantage of what more than one client API has
to offer. These clients will want to use MAPI for some tasks and a simpler API for others. The MAPI
architecture allows client applications to do this fairly easily by providing several API functions for
converting between the environments.

One common conversion task involves identifiers. Identifiers are used throughout MAPI to uniquely
represent a component, such as a message or a service provider. MAPI uses a binary structure called
an entry identifier; the OLE Messaging Library uses a hexadecimal entry identifier, and Simple MAPI
and CMC use a string called a message identifier. Message identifiers can be simple or compound.

MAPI only provides the means to convert between MAPI entry identifiers and all other identifiers. It
does not provide the means for converting between Simple MAPI and CMC, Simple MAPI and the OLE
Messaging Library, or CMC and the OLE Messaging Library.

The following API functions are used to translate identifiers used by the different client API sets:

FBinFromHex
HexFromBin
HrSzFromEntryID
HrEntryIDFromSz
HrComposeEID
HrDecomposeEID
HrComposeMsgID
HrDecomposeMsgID

The FBinFromHex and HexFromBin functions are used to translate the binary entry identifiers used in
the MAPI programming interface and the hexadecimal entry identifiers used in the OLE Messaging
Library.

The HrEntryIDFromSz function creates a MAPI entry identifier from a Simple MAPI string identifier
and the HrSzFromEntryID function performs the opposite operation, producing a Simple MAPI string
identifier from a MAPI entry identifier.

The HrComposeMsgID function also creates a Simple MAPI identifer. However, HrComposeMsgID
creates a compound entry identifier, or identifier that can be used by Simple MAPI clients to open a
non-default message store. Compound entry identifiers for messages are built from the record key of
the message store and the message's entry identifier. A message store's record key is a unique binary
value that can be used for comparison. Calling HrComposeMsgID enables Simple MAPI clients to
create the identifiers necessary for working with multiple message stores.

The HrComposeEID function is similar to HrComposeMsgID because it is also used for creating
compound entry identifiers. However, whereas HrComposeMsgID is primarily for Simple MAPI clients,
HrComposeEID is for CMC clients. Callers of HrComposeEID pass a session pointer, a message
store record key, and the entry identifier of an object. HrComposeEID produces a MAPI entry identifier
based on both the record key and entry identifier, if possible, or only the entry identifier if the record key
is not available.

HrDecomposeEID separates a compound entry identifier into its parts: a message store record key
and an entry identifier that represents a MAPI object. Use HrDecomposeEID with care; it is an
expensive call. Both HrComposeEID and HrDecomposeEID can handle binary message identifiers
that require string versions.

Because HrComposeEID, HrComposeMsgID, HrDecomposeEID, and HrDecomposeMsgID all
require a MAPI session pointer as input, client applications that are not started with the MAPI logon

function, MAPILogonEx, must translate the current session handle into a MAPI session before calling
any of these functions. HrEntryIDFromSz, a function that does not require a session pointer, can also
be used to create a compound entry identifier. However, subsequent uses of this entry identifier can
fail. If possible, clients should use the HrComposeMsgID or HrComposeEID function instead.

Converting session types is possible with one of two API functions: ScMAPIXFromCMC or
ScMAPIXFromSMAPI. To convert CMC sessions into MAPI sessions, use ScMAPIXFromCMC. To
convert Simple MAPI sessions, use ScMAPIXFromSMAPI. Both functions take the current session
handle as input and return a pointer to a MAPI session object.

When using multiple client APIs, exercise caution in interpreting return values. Client APIs do not share
the same set of return values, nor do they return the same type of values. For example, Simple MAPI
and CMC functions return unique sets of unsigned long values whereas MAPI functions and methods
return values that are of type HRESULT. In all cases, zero means a successful result.

The unsigned long values and the HRESULT values are based on a numeric code which, in many
cases, is the same for all caller types. However, there are a few cases where the values are different.
The following table lists the differences between the values returned by Simple MAPI and MAPI.

Simple MAPI return value MAPI return value
MAPI_E_NOT_SUPPORTED MAPI_E_NO_SUPPORT

MAPI_E_INTERFACE_NOT_SUP
PORTED
MAPI_E_INVALID_PARAMETER
MAPI_E_VERSION

MAPI_E_DISK_FULL MAPI_E_NOT_ENOUGH_DISK
MAPI_E_NETWORK_FAILUR
E

MAPI_E_NETWORK_ERROR

MAPI_E_USER_ABORT MAPI_E_USER_CANCEL
MAPI_E_ACCESS_DENIED MAPI_E_NO_ACCESS
MAPI_E_AMBIGUOUS_RECI
PIENT

MAPI_E_AMBIGUOUS_RECIP

MAPI User Interface

MAPI provides a set of common dialog boxes that offer a consistent way for users to interact with
messaging systems. Simple MAPI, CMC, and OLE Messaging Library client applications are presented
with these dialog boxes automatically. MAPI client applications and service providers can use the MAPI
dialog boxes or implement their own. Unless you have very customized needs, you should take
advantage of the MAPI user interface. By doing so, you will save time and give users tools that are
consistent across applications and messaging systems.

The MAPI user interface includes many different dialog boxes, some for session start-up, some for
addressing, some for message composition. The message composition dialog boxes are used to
create interpersonal messages; to create messages of other types, you can implement special dialog
boxes, or forms, that can be provided by the originator of the message type. For information about
implementing and displaying these special forms, see Developing MAPI Form Servers.

MAPI Sessions

Before your client application can call an underlying messaging system, it must establish a session, or
connection, with the MAPI subsystem. Sessions are initiated when a user logs on, a process that
consists of accessing a valid profile, validating messaging system and message service credentials,
and insuring that all of the profile's message services are properly configured. The client interface you
use determines the logon call. MAPI clients call the MAPILogonEx function, Simple MAPI clients call
the MAPILogon function, CMC clients call the cmc_logon function, and OLE Messaging Library
clients call the Session object's Logon method.

MAPI supports the validation of credentials, such as passwords, as an optional feature. The use and
implementation of passwords depends on the messaging system being used and the operating system.
Some operating systems support security that is based on user accounts; others do not. Passwords
can either be saved in the profile or entered by the user with every logon.

The following table lists the MAPI operating systems and whether or not each type implements user
account security.

MAPI platform User account security
Windows 95 Yes
Windows NT Yes
Windows 3.x No
Windows for Workgroups 3.x No

Message service configuration is one of the most important parts of the logon process. The profile is
the initial source for configuration information. If information for a particular message service is missing,
the logon process attempts to prompt the user to supply it, an attempt which is not always successful
for two reasons. Prompting the user requires the display of a dialog box. It is possible for clients to
disallow the display of a user interface by passing a flag into the logon call. A second possible reason
for failure is the cancellation of the dialog box by the user before the needed information can be added.

When a logon process fails once, the user is informed of the failure and given the opportunity to retry or
correct the error condition. Once again, a user interface will be displayed, if possible, and the user will
be asked to enter whatever data is missing. If this second attempt proves unsuccessful, MAPI disables
all service providers in the message service for the duration of the session. In effect, the whole
message service is disabled, meaning that none of the service providers in the message service can
work. This is done because if one provider fails logon, the other providers usually also fail. The logon
process can fail due to an invalid path for a necessary resource, an incompatible version of MAPI, an
unavailable messaging server, or data corruption.

Clients can specify one of two types of sessions to be established in the logon call: an individual
session or a shared session. Individual sessions are private connections; there is a one-to-one
relationship between a client application and the session it is using. As a consequence, client
applications sharing a session also share a profile. Shared sessions are established once but can be
"used" by other client applications who need to use them. The profile and credentials are specified only
with the initial logon.

MAPI also supports unified logon, in which a single initial logon to the messaging system results in
access to multiple workgroup applications. When working with unified logon, users do not have to enter
a name and password for each application they want to use.

Clients can log on multiple times as the same user or as multiple users. MAPI does not prevent this.
Some service providers, however, might not be as flexible, returning the error value
MAPI_E_SESSION_LIMIT on subsequent logon attempts. Service providers with underlying hardware
limitations can be required to enforce a session limit.

The function calls for establishing a session have a collection of flags and parameters that control how
the session is created. The client specifies an optional profile name, password, and a window handle

that acts as the parent window for any dialog boxes that are displayed. The flags include
MAPI_NEW_SESSION to request that a new, individual session be established rather than
establishing a connection to a shared session, and two user interface flags, MAPI_LOGON_UI and
MAPI_PASSWORD_UI. The user interface flags are set to request either a logon dialog box or a
password dialog box.

The following illustration shows how these various parameters and flags establish a MAPI session.

{ewc msdncd, EWGraphic, groupx828 0 /a "MAPI_47.WMF"}

Message Services and Profiles

Some users require the services of several messaging systems, each with one or more service
providers. Because it is cumbersome to have to install and configure each of these service providers
individually and because a messaging server usually requires a group of related providers to expose all
of its functionality, MAPI includes the concept of a message service. Message services help users
install and configure their service providers.

To create a message service, a developer writes a message-service entry point program to handle the
configuration of each provider in the service and a setup program to:

· Install each provider in the service.
· Create registry and initialization file entries.
· Create entries in the MAPI configuration file, MAPISVC.INF.

The MAPISVC.INF file contains information relating to the configuration of all message services and
service providers installed on the computer workstation. It is organized in hierarchical sections, with
each level linked to the next. At the top are three sections: one listing message service help files, one
listing the most important, or default, message services, and one listing all of the services on the
workstation. The next level contains sections for each message service and the last level contains
sections for each service provider in a service. MAPI requires developers of service providers and
message services to add certain entries to MAPISVC.INF; other entries can be added at the
developer's discretion. Most of the information in MAPISVC.INF ends up in one or more profiles, a
collection of configuration information for a user's preferred set of message services. Because a
workstation can have multiple users and a single user can have multiple sets of preferences, many
profiles can exist on a workstation. Each profile describes a different set of message services. Having
multiple profiles enables a user to work, for example, at home with one set of message services and at
the office with a different set.

Profiles are created at message service installation or logon time by a client application that provides
configuration support. MAPI provides two such client applications: the Control Panel applet and the
Profile Wizard. The Control Panel applet is a full service configuration application that allows users to
create, delete, edit, and copy profiles as well as make modifications to the entries within a profile. The
Profile Wizard is a simple application designed to make adding a message service to a profile as easy
as possible. The Profile Wizard consists of a series of dialog boxes, called property pages, that prompt
the user through the process of installing and configuring a service. The user is prompted only for
values for the most critical settings; all other settings inherit default values. Once the profile has been
created, users are not allowed to make changes.

Whereas the Control Panel applet is always invoked through the Control Panel, there are a variety of
scenarios that can cause the Profile Wizard to be called. Client applications can call the Profile Wizard
to create a default profile at logon time when one has not yet been created. Rather than re-
implementing code to add a profile, the Control Panel applet or another client application can rely on
the functionality already in the Profile Wizard. A message service, in its entry point function, can call the
Profile Wizard when the service needs to be added to the default profile. Message services that use
the Profile Wizard must write an extra entry point function and a standard Windows dialog procedure.
The Profile Wizard calls the entry point function to retrieve the service's configuration dialog box while
the dialog procedure handles the messages that are generated when this dialog box is in use.

Profiles are organized in a similar way to the MAPISVC.INF file. There are linked hierarchical sections
with service providers owning sections in the lowest level, message services owning sections in the
middle level, and MAPI owning sections in the highest level. Each section is identified with a unique
identifier known as a MAPIUID. The MAPI sections contain information internal to MAPI, such as the
identifiers of all of the message service profile sections and links to each of the other sections. Each
message service section stores links to its provider sections and each provider section stores a link to
its service section.

The following illustration shows the contents of two typical profiles. Sam has two profiles on his
computer, one for home use and one for office use. The home profile contains three message services.
Message Service X is a single provider service for address book management. Message Services Y
and Z have three providers ¾ an address book provider, a message store provider, and a transport
provider. Sam's Work Profile contains two different message services; each of which has an address
book provider, a message store provider, and a transport provider.

{ewc msdncd, EWGraphic, groupx828 1 /a "MAPI_56.WMF"}

Some profiles, depending on the platform, are password-protected. Password protection is only
supported on platforms that do not provide user account security. It can be desirable to password
protect profiles if it is important to ensure single user access.

Note Although password-protected profiles can only be changed by valid users, anyone with access
to the system can delete them. This is because profiles are not considered critical components; they
can be easily recreated.

The following illustration shows the pieces that make up a message service. The message service
code for installation and configuration of each of its three service providers resides in a single DLL.
This code reads information from the profile at logon time, adding missing information if necessary with
or without the help of the user. Requests from a client application to view or change configuration
settings for any of the providers are handled by this common code.

{ewc msdncd, EWGraphic, groupx828 2 /a "MAPI_55.WMF"}

Operating Environment Issues

The issues of operating system and operating environment are important when choosing a
development environment and an environment for MAPI SDK installation. MAPI developers must be
aware that these choices affect the operating system that their component will run on and the range of
components that they will be able to target.

MAPI currently runs on the 32-bit environments provided with Windows NT and Windows 95, the native
16-bit environment of Windows 3.1 or later, and a 16-bit compatibility mode environment that allows 16-
bit client applications to run on 32-bit platforms. Compatibility mode does not work for service
providers.

The choice of development environment affects the environment that your component will be able to
operate in. For service providers, the environment used for development is the only environment that
their component will be able to operate in. That is, service providers developed in 16-bit environments
can operate in 16-bit environments and service providers developed in 32-bit environments can
operate in 32-bit environments.

Client applications are slightly more flexible. Clients written in 32-bit environments are like 32-bit
service providers; they can only operate in 32-bit environments. Clients written in 16-bit environments,
however, can operate in any environment.

Environment Issues Affecting Client Applications

MAPI-compliant client applications can run in multiple environments, depending on the environment
used for development. A client written in a 16-bit development environment can operate either in a
native 16-bit Windows environment or in any 32-bit environment under 16-bit compatibility mode.
Compatibility mode allows a 16-bit application to simulate a 32-bit application. A client written in a 32-bit
development environment can run on any 32-bit operating system, such as Windows NT or Windows
95.

The environment into which a client installs the MAPI SDK affects the scope of usable service
providers. If the MAPI SDK is installed in a generic 32-bit environment or in the 16-bit compatibility
mode environment, a client can use two types of service providers:

· Service providers written for 32-bit operating environments
· Single-source service providers

Single-source service providers are built with a single set of source files. This set of source files can be
used to build binaries that will run in any environment.

If the MAPI SDK is installed in a 16-bit environment, a client can use only a 16-bit service provider.

Windows NT Service Client Applications

To enable client applications that are written as Windows NT services to operate with MAPI-compliant
service providers, MAPI imposes several limitations and requirements. Simple MAPI, CMC, and MAPI
clients have the following limitations:

· They cannot allow a user interface.
· They can only send messages through a tightly coupled message store and transport provider. In

addition, MAPI clients can only send and receive messages using the Microsoft Exchange server or
another server-based transport provider. Because of identity and security issues between client
applications and the MAPI spooler, most transport providers are not supported in a Windows NT
service.

All client applications, whether or not they are implemented as Windows NT services, must call
MAPIInitialize to initialize the MAPI libraries. A call to OleInitialize is also necessary to use the OLE
libraries. Both MAPIInitialize and OleInitialize make calls to CoInitialize to initialize the Component
Object Model (COM) libraries. Clients that are Windows NT services must set a special flag,
MAPI_NT_SERVICE, on the MAPIInitialize call to inform MAPI of their special implementation.

Windows NT service clients written with the MAPI client interface have a few additional requirements:

· They must set the MAPI_NO_MAIL flag in the call to MAPILogonEx. Other types of Windows NT
service clients need not set a flag for logon because it is automatically set by MAPI.

· They must add the service's account to the group of accounts called Administrators on the machine
that the service is using. This is necessary for profile access. If the account does not belong to this
Administrators group of accounts, the MAPIInitialize function will fail when called.

Note The requirement that the account belong to the Administrators group will be removed in a future
release of Windows NT.

To handle messages in an initialization thread, a MAPI client that is implemented as a
Windows NT service
1. Calls MsgWaitForMultipleObjects when the main thread blocks.
2. Calls the GetMessage, TranslateMessage, and DispatchMessage sequence of Windows

functions to handle the message when MsgWaitForMultipleObjects returns the sum of the value of
the nCount parameter and the value of WAIT_OBJECT_0, indicating that a message is in the queue.

To produce application log entries through asserts and error traces
1. Use the debug version of MAPI
2. Add the following lines to the debug initialization file, MAPIDGB.INI:

[General]

DebugTrace=1
EventLog=1

Environment Issues Affecting Service Providers

Service providers can only operate in the environment for which they are created. That is, a 16-bit
service provider works only in 16-bit environments and a 32-bit service provider works only in 32-bit
environments. To create a service provider that runs on any environment, there are two choices: create
separate versions for each environment or use an approach known as single sourcing.

Single sourcing allows developers to use a special set of API functions provided by MAPI to reduce the
amount of 16 bit-specific work. MAPI has ported a few dozen Win32 API functions to 16 bit. With these
functions, 16-bit code can be written as if it were being written with the standard Win32 library of API
functions. The code is compiled for the 16-bit environment using some special built-in support. All of
the sample services installed with the MAPI SDK are single source services written using these APIs.

The environment used to install the MAPI SDK determines the set of client applications that a service
provider can support. Service providers can be written to support clients that run on any of the following
operating systems and environments:

· Windows NT (32-bit)
· Windows 95 (32-bit)
· Win16

When the MAPI SDK is installed under Windows NT, a service provider can be created that can be
used by 16-bit or 32-bit Windows NT clients. When the MAPI SDK is installed under Windows 95, a
service provider can be created that can target 16-bit clients, Windows 95 clients, and in some cases,
Windows NT clients. When the MAPI SDK is installed in a 16-bit environment, a service provider can
be created that can target 16-bit clients only. Because MAPI does not support the 32-bit subset,
Win32s, these service providers will only run in the 16-bit environment on Windows 3.1 or later.

Service providers should keep their future audience in mind when selecting an installation environment.
If 16-bit clients are the only type of clients that will be using a service provider, a 16-bit environment for
installation is appropriate. Likewise, if these clients are 32-bit clients, a 32-bit environment will work.

Some service providers, however, need to target clients that operate in all three operating
environments: 32-bit Windows NT, 32-bit Windows 95, and 16-bit Windows. To target all environments,
a service provider must operate in a 32-bit environment and must install both the 32-bit version of the
MAPI SDK and the 16-bit version.

Service provider developers that are planning to target either Windows NT or Windows 95 should write
their provider to be used by clients using both operating environments. Targeting both 32-bit
environments is easy to do because the additional code required for the second environment is
minimal.

 Programming with CMC

This section contains conceptual information for programming with the Common Messaging Calls
(CMC) application programming interface (API). You should understand this material before writing
client applications that use the CMC APIs.

About CMC

The Common Messaging Calls (CMC) client interface is a set of ten functions that enables you to add
simple messaging capabilities to your client applications quickly. For example, your client can send a
message with a single CMC function call and receive a message with two CMC function calls.

Because CMC is built on top of the core MAPI subsystem, it shares the advantage of messaging
system independence. The CMC API is especially valuable because it is also independent of the
operating system and the underlying hardware used by the messaging system, providing a common
messaging interface that can be used in virtually any environment. The CMC API is therefore a good
choice for a messaging API when your client must run on multiple platforms and provide simple
messaging functionality on each of these platforms.

Because CMC isolates clients from the complexities of MAPI, service providers, networking, and any
other mechanisms which implement messaging, the remainder of this document will use the term
"messaging system" to mean all of those things taken together. As far as a CMC client is concerned,
the implementation layer underneath CMC is the messaging system that the client is using.

Although the Microsoft CMC implementation is built on top of a MAPI implementation, it is important to
note that other implementations of CMC from other vendors might not be. In this document, "CMC" and
"CMC implementation" mean "Microsoft's implementation of the CMC API using the MAPI API."

The CMC API was developed in conjunction with the X.400 API Association (XAPIA) standards
organization and a group of e-mail vendors and users. It is supported on Microsoft Windows, MS-DOS,
OS/2, Macintosh, and UNIX platforms. Because CMC is supported on several different platforms, a
client application written to the CMC standard can be ported to other platforms. In contrast, MAPI is a
Windows-only standard.

The CMC API supports three principal tasks: sending messages, retrieving messages, and looking up
addressing information.

Note that these tasks do not have to be performed in isolation from each other. Your client application
can establish a session once with a call to the cmc_logon function and use the resulting CMC session
for the duration of the user's interaction with the application. During that time, your client can make
many CMC calls to perform messaging tasks such as send messages, receive them, and make
directory queries.

The CMC API works as a layer between a messaging-enabled application and the messaging system.
The messaging system can support multiple messaging protocols, each using different messaging
formats and protocols, for example, X.400, RFC 822, and Simple Mail Transport Protocol. The design
of the CMC interface specifies that its functions be independent of the messaging protocols. However,
the API does enable developers to use extensions to invoke protocol-specific functions. For more
information, see Using CMC Data Extensions.

A directory, a submission queue, and a receiving mailbox are the three messaging system components
in the CMC API model.

{ewc msdncd, EWGraphic, groupx829 0 /a "MAPI_08.WMF"}

Using the directory, the messaging-enabled application can look up information about users of
connected messaging systems and can resolve users' names to actual addresses. Some messaging
systems can also provide an interface enabling users to create recipient lists for messages or find out
details about specific recipients.

The CMC implementation assigns a submission queue for each messaging-enabled application. By
doing so, CMC provides each application with synchronous submission of messages to the underlying
messaging system; once a call to send a message has returned, the calling application is guaranteed
that the submission process has completed (although no guarantee is made about whether the
message was successfully delivered). When the call has returned, the CMC implementation has all
further responsibility for submitting the message to the underlying messaging system.

On the receiving side, a mailbox receives all messages for a user. The messaging system maintains
mailboxes on behalf of messaging users. These mailboxes are accessible to users of messaging-
enabled applications who have the proper permissions. With the CMC API, your client application can
retrieve summaries of the contents of a mailbox, along with identifiers for the particular messages
summarized. Your client can use these identifiers to select and retrieve individual messages.

The CMC API uses a fixed set of API functions, data structures, and data types. The API functions are
the functions that your client calls to carry out messaging tasks. The data structures are the groupings
of information that your client must provide to the CMC APIs, and are sometimes returned by the CMC
APIs. The data types are basic elements that comprise the data structures. They each have a specific
range of values and specific memory storage characteristics (for example, Boolean and floating point)
and can have specific operations performed on them. For reference information, see Functions,
Structures and Data Types, and Data Extensions.

Starting a CMC Session

CMC function calls occur within the context of a messaging session. Your client application establishes
a session with a call to the cmc_logon function. The cmc_logon function checks the user's
credentials for the messaging system, sets session attributes, and returns a session handle for use in
later CMC calls. Session attributes include the character set and version number for the CMC API.
Currently, the CMC API provides no support for sharing sessions among clients. Your client ends a
session with a call to the cmc_logoff function.

Your client can convert the CMC session handles to MAPI session handles with the
ScMAPIXFromCMC function. For example, your client can convert the session handle returned from
the cmc_logon function to an LPMAPISESSION value and use it to access the methods in the
IMAPISession interface. This enables your client to use CMC for the bulk of its messaging tasks
without sacrificing access to MAPI functions. CMC session handles cannot be converted to Simple
MAPI session handles. Clients that need both CMC and Simple MAPI functionality must maintain
separate sessions for each.

Your client can also use the cmc_query_configuration function to determine logon identity and
messaging options before calling the cmc_logon function.

 Addressing Messages with CMC

You client application addresses messages with CMC by calling the cmc_look_up function to find
addresses that it can then use with the cmc_send function. By calling cmc_look_up, your client can
search for names in the address book and resolve names into the addresses used by the underlying
messaging system.

Both cmc_look_up and cmc_send make heavy use of the CMC_recipient structure. The
cmc_look_up function uses it on input to receive the name of the recipient your client is trying to look
up. On output, cmc_look_up passes back an array of CMC_recipient structures that contain the
results of the search. The cmc_send function uses a CMC_recipient structure to receive the address
or addresses of the recipients of the message being sent.

To look up names and address information in the directory
1. Establish a session either through the cmc_logon function or interactively by sending the

CMC_LOGON_UI_ALLOWED flag value with the cmc_look_up function.
2. Translate a user's display name (what the user sees) into a messaging address (what the underlying

messaging system uses) by calling cmc_look_up. With this function, your client can also request
that the standard CMC address dialog box be displayed for the user to view recipient-specific details
or create addressing lists.

3. Release memory allocated by CMC by calling the cmc_free function.
4. End the session by calling the cmc_logoff function.

 Sending Messages with CMC

Your client application sends messages with CMC by building a CMC_message structure and passing
it to the cmc_send function. Your client fills in the members of the CMC_message structure depending
on the parameters used to invoke cmc_send. For example, if your client passes the
CMC_LOGON_UI_ALLOWED flag to cmc_send, then your client does not need to provide a list of
recipients, a subject line, or message text because CMC will query the user for that information.

When your client calls the cmc_send function, it must provide a session handle, a pointer to a
CMC_message structure, any necessary flags, an optional user interface identifier if the flags include
the CMC_LOGON_UI_ALLOWED flag, and optional extensions. Once cmc_send returns, your client
has no further responsibility for sending the message.

To send a message
1. Establish a session with the messaging system either through the cmc_logon function or

interactively by sending the CMC_LOGON_UI_ALLOWED flag value with the cmc_send function.
2. Submit a message to the submission queue. Usually, a client application does so through the

cmc_send function. If your client calls cmc_send, it must first create a CMC_message structure to
pass to the cmc_send function. Your client can also call the more limited cmc_send_documents
function to send a message; this function is primarily used to send messages or files from macro
languages.

3. End the session by calling the cmc_logoff function.

 Receiving Messages with CMC

It is slightly more complex for your client application to receive messages with CMC than to send
messages.

To receive a message
1. Establish a session by calling the cmc_logon function.
2. Retrieve a summary of mailbox information by calling the cmc_list function.
3. Retrieve an individual message by calling the cmc_read function.
4. Optionally, enable a user to act on the message in the mailbox (for example, delete it) by calling the

cmc_act_on function.
5. Release memory allocated by CMC by calling the cmc_free function.
6. End the session by calling the cmc_logoff function.

There are a number of ways your client can invoke the cmc_list function in order to control the sorts of
messages listed by the API. For example, your client can pass in the string "CMC: NDR" in the
message_type parameter to obtain a list of nondelivery reports, or can include the
CMC_LIST_UNREAD_ONLY flag in the list_flags parameter to obtain a list of unread messages.

Handling Attachments with CMC

Your CMC client application receives attachments in the form of an array of CMC_attachment
structures on a message. Each element of this array specifies a file containing an attachment. The one
exception to this rule is for embedded messages, which are received as a CMC message in the
attachment extension.

CMC clients have no explicit method for distinguishing between OLE 1 and OLE 2 attachments. Your
client should try opening the attachment as an IStorage object to determine whether the attachment is
an OLE 2 object. If this fails, your client should try opening it as an OLE 1 IStream object. If both of
these fail, the attachment should be treated as an ordinary data file.

 Getting Information About the CMC Implementation

Your client can get information about the CMC implementation by calling the
cmc_query_configuration function. The client must pass in an item code that specifies the type of
configuration information for the cmc_query_configuration function to return. Your client must also
pass in a pointer to a buffer where the cmc_query_configuration function can pass back the
requested information. It is your client's responsibility to ensure that the buffer is large enough to hold
data of the requested type.

 Releasing Memory with CMC

In some circumstances, your client application will have to release memory that has been allocated by
CMC. CMC provides a single function, cmc_free, for releasing memory that it has allocated. This
memory is typically the result of a CMC function call. For example, the cmc_look_up function allocates
an array of CMC_recipient structures to hold the results of an address book search. Your client
application is responsible for calling the cmc_free function on that array after it is no longer needed. To
free memory allocated by CMC, your client only needs to pass a pointer to the memory to the
cmc_free function.

Your client should not try to free the memory itself. The memory is not guaranteed to be in a single
contiguous block, so one call to an underlying memory management function ¾ such as the C run time
library function malloc ¾ is not guaranteed to free all of the memory that CMC has allocated. A
memory leak will result if your client does this. The cmc_free function will make all the necessary
memory management calls to properly free the memory CMC has allocated.

 Ending a CMC Session

When your client no longer needs any message services, it should call the cmc_logoff function to end
the CMC session that it established with the cmc_logon function. Depending on the nature of your
client and whether it is possible to establish a CMC session without the user's assistance, it can be
practical to close the session as soon as a group of messaging calls are finished. For other clients it is
practical to establish one CMC session when the client starts and retain it until the client exits.

 Using CMC Data Extensions

The data structures and functions defined by CMC can be expanded through the use of data
extensions to add members to data structures and parameters to function calls.

Data extensions have two roles in CMC messaging. First, they are a mechanism to provide features
not common across all messaging systems. Second, they enable extension of CMC in the future while
also minimizing backward-compatibility issues. Use caution when using data extensions in your client
application to take advantage of features specific to a messaging system. Reliance on specific features
limits the portability of your client across messaging systems; also, such features might not be
preserved properly when a message passes through multiple gateways in a mixed messaging network.
If you do use data extensions in your client, your code should test for the presence of the extensions
and gracefully handle the absence of the extensions. Doing so will make your client portable to other
CMC implementations.

Data extensions are grouped into extension sets. Extension sets have unique identifiers (defined
constants) assigned to them that represent the set as a whole and that represent the individual
extensions in the set. These identifiers are assigned by the X.400 API Association, which guarantees
that there are no conflicts between identifiers in officially recognized extension sets. There are also
provisions for allowing a CMC implementation to define its own data extensions without obtaining
identifiers from the X.400 API Association. If this is done, clients that use those extensions might not be
portable to other CMC implementations.

The CMC common extension set contains those function and data extensions that are common to most
messaging systems but are not in the CMC base specification. The common extension set is identified
by the CMC_XS_COM constant. Individual extensions in the common extension set are identified by
constants with names that start with CMC_X_COM. For a full list of common extensions, see Data
Extensions.

A generic data structure, CMC_extension, is the base from which these extensions are created. A
CMC_extension structure consists of an item_code member identifying the extension, an item_data
member containing the length of the extension data or the data itself, an item_reference member
pointing to the location where the extension value is stored or that is NULL if there is no related item
storage, and an extension_flags member containing a bitmask of extension flags. The item_code
member identifies a particular extension and determines the meanings of values in the other members.

Extensions that are additional parameters to a function call can be either input or output parameters.
That is, an extension can be passed either as an input parameter from your client application to CMC
or as an output parameter from CMC to your client. If an extension is an input parameter, your client
allocates memory for the extension structure and any other structures associated with the extension. If
an extension is an output parameter, CMC allocates the memory for the extension result, if necessary,
and your client must free the allocated memory with a call to the cmc_free function.

To use a data extension
1. Create a CMC_extension structure and fill in the members according to the extension you want to

use.
2. Pass a pointer to that structure in a call to a CMC function which can use it. The CMC function will

use the information in the extension structure to enable additional functionality beyond the
functionality defined for that CMC function in the X.400 API Association's CMC specification. The
exact nature of the additional functionality is described in the documentation for the extension set
you are using, which should be obtained from the extension set vendor.

3. Retrieve any return values from the members of the CMC_extension structure if the CMC function
uses the structure to pass values back to your client.

CMC Programming Examples

This section includes example code that illustrates the following common messaging operations:

· Logging on and off and using cmc_query_configuration to get system information
· Sending the same message using the cmc_send and cmc_send_documents functions
· Listing, reading, and deleting the first unread message in the Inbox
· Looking up a specific recipient and getting recipient details from the address book
· Specifying use of the common extensions during a session logon

Error checking code has been deliberately left out of these examples for the sake of clarifying the use
of the CMC functions themselves. Also, the way that an application recovers from errors is often
dependant on the structure of the application, so it is unlikely that any error checking code in these
examples would be of any use to other developers.

 Logging On and Off: CMC Sample

The following code example demonstrates how your client application can log on and off and use
cmc_query_configuration to get system information.

/* Local variables used */

CMC_return_code Status;
CMC_boolean UI_available; /* True if an interface is allowed */
CMC_session_id Session;

/* Find out if user interface (UI) is available with this
 implementation before starting.*/

Status = cmc_query_configuration(
 0, /* No session handle */
 CMC_CONFIG_UI_AVAIL, /* See if UI is available. */
 (void *)&UI_available, /* Return value */
 NULL); /* No extensions */
 /* Error handling */

/* Log onto system using UI. */

Status = cmc_logon(
 NULL, /* Default service */
 NULL, /* Prompt for user name */
 NULL, /* Prompt for password */
 NULL, /* Default character set */
 0, /* Default UI ID */
 CMC_VERSION, /* Version 1 CMC calls */
 CMC_LOGON_UI_ALLOWED | /* Full logon UI */
 CMC_ERROR_UI_ALLOWED, /* Use UI to display errors. */
 &Session, /* Returned session ID */
 NULL); /* No extensions */
 /* Error handling */

/* Do various CMC calls. */

/* Log off from the implementation. */

Status = cmc_logoff(
 Session, /* Session ID */
 0, /* No UI will be used. */
 0, /* No flags */
 NULL); /* No extensions */
 /* Error handling */

 Sending a Message: CMC Sample

The following code example demonstrates how your client application can send a message, using first
the cmc_send and then the cmc_send_documents function.

/* Local variables used */

CMC_attachment Attach;
CMC_session_id Session;
CMC_message Message;
CMC_recipient Recip[2];
CMC_return_code Status;
CMC_time t_now;

/* Build recipient list with two recipients. Add one "To" recipient. */

Recip[0].name = "Bob Weaver"; /* Send to Bob Weaver. */
Recip[0].name_type = CMC_TYPE_INDIVIDUAL;/* Bob's a person. */
Recip[0].address = NULL; /* Look_up Bob's address. */
Recip[0].role = CMC_ROLE_TO; /* He's a "To" recipient. */
Recip[0].recip_flags= 0; /* Not the last element */
Recip[0].recip_extensions = NULL; /* No recipient extensions */

/* Add one "Cc" recipient. */

Recip[1].name = "Mary Yu"; /* Send to Mary Yu. */
Recip[1].name_type = CMC_TYPE_INDIVIDUAL; /* Mary's a person. */
Recip[1].address = NULL; /* Look_up Mary's address. */
Recip[1].role = CMC_ROLE_CC; /* She's a "Cc" recipient. */
Recip[1].recip_flags= CMC_RECIP_LAST_ELEMENT;/* Last recip't element */
Recip[1].recip_extensions = NULL; /* No recipient extensions */

/* Attach a file. */

Attach.attach_title = "stock.wks"; /* Original filename */
Attach.attach_type = NULL; /* No specific type */
Attach.attach_filename = "tmp22.tmp"; /* File to attach */
Attach.attach_flags = CMC_ATT_LAST_ELEMENT; /* Last attachment */
Attach.attach_extensions = NULL; /* No attachment extension */

/* Put it together in the message structure. */

Message.message_reference = NULL; /* Ignored on cmc_send calls. */
Message.message_type = NULL; /* Interpersonal message type */
Message.subject = "Stock"; /* Message subject */
Message.time_sent = t_now; /* Ignored on cmc_send calls. */
Message.text_note = "Time to buy"; /* Message note */
Message.recipients = Recip; /* Message recipients */
Message.attachments = &Attach; /* Message attachments */
Message.message_flags = 0; /* No flags */
Message.message_extensions = NULL; /* No message extensions */

/* Send the message. */

Status = cmc_send(

 Session, /* Session ID - set with logon call */
 &Message, /* Message structure */
 0, /* No flags */
 0, /* No UI will be used. */
 NULL); /* No extensions */
 /* Error handling */

/* Now do the same thing with the send documents call and UI. */

Status = cmc_send_documents(
 "to:Bob Weaver,cc:Mary Yu", /* Message recipients */
 "Stock", /* Message subject */
 "Time to buy", /* Message note */
 CMC_LOGON_UI_ALLOWED |
 CMC_SEND_UI_REQUESTED |
 CMC_ERROR_UI_ALLOWED,/* Flags (allow various UIs) */
 "stock.wks", /* File to attach */
 "tmp22.tmp", /* Filename to carry on attachment */
 ",", /* Multivalue delimiter */
 0); /* Default UI ID */
 /* Error handling */

 Receiving a Message: CMC Sample

The following code example demonstrates how your client application can list, retrieve, and delete the
first unread message in the Inbox.

/* Local variables used */

CMC_message_summary *pMsgSummary;
CMC_message *pMessage;
CMC_uint32 iCount;
CMC_session_id Session;
CMC_return_code Status;

/* Read the first unread message and delete it. */

iCount = 5; /* Maximum number of messages to get summary info about. */

Status = cmc_list(
 Session, /* Session handle */
 NULL, /* List ALL message types. */
 CMC_LIST_UNREAD_ONLY, /* Get only unread messages. */
 NULL, /* Starting at the top */
 &iCount, /* Input/output message count */
 0, /* No UI will be used. */
 &pMsgSummary, /* Return message summary list. */
 NULL); /* No extensions */
 /* Error handling */

Status = cmc_read(
 Session, /* Session ID */
 pMsgSummary->message_reference, /* Message to read */
 CMC_MSG_AND_ATT_HDRS_ONLY, /* Don't get attach files.*/
 &pMessage, /* Returned message */
 0, /* No UI */
 NULL); /* No extensions */
 /* Error handling */

Status = cmc_act_on(
 Session, /* Session ID */
 pMsgSummary->message_reference, /* Message to delete */
 CMC_ACT_ON_DELETE, /* Message to read */
 0, /* No flags */
 0, /* No UI */
 NULL); /* No extensions */
 /* Error handling */

/* Free the memory returned by the implementation. */

Status = cmc_free(pMsgSummary);
Status = cmc_free(pMessage);

/* Do the same thing without the list call, because the read call can
 get the first unread message. */

Status = cmc_read(
 Session, /* Session ID */
 NULL, /* Read the first message. */
 CMC_READ_FIRST_UNREAD_MESSAGE | /* Get first unread msg. */
 CMC_MSG_AND_ATT_HDRS_ONLY,/* Don't get attach files. */
 &pMessage, /* Returned message */
 0, /* No UI */
 NULL); /* No extensions */
 /* Error handling */

Status = cmc_act_on(
 Session, /* Session ID */
 pMessage->message_reference, /* Message to delete */
 CMC_ACT_ON_DELETE, /* Message to read */
 0, /* No flags */
 0, /* No UI */
 NULL); /* No extensions */
 /* Error handling */

/* Free the memory returned by the implementation. */

Status = cmc_free(pMessage);

 Getting Recipient Details: CMC Sample

The following code example demonstrates how your client application can look up a specific recipient
and get details on that recipient from the address book.

/* Local variables used */

CMC_session_id Session;
CMC_recipient *pRecipient;
CMC_recipient Recip;
CMC_return_code Status;
CMC_uint32 cCount;

/* Look up a name to pick correct recipient. */

Recip.name = "Bob Weaver"; /* Send to Bob Weaver. */
Recip.name_type = CMC_TYPE_INDIVIDUAL; /* Bob's a person. */
Recip.address = NULL; /* Look_up Bob's address. */
Recip.role = 0; /* Role not used */
Recip.recip_flags = 0; /* No flag values */
Recip.recip_extensions = NULL; /* No recipient extensions */

Status = cmc_look_up(
 Session, /* Session handle */
 &Recip, /* Name to look up */
 CMC_LOOKUP_RESOLVE_UI | /* Resolve names using UI. */
 CMC_ERROR_UI_ALLOWED, /* Display errors using UI.*/
 0, /* Default UI ID */
 &cCount, /* Only want one back */
 &pRecipient, /* Returned recipient ptr */
 NULL); /* No extensions */

/* Display details stored for this recipient. */

Status = cmc_look_up(
 Session, /* Session handle */
 pRecipient, /* Name to get details on */
 CMC_LOOKUP_DETAILS_UI | /* Show details UI. */
 CMC_ERROR_UI_ALLOWED, /* Display errors using UI. */
 0, /* Default UI ID */
 0, /* No limit on return count */
 NULL, /* No records returned */
 NULL); /* No extensions */

/* Free the memory returned by the implementation. */

cmc_free(pRecipient);

 Using Common Extensions: CMC Sample

The following code example demonstrates how your client application can specify use of the common
extensions during a session logon.

/* Local variables used */

CMC_return_code Status;
CMC_session_id Session;
CMC_extension Extension;
CMC_extension Extensions[10]; /* show how to handle multiple */
CMC_X_COM_support Supported[2];
CMC_uint16 index;
CMC_boolean UI_available;

/* Find out if the common extension set is supported, but
 COM_X_CONFIG_DATA support is not required. */

Supported[0].item_code = CMC_XS_COM;
Supported[0].flags = 0;

Supported[1].item_code = CMC_X_COM_CONFIG_DATA;
Supported[1].flags = CMC_X_COM_SUP_EXCLUDE;

Extension.item_code = CMC_X_COM_SUPPORT_EXT;
Extension.item_data = 2;
Extension.item_reference = Supported;
Extension.extension_flags = CMC_EXT_LAST_ELEMENT;

Status = cmc_query_configuration(
 0, /* No session handle */
 CMC_CONFIG_UI_AVAIL, /* See if UI is available. */
 &UI_available, /* Return value */
 &Extension); /* Pass in extensions. */
 /* Error handling */

if (Supported[0].flags & CMC_X_COM_NOT_SUPPORTED)
 return FALSE; /* Needed common extensions are not available. */

/* Log onto system and get the data extensions for this session. */

Supported[0].item_code = CMC_XS_COM;
Supported[0].flags = 0;

Supported[1].item_code = CMC_X_COM_CONFIG_DATA;
Supported[1].flags = CMC_X_COM_SUP_EXCLUDE;

Extension.item_code = CMC_X_COM_SUPPORT_EXT;
Extension.item_data = 2;
Extension.item_reference = Supported;
Extension.extension_flags = CMC_EXT_REQUIRED | CMC_EXT_LAST_ELEMENT;

Status = cmc_logon(
 NULL, /* Default service */

 NULL, /* Prompt for user name. */
 NULL, /* Prompt for password. */
 NULL, /* Default character set */
 0, /* Default UI ID */
 CMC_VERSION, /* Version 1 CMC calls */
 CMC_LOGON_UI_ALLOWED | /* Full logon UI */
 CMC_ERROR_UI_ALLOWED, /* Use UI to display errors. */
 &Session, /* Returned session ID */
 &Extension); /* Logon extensions */
 /* Error handling */
if (Supported[0].flags & CMC_X_COM_NOT_SUPPORTED)
 return FALSE; /* Needed common extensions are not available, */
 /* the common data extensions will be used for this session. */

/* Example of how to free data returned from the CMC implementation in
 function output extensions. */

for (index = 0; 1; index++) {
 if (Extensions[index].extension_flags & CMC_EXT_OUTPUT) {
 if (cmc_free(Extensions[index].item_reference) != CMC_SUCCESS){
 /* Handle unexpected error here. */
 }
 }
 if (Extensions[index].extension_flags & CMC_EXT_LAST_ELEMENT)
 break;
}

/* Do various CMC calls. */

/* Log off from the implementation. */

Status = cmc_logoff(
 Session, /* Session ID */
 0, /* No UI will be used. */
 0, /* No flags */
 NULL); /* No extensions */
 /* Error handling */

 Programming with Simple MAPI

This section describes how and why you can use the Simple MAPI functions to add messaging
functionality to your client application. The topics in this section cover the major areas of functionality
that your Simple MAPI client needs to implement, such as:

· Initializing your client so that it can use the Simple MAPI functions.
· Creating messages.
· Managing attachments.

About Simple MAPI

Simple MAPI provides a set of functions that enables you to add a basic level of messaging
functionality to Microsoft Windows-based applications.

Because Simple MAPI is only intended for the Microsoft Windows environment and offers limited
functionality, it is recommended primarily for backward compatibility with older client applications. You
are encouraged to use CMC or MAPI for development of new clients whenever possible.You should
link Simple MAPI clients with either the MAPI.DLL or the MAPI32.DLL library, depending on whether
you are writing for 16-bit or 32-bit Windows platforms.

Simple MAPI contains 12 high-level functions that enable a client application to send, address, receive,
and reply to messages. Messages sent using Simple MAPI can even include file attachments and OLE
objects. Windows-based clients that are not primarily used for messaging, such as spreadsheets, word
processors, or applications that require only basic messaging can use Simple MAPI to provide
messaging functionality quickly and easily.

Simple MAPI has several features that make it a good option for clients that do not have extensive
messaging needs:

· Simple MAPI takes advantage of the MAPI subsystem to maintain independence from the
underlying messaging system and network.

· Simple MAPI enables your client to define message types as well as the content of messages, and
enables flexibility in the management of stored messages.

· Simple MAPI includes an optional common user interface (dialog boxes), so with little effort you can
make your clients look consistent with each other and with other Windows-based applications.
Through these dialog boxes, your users can address, compose, and send messages. Using the
common dialog boxes is not mandatory, however, so if your client does not need a user interface, it
can call the Simple MAPI functions without displaying any dialog boxes.

· Although designed to be called from C programs, your client can call the functions with little or no
parameter modification from application-specific and standalone scripting packages such as Visual
Basic, Actor, Smalltalk, and ObjectVision.

If you are writing a new client, you should implement it using MAPI or CMC. However, using MAPI
involves learning about objects, interfaces, and the Component Object Model, and your client might
only need the limited messaging functionality available with Simple MAPI. In this case, you should use
CMC because it has the same functionality as Simple MAPI and it works with Microsoft Windows NT,
Microsoft Windows for Workgroups 3.1, and Microsoft Windows 95. You should only use Simple MAPI
for maintenance of older clients that were written using it.

 Initializing a Simple MAPI Client

Before starting a Simple MAPI messaging session you need to initialize your client application. This
involves checking the computer's WIN.INI file to determine if Simple MAPI is available, loading the
correct dynamic link library (DLL) that contains the Simple MAPI functions, and setting a pointer to
each function.

To initialize your client
1. Determine that Simple MAPI is available by checking the [MAIL] section in the computer's WIN.INI

file for the MAPI entry. This entry will have a value of 1 if Simple MAPI is installed, or 0 if uninstalled.
2. Load the correct DLL for your operating system by calling the Windows LoadLibrary function as

follows:
hlibMAPI = LoadLibrary("MAPI.DLL"); // 16 bit clients
hlibMAPI = LoadLibrary("MAPI32.DLL"); // 32 bit clients

The two DLLs for Simple MAPI are MAPI.DLL for 16-bit clients and MAPI32.DLL for 32-bit clients.

3. Set the pointer variable to the actual address of the MAPILogon function as follows:
lpfnMAPILogon = (LPFNMAPILOGON) GetProcAddress

(hlibMAPI, "MAPILogon")))

Similarly defined constants exist for the other Simple MAPI functions, so your client simply needs to set
the value of the function pointers using the Win32 function GetProcAddress as in the previous
example.

Starting a Simple MAPI Session

Most MAPI calls are made in the context of a session, defined as an active connection between a client
application and the MAPI subsystem. Each session uses a particular profile that specifies the set of
available message services and the providers to manage those services. Before your client application
can send or receive messages, it needs to log on and establish a session.

There are two types of sessions, temporary and persistent. A temporary session exists only for the
lifetime of a single Simple MAPI call. A persistent session exists until the session is explicitly closed.
Establishing a temporary session is referred to as implicit logon; establishing a persistent session is
called explicit logon. Clients can use a persistent session for all calls that require the same set of
providers and a temporary session for single calls that do not require the same context.

Note Some messaging systems can allow a limited number of sessions, so your client application
must be able to handle a MAPI_E_TOO_MANY_SESSIONS return value. This value can be returned
when a user is logged on to the system through an e-mail application and a mail-enabled application
attempts to log on with a different identity.

 Sharing Simple MAPI Sessions

Workgroup applications should all be able to work from the same profile without presenting logon or
profile-selection dialog boxes when each application begins. A MAPI shared session is established
once but can be used by other clients. Only one shared session can exist on a given computer at a
time. The shared session can be used with any profile. If your client application must use a non-
shareable session ¾ that is, your client needs to be guaranteed that no other clients will use its session
¾ then it must use the MAPILogon function in the MAPI API, which has a broader range of
functionality than the Simple MAPI logon function.

By default, Simple MAPI attempts to use the shared session if it exists. If no shared session exists,
Simple MAPI will create a new shared session when your client calls MAPILogon. If your client logs on
with the MAPI_NEW_SESSION flag set, then Simple MAPI will create a new shared session for your
client to use regardless of whether one already exists.

The session handles returned to clients using a shared session are not the same. Each client,
regardless of whether it is using a unique session or a shared session, has its own unique handle.
Session handles are not valid across tasks, even when those handles represent the same shared
session.

 Explicit Logon with Simple MAPI

Your client application logs on explicitly by calling the MAPILogon function. MAPILogon automatically
opens the default address book for the Simple MAPI caller. When MAPILogon returns to your client,
the session is ready to service all messaging requests. The default message store provider is loaded
and opened by the first Simple MAPI call that needs the message store.

The session handle produced by MAPILogon represents the MAPI session that your client can use in
further Simple MAPI calls. This session handle is passed to most Simple MAPI calls and can also be
used with MAPI. The ScMAPIXFromSMAPI support method, prototyped in the MAPI.H file, converts a
Simple MAPI session handle into a MAPI session object pointer. It is not possible to convert a Simple
MAPI session handle into a CMC session handle. Clients needing both Simple MAPI and CMC
functionality must maintain separate sessions for each.

Simple MAPI function calls produce return values that provide information about the success of a call.
These return values are unsigned long values. Successful calls return the SUCCESS_SUCCESS
value. Unsuccessful calls return error values starting with MAPI_E_, such as
MAPI_E_INSUFFICIENT_MEMORY.

 Implicit Logon with Simple MAPI

Your client application logs on implicitly by using a 0 session handle when calling Simple MAPI
functions. Not all of the Simple MAPI functions allow the session handle to be 0; these calls cannot be
made outside of an established session. For example, the MAPIDeleteMail function can only delete a
message from a pre-existing session; a 0 session handle causes MAPIDeleteMail to return an error
value.

When the session handle is 0, Simple MAPI function calls use the flFlags parameter to determine how
to create the temporary session. If flFlags is set to MAPI_NEW_SESSION, the call tries to establish a
new session, either programmatically if possible or with a logon dialog box. If MAPI_NEW_SESSION is
not set, the call tries to use the shared session. If the call cannot establish a temporary session or use
the shared session, it will return an error value.

When the call completes, the state of the messaging system is as it was before the call was made.
That is, the implicit session opened for the call is closed by the time the call returns.

 Specifying a Profile During Simple MAPI Logon

A call to the MAPILogon function produces different results depending on whether your client
application specifies a profile name. Normally a profile name is required. If your client specifies NULL
for the lpszProfileName parameter of the MAPILogon function, MAPI first checks for an existing
shared session. If possible, the shared session is used. If there is no shared session or if it cannot be
used, the call to MAPILogon will fail.

Your Simple MAPI client can use this behavior to test for the presence of an existing shared session
before creating one of its own.

 Specifying Passwords with Simple MAPI

Whether a password is required for your client application to log on depends on the operating system
which is running on the computer. If the operating system integrates messaging system credential
checking into the initial system logon, your client need not provide a password to the MAPILogon
function. If not, a password is required from the user or from a cache location implemented by the
client. Microsoft Windows NT and Microsoft Windows 95 do not require passwords for MAPILogon
since the user's initial logon to the operating system suffices for both. Clients running with Microsoft
Windows for Workgroups are required to provide a password for MAPILogon.

 Requesting a Logon User Interface with Simple MAPI

Your client application can log on either by displaying a logon dialog box to provide user interaction or
by providing necessary credentials (profile name and password if necessary) programmatically. If your
client requires user interaction, you can use the common dialog box provided by Simple MAPI or create
your own. However, it is recommended that you use the standard MAPI dialog boxes whenever
possible to promote a consistent look and ease of use.

The presence or absence of the MAPI_LOGON_UI value in the flFlags parameter of the MAPILogon
function controls the logon dialog box display.

To force the dialog box to be displayed
Set MAPI_LOGON_UI in the flFlags parameter and set the lpszProfileName and lpszPassword
parameters to NULL as follows:
flFlags |= MAPI_LOGON_UI;
MAPILogon ((ULONG) hWnd, NULL, NULL, flFlags, 0, &lhSession);

If your client provides a value for lpszProfileName (and lpszPassword if necessary), MAPILogon
attempts to establish a session without a user interface. Only if this attempt fails will MAPILogon
display the logon dialog box for the user to enter new credentials.

Ending a Simple MAPI Session
To end a Simple MAPI session

1. Call the MAPILogoff function to close a session when it is no longer needed.
2. Call the MAPIFreeBuffer function to release any buffers that were allocated by Simple MAPI calls

and returned to your client for its use. Calling MAPILogoff does not cause buffers allocated by
Simple MAPI calls to be released. Your client has that responsibility.

 Addressing Messages with Simple MAPI

Message headers form the "envelope" of a message. The message header contains all the information
about the recipients of the message, as well as a subject for the message.

Addressing messages involves three major tasks:

· Generating recipient lists for different recipient classes. There should be separate lists of addresses
for primary recipients, carbon copy (CC) recipients, and blind carbon copy (BCC) recipients.

· Checking names that the user enters against the address book to resolve them into actual
addresses.

· Getting details about address book entries to help the user choose between ambiguous entries.

Creating a subject line is a simple matter of generating a text string containing the subject.

 Generating Recipient Lists with Simple MAPI

Your client application calls the MAPIAddress function to generate a list of recipients for a message. If
some of the recipients are known already, for example when forwarding a message, your client can
pass in an initial array of MapiRecipDesc structures which the user can then modify.

MAPIAddress always displays a dialog box where the user can modify the list of recipients. If your
client needs to generate a recipient list without presenting a dialog box, it should get recipients' names
or addresses through some other means, by calling the MAPIResolveName function if necessary.

A successful call to the MAPIAddress function produces a buffer containing one or more
MapiRecipDesc structures that your client must release with the MAPIFreeBuffer function when the
buffer is no longer needed.

 Checking Names with Simple MAPI

Checking names is the process of using the MAPIResolveName function to take a recipient's display
name ¾ usually their real name or something derived from their real name ¾ or partial display name
and retrieve the address book entry corresponding to it.

To check names
Call the MAPIResolveName function. Your client has the option of allowing the display of address
dialog boxes while resolving the name by setting the MAPI_DIALOG flag in the flFlags parameter. If
the MAPI_DIALOG flag is not set and the recipient's display name resolves to more than one
address book entry, MAPIResolveName will return the MAPI_E_AMBIG_RECIP error value.
If the MAPI_DIALOG flag is set, Simple MAPI will display a dialog box for the user to resolve the
ambiguity. If the MAPI_AB_NOMODIFY flag is also set, the properties of addresses displayed in this
dialog box will not be modifiable, even if the addresses are stored in the user's personal address
book.
Like the MAPIAddress function, a successful call to MAPIResolveName produces a buffer
containing one or more MapiRecipDesc structures that must be released with a call to the
MAPIFreeBuffer function.

 Getting Details About a User with Simple MAPI

The MAPIDetails function presents a dialog box to the user that displays the properties of an address
book entry. This dialog box cannot be suppressed. Like the MAPIResolveName function, MAPIDetails
supports the MAPI_AB_NOMODIFY flag to prevent modification of the properties displayed in the
dialog box. MAPIDetails is most often used with this flag set when the user needs more information
about an address in order to resolve an ambiguity. This function is most often used without the
MAPI_AB_NOMODIFY flag set when the user needs to create or edit entries in the personal address
book.

 Displaying and Editing Addresses with Simple MAPI

The MapiRecipDesc structure, which describes a recipient, contains both the recipient's address and
the recipient's "friendly name." The address, contained in the lpszAddress member, contains the
address that the messaging system uses to deliver the message. This can take a number of forms
depending on what type of address it is. All addresses are of the form [AddressType][E-mail Address].
For example, an internet address could be SMTP:jdoe@microsoft.com, while a fax gateway address
could be FAX:206-555-1212.

The friendly name, stored in the lpszName member, typically contains the recipient's actual name or
some variation of it. Whenever possible, the messaging system places a value in this member when a
message is retrieved from a message store. However, not all addresses can be assigned a friendly
name. For example, a fax gateway address might not correspond to a specific person, so the address
book might not contain a name associated with that address. Similarly, the nature of internet addresses
is such that the messaging system might not be able to determine a friendly name for messages that
come into the system through an internet gateway; the address book cannot contain entries for every
valid internet address, and the format of internet addresses does not mandate that a friendly name be
attached to them.

Your client application should display friendly names to the user when these names are available.
When they are not, it is acceptable to display the actual address instead. When forwarding or replying
to a message, your client should never allow the user to edit the friendly name or address fields of a
MapiRecipDesc structure that the messaging system has returned with a message. Both friendly
names and addresses should be treated as indivisible entities.

When displaying a message to the user, your client should make a distinction between different types
of recipients that might be present in the message's lpOriginator and lpRecips members. The
lpOriginator member contains the address and friendly name of the individual who sent the message.
Your client should display this recipient (note that the originator of a message is still called a recipient
because both originators and actual recipients are described by MapiRecipDesc structures) so that
the user is aware of this recipient's role.

Recipients stored in the lpRecips member can have one of four different roles. The ulRecipClass
member of the MapiRecipDesc structure stores this information.

Role Description
MAPI_TO The recipient is a primary recipient of the original

message.
MAPI_CC The recipient received a carbon copy of the original

message.
MAPI_BC
C

The recipient received a blind carbon copy of the
original message.

MAPI_ORI
G

The recipient sent the message.

In practice, MAPI_BCC and MAPI_ORIG are less common than the others. MAPI_BCC should only
occur if the user reading the message is the one who received a blind carbon copy. The semantics of
MAPI_BCC are such that no one besides the originator and a MAPI_BCC recipient should ever know
that the recipient received the message. MAPI_ORIG should only occur if the user sent a message to
himself or herself.

 Sending Messages with Simple MAPI

To compose a message, your client application either creates a new message, forwards an existing
message, or replies to an existing message. The new message can contain new material. Replying to
existing messages involves creating a new message and copying the contents of the original message
to it. All new messages can specify a return receipt as well.

To send a message
1. Create a MapiMessage structure to contain the message.
2. Create one or more MapiRecipDesc structures describing the recipients of the message and place

them in the lpRecips member of the MapiMessage structure.
3. Create a text string containing the subject, if any, and place it in the lpszSubject member of the

MapiMessage structure.
4. Create a text string containing the message text, if any, and place it in the lpszNoteText member of

the MapiMessage structure.
5. Create an array of MapiFileDesc structures, if necessary, to contain any attachments and place it in

the lpFiles member of the MapiMessage structure.
6. Submit the message by calling the MAPISendMail function.

Sending messages can involve more or less effort on the part of your client application, depending on
the way you invoke various Simple MAPI functions to perform the above steps. For more information,
see Controlled Sending of a Message: Simple MAPI Sample.

To create a new message
1. Allocate a MapiMessage structure.
2. Fill in the MapiMessage structure members with values appropriate for the message the user wants

to send.
3. Submit the MapiMessage structure to the messaging system by calling the MAPISendMail function.

To forward an existing message
1. Retrieve the message by calling the MAPIReadMail function.
2. Modify the message as appropriate for forwarding:

· Put one or more new recipients' addresses in the message's lpRecips member.
· Modify the subject line to indicate that the message has been forwarded.
· Allow the user to edit the message text.

3. Submit it to the messaging system by calling the MAPISendMail function.

To reply to a message
1. Retrieve the message by calling the MAPIReadMail function.
2. Modify the message as appropriate for replying:

· Put the original sender's address into the lpRecips member.
· Change the subject line to indicate that the message is a reply to an earlier message.
· Allow the user to edit the message text.

3. Submit the message to the MAPISendMail function.

When your client submits a message to MAPISendMail, it has the option of requesting a return receipt.
Return receipts are automatically generated messages that senders receive to inform them that
messages they sent, for which a return receipt was requested, were delivered successfully to the
recipient. To request a return receipt, your client should include the MAPI_RECEIPT_REQUESTED
flag in the flFlags member of the MapiMessage structure:

// MapiMessage mymessage; declared and initialized elsewhere.
mymessage.flFlags |= MAPI_RECEIPT_REQUESTED;

 Using the Subject with Simple MAPI

When your client application displays a message , the subject is simply a null-terminated string stored
in the lpszSubject member of a MapiMessage structure.

When replying to or forwarding a message, your client should modify the subject line. The subject of a
reply to a message should begin with the string "RE:", or an appropriate localized equivalent. Similarly,
forwarded messages should have subject lines that begin with "FW:" or an appropriate localized
equivalent. If the subject line already begins with "RE:" or "FW:", your client should not add it again.

 Handling Attachments with Simple MAPI

Simple MAPI handles attachments by means of an array of MapiFileDesc structures pointed to by the
lpFiles member of a MapiMessage structure. The nFileCount member of the MapiMessage structure
indicates the length of the array, with a value of 0 indicating there are no attachments. All Simple MAPI
attachments are returned by means of temporary files.

Simple MAPI recognizes three types of attachments: data files, editable OLE objects, and static OLE
objects. Your client can use the values of the flFlags and lpszFileName members of a MapiFileDesc
structure to determine the type of attachment it describes. OLE 2 attachments are identified by the
extension ".STG" in the lpszFileName member. OLE 1 attachments are identified by the MAPI_OLE
flag in the flFlags member. OLE 1 compliant clients which receive OLE 2 attachments can convert
them by handling the OLE IStorage interface themselves or by using an OLE server to convert them to
OLE 1. Embedded messages are data files that have the extension ".MSG" in the lpszFileName
member.

Each attachment has a nPosition member that stores its position within the message. The position is
an index into the message's lpszNoteText member (which can be treated as an array of characters).
The attachment will appear at the character at its position in the message; that is, the attachment will
be rendered instead of the character lpszNoteText[nPosition]. The special value -1 (0xFFFFFFFF)
indicates that the attachment is not rendered in this way; in this case, the client application receiving
the message is responsible for providing the user with a way of accessing the attachment. Note that
the position is a character position within the text note, not a byte offset into the text note. This is an
important distinction when double byte character sets are in use.

Note The attachment should be rendered instead of the character stored in
lpszNoteText[nPosition]. The actual value of lpszNoteText[nPosition] should be completely
immaterial to the way the message is displayed to the user.

To add attachments to a message
1. Allocate an array of MapiFileDesc structures, one for each attachment.
2. Set the members of each array element to values appropriate for the data files or OLE objects that

are being attached.
3. Set the message's nFileCount member to the number of attachments.
4. Set the message's lpFiles member to the address of the first element of the array of MapiFileDesc

structures.

To handle attachments in a message your client has received
1. Scan the attachments in the array of MapiFileDesc structures and note their character positions.
2. When displaying the message text for the user, place graphic representations of data file

attachments or OLE objects at the appropriate positions.
3. Provide a mechanism for the user to interact with the attachments. You might choose to implement a

point-and-click interface, or allow users to select actions such as saving and opening from a menu.

Message Options with Simple MAPI

Simple MAPI supports a few options for messages and for sending messages. Some of these options
are accessed through members of the MapiMessage structure, and some through parameters of the
MAPISendMail function.

About MapiMessage

The lpszMessageType member of the MapiMessage structure indicates the type of the message. The
most common type is the interpersonal message, or IPM. A NULL value for lpszMessageType or a
pointer to an empty string indicates an interpersonal message. Client applications can use this member
to define their own message types. Be aware that not all messaging systems support message types
other than IPM. Those messaging systems will ignore lpszMessageType.

The lpszMessageType member is also used to indicate when a message is a nondelivery report
(NDR). The messaging system formats the nondelivery for a message type as "REPORT." plus the
message type plus ".NDR". For example, if your client uses a message type of "mytype", the
nondelivery report for such a message will have "REPORT.mytype.NDR" as its lpszMessageType
string. For clients that deal with multiple types of messages, your client can compare the last four
characters of the lpszMessageType string against ".NDR" to determine whether the message is a
nondelivery report. Naturally, your client should not choose a string that ends in ".NDR" as its internal
message type.

Note While nondelivery reports generated by MAPI follow this convention, nondelivery reports
generated by transport providers for external mail delivery systems might not.

The flFlags member can be used to request a receipt and to detect the read or unread and sent or
unsent status of a message. When sending a message, your client can set the
MAPI_RECEIPT_REQUESTED flag to request a receipt. When reading a message, your client can
test for the MAPI_UNREAD flag to determine whether the message has not yet been read. Similiarly,
your client can test for the MAPI_SENT flag to determine whether the message has been sent. When
saving a previously unsaved message, your client should set the MAPI_UNREAD and MAPI_SENT
flags as appropriate for the message.

About MAPISendMail

The MAPISendMail function supports options through its flFlags parameter. Your client application can
set the following flags when sending a message.

Flag Description
MAPI_LOGON_UI Allows a logon interface if required. This flag should be set if your

client is using an implicit session.
MAPI_NEW_SESSION Prevents Simple MAPI from using an existing shared session if

one is present.
MAPI_DIALOG Displays a dialog box which allows the user to create a message.

This flag should be set if your client does not have a
MapiMessage structure already constructed, or if the user is
composing a message interactively.

 Simple MAPI Programming Examples

The code examples in this section are provided to illustrate in detail the concepts discussed earlier.
Additional code examples can be found in the SMPCLI application included with the MAPI Software
Development Kit (SDK). SMPCLI is not a typical Simple MAPI application because it exists solely to
illustrate every Simple MAPI function. It is good for illustrating the use of all the Simple MAPI APIs, but
it is not good for illustrating typical use of those APIs in real situations.

The following three examples show how a client application can send and receive messages with
varying degrees of control. The first example sends a message very simply, leaving creation of the
message's contents almost entirely up to Simple MAPI through user interaction. The second example
takes more control over creation of the message and demonstrates how to use the
MAPIResolveName function to check that addresses are valid before sending. The third example
shows how to receive and display a message. Comments precede sections that benefit from
explanation.

 Sending a Message Simply: Simple MAPI Sample

This example shows the simplest way your client application can send a message. An essentially blank
message is created and passed to the MAPISendMail function with parameters that cause Simple
MAPI to use dialog boxes to create the content of the message. First, the client defines the variables it
needs. Note that your client will not hard-code the attachment path name or filename in the
MapiFileDesc structure.

// Example 1:
// Send a mail message containing a file and prompt for
// recipients, subject, and note text.

ULONG err;
MapiFileDesc attachment = {0, // ulReserved, must be 0
 0, // no flags; this is a data file
 (ULONG)-1, // position not specified
 "c:\\tmp\\tmp.wk3", // pathname
 "budget17.wk3", // original filename
 NULL}; // MapiFileTagExt unused
// Create a blank message. Most members are set to NULL or 0 because
// MAPISendMail will let the user set them.
MapiMessage note = {0, // reserved, must be 0
 NULL, // no subject
 NULL, // no note text
 NULL, // NULL = interpersonal message
 NULL, // no date; MAPISendMail ignores it
 NULL, // no conversation ID
 0L, // no flags, MAPISendMail ignores it
 NULL, // no originator, this is ignored too
 0, // zero recipients
 NULL, // NULL recipient array
 1, // one attachment
 &attachment}; // the attachment structure

Next, the client calls the MAPISendMail function and stores the return status so it can detect whether
the call succeeded. Your client should use a more sophisticated error reporting mechanism than the C
library function printf.

err = MAPISendMail (0L, // use implicit session.
 0L, // ulUIParam; 0 is always valid
 ¬e, // the message being sent
 MAPI_DIALOG, // allow the user to edit the message
 0L); // reserved; must be 0
if (err != SUCCESS_SUCCESS)
 printf("Unable to send the message\n");

 Controlled Sending of a Message: Simple MAPI Sample

This example shows how your client application can take more control over a message it sends by
specifying more of the contents of the message, validating addresses before sending, and by denying
a sending interface to the user. Again, the client starts by defining its variables.

// Example 2:
// Send a mail message containing a spreadsheet and a short note
// to Sally Jones and copy the Marketing group. Don't prompt the user.

ULONG err;
MapiRecipDesc recips[2], // this message needs two recipients.
 *tempRecip[2]; // for use by MAPIResolveName

// create the same file attachment as in the previous example.
MapiFileDesc attachment = {0, // ulReserved, must be 0
 0, // no flags; this is a data file
 (ULONG)-1, // position not specified
 "c:\\tmp\\tmp.wk3", // pathname
 "budget17.wk3", // original filename
 NULL}; // MapiFileTagExt unused

The client then uses the MAPIResolveName function to generate MapiRecipDesc structures for the
recipients of the message. It can create them directly, as in the previous example, but then no error
checking is possible. Since this client is creating and sending the message without any interaction from
the user, it is important to make sure the addresses are valid before sending the message.

// get Sally Jones as the MAPI_TO recipient:
err = MAPIResolveName(0L, // implicit session
 0L, // no UI handle
 "Sally Jones", // friendly name
 0L, // no flags, no UI allowed
 0L, // reserved; must be 0
 &tempRecip[0]);// where to put the result
if(err == SUCCESS_SUCCESS)
 { // memberwise copy the appropriate fields in the returned
 // recipient descriptor.
 recips[0].ulReserved = tempRecip[0]->ulReserved;
 recips[0].ulRecipClass = MAPI_TO;
 recips[0].lpszName = tempRecip[0]->lpszName;
 recips[0].lpszAddress = tempRecip[0]->lpszAddress;
 recips[0].ulEIDSize = tempRecip[0]->ulEIDSize;
 recips[0].lpEntryID = tempRecip[0]->lpEntryID;
 }
else
 printf("Error: Sally Jones didn't resolve to a single address\r\n");

// get the Marketing alias as the MAPI_CC recipient:
err = MAPIResolveName(0L, // implicit session
 0L, // no UI handle
 "Marketing", // friendly name
 0L, // no flags, no UI allowed
 0L, // reserved; must be 0
 &tempRecip[1]);// where to put the result
if(err == SUCCESS_SUCCESS)

 { // memberwise copy the appropriate fields in the returned
 // recipient descriptor.
 recips[1].ulReserved = tempRecip[1]->ulReserved;
 recips[1].ulRecipClass = MAPI_CC;
 recips[1].lpszName = tempRecip[1]->lpszName;
 recips[1].lpszAddress = tempRecip[1]->lpszAddress;
 recips[1].ulEIDSize = tempRecip[1]->ulEIDSize;
 recips[1].lpEntryID = tempRecip[1]->lpEntryID;
 }
else
 printf("Error: Marketing didn't resolve to a single address\r\n");

Now the client creates the message. Again, your client should not hard-code the actual values of the
MapiMessage structure's members.

MapiMessage note = {0, "Budget Proposal",
 "Here is my budget proposal.\r\n",
 NULL, NULL, NULL, 0, NULL,
 2, recips, 1, &attachment};

Again, the client sends the message and records the return value. This time no user interface is
displayed. After the MAPISendMail call, the MapiRecipDesc structures allocated by
MAPIResolveName must be released.

err = MAPISendMail (0L, // use implicit session.
 0L, // ulUIParam; 0 is always valid
 ¬e, // the message being sent
 0L, // do not allow the user to edit the message
 0L); // reserved; must be 0
if (err != SUCCESS_SUCCESS)
 printf("Unable to send the message\n");
MAPIFreeBuffer(tempRecips[0]); // release the recipient descriptors
MAPIFreeBuffer(tempRecips[1]);

 Receiving a Message: Simple MAPI Sample

The following example shows how your client application can receive a message with Simple MAPI.
For simplicity, this example assumes that a character interface is being used.

First, the client application defines needed variables and logs on to get a session handle. Unlike when
sending a message, the Simple MAPI functions for reading messages can't log on implicitly and require
an explicit session handle.

ULONG ReadNextUnreadMsg()
{
ULONG err;
LHANDLE lhSession; // Need a session for MAPIFindNext.
CHAR rgchMsgID[513]; // Message IDs should be >= 512 CHARs + a null.
MapiMessage *lpMessage; // Used to get a message back from MAPIReadMail.
int i, // Ubiquitous loop counter.
 totalLength; // Number of characters printed on a line.
err = MAPILogon(0L, // ulUIParam; 0 always valid.
 "c:\\pst\\myprofil.pro",// Shouldn't hardcode this.
 NULL, // No password needed.
 0L, // Use shared session.
 0L, // Reserved; must be 0.
 &lhSession); // Session handle.
if (err != SUCCESS_SUCCESS) // Make sure MAPILogon succeeded.
{
 printf("Error: could not log on\r\n");
 return(err);
}

Next, the client searches for the first unread message in the default folder in the store (probably the
user's Inbox). Since there might not be any unread messages in the folder, the client first tests the
return value from the MAPIFindNext function against MAPI_E_NO_MESSAGES before checking
against SUCCESS_SUCCESS. If the call is successful, the client will have a valid message identifier to
use to retrieve the first unread message.

// find the first unread message
err = MAPIFindNext(lhSession, // explicit session required
 0L, // always valid ulUIParam
 NULL, // NULL specifies interpersonal messages
 NULL, // seed message ID; NULL=get first message
 MAPI_LONG_MSGID | // needed for 512 byte rgchMsgID.
 MAPI_UNREAD_ONLY, // only get unread messages.
 0L, // reserved; must be 0
 rgchMsgID);// buffer to get back a message ID.

if (err == MAPI_E_NO_MESSAGES) // make sure a message was found
{
 printf("No unread messages.\r\n");
 return(err);
}
if (err != SUCCESS_SUCCESS) // make sure MAPIFindNext didn't fail
{
 printf("Error while searching for messages\r\n");
 return(err);
}

The client application can now be sure it is safe to retrieve the message. However, it is still a good idea
to check the return value from the MAPIReadMail function. If the call fails, the memory pointed to by
the client's lpMessage pointer will not be accessible by the client. The client should not try to display a
message at that location. Note that this example sets the MAPI_SUPPRESS_ATTACH flag so the
returned message will not have any attachments in it and Simple MAPI will not create any temporary
files for them.

// retrieve the message
err = MAPIReadMail(lhSession, // Explicit session required.
 0L, // Always valid ulUIParam.
 rgchMsgID, // The message found by MAPIFindNext.
 MAPI_SUPPRESS_ATTACH, // TO DO: handle attachments.
 0L, // Reserved; must be 0.
 &lpMessage); // Location of the returned message.
if(err != SUCCESS_SUCCESS) // Make sure MAPIReadMail succeeded.
{
 printf("Error retrieving message %s\r\n",rgchMsgID);
 return(err);
}

Now, the client can display the message. As expected, it begins by displaying the addressing
information attached to the message before displaying the subject line and message text. When
displaying the addressing information, it is best if your client can display friendly names. However,
since friendly names are not always available, your client must verify that each recipient structure's
lpszName member points to a valid string, and that the string is not a null string.

// Display the sender's name or address; use the friendly name
// if it is present.
if((lpMessage->lpOriginator->lpszName != NULL) &&
 lpMessage->lpOriginator->lpszName[0] != '\0')
 printf("From: %s\r\n",lpMessage->lpOriginator->lpszName);
else
 printf("From: %s\r\n",lpMessage->lpOriginator->lpszAddress);

Displaying the recipients' addresses is complicated by the need to avoid breaking a recipient's name or
address across two lines. This code can be further improved by differentiating between recipients
based on their ulRecipClass members so that they can be properly displayed as To, CC, or BCC
recipients. As this code shows, handling recipient data can be the most complex part of reading a
message.

// Display the recipients' names or addresses. To Do: enhance
// this code to separate the recipients into lists of MAPI_TO,
// MAPI_CC, and MAPI_BCC recipients for separate display.
if(lpMessage->nRecipCount == 0)
 printf("Warning: no recipients present for this message\r\n");
else
 for(i = 0; i < lpMessage->nRecipCount; i++) // For each recipient...
 {
 // This code uses lstrlen to calculate the length of strings and
 // to validate that the strings have some content, since the
 // length is needed anyway. This avoids the more verbose checks
 // as were done for lpMessage->lpOriginator->lpszName earlier.

 // lpszT references a name or address; simplifies later code.
 // length is the length of the name or address.
 LPSTR lpszT = lpMessage->lpRecips[i]->lpszName;

 int length = lstrlen(lpszT);

 if(i == 0) // First recipient; need to do some initialization.
 {
 printf("Recipients:");
 totalLength = 11; // since strlen("Recipients:") = 11.
 }

 // Decide whether to use the friendly name or the address.
 if(length == 0)
 length = lstrlen(lpszT=lpMessage->lpRecips[i]->lpszAddress);

 // Verify that the line has room for this name or address. If
 // not, print a CR LF pair to go to the next line.
 if(totalLength + length + 1 > LINE_WIDTH)
 {
 printf("\r\n");
 totalLength = 0;
 }

 printf(" %s",lpszT); // Finally, print the name or address.
 totalLength += length + 1;// Maintain the line length.

 // If there are more addresses, separate them with semicolons.
 if(i < (lpMessage->nRecipCount - 1))
 {
 printf(";");
 totalLength++;
 }
 }

Now, the client displays the subject line and message text if they are present. Note that the message
text can be printed with a simple call to the C library function printf. Since the message was read with
the MAPI_SUPPRESS_ATTACH flag set, there will be no attachments in it.

// Display the subject and message body. Not printing anything for the
// subject is fine, but something should always be printed for the
// message body since it is the last thing that this function displays.
if(lpMessage->lpszSubject != NULL && // Standard validity check
 lpMessage->lpszSubject[0] != '\0')
 printf("Subject: %s\r\n",lpMessage->lpszSubject);
if(lpMessage->lpszNoteText != NULL && // Standard validity check
 lpMessage->lpszNoteText[0] != '\0')
 printf("Message Text:\r\n%s",lpMessage->lpszNoteText;
else
 printf("No message text.\r\n");

Finally, the client releases the memory that the MAPIReadMail function allocated for the message,
closes the session, and returns a successful return value.

MAPIFreeBuffer(lpMessage);
MAPILogoff(lhSession, // The session.
 0L, // 0 always valid for ulUIParam.
 0L, // No logoff flags.
 0L); // Reserved; must be 0.
return SUCCESS_SUCCESS; // Inform the caller of our success.

} // End of ReadNextUnreadMsg.

 Objects and Interfaces

A MAPI object is a C++ object class or C data structure inherited from one or more MAPI interfaces, or
collections of related functions. These collections of related functions are known to C++ developers as
pure virtual functions. For a pure virtual function, MAPI supplies only the function prototype, not an
implementation. It is expected that a client application, a service provider, or MAPI will provide this
implementation by creating an object class inherited from the interface and conforming to the function
descriptions documented in the MAPI Programmer's Reference. A MAPI interface can only be
instantiated through an inherited class.

There are many different MAPI objects, each object inheriting from an interface that is ultimately
inherited from IUnknown. IUnknown is the OLE Component Object Model (COM) base interface. It
provides MAPI objects with a standard mechanism for communication and control. The Component
Object Model dictates how object implementors handle issues such as memory management,
parameter management, and multithreading. By conforming to this model, an object implementor
adheres to a contract as specified by the interfaces included in the object.

Many MAPI interfaces are inherited directly from IUnknown while others are inherited indirectly
through one of two other base interfaces: IMAPIProp for property management and IMAPIContainer
for folder and address book access. Base interfaces are never implemented as separate, standalone
objects; they are always implemented as part of other objects, objects that implement derived
interfaces.

MAPI defines many types of objects, each implemented by one or more MAPI components. Objects
implemented by clients are used by MAPI, by service providers, and by custom form components.
Objects implemented by service providers are typically used by MAPI and by clients. Objects
implemented by form library providers and form servers are used by other form components and by
clients.

 Component Object Model and MAPI

The Win32 SDK includes a comprehensive discussion of the rules for implementing objects that
conform to the Component Object Model (COM). There are rules in the section called "Programming
Rules for COM - A Quick Reference" that address how to:

· Design interfaces and objects.
· Implement IUnknown.
· Manage memory.
· Handle reference counting.
· Implement apartment threaded objects.

Although all MAPI objects are considered COM-based because they implement interfaces that inherit
from IUnknown, MAPI deviates in some situations from the standard COM rules. This deviation allows
developers more flexibility in their implementations. For example, a MAPI interface, like any COM
interface, describes a contract between implementor and caller. Once the interface is created and
published, its definition cannot and does not change. MAPI does not deviate from this description, but it
relaxes the description somewhat. Implementors can choose to not implement particular methods,
returning one of the following error values to the caller:

MAPI_E_NO_SUPPORT
MAPI_E_TOO_COMPLEX
MAPI_E_BAD_CHARWIDTH
MAPI_E_TYPE_NO_SUPPORT

The other deviations from the standard COM rules are described in the following table.

COM programming rule MAPI variation
All string parameters in
interface methods should be
Unicode.

MAPI interfaces are defined to
permit either Unicode or ANSI
string parameters. Any method
that has a string parameter also
has a ulFlags parameter; the
width of the string parameters is
indicated by the value of the
MAPI_UNICODE flag in ulFlags.

Most MAPI interfaces to not
support Unicode and return
MAPI_E_BAD_CHARWIDTH
when the MAPI_UNICODE flag
is set.

All interface methods should
have a return type of
HRESULT.

MAPI has one method that
returns a non-HRESULT value:
IMAPIAdviseSink::OnNotify.

Callers and implementors
should allocate and free
memory for interface
parameters using the standard
COM task allocators.

All MAPI methods use the linked
allocators MAPIAllocateBuffer,
MAPIAllocateMore, and
MAPIFreeBuffer to manage
memory for interface
parameters.
All MAPI implementations of
interfaces defined by OLE, such
as IStream, use the standard

COM task allocators.
All out pointer parameters must
explicitly be set to NULL when
a method fails.

MAPI interfaces require that out
pointer parameters either be set
to NULL or remain unchanged
when a method fails.
All MAPI implementations of
interfaces defined by OLE
explicitly set out parameters to
NULL on failure.

Implement aggregatable
objects whenever possible.

MAPI interfaces are not
aggregatable.

Objects and the MAPI Architecture

All of the objects defined by MAPI fall into one or more layers in the MAPI architecture. The client
interface layer is made up of all the objects that a client application, form viewer, or form server can
implement. The service provider interface layer contains the objects that a service provider of any type
can implement. This layer includes objects implemented by address book, message store, transport,
form library, and messaging hook providers. The layer that represents the MAPI subsystem is
positioned between the client and service-provider interface layers. The MAPI layer contains all of the
objects that MAPI implements for clients or service providers to use.

The following illustration shows where each of the MAPI objects fits into the MAPI architecture. The
objects are represented with the names of their derived interfaces. For example, an advise sink object
is shown as IMAPIAdviseSink, the interface deriving from IUnknown that every advise sink object
implements. The interfaces that bridge layers are either used or implemented by multiple components.
Although the MAPI layer appears to separate the client and provider layers, implying that all
communication must flow through MAPI, this is not the case. Clients can and do communicate directly
to service provider objects.

{ewc msdncd, EWGraphic, groupx830 0 /a "MAPI_38.WMF"}

Object Inheritance Hierarchy

All interfaces implemented by MAPI objects ultimately inherit from IUnknown, the OLE interface that
enables objects to communicate. Most interfaces directly inherit from IUnknown, but some inherit from
one of two other base interfaces: IMAPIProp and IMAPIContainer. The following illustration shows the
complete inheritance hierarchy in MAPI.

{ewc msdncd, EWGraphic, groupx830 1 /a "MAPI_06.WMF"}

Object Containment Hierarchy

The containment relationship between objects specifies the dependencies that some objects have on
other objects for access. For a client application, access to particular objects enables access to others.
In some cases, the containment relationship between objects implemented by a service provider
follows a logical hierarchy. In other cases, it is arbitrary.

A client must obtain access to a MAPI session object before using many other objects, for example,
service providers and the MAPI address book.

Message store containment is based on the hierarchical relationship between objects in the message
store: the message store object itself, folders, messages, and attachments. Logically, attachments are
contained in messages, messages in folders, and folders in the message store. The containment
relationship matches this logical hierarchy. To gain access to a message, for example, a client must
first access the folder in which the message is contained. Profiles and status objects are examples of a
more arbitrary containment relationship. Both of these objects are available through the session.

With some objects, containers provide the only access path. Attachments and recipients are examples
of objects that are totally dependent on their containers. The only access route to an attachment or a
recipient is through the message to which they belong. Other objects have alternate access paths.
These objects are assigned binary identifiers, known as entry identifiers, by the service providers that
create them. Entry identifiers can be used to access their objects directly, enabling clients to bypass
the containment tree.

The following illustration shows the MAPI containment hierarchy. The session is at the top of the tree
because it is through the session that a client gains access to all other objects. The next level includes
the message store table, a table object that lists properties for all of the message store providers in the
current session, and the address book to supply access to all of the address book providers. The
message store table and address book are used to access the objects implemented by particular
service providers, shown next, in containment order.

{ewc msdncd, EWGraphic, groupx830 2 /a "MAPI_41.WMF"}

Objects Implemented by MAPI

MAPI implements several objects for use by client applications and service providers. The session
object allows clients to use session services, to access tables, and to communicate with service
providers. The address book object provides clients with integrated access to all of the different
address book providers.

Multiple table and status objects are supplied by MAPI for clients to use for viewing and monitoring
session and service provider information. For example, MAPI provides a profile table with information
about all of the profiles that are installed on the computer and a message service table with information
about all of the message services in the current profile. MAPI provides three different status objects:
one that represents the overall subsystem, one for the MAPI spooler, and one for the integrated
address book.

MAPI implements four different objects for managing the configuration of message services, service
providers, and profiles. Both clients and service providers use provider administration and profile
section objects; these objects enable them to configure service providers and access profile properties.
Clients only use message service and profile administration objects, the objects that support the
administration of message services and profiles.

MAPI provides two objects for service providers: a support object and a Tnef object. All service
providers use one or more support objects; there are four different support object implementations.
MAPI supplies an implementation to support configuration as well as specific implementations to
support address book, message store, and transport providers. The Tnef object is used by transport
providers that support the Transport Neutral Encapsulation Format (TNEF).

Two utility objects, table data and property data, are typically used by service providers. Table data
objects help in the implementation of table objects; property data objects help to set and view property
access and help in the implementation of IMAPIProp : IUnknown, the base property interface.

The following table summarizes the purpose for each object implemented by MAPI.

MAPI object Description
Address book Provides access to the integrated view of

recipient information belonging to all of the
address book providers in the active
profile.

Message service
administration

Provides access to message service
information for configuration.

Profile administration Provides access to profile information for
configuration.

Profile section A part of a profile used to describe a
particular message service or service
provider.

Property data Maintains access to properties and helps
implement IMAPIProp.

Provider
administration

Provides access to service provider
information for configuration.

Session Represents a connection to underlying
messaging systems and provides clients
with access to MAPI resources.

Status Provides access to the state of the MAPI
subsystem, the address book, or the MAPI
spooler.

Support Provides service providers with help in

handling client requests.
Table Provides access to a summary view of

object data in row and column format,
similar to a database table.

Table data Maintains access to underlying table data
and implements table objects.

Tnef Supports the use of the Transport Neutral
Encapsulation Format (TNEF).

The following illustration shows the relationship between the objects that MAPI implements, the
interfaces from which they inherit, and the components that use them.

{ewc msdncd, EWGraphic, groupx830 3 /a "MAPI_68.WMF"}

About Client Objects

Standard messaging client applications implement only one object: an advise sink. Advise sinks inherit
from the IMAPIAdviseSink : IUnknown interface and are used by MAPI and service providers for
event notification. Some clients also implement progress objects to support the display of progress
dialog boxes.

More complex clients that support custom forms implement another advise sink object and a few other
objects, such as the message site object that inherits from the IMAPIMessageSite : IUnknown
interface and the view context object that inherits from the IMAPIViewContext : IUnknown interface.
The additional advise sink object inherits from the IMAPIViewAdviseSink : IUnknown interface.

The following table summarizes the MAPI objects implemented by standard messaging clients and by
clients that support the viewing of custom forms.

Client object Description
Advise sink Provides a callback function for events that occur

in the message store, address book, or the
session.

Message site Handles the manipulation of form objects.
Progress Displays a dialog box to show the progress of an

operation.
View advise sink Provides callback functions for events that occur

in a form.
View context Supports commands for printing and saving

forms and for navigating between forms.

The following illustration shows the relationship between these different client objects, the interfaces
from which they inherit, and the MAPI components that use them.

{ewc msdncd, EWGraphic, groupx830 4 /a "MAPI_65.WMF"}

Clients use many more objects than they implement. All clients use a session object to gain access to a
wide variety of service provider objects and objects implemented by MAPI. Clients interact with service
providers either indirectly, through the session, the address book, or the status objects supplied by
MAPI, or directly through a variety of objects implemented by particular service providers. To make
direct contact with address book providers, clients use address book containers, messaging users, and
distribution lists. To access a message store provider directly, clients use the message store object,
folders, messages, and attachments. When service providers support a status object, clients can use
the status object to monitor the service provider's state.

Clients that support service provider and message service configuration use three objects implemented
by MAPI: the message service administration object, profile administration object, and provider
administration object. Clients that display custom forms use several form objects implemented by either
a form library provider or a form server.

About Service Provider Objects

Service providers implement many objects, some that are used primarily by MAPI and some that are
used by client applications. A few objects are implemented by all types of service providers; the rest are
specific to a single provider type. The following table describes all of the service provider objects.

Service provider
object

Description

Address book
container

Contains recipient information for one address
book provider in the active profile; address book
providers can have one or more address book
containers.

Attachment Contains additional data, such as a file or OLE
object, to be associated with a message.

Control Enables or disables a button and initiates
processing when the button is pressed.

Distribution list Describes a grouping of individual message
recipients.

Folder Contains messages and other message
containers.

Logon Handles service provider event notification and
client requests.

Messaging user Describes an individual recipient of a message.
Message Contains information that can be sent to one or

more recipients with a messaging system.
Message store Acts as a database of messages, organized

hierarchically.
Provider Handles service provider startup and shutdown.
Spooler hook Performs special processing on inbound and

outbound messages.
Status Provides access to the service provider's state.
Table Provides access to a summary view of object data

in row and column format, similar to a database
table.

All service providers implement a provider object and a logon object. Provider objects are strictly for
bookkeeping; they are used by MAPI to control the start up and shutdown processes. Logon objects
service some client requests indirectly. For example, the message store provider's logon object
handles notification registration and requests to open message store objects.

Provider and logon objects implement a different interface depending on the type of service provider
supplying the implementation. A message store provider implements the IMSProvider and IMSLogon
interfaces in its provider and logon objects, an address book provider implements the IABProvider and
IABLogon interfaces, and a transport provider implements the IXPProvider and IXPLogon interfaces.

Message hook providers implement spooler hook objects, or objects that filter inbound and outbound
messages.

Service providers typically use only a few objects. Most frequently, they use a support object provided
by MAPI that helps implement client requests. The support object is customized for the type of provider
using it. For all service providers, the support object includes methods for handling event notification,
displaying configuration properties, opening objects, and error handling. The rest of the methods are
specific to its use; there are customized versions for address book, message store, and transport

providers and for configuration support. For example, the address book support object displays details
and custom recipient dialog boxes. The message store support object supports copy and move
operations for folders and messages. The transport provider support object includes methods for
facilitating interaction with the MAPI spooler.

Some service providers use table data and property data objects, utility objects implemented by MAPI.
Table data objects enable service providers to manage the underlying data of a table. Property data
objects enable service providers to set object and property access.

Transport providers that support the Transmission-Neutral Encapsulation Format (TNEF) for
transferring properties use a Tnef object implemented by MAPI that supports the ITnef interface. For
more information, see Developing a TNEF-Enabled Transport Provider.

About Address Book Provider Objects

In addition to the standard provider and logon objects, address book providers implement address
book containers, distribution lists, messaging users, tables, status objects, and controls. The following
illustration shows these objects, their corresponding interfaces, and the MAPI components that use
them.

{ewc msdncd, EWGraphic, groupx830 5 /a "MAPI_64.WMF"}

About Message Store Provider Objects

Message store providers implement provider and logon objects as do all service providers. They also
implement a message store object, folders, messages, attachments, and tables. As an option, some
message store providers implement status objects.

The following illustration shows each message store object with its corresponding interface and the
MAPI component that uses it.

{ewc msdncd, EWGraphic, groupx830 6 /a "MAPI_63.WMF"}

About Transport Provider Objects

In addition to the standard provider and logon objects implemented by all service providers, transport
providers are required to implement a status object. For the other service provider types, implementing
a status object is optional. However, MAPI requires it for transport providers. Transport providers that
support the downloading of message headers from a remote server also implement a folder and a
table.

The following illustration shows each of the objects that transport providers can implement with their
corresponding interfaces and indicates whether MAPI or a client is the object's user.

{ewc msdncd, EWGraphic, groupx830 7 /a "MAPI_66.WMF"}

About Custom Form Objects

Objects for custom forms are implemented by three different components:

· Form server
· Form library provider
· Form viewer

A form server is similar in functionality to an OLE compound document object application. It is an
executable component that implements the form; it controls its display and the operations that a user
can perform. MAPI launches a form server upon request when a user wishes to view a message with a
message class that is displayed using a form supported by the form server. Form servers implement
three objects: a form factory object that resembles the standard OLE class factory, a form advise sink
for handling form-specific events, and the form itself.

A form library provider supplies clients with access to a form's property set, to its container, and to the
object that links messages of a specific class with the server that can activate the form for that class.
Form library providers implement three objects: a form information object, a form container, and a form
manager for binding a message to the appropriate form server based on the message's class.

A form viewer is a component that is included in clients that support the display of custom forms from
within their folder viewers. Form viewers are not independent MAPI components as are form library
providers and form servers. They invoke form servers and provide context for them. Form viewers
implement three objects: a message site, a view context, and an advise sink specific for handling view-
specific events.

The following table describes all of the custom form objects.

Form object Description
Form Controls the display and operation of a

custom form for viewing messages of a
specific class.

Form advise sink Handles notifications from the form viewer.
Form factory Creates an instance of a form and allows

its server to remain in memory.
Form container Contains form information.
Form information Contains messages and other message

containers.
Form manager Provides access to an integrated view of

custom form information relating to all of
the installed forms. Also matches
message classes with corresponding form
class identifiers.

Message Site Handles the manipulation of form objects
from inside the client and provides access
to a form manager object.

View Context Supports form commands for activating
next and previous messages and for
saving or printing.

View Advise Sink Handles notifications from the form server.

The following illustration shows the relationship between custom form components, the objects and
interfaces that they implement, and the components that are users of the objects. Notice that, unlike
most other MAPI objects, the form object implements two interfaces that are not related by direct
inheritance. When an object exposes multiple independent interfaces, a user of the object that has a

pointer to one of the interfaces can retrieve a pointer to any of the other interfaces. This ability to
navigate between an object's interface implementations is a feature of the QueryInterface method,
one of the methods in the base interface IUnknown.

{ewc msdncd, EWGraphic, groupx830 8 /a "MAPI_67.WMF"}

Using MAPI Objects

Clients and service providers use MAPI objects by calling the methods in their interface
implementations. This is the only way that MAPI objects can be used; methods that are implemented
by an object outside of a MAPI interface are not publicly accessible. Because all of an object's
interfaces are related through inheritance, an object's user can call methods in either the base interface
or one of the inherited interfaces as if they belong to the same interface.

When an object's user wants to make a call to a method and that object implements several interfaces
related through inheritance, the user need not know to which interface the method belongs. The user
can call any of the methods on any of the interfaces with a single pointer to the object. For example,
the following illustration shows how a client application uses a folder object. Folder objects implement
the IMAPIFolder : IMAPIContainer interface wihich inherits from IUnknown indirectly through
IMAPIProp and IMAPIContainer. A client can call one of the IMAPIProp methods, such as GetProps,
and one of the IMAPIFolder methods, such as CreateMessage, in the same way with the same object
pointer. A client is not aware of or affected by the fact that these calls belong to different interfaces.

{ewc msdncd, EWGraphic, groupx830 9 /a "MAPI_40.WMF"}

These calls translate into code differently depending on whether the client making the calls is written in
C or C++. Before any call to a method can be made, a pointer to the interface implementation must be
retrieved. Interface pointers can be obtained by:

· Calling a method on a different object.
· Calling an API function.
· Calling IUnknown::QueryInterface on the target object.

MAPI provides several methods and API functions that return pointers to interface implementations.
For example, clients can call the IMAPISession::GetMsgStoresTable method to retrieve a pointer to a
table object that provides access to message store provider information through the IMAPITable :
IUnknown interface. Service providers can call the API function CreateTable to retrieve a pointer to a
table data object. When there is no function or method available and clients or service providers
already have a pointer to an object, they can call the object's QueryInterface method to retrieve a
pointer to another of the object's interface implementations.

Implementing MAPI Objects

MAPI objects are implemented using C++ classes or C data structures, depending on the language
and the API set a client or service provider is using. Service providers are written in C or C++ with the
MAPI service provider interface; client applications can use any of the three supported languages and
the four supported client interfaces. If possible, clients and service providers using the object-oriented
programming interface should use C++.

C++ is the preferred choice because MAPI is an object oriented technology and C++ lends itself more
readily to object oriented development. The resulting code is simpler and more straightforward making
it easier to maintain. Also, the MAPI documentation is written primarily for C++ developers; all of the
syntax descriptions for the MAPI interface methods in the MAPI Programmer's Reference are in C++.

When a MAPI object is implemented, a client or service provider creates code for all of the interface
methods, code for any private methods that are specific to the implementation, and code to support
private data members for maintaining state information. The code for the interface methods must follow
the specifications published by MAPI that document expected behavior.

There are many macros in the MAPIDEFS.H header file and OLE header files that clients and service
providers in either language can use to help them with their definitions of MAPI objects. For example,
there is a macro to define the methods of each of the MAPI interfaces. The macro to define the
methods of IUnknown appears in MAPIDEFS.H as follows:

#define MAPI_IUNKNOWN_METHODS(IPURE) \
 MAPIMETHOD(QueryInterface) \
 (THIS_ REFIID riid, LPVOID FAR * ppvObj) IPURE; \
 MAPIMETHOD_(ULONG,AddRef) (THIS) IPURE; \
 MAPIMETHOD_(ULONG,Release) (THIS) IPURE; \

Implementing Objects in C++

C++ clients and service providers define MAPI objects by creating classes that inherit from the
interfaces they are implementing. Each of the interface methods is public as are the constructor and
destructor for the class. If the class has additional methods, they can be public or private, depending
on the implementation. All data members are private.

The following example code shows how to define a C++ status object. The CMyMAPIObject class
inherits from the IMAPIStatus : IMAPIProp interface. Many of the macros used in this example are
defined in the OLE header file COMPOBJ.H.The first members of the class are the methods of the
base interface, followed by the methods of the inherited interfaces in order of inheritance. Following the
interface definitions are any additional methods, the constructor and destructor, and the data members.

class CMyMAPIObject : public IMAPIStatus
{
public:
// Methods of IUnknown
 STDMETHODIMP QueryInterface (REFIID riid, LPVOID * ppvObj);
 STDMETHODIMP_(ULONG) AddRef ();
 STDMETHODIMP_(ULONG) Release ();

 MAPI_IMAPIPROP_METHODS(IMPL);
 MAPI_IMAPISTATUS_METHODS(IMPL);

// Other methods specific to CMyMAPIObject
 BOOL WINAPI Method1 ();
 void WINAPI Method2 ();

// Constructors and destructors
public :
 CMyMAPIObject () {};
 ~CMyMAPIObject () {};

// Data members specific to CMyMAPIObject
private :
 ULONG m_cRef;
 CAnotherObj * m_pObj;
};

To use an instance of the CMyMAPIObject class, C++ clients or service providers make a call to one of
its methods as follows.

lpMyObj->ValidateState(ulUIParam, ulFlags);

Implementing Objects in C

Client applications and service providers written in C define MAPI objects by creating a data structure
and an array of ordered function pointers known as a virtual function table, or vtable. A pointer to the
vtable must be the first member of the data structure. In the vtable itself there is one pointer for every
method in each interface supported by the object. The order of the pointers must follow the order of the
methods in the interface specification published in the MAPIDEFS.H header file. Each function pointer
in the vtable is set to the address of the actual implementation of the method. In C++, the vtable is set
up automatically by the compiler. In C, it is not.

The following illustration shows how this works. The box on the far left represents a client that needs to
use a service provider object. Through the session, the client obtains a pointer to the object, lpObject.
The vtable appears first in the object followed by private data and methods. The vtable pointer points to
the actual vtable containing pointers to each of the implementations of the methods in the interface.

{ewc msdncd, EWGraphic, groupx830 10 /a "MAPI_42.WMF"}

The following sample code shows how a C service provider can define a simple status object. The first
member is the vtable pointer; the rest of the object is made up of data members.

typedef struct _MYSTATUSOBJECT
{

const STATUS_Vtbl FAR *lpVtbl;

ULONG cRef;
ANOTHEROBJ *pObj;
LPMAPIPROP lpProp;
LPFREEBUFFER lpFreeBuf;

} MYSTATUSOBJECT, *LPMYSTATUSOBJ;

Because this object is a status object, the vtable includes pointers to implementations of each of the
methods in the IMAPIStatus : IMAPIProp interface as well as pointers to implementations of each of
the methods in the base interfaces: IUnknown and IMAPIProp. The order of methods in the vtable
match the specified order as defined in MAPIDEFS.H.

static const MYOBJECT_Vtbl vtblSTATUS =
{

STATUS_QueryInterface,
STATUS_AddRef,
STATUS_Release,
STATUS_GetLastError,
STATUS_SaveChanges,
STATUS_GetProps,
STATUS_GetPropList,
STATUS_OpenProperty,
STATUS_SetProps,
STATUS_DeleteProps,
STATUS_CopyTo,
STATUS_CopyProps,
STATUS_GetNamesFromIDs,
STATUS_GetIDsFromNames,
STATUS_ValidateState,
STATUS_SettingsDialog,
STATUS_ChangePassword,
STATUS_FlushQueues

};

Clients and service providers written in C use objects indirectly through the vtable and add an object
pointer as the first parameter in every call. Every call to a MAPI interface method requires a pointer to
the object being called as its first parameter. C++ defines a special pointer known as the this pointer for
this purpose. The C++ compiler implicitly adds the this pointer as the first parameter to every method
call. Since in C there is no such pointer; it must be explicitly added.

The following code fragment demonstates how a client can make a call to an instance of
MYSTATUSOBJECT:

lpMyObj->lpVtbl->ValidateState(lpMyObj, ulUIParam, ulFlags);

Implementing the IUnknown Interface

The methods of the IUnknown interface, implemented in every MAPI object, support interobject
communication and object management. IUnknown has three methods: QueryInterface, AddRef, and
Release. QueryInterface enables one object to determine if another object supports a particular
interface. With QueryInterface, two objects with no prior knowledge of each other's functionality can
interact. If the object implementing QueryInterface does support the interface in question, it returns a
pointer to the implementation of the interface. If the object does not support the requested interface, it
returns the E_NOINTERFACE value.

When QueryInterface returns a requested interface pointer, it must also increase what is known as the
new object's reference count. An object's reference count is a numeric value used to manage the
object's lifespan. When the reference count is greater than one, the object's memory cannot be freed
because it is actively being used. It is only when the reference count drops to zero that the object can
be released safely.

The other two IUnknown methods, AddRef and Release, manage the reference count. AddRef
increments the reference count while Release decrements it. All methods or API functions that return
interface pointers, such as QueryInterface, must call AddRef to increment the reference count. All
implementations of methods that receive interface pointers must call Release to decrement the count
when the pointer is no longer needed. Release checks for an existing reference count, freeing the
memory associated with the interface only if the count is 0.

Note Because AddRef and Release are not required to return accurate values, callers of these
methods must not use the return values to determine if an object is still valid or has been destroyed.

Implementing IUnknown in C++

Implementing QueryInterface, AddRef, and Release in C++ is fairly simple. After some standard
validation of the parameters passed in, an implementation of QueryInterface checks the identifier of
the requested interface against the list of supported interfaces. If the requested identifier is among
those supported, AddRef is called and the this pointer returned. If the requested identifier is not on the
supported list, the output pointer is set to NULL and the E_NOINTERFACE value is returned.

The following example shows how QueryInterface can be implemented in C++ for a status object, an
object that is a sub-class of the IMAPIStatus : IMAPIProp interface. IMAPIStatus inherits from
IUnknown through IMAPIProp. Therefore, because these interfaces are related through inheritance, if
a caller asks for any of them, the this pointer can be returned.

HRESULT CMyMAPIObject::QueryInterface (REFIID riid,
 LPVOID * ppvObj)
{
 // Always set out parameter to NULL, validating it first
 if (IsBadWritePtr(ppvObj, sizeof(LPVOID)))
 return E_INVALIDARG;

 *ppvObj = NULL;

 if (riid == IID_IUnknown || riid == IID_IMAPIProp ||
 riid == IID_IMAPIStatus)
 {
 // Increment reference count and return pointer
 *ppvObj = (LPVOID)this;
 AddRef();
 return NOERROR;
 }

 return E_NOINTERFACE;
}

Note that this example is a 32-bit implementation; 16-bit implementations must include a call to
ResultFromScode on their return statements to translate the 16-bit status code values to HRESULT
values. For example, the final return statement would be re-coded for 16-bit platforms as:

return ResultFromScode(E_NOINTERFACE);

The following code samples show how to implement the AddRef and Release methods for the
CMyMAPIObject object. Because implementing AddRef and Release is so simple, many service
providers choose to implement them inline. The calls to the Win32 functions InterlockedIncrement
and InterlockedDecrement are to ensure thread safety. The memory for the object is freed by the
destructor which is called when the Release method deletes the object.

ULONG CMyMAPIObject::AddRef()
{
 InterlockedIncrement(m_cRef);
 return m_cRef;
}

ULONG CMyMAPIObject::Release()
{
 // Decrement the object's internal counter
 ULONG ulRefCount = InterlockedDecrement(m_cRef);

 if (0 == m_cRef)
 {
 delete this;
 }

 return ulRefCount;
}

Implementing IUnknown in C

Implementations of QueryInterface in C are very similar to C++ implementations. There are two basic
steps to the implementation:

1. Validating parameters.
2. Checking the identifier of the requested interface against the list of interfaces supported by the

object and returning either the E_NO_INTERFACE value or a valid interface pointer. If an interface
pointer is returned, the implementation should also call the AddRef method to increment the
reference count.

The main difference between an implementation of QueryInterface in C and C++ is the additional first
parameter in the C version. Because the object pointer is added to the parameter list, a C
implementation of QueryInterface must have more parameter validation than a C++ implementation.
The logic for checking the interface identifier, incrementing the reference count, and returning an object
pointer should be identical in both languages.

The following code sample shows how to implement QueryInterface in C for a status object:

STDMETHODIMP STATUS_QueryInterface(LPMYSTATUSOBJ lpMyObj, REFIID lpiid,
 LPVOID FAR * lppvObj)
{

HRESULT hr = hrSuccess;

// Validate object pointer
if (IsBadReadPtr(lpMyObj, sizeof(MYSTATUSOBJECT))

|| lpMyObj->lpVtbl != &vtblSTATUS)
{

hr = ResultFromScode(E_INVALIDARG);
return hr;

}

// Validate other parameters
if (IsBadReadPtr(lpiid, (UINT) sizeof(IID))

|| IsBadWritePtr(lppvObj, sizeof(LPVOID)))
{

hr = ResultFromScode(E_INVALIDARG);
return hr;

}

// Set output pointer to NULL
*lppvObj = NULL;

// Check interface identifier
if (memcmp(lpiid, &IID_IUnknown, sizeof(IID)) &&

memcmp(lpiid, &IID_IMAPIProp, sizeof(IID)) &&
memcmp(lpiid, &IID_IMAPIStatus, sizeof(IID)))

{
hr = ResultFromScode(E_NOINTERFACE);
return hr;

}

// Interface is supported. Increment reference count and return
lpMyObj->lpVtbl->AddRef(lpMyObj);

*lppvObj = lpMyObj;
return hr;

}

Whereas the implementation of AddRef in C is similar to a C++ implementation, a C implementation of
Release can get more elaborate than a C++ version. This is because much of the functionality involved
with freeing an object can be incorporated into the C++ constructor and destructor and C has no such
mechanism. All of this functionality must be included in the Release method. Also, because of the
additional parameter and its explicit vtable, more validation is required.

The following AddRef method call illustrates a typical C implementation for a status object:

STDMETHODIMP_(ULONG) STATUS_AddRef(LPMYSTATUSOBJ lpMyObj)
{

LONG cRef;

// Check to see if it has a lpVtbl object member
if (IsBadReadPtr(lpMyObj,

offsetof(MYSTATUSOBJECT, lpVtbl)+sizeof(STATUS_Vtbl *)))
{

return 1;
}

// Check size of vtable
if (IsBadReadPtr(lpMyObj->lpVtbl,

 offsetof(STATUS_Vtbl, AddRef)+sizeof(STATUS_AddRef *)))
{

return 1;
}

// Check method
if (STATUS_AddRef != lpMyObj->lpVtbl->AddRef)
{

return 1;
}

InterlockedIncrement(lpMyObj->cRef);
cRef = ++lpMyObj->cRef;
InterlockedDecrement (lpMyObj->cRef);

return cRef;
}

A typical implementation of Release for a C status object follows. If after decrementing the reference
count, it becomes zero, a C status object implementation should perform the following tasks:

· Release any held pointers to objects.
· Set the vtable to NULL, facilitating debugging in the case where an object's user has called Release

yet continued to try to use the object.
· Call MAPIFreeBuffer to free the object.

STDMETHODIMP_(ULONG) STATUS_Release(LPMYSTATUSOBJ lpMyObj)
{

LONG cRef;

// Check size of vtable
if (IsBadReadPtr(lpMyObj, sizeof(MYSTATUSOBJ)))
{

return 1;
}

// Check if correct vtable
if (lpMyObj->lpVtbl != &vtblSTATUS)
{

return 1;
}

InterlockedIncrement(lpMyObj->cRef);
cRef = --lpMyObj->cRef;
InterlockedIncrement (lpMyObj->cRef);

if (cRef == 0)
{

lpMyObj->lpVtbl->Release(lpMyObj);
DeleteCriticalSection(&lpMyObj->cs);

// release IMAPIProp pointer
lpMyObj->lpProp->Release(lpMyObj->lpProp);
lpMyObj->lpVtbl = NULL;
lpMyObj->lpFreeBuff(lpMyObj);
return 0;

}

return cRef;

}

 Implementing a Sample Object

Advise sink objects, or objects that support the IMAPIAdviseSink : IUnknown interface, are an
example of simple MAPI objects that are implemented by client applications for processing
notifications. IMAPIAdviseSink inherits directly from IUnknown and contains only one method,
OnNotify. Therefore, to implement an advise sink object, a client creates code for the three methods in
IUnknown and for OnNotify.

The MAPIDEFS.H file defines an IMAPIAdviseSink interface implementation using
DECLARE_MAPI_INTERFACE as follows:

#define INTERFACE IMAPIAdviseSink

DECLARE_MAPI_INTERFACE_(IMAPIAdviseSink, IUnknown)
{
 BEGIN_INTERFACE
 MAPI_IUNKNOWN_METHODS(PURE)
 MAPI_IMAPIADVISESINK_METHODS(PURE)
};

Clients implementing advise sink objects can define their interfaces in their objects manually or with the
MAPI_IUNKNOWN_METHODS and MAPI_IMAPIADVISESINK_METHODS macros. Object
implementors should use the interface macros whenever possible to ensure consistency across objects
and to save time and effort.

Implementing the IUnknown::AddRef and IUnknown::Release methods is relatively simple because
typically only a few lines of code are needed. Therefore, clients and service providers implementing
objects can make their AddRef and Release implementations inline. The following code shows how to
define a C++ advise sink object with inline implementations of AddRef and Release.

class CMAPIAdviseSink : public IMAPIAdviseSink
{
public:
 STDMETHODIMP QueryInterface
 (REFIID riid,
 LPVOID * ppvObj);
 inline STDMETHODIMP_(ULONG) AddRef
 () { InterlockedIncrement(m_cRef);
 ++m_cRef;
 InterlockedDecrement(m_cRef);
 return m_cRef; };
 inline STDMETHODIMP_(ULONG) Release
 () { InterlockedIncrement(m_cRef);
 ULONG ulCount = --m_cRef;
 InterlockedDecrement(m_cRef);
 if (!ulCount) delete this;
 return ulCount;};
 MAPI_IMAPIADVISESINK_METHODS(IMPL);

 BOOL WINAPI AddConnection (LPMDB pMDBObj, ULONG ulConnection);
 void WINAPI RemoveAllLinks (LPMDB pMDBObj);

// Constructors and destructors
public :
 inline CMAPIAdviseSink (CStoreClient * pStore)
 { m_cRef = 1;

 m_ulConnection = 0;
 m_pStore = pStore;
 AddRef;};
 ~CMAPIAdviseSink () {Release};

private :
 ULONG m_cRef;
 CStoreClient * m_pStore;
 ULONG m_ulConnection;
};

In C, the advise sink object is made up of:

· A pointer to a vtable that contains pointers to implementations of each of the methods in IUnknown
and IMAPIAdviseSink.

· Data members.

The following code sample shows how to define an advise sink object in C and construct its vtable.

// Object definition
typedef struct _ADVISESINK
{

const ADVISE_Vtbl FAR * lpVtbl;

ULONG cRef;
STORECLIENT *pStore;
ULONG ulConnection;

} ADVISESINK, *LPADVISESINK;

// vtable definition
static const ADVISE_Vtbl vtblADVISE =
{

ADVISE_QueryInterface,
ADVISE_AddRef,
ADVISE_Release,
ADVISE_OnNotify

};

After an object is declared in C, it must be initialized by setting the vtable pointer to the address of the
constructed vtable as is shown following:

LPADVISESINK lpMyObj = NULL;

HRESULT hr = (*lpAllocateBuffer) (sizeof(ADVISESINK),
 (LPVOID *)&lpMyObj);
lpMyObj->lpVtbl = &vtblADVISE;

 Properties

A property is an attribute of a MAPI object of a particular type. Properties describe something about the
object, such as the subject line of a message or the address type of a distribution list. MAPI defines
many properties that client applications and service providers can use for their objects. Clients and
service providers can extend this set of predefined properties by creating new, custom properties.
Clients can define properties to describe new message classes and service providers can define
properties to expose the unique features of their messaging system.

Properties can be stored persistently with their objects either with the data of the object or in the profile
or exist only for the duration of the current session. There are two mechanisms for displaying
properties to a user: a table and a configuration property sheet. Tables provide users with a read-only
view of property data in row and column format. Each row represents several properties for an object;
each column represents a property. Configuration property sheets allow users to view or change
property data, depending on the service provider.

MAPI limits the use of some of its properties to objects of particular types, states, or classes. The
scope associated with a property can vary from a single object type to global usage. Properties that are
used with many types of MAPI objects include the entry identifier, a reference property used to open
objects, the object type, a constant used to identify the kind of object, and a display name, a character
string that can be used to describe an object to the user. Properties that are more narrow in scope
apply only to one type of object. Examples of single object properties include the message class, a
character string that describes the type of a message object, and the telephone number, method, a
character string used only with individual address book entries.

Properties that are applicable only when an object is in a particular state or belongs to a particular
class are typically message properties. When a message is first created, its set of properties is very
small. As a message progresses through transmission to delivery, its property set enlarges. Some of
these added properties appear only on the message as it is being delivered while others appear only
on the message as it is being sent. Messages also have properties that are associated with the class to
which they belong. Report messages, for example, have a set of unique properties that do not appear
on note messages.

Clients and service providers implement and use properties through the methods of the IMAPIProp
interface. The IMAPIProp interface enables client applications and service providers to manipulate the
properties of a MAPI object. There are methods for copying properties, making changes and saving
those changes, mapping between property names and their identifiers, and retrieving information about
a prior error.

Most properties have three characteristics:

· A value that describes the actual data of the property, such as the characters in the message class
string or the numbers in a telephone number.

· A type that describes the kind of data, such as string or numeric. There is a standard set of property
types that are used by all properties, whether predefined by MAPI or created by clients or service
providers.

· A numeric identifier that uniquely describes the property.

MAPI defines ranges of identifiers for differentiating between properties; the identifier for a message
content property defined by MAPI falls in a different range than the identifier for a message content
properties defined by a client for a custom message class. A special range is used to identify properties
that are described only by name. These properties are eferred to as named properties.

The identifier and type are combined to form a property tag, a constant that can be used to easily refer
to the property. MAPI defines property tag constants for its properties. For custom properties not in the
named property range, property tags must be created by the responsible client or service provider by
following the MAPI specification. The type must be based on one of MAPI's predefined types and the
identifier must be within the appropriate range. Named properties are referenced using methods in the

standard property interface, IMAPIProp.

 About Property Values

A property value is the data for the property. Property values are represented with the SPropValue
data structure. The SPropValue structure is made up of two fields that client applications and service
providers can work with: a property tag and a value. The SPropValue data structure is defined as
follows.

typedef struct _SPropValue
{
 ULONG ulPropTag;
 ULONG dwAlignPad;
 union _PV Value;
} SPropValue, FAR *LPSPropValue;

The ulPropTag member is a 32-bit unsigned integer that contains the property's unique identifier in the
high order 16 bits and the property's type in the low order 16 bits.

The Value member is a union of data structures. The specific data for a property's Value member
depends on the type of property. A character string property, for example, can have data of type LPSTR
or LPWSTR, depending on whether the data is ANSI or Unicode. A boolean property uses an unsigned
short integer for its Value. The Value member for an binary property is an SBinary data structure.

The SPropValue structure includes an alignment member, dwAlignPad, that is designed for
computers that require 8-byte alignment for 8-byte values. Clients and service providers cannot use
this member; it is reserved for MAPI. The alignment member makes it possible for clients and service
providers to allocate an array of property values on an 8-byte boundary and have the array align
correctly. Developers who write code on such computers should use memory allocation routines that
allocate the SPropValue arrays on 8-byte boundaries.

 About Property Types

A property type represents the format of a property value, the underlying data type of a property. MAPI
defines a set of property types in the MAPIDEFS.H header file. All properties, whether they are defined
by MAPI, by client applications, or by service providers, use one of these types. All of the types are
represented by underlying operating system datatypes and some relate to OLE properties.

Property types are represented by constants that follow a similar naming convention to the one used
for property tags. Many property types have both a single value and multivalue version. Single valued
properties contain one value of its type such as a single integer or character string. The constant used
to represent a single value property has two parts: the prefix "PT_" and a string describing the actual
type, such as LONG or STRING8. Multivalued properties contain more than one value of its type. The
constant used to represent multivalued properties is created by combining the MV_FLAG flag with the
corresponding single value constant representing the base type. There are three parts: the prefix "PT_"
followed by "MV_" followed by a string that describes the type. For example, the type for a property
containing an array of character strings is PT_MV_STRING8.

The following illustration shows a property value structure with all of the potential property types. Notice
that not all of the single-valued types have multivalued equivalents.

{ewc msdncd, EWGraphic, groupx831 0 /a "MAPI_11.WMF"}

The following illustration shows the structure of an SPropValue structure to describe a multivalued
property with the base type of PT_LONG. The value is no longer a single variable; it is made up of a
pointer that points to an array of values and a count of the number of values in the array.

{ewc msdncd, EWGraphic, groupx831 1 /a "MAPI_12.WMF"}

Although support for multivalued properties is optional, MAPI recommends that clients and service
providers support both types of properties because doing so enables greater interaction between
MAPI-compliant components.

 Property Type Summary

The following table describes the property types that are supported by MAPI.

Property
type

Multivalued type Underlying data type

PT_APPTIM
E

PT_MV_APPTIM
E

Double. Interpreted as date
and time. Same as OLE
type VT_DATE and
compatible with the Visual
Basic time representation.

PT_BINARY PT_MV_BINARY SBinary. Counted byte
array.

PT_BOOLEA
N

PT_MV_12 16-bit Boolean; 0 = False,
non-zero = True. Same as
OLE type VT_BOOL.

PT_CLSID PT_MV_CLSID CLSID structure. Class
identifier. VT_CLSID.

PT_CURREN
CY

PT_MV_CURREN
CY

64-bit integer intepreted as
decimal. Compatible with
Visual Basic CURRENCY
type. Same as OLE type
VT_CY.

PT_DOUBLE PT_MV_DOUBLE Double; 64-bit floating point,
PT_R4. Same as OLE
type VT_R8.

PT_ERROR (None) SCODE; 32-bit unsigned
integer. Same as OLE type
VT_ERROR.

PT_FLOAT PT_MV_FLOAT 32-bit floating point, PT_R4.
Same as OLE type VT_R4.

PT_I2 PT_MV_I2 Signed 16-bit integer,
PT_SHORT. Same as OLE
type VT_I2.

PT_I4 PT_MV_I4 Signed or unsigned 32-bit
integer. Same as OLE type
VT_I4. Same as PT_LONG.

PT_I8 PT_MV_I8 Signed or unsigned 64-bit
integer. Same as OLE type
VT_I8. Uses the structure
LARGE_INTEGER.

PT_LONG PT_MV_LONG Signed or unsigned 32-bit
integer, PT_I4. Same as
OLE type VT_I4.

PT_LONGLO
NG

PT_MV_LONGLO
NG

Signed or unsigned 64-bit
integer, PT_I8. Same as
OLE type VT_I8.

PT_NULL (None) Indicates no property value.
Same as OLE type
VT_NULL. Reserved for
interface use.

PT_OBJECT (None) A pointer to an object that
implements IUnknown.
Similar to several OLE
types, including
VT_UNKNOWN.

PT_R4 PT_MV_R4 4-byte floating-point data.
Same as OLE type VT_R4.

PT_R8 PT_MV_R8 8-byte floating-point data.
Same as OLE type
VT_DOUBLE.

PT_SHORT PT_MV_SHORT Signed 16-bit integer,
PT_SHORT. Same as OLE
type VT_I2.

PT_STRING8 PT_MV_STRING8 Null-terminated 8-bit
character string data. Same
as OLE type VT_LPSTR.

PT_SYSTIM
E

PT_MV_SYSTIM
E

64-bit integer date/time
value in the form of a
FILETIME structure. Same
as OLE type VT_FILETIME.

PT_TSTRIN
G

PT_MV_TSTRIN
G

Set to PT_UNICODE when
compiling with the
UNICODE symbol; else
PT_STRING8. Either the
OLE type VT_LPSTR or
VT_LPWSTR.

PT_UNICOD
E

PT_MV_UNICOD
E

Null-terminated wide string
data. Same as OLE type
VT_LPWSTR.

PT_UNSPEC
IFIED

(Not supported) Indicates that the client
application does not supply
the property type. Reserved
for interface use.

 About the Boolean Property Type

Some of the property types have special meaning and use. Boolean properties can have two states,
set or unset, and two values in its set state: TRUE or FALSE. Your client or service provider may need
to differentiate in its handling of boolean properties when properties are not available, when they are
available and set to TRUE, or when they are available and set to FALSE. Specifically, either the same
course of action or separate courses of actions may be appropriate when a property is set to FALSE
and when it does not exist.

For example, consider a transport provider's handling of the message property
PR_SEND_RICH_INFO:

· When PR_SEND_RICH_INFO is set to TRUE, the transport provider transmits the full context of the
message.

· When PR_SEND_RICH_INFO is set to FALSE, the transport provider discards unnecessary
message content.

· When PR_SEND_RICH_INFO does not exist, the transport provider follows its default course of
action, whatever that is.

 About the PT_UNSPECIFIED Property Type

MAPI defines a special property type, PT_UNSPECIFIED, that your client or service provider can use
to retrieve a property when the property type is not known.To retrieve a property without advance
knowledge of its type, a client or service provider calls IMAPIProp::GetProps and passes a property
tag made up of the property's identifier and the PT_UNSPECIFIED property type. GetProps returns an
SPropValue structure for the property, replacing PT_UNSPECIFIED with the appropriate type. Service
providers implementing GetProps are required to support PT_UNSPECIFIED.

 About the Object Property Type

Some MAPI objects support properties that are themselves objects. For example, folders and address
book containers support two table object properties:

PR_CONTAINER_HIERARCHY
PR_CONTAINER_CONTENTS

PR_CONTAINER_HIERARCHY provides a summary view of a folder or address book container's
hierarchy and PR_CONTAINER_CONTENTS provides a summary view of objects within a folder or
address book container. Your client or service provider can access table object properties in one of two
ways:

· A call to the IMAPIProp::OpenProperty method, specifying the appropriate interface for access.
· A call to a method on the object supporting the property.

For example, to access PR_CONTAINER_HIERARCHY with the OpenProperty method, your client or
service provider would specify IID_IMAPITable as the interface identifier because
PR_CONTAINER_HIERARCHY is a table object. To access it using the second approach, your client
or service provider would call the folder or address book container's
IMAPIContainer::GetHierarchyTable method.

 About the String Property Type

String properties are described with another special property type, PT_TSTRING. The PT_TSTRING
property type compiles conditionally to one of the following two other string property types that describe
null-terminated strings, depending on the operating system's character set:

· PT_STRING8 for 8-bit ANSI character strings
· PT_UNICODE for double-byte character strings

Either or a client or a service provider or both client and provider can opt to support Unicode character
strings. It is not required. A client that supports only PT_STRING8 strings can operate with a provider
that supports Unicode and vice versa. To allow this interoperability, clients and service providers pass a
flag, the MAPI_UNICODE flag, to indicate that Unicode is supported in methods that involve the
exchange of character strings.

For example, suppose your client supports Unicode and needs to retrieve the display name of a folder.
All of its PT_TSTRING properties are compiled to type PT_UNICODE. When your client calls the
folder's IMAPIProp::GetProps method to retrieve its PR_DISPLAY_NAME property, it passes the
MAPI_UNICODE flag. Specifying MAPI_UNICODE informs the message store provider that your client
expects a Unicode display name to be returned.

Clients and service providers need to be aware that specifying MAPI_UNICODE in a method call is
only a request because the implementor of the method might not support Unicode. Supporting Unicode
is optional. However, service providers are encouraged to support both environments because it allows
them to achieve more widespread distribution than providers that support only one environment.

String properties can grow to be quite large as can binary properties, properties that use the property
type PT_BINARY. To facilitate the management of large string and binary properties that are read using
IMAPIProp::GetProps and set using IMAPIProp::SetProps, MAPI enables service providers to
enforce size limits. These limits can vary, depending on the following considerations:

· Whether the properties are being read or written.
· The service provider implementing the IMAPIProp methods.
· Runtime considerations such as memory constraints.
· Character set translation issues.

Size limits can also be placed on string and binary properties when they are used in the column set of
a table because it is sometimes impossible to make all of a large property's value visible. Many service
providers truncate large string or binary properties that are used in tables to 255 bytes.

When a client calls GetProps or SetProps to work with a large string or binary property and exceeds
the limits of the particular service provider, the provider returns the error value
MAPI_E_NOT_ENOUGH_MEMORY. If it is GetProps that is failing for a specific property, the client
can recover by calling IMAPIProp::OpenProperty, specifying IID_IStream as the interface identifier.
With OpenProperty, the client can retrieve a large property using an interface, such as IStream, that is
better suited for working with large properties.

 About Property Identifiers

A property identifier is a number that is used to indicate what a property is used for and who is
responsible for it. Property identifiers are divided by MAPI into ranges; where an identifier falls in the
range indicates its use and ownership.

The range of property identifiers runs from 0001 through FFFF. Property identifiers 0000 and FFFF are
reserved in all cases, meaning that these identifiers must remain unused. The range for MAPI's sole
use runs from 0001 to 3FFF. The range 4000 to 7FFF belongs to message and recipient properties,
and either clients or service providers can define properties in this range. Beyond 8000 is the range for
what is known as named properties, or properties that have a name associated with their identifier.
Clients use named properties to customize their property set.

Service providers can use the range 0x67F0 thru 0x67FF to define secure profile properties. Secure
profile properties are used for information that requires additional protection, such as passwords.
These properties can be hidden and encrypted. Whether or not secure properties are included in the
default list of properties returned by the IMAPIProp::GetPropList method depends on the provider's
implementation. Usually these properties are not included. The IProfSect interface is used for
accessing secure profile properties.

Some properties are defined as being either transmittable or non-transmittable. Transmittable
properties are transferred with a message; non-transmittable properties are not transferred with a
message. Non-transmittable properties usually contain information that is of value only to the client and
service providers operating with the current session. These properties would not necessarily be useful
to another messaging system and another set of service providers. The concept of transmittable
properties applies primarily to transport providers. To determine whether a property tag is transmittable
or not, use the FIsTransmittable macro (see the MAPITAGS.H header file).

The following table summarizes the different ranges for property identifiers, describing the owner for
the properties in each range.

Range Owner Type of property
0000 MAPI Reserved for the special value

PR_NULL
0001 -
0BFF

MAPI Message envelope properties

0C00 -
0DFF

MAPI Recipient properties

0E00 -
0FFF

MAPI Non-transmittable message
properties

1000 -
2FFF

MAPI Message content properties

3000 -
3FFF

MAPI Properties for objects other than
messages and recipients

4000 -
57FF

Transport
providers

Message envelope properties

5800 -
5FFF

Transport and
address book
providers

Recipient properties

6000 -
65FF

Clients Non-transmittable message
properties

6600 -
67FF

Any service
provider

Various properties; visible or
invisible to users at provider's
option

6800 -
7BFF

Creators of
custom message
classes

Properties for custom message
classes

7C00 -
7FFF

Creators of
custom message
classes

Non-transmittable properties for
custom message classes

8000 -
FFFE

Clients and
occasionally
service providers

Properties identified only by
name, through the methods in
IMAPIProp for mapping property
names to identifiers

FFFF MAPI Reserved for the special error
value PROP_ID_INVALID

The range between 3000 and 3FFF is reserved for properties that are not related to either messages or
recipients. MAPI divides this range into sub-ranges by types of object; the following table shows this
further breakdown.

Identifier range Type of property
3000 - 33FF Common properties that appear on multiple

objects, such as display name and entry
identifier

3400 - 35FF Message store properties
3600 - 36FF Container (folder and address book

container) properties
3700 - 38FF Attachment properties
3900 - 39FF Address book properties
3A00 - 3BFF Messaging user properties
3C00 - 3CFF Distribution list properties
3D00 - 3DFF Profile properties
3E00 - 3FFF Status object properties

 About Property Tags

A property tag is a 32-bit number that contains a unique property identifier in bits 16 through 31 and a
property type in bits 0 through 15 as shown below:

{ewc msdncd, EWGraphic, groupx831 2 /a "MAPI_10.WMF"}

MAPI defines a set of property tags for use by clients and service providers. If necessary, new property
tags can be created if the predefined ones are insufficient. The MAPI property tags are represented by
constants stored in the MAPITAGS.H header file. These constants follow a naming convention for
consistency and ease of use. All property tags begin with the prefix PR_.

A few macros are available to help manipulate the property tag data structure, among them
PROP_TYPE, PROP_ID, and PROP_TAG. PROP_TYPE extracts the property type from the property
tag; PROP_ID extracts the identifier. PROP_TAG builds the property tag from a property type and
identifier.

 About Required and Optional Properties

Every object has a set of required properties and a set of optional properties. Depending on the object,
the service provider supplying the implementation, and the property, a client can have read/write or
read-only access to a property in either set. A required read/write property is a property that must exist
on an object before it can be successfully saved with the IMAPIProp::SaveChanges method. A
required read-only property is a property that always exists on an object and is therefore always
available by calling either IMAPIProp::GetProps or IMAPIProp::OpenProperty. Read-only properties
are typically computed by the service provider supplying the object implementation.

Optional properties cannot be expected to be available or set to valid values. When a client or service
provider calls GetProps, asking for an unavailable property, it succeeds with the warning
MAPI_W_ERRORS_RETURNED. OpenProperty, however, fails with the error
MAPI_E_NOT_FOUND. Clients and service providers must check that a requested property is returned
before attempting to use it.

When an optional property is included as one of the columns in a table, some of the rows might have
valid values for the column while others might not. Whether or not a valid value exists for a column
depends on whether or not the object providing the information for the row sets the property.
Depending on the implementation of the object, a non-existent property can be represented in the table
as PR_NULL or an arbitrary value. Users of tables must be careful to differentiate between properties
that are nonexistent and have meaningless values and properties that do exist and have valid values.

To find out exactly which properties are currently set for an object, clients and service providers can call
IMAPIProp::GetPropList. GetPropList lets a caller find out what is available before an attempt to
open a potentially nonexistent property is made. Because there is no standard set of properties that all
objects of a specific type support, it is impossible to guess whether or not an object supports a
particular property. Calling GetPropList eliminates the guess work.

 About Property Errors

The methods of IMAPIProp can report partial success in one of two ways. GetProps returns the error
MAPI_W_ERRORS_RETURNED and places individual error information with property data in the
property value array that is passed back as output. The error information is made up of a PT_ERROR
property type and an SCODE indicating the reason for the error. For example, if a client requests three
properties and the third is unavailable, the service provider places PT_ERROR in the third property
type in the property value array and MAPI_E_NOT_FOUND in the third property value.

SetProps, DeleteProps, CopyTo, and CopyProps do not return MAPI_W_ERRORS_RETURNED
and do not place information in a property value array. Instead, these methods return S_OK for partial
success and place error information in an SPropProblemArray data structure. Unlike the property
value array in GetProps that contains data regardless of whether the method succeeded or failed, the
problem problem array in these methods exists only if there are errors and only if the caller has
registered interest in learning about the errors. Callers must specify a valid SPropProblemArray
pointer to register for error information.

The SPropProblemArray structure contains an array of SPropProblem structures. The
SPropProblem structure is defined as follows:

typedef struct _SPropProblem
{
 ULONG ulIndex; // which tag has the problem
 ULONG ulPropTag; // tag with a problem
 SCODE scode; // type of problem
} SPropProblem, FAR *LPSPropProblem;

When an error code is returned fom SetProps, DeleteProps, CopyTo, or CopyProps, this indicates
failure rather than partial success. The property problem array, if available, is not valid. Clients should
not try to access data held in the structure nor should they try to free the structure itself. The
appropriate response is to call IMAPIProp::GetLastError.

GetLastError is similar to the function of the same name provided in the Win32 SDK. Both provide
more detailed information about an error than is available with the return value. They both return
information about the previous error that has occurred. The difference is that the Win32 GetLastError
function reports on an error generated by the calling thread and the IMAPIProp::GetLastError method
reports on an error generated by the current object. That is, if a client calls DeleteProps on a message
and MAPI_E_NO_ACCESS is returned to indicate that the message is read-only, GetLastError returns
data provided by the message.

 About Defining New Properties

In spite of the wealth of properties supplied by MAPI for use by clients and service providers, MAPI
enables new properties to be created if necessary. Some of the valid scenarios for defining new public
properties include a client creating properties to support a new message class and a service provider
creating new properties to expose unique messaging system features. It is typically not valid for a
service provider to define new properties for an existing MAPI object or message class. One of the
primary benefits of using MAPI is that standard identifiers and formats for a large number of messaging
system elements are set up, enabling users to seamlessly mix and match service providers. Service
providers that use nonstandard properties do not work as well with other service providers.

Clients can create content properties for new message classes in one of two ways:

· Using property identifiers within a designated range for message class-specific content properties.
· Using named properties.

Property identifiers must fall in predefined ranges. Assigning an identifier to a property in the
appropriate range helps prevent collisions between properties defined by different vendors or users.
MAPI defines two separate ranges for clients to use for new message class-specific content properties.
The 0x6800 to 0x7BFF range is for transmittable properties and the 7C00 to 7FFF range is for
nontransmittable properties. Users of properties in these ranges cannot make assumptions as to the
behavior of the properties. Every client that creates a new message class has access to these ranges;
a property with identifier xxxx can mean one behavior for one message class and another behavior for
another message class. Creating public properties in the 0x6800 to 7FFF range is preferable to using
named properties for custom message classes because not all service providers support named
properties.

Named properties are used to guarantee a specific property is unique to a message class. Named
property identifiers start in the 0x8000 range. Clients define one or more names and then call an
object's IMAPIProp::GetIDsFromNames method to associate an identifier with each name. Named
properties can be used by clients or service providers to define new properties for any object if the
owner of the object supports named properties. Users of these properties call GetIDsFromNames and
a related IMAPIProp method, GetNamesFromIDs, to map between a name and its identifier.

All properties, new or existing, must use the set of predefined property types. New property types
cannot be added and existing types cannot be modified or deleted. Simple, small properties, such as
single-character or 16-bit integer properties, can be stored in any appropriate type. For example,
integers can be stored as ULONG and strings can be stored as PT_STRING8.

Use the PT_BINARY type to indicate a counted byte array. This property type is useful for extending
the types of data that can be stored in an object. Bytes are transmitted in sequence and no
assumptions are made about the meaning of the data. When a client application reads data out of such
a property, the data is unchanged from how it was stored. The client must perform any necessary byte-
swapping when moving data across CPUs.

 About Object and Property Access

Access level, or the set of permissable operations, can be a characteristic of MAPI objects and of
individual properties on those objects. Object access is determined by the container that holds the
object, such as the folder that holds the message or the address book container that holds the
distribution list. Therefore, two copies of the same object can have different access levels.

Object users can request the highest level of access for an object by setting the
MAPI_BEST_ACCESS flag on the OpenEntry call. To determine the level of access actually assigned,
object users can examine the PR_ACCESS property.

Container level access can be determined with the PR_ACCESS_LEVEL property. By retrieving
PR_ACCESS_LEVEL, a caller can find out if the container is a read-only container or if it allows
objects within it to be created, modified, or deleted. Container level access affects clients in terms of
how they display their user interface. It also impacts the implementors of objects within containers, in
terms of their user interface display and their general implementation.

Property access is determined by the property schema set up by MAPI for the object that owns the
property. Property schemas specify the set of required and optional properties for an object and their
access levels. A property's access level is global; an object's container has no bearing on whether its
properties are read-only or read/write.

An object's read-only properties will always be available with a GetProps or OpenProperty call, but
when SetProps is called to change their value or DeleteProps is called to delete them, the method
either fails, returning MAPI_E_NO_ACCESS, or succeeds with no action taken. Whether or not these
calls fail is up to the service provider implementing the object.

Property and object access can also be retrieved or set using one of the interfaces that inherits from
IMAPIProp, IPropData. MAPI provides an implementation of IPropData that is based on data in
memory. Service providers can use IPropData to implement IMAPIProp in certain circumstances, such
as for the status object or if your provider is using a database that does not have built-in transactions.
IPropData works exclusively in memory, making it unnecessary to lock and unlock data.

The IPropData interface provides the ability to retrieve and change the access for an object's
properties. Service providers access a property data object by calling the MAPI API function,
CreateIProp. There are four IPropData methods: HrSetObjAccess, HrAddObjProps,
HrSetPropAccess, and HrGetPropAccess.

HrSetObjAccess establishes the access mode for an object. By default, objects have read/write
access, enabling the addition, deletion, and modification of properties. To create an object with
properties that will be read-only to clients, service providers can start out with a read/write object, add
the necessary properties, and then call HrSetObjAccess to change the object's access to read-only.

HrAddObjProps adds object properties to an object's property set. That is, it adds properties of type
PT_OBJECT, such as PR_CONTAINER_CONTENTS, to a MAPI object, such as a folder. Callers can
specify a pointer to a property problem array for MAPI to use to report errors. If S_OK is returned and a
valid SPropProblemArray pointer was specified, callers need to check for possible errors. Typically,
the only problem that occurs is lack of memory. To add an object property, the target object must have
read/write access. Any attempt to add an object type property to an object with read-only access will
result in MAPI_E_NO_ACCESS being returned.

HrSetPropAccess is used to set individual properties to read-only or read/write access and to set the
state of a property to clean or dirty. This is useful for determining when a particular property value
changes. The bits in the rgulAccess parameter to this method are positional with respect to the
lpPropTagArray parameter. This means that each entry in the flag array corresponds to an entry in the
property tag array.

HrGetPropAccess is used to retrieve access rights for properties and for determining whether a
property has been modified or deleted. A property tag array with entries for all of an object's properties

is returned. If a property that once existed on the object has been deleted, its property tag entry will
contain zero. If a property was modified, its access level will be IPROP_DIRTY rather than a value that
indicates read-only or read/write access. If a property was neither modified nor deleted, its access level
will read IPROP_READONLY or IPROP_READWRITE.

 About Opening Properties

The IMAPIProp methods GetProps and OpenProperty and the API function HrGetOneProp are used
to open one or more properties. Opening a property is synonymous to retrieving its value, its type, and
identifier, the data in an SPropValue structure. GetProps is used to retrieve one or more properties
that can be manipulated with IMAPIProp alone. This implies that the properties available with
GetProps are small, such as integers and boolean values. OpenProperty is used to open larger
properties that require another interface such as IStream or IMAPITable for access. OpenProperty is
typically used to open large character string, binary, and object properties and can only open one
property at a time. Callers pass in the identifier of the additional interface that is required as one of the
input parameters.

HrGetOneProp also opens one property at a time. Callers that need several properties can either call
HrGetOneProp or OpenProperty in a loop or make one call to GetProps. Calling GetProps once is
more efficient. In fact, HrGetOneProp should only be used when the target object exists on the local
machine. When the target object is not locally available, using HrGetOneProp can result in multiple
remote procedure calls and lessened performance.

To open one or more properties with GetProps, a caller specifies the property tags for the properties to
be opened, a flag that indicates Unicode support, the address for a property value array to hold the
returned property values, and a count of the number of entries in the array. A caller can specify one or
more specific property tags, NULL for the property tag array pointer, or the tag PR_NULL in one of the
members of the array. A NULL property tag array pointer indicates that GetProps should return all of
the property values supported by the object. The PR_NULL property tag is used to reserve a slot in the
returned property value array for a property to be added after the GetProps call.

Setting the MAPI_UNICODE flag indicates that all character strings passed into the GetProps call are
Unicode strings and that all character strings passed out of the call should be in Unicode format.

The count of the number of entries in the property value array is always the same as the number of
tags passed in. This value is most useful when a caller asks for all properties on an object without
knowing how many properties the object supports.

To open a property with GetProps
1. Allocate a property tag data structure to hold the number of properties to be opened.
2. Set each member in the property tag array to the identifier and type of one property to be opened. If

the appropriate type is unavailable, set it to PT_UNSPECIFIED.
· If neither the type or the identifier for a particular property is available, call

IMAPIProp::GetPropList to access a property tag array of all of the properties supported by the
object.

· If the property is a named property and only the name is available, call
IMAPIProp::GetIDsFromNames to access the associated identifier.

3. Set a numeric variable to the number of entries in the property tag array.
4. Call IMAPIProp::GetProps to open the property or properties.

If you cannot allocate memory, return MAPI_E_NOT_ENOUGH_MEMORY. If you cannot allocate for a
specific property, return success and fail just the one property.

GetProps can return one of the following values:

S_OK
MAPI_W_ERRORS_RETURNED
MAPI_E_NOT_ENOUGH_MEMORY

S_OK indicates a successful retrieval of every property requested while
MAPI_W_ERRORS_RETURNED indicates that there was a problem with one or more of the
properties. Possibly memory could not be allocated or the property is unsupported. The property value

array that GetProps returns has one entry for every requested property, regardless of whether or not it
succeeded in retrieving the property. For failed properties, GetProps sets the property type to
PT_ERROR and the property value to an status code that describes the error. For example, when
memory cannot be allocated, its value in the returned array is MAPI_E_NOT_ENOUGH_MEMORY and
when a property is not supported, its value is MAPI_E_NOT_FOUND. GetProps fails completely with
the value MAPI_E_NOT_ENOUGH_MEMORY when it cannot allocate even partial memory.

Some of the common uses of OpenProperty include opening PR_BODY, the property that holds the
body of a text-based message, PR_ATTACH_DATA_OBJ, the property that holds an OLE object or
message attachment, and PR_CONTAINER_CONTENTS, the property that holds a message store or
address book contents table. Depending on the property, a different interface is requested from
OpenProperty. IStream, an interface that allows property data to be read and written as a stream of
bytes, is typically used to access PR_BODY. Either IMessage or IStreamTnef can be used to access
PR_ATTACH_DATA_OBJ. Embedded message attachments that are standard messages use
IMessage whereas messages in the TNEF format use IStreamTnef. Because
PR_CONTAINER_CONTENTS is a table object, it is accessed with IMAPITable.

The following code sample shows how a client creates a file attachment, storing the data in the
message's PR_ATTACH_DATA_BIN property. The client begins by opening a stream for the file using
the MAPI utility function OpenStreamOnFile and then calls OpenProperty to open a stream for the
attachment property. The data in the file is copied directly from the file stream into the attachment
stream using IStream::CopyTo after a call to IStream::Stat to determine the size of the file stream.
Another way to determine stream size is to call IStream::Seek with the flag STREAM_SEEK_END.
When the copy operation is finished, both streams are released.

LPSTREAM pStreamFile, pStreamAtt;
HRESULT hr;

hr = OpenStreamOnFile (MAPIAllocateBuffer, MAPIFreeBuffer,
 STGM_READ, "myfile.doc", NULL, &pStreamFile);
if (HR_SUCCEEDED(hr))
{
 // Open the destination stream in the attachment object
 hr = pAttach->OpenProperty (PR_ATTACH_DATA_BIN,
 &IID_IStream,
 0,
 MAPI_MODIFY | MAPI_CREATE,
 (LPUNKNOWN *)&pStreamAtt);
 if (HR_SUCCEEDED(hr))
 {
 STATSTG StatInfo;
 pStreamFile->Stat (&StatInfo, STATFLAG_NONAME);
 hResult = pStreamFile->CopyTo (pStreamAtt, StatInfo.cbSize,
 NULL, NULL);
 pStreamAtt->Release();
 }
 pStreamFile->Release();
}

When IStream is used for property access, some service providers automatically send the size of the
property back with the stream. Calling OpenProperty with the MAPI_DEFERRED_ERRORS flag can
delay the opening of the property and the return of the stream size. If IStream::Stat is called to retrieve
this size after OpenProperty with the MAPI_DEFERRED_ERRORS flag set, performance will be
impacted because this sequence of calls forces an extra remote procedure call. To avoid the
performance hit, clients can call any MAPI method between the calls to OpenProperty and to Stat.

Note Secure properties are not automatically available with other properties in a GetProps,
HrGetOneProp, or GetPropList call. Secure properties must be explicitly requested by property
identifiers.

 About Setting Properties

To set property values, call IMAPIProp::SetProps or the API function HrSetOneProp. SetProps can
be used to set one or more properties in an object whereas HrSetOneProp sets only one property at a
time. Use HrSetOneProp only if the target object is local; this function can be expensive when used
with remote objects.

The parameters for SetProps are similar to the parameters for GetProps with the caller supplying a
property value array containing the new property values. Implementors of SetProps can enable callers
to change not only the property value but also the property type. New property tags can be formed from
an existing identifier and the new property type that is passed in. For example, address book providers
can support changing the home telephone number property from PT_UNICODE to PT_MV_UNICODE
when the user adds a second home telephone number.

 About Copying Properties

There are two IMAPIProp methods for copying properties between objects. The CopyTo method
copies or moves all of the properties of one object to another object; the CopyProps method copies or
moves a selected set. Client applications primarily use CopyTo for moving and copying objects, such
as moving a message from the Inbox to another folder. Typically it is appropriate for all of the
message's properties, with the exception of status, to be moved with the message. CopyProps is used
mainly for replying to and forwarding messages, where only some of the set of properties from the
original message travel with the reply or forwarded copy.

The CopyTo and CopyProps methods have very similar parameter lists. Both methods include
parameters for requesting a progress dialog box and a problem report and for specifying the
destination object and an interface for access. Also, there is a set of flags for controlling the procedure.
CopyTo has three additional parameters for excluding specific interfaces or properties from the
operation.

Because the copy operation can be lengthy, service providers implementing CopyTo and CopyProps
are encourage to support the display of a progress dialog box. Callers requesting the progress display
can implement the IMAPIProgress interface and pass a pointer to that implementation to the copy
method or ask to use an implementation provided by MAPI. To request the MAPI implementation,
callers pass NULL for the IMAPIProgress pointer. All callers set the MAPI_DIALOG flag regardless of
which progress implementation is to be used.

CopyTo and CopyProps can report global and individual errors, or errors that occur with one or more
properties. These individual errors are placed in an SPropProblemArray structure. Callers can
suppress error reporting at the property level by passing NULL for the property problem array structure
parameter rather than a valid pointer.

By default, CopyTo copies all of an object's properties from the object to a destination object whereas
CopyProps only copies a set of specified properties. Both methods have a property tag array
parameter for holding all of the identifiers of the properties to be excluded, in the CopyTo case, or
included, in the CopyProps case. CopyTo also enables callers to exclude interfaces from the copy
operation. Callers to CopyTo can set one of these parameters, both of them, or neither. Callers to
CopyProps, on the other hand, are required to specify at least one property in the property tag array.

Excluding properties on a CopyTo call can be useful. For example, some objects have properties that
are specific to a single instance of the object, such as the date and time of message delivery. To avoid
copying a message's delivery time when copying the message to a different folder, callers specify
PR_MESSAGE_DELIVERY_TIME in the property tag exclude array to CopyTo.

The usefulness of the CopyTo feature for excluding interfaces is perhaps not as obvious as the
usefulness of excluding properties. Callers can exclude an interface when they are copying to an object
that has no knowledge of a whole set of properties. For example, if a client copies properties from a
folder to an attachment, the only properties that the attachment will be able to work with are the generic
properties accessible with any IMAPIProp implementation. By excluding IMAPIFolder from the copy
operation, the attachment will not receive any of the more specific folder properties.

Note Callers that specify a base interface to be excluded cause the interfaces inherited from it to be
excluded also. Therefore, do not ever exclude the IUnknown interface in the CopyTo call. Because
IUnknown is at the top of the inheritance, excluding it will cause nothing to be copied.

The set of flags on the copy methods include:

MAPI_NO_REPLACE
MAPI_MOVE
MAPI_DIALOG
MAPI_DECLINE_OK

Callers specify MAPI_NO_REPLACE to disable the copy if the property already exists on the
destination object and MAPI_MOVE to make the operation a move operation rather than a copy.
MAPI_DIALOG is set to request a progress dialog box. MAPI_DECLINE_OK is a flag that is set by
MAPI in its calls to message store provider CopyTo or CopyProps implementations. Clients should
not use this flag. MAPI_DECLINE_OK indicates to a message store provider intending to call the
support method DoCopyTo or DoCopyProps for its CopyTo or CopyProps implementation, that it
should return MAPI_E_DECLINE_COPY instead.

Callers copying properties that are unique to the source object type must be sure that the destination
object is of the same type. MAPI does not prevent clients and service providers from associating
properties that typically belong to one type of object with another type of object. It is up to the caller to
copy properties that make sense for the destination object and to the implementor of the destination
object to potentially deal with foreign properties that it cannot access. To check that the source and
destination object are the same type of object, a caller can either compare pointers to the two objects
or call IUnknown::QueryInterface.

MAPI provides three API functions for copying properties in memory rather than from one object to
another object. These functions are presently supported, but might not be supported in a future
release. PropCopyMore copies a single property value from one location to another. PropCopyMore
must be used with caution because it is possible, when copying one value at a time, to allocate many
small blocks of memory and cause memory to fragment. Consider using the function ScCopyProps, if
possible, to copy property values in bulk. ScCopyProps can copy property values that have been built
from disjointed blocks of memory. It returns a new property array. If this array should be stored on disk,
the ScRelocProps function can be used to adjust the pointers. ScRelocProps should be called twice;
once to adjust the addresses before writing the data operation and then again during the read
operation. The ScRelocProps function assumes that the property value array was originally allocated
in a single allocation.

 About Saving Property Changes

Many objects support a transaction model of processing whereby changes to the object are not made
permanent until they are committed in a separate call at a later time. The IMAPIProp::SetProps
method is used to change the value of a property and the IMAPIProp::DeleteProps method is used to
delete a property. However, neither of these calls make permanent changes to the object; clients or
service providers must call the IMAPIProp::SaveChanges method to perform the commit. With a
transaction model in place, a property that has been set might not be available until after the call to
save changes has successfully completed.

When a client application receives the error value MAPI_E_OBJECT_CHANGED from a
SaveChanges call, this is a warning that another client has already called SaveChanges on the
object. It is possible for multiple clients to open an object with read/write access at the same time. That
is, multiple OpenEntry calls on the same object with the MAPI_MODIFY flag set can succeed,
depending on the provider. The object that is returned from such an OpenEntry call is a snapshot of
the storage data. Each subsequent attempt to change this data can overwrite the previous attempt.

Upon receiving MAPI_E_OBJECT_CHANGED from SaveChanges, a client can either make a copy of
the object to hold the changes or make another call to SaveChanges, specifying FORCE_SAVE.
Calling SaveChanges with the FORCE_SAVE flag overwrites the previous save and makes a client's
changes permanent.

 About Named Properties

MAPI provides a facility for assigning names to properties, for mapping these names to unique
identifiers, and for making this mapping persistent. Persistent name to identifier mapping insures that
property names remain valid across sessions.

Clients and service providers can define named properties for any object if the implementor of the
object supports named properties. To define a named property, a client or service provider makes up a
name and stores it in a MAPINAMEID data structure. Because names are made up of a 32-bit globally
unique identifier, or GUID, and either a Unicode character string or numeric value, creators of named
properties can create meaningful names without fear of duplication. Because names are unique, they
can be used without regard to the value of their identifiers.

To support named properties, a service provider implements two IMAPIProp methods,
GetIDsFromNames and GetNamesFromIDs, to translate between names and identifiers and allows
its IMAPIProp::GetProps and IMAPIProp::SetProps methods to retrieve and modify properties with
identifiers in the named property range. The range for named property identifiers is between 0x8000
and 0xFFFE.

Creating names for properties is one way for clients to define new properties for existing or custom
message classes. Service providers can use named properties to expose unique features of their
messaging systems. Yet another use for named properties is to provide an alternate way of referring to
properties with identifiers below 0x8000.

 About Support for Named Properties

Any object that implements the IMAPIProp interface can support named properties. Support for named
properties is required for:

· Address book providers that allow entries from other providers to be copied into their containers.
· Message store providers that can be used to create arbitrary message types.

Named property support is optional for all other service providers. Service providers that do support
named properties implement name-to-identifier mapping in two IMAPIProp methods,
GetNamesFromIDs and GetIDsFromNames. Clients call GetNamesFromIDs to retrieve the
corresponding names for one or more property identifiers in the over 0x8000 range and
GetIDsFromNames to either create or retrieve the identifiers for one or more names.

Service providers that do not support named properties must:

· Fail calls to IMAPIProp::SetProps to set properties with identifiers of 0x8000 or greater by returning
MAPI_E_UNEXPECTED_ID in the SPropProblem array.

· Return MAPI_E_NO_SUPPORT from the GetNamesFromIDs and GetIDsFromNames methods.

 About Property Names and Property Sets

The name of every named property has two parts:

· A globally unique identifier, or GUID, that specifies a property set.
· A Unicode character string or 32-bit numeric value.

Names of named properties are described using a MAPINAMEID structure. This structure contains a
property set member, a member for specifying the name in either numeric or string format, and a
member for identifying which format is used. Because the property set is part of the property's name, it
is not optional. MAPI has defined several property sets for use by clients and service providers, but if
an existing property set is inappropriate, a new property set can be defined. Clients and service
providers can define their own property sets by calling UUIDGEN.EXE or the CoCreateGUID function
to retrieve a unique property set identifier. CoCreateGUID is in the 32-bit DLL, OLE32.DLL, and the 16-
bit DLL, COMPOBJ.DLL.Typically these property sets are created for custom client applications.

MAPI's property sets are represented by the following constants:

PS_MAPI
PS_PUBLIC_STRINGS
PS_ROUTING_EMAIL_ADDRESSES
PS_ROUTING_ADDRTYPE
PS_ROUTING_SEARCH_KEY
PS_ROUTING_DISPLAY_NAME
PS_ROUTING_ENTRYID

The PS_MAPI property set is reserved; it is used by service providers to generate names for properties
with identifiers below the named property range. The PS_PUBLIC_STRINGS property set is used by
clients for named properties of IPM messages and is the default property set for the OLE Messaging
Library Fields collection. One of the specific uses of the PS_PUBLIC_STRINGS property set is to map
the summary properties of IPM.Document messages. Because named properties in the
PS_PUBLIC_STRINGS property set appear in a client's user interface, non-visible messages such as
those that belong to the IPC message class should avoid creating named properties with this property
set. Instead, they should create properties in the message class-specific range, 0x6800 through
0x7FFF.

The other property sets hold named properties describing recipients that are typically members of a
routing list. Containing the same type of information as the properties that are associated with recipient
list properties, properties in these property sets are understood by gateways to require mapping for a
target messaging system. Because there are five types of information for describing properties, MAPI
has defined five different property sets. A client sending a message that must include an address and
address type for its routing list members assigns a named property for each member in the
PS_ROUTNG_EMAIL_ADDRESSES and PS_ROUTING_ADDRTYPE property sets. This insures that
the address and address type remain viable when sent to a foreign messaging system.

 About Mappings and Mapping Signatures

When a service provider supports named properties, each set of identifier and name pairs is referred to
as a mapping. Service providers can support one mapping or several. That is, one message store
provider, for example, can implement the GetIDsFromNames and GetNamesFromIDs methods for all
of its message, folder, and message store objects to work with a single list of names and their
corresponding identifiers. Another message store provider might have one list for every folder and the
messages contained within it or implement a unique list for every message and every folder. Message
store providers that use a unique mapping for every message must not allow named properties to
appear in their folder contents tables, because for a given property name, the property identifier will
differ from message to message. MAPI recommends that providers keep it simple and operate with a
single list for all of their objects including tables.

For every mapping, service providers must supply a mapping signature. A mapping signature is a
binary value, usually a GUID, that uniquely identifies a set of property identifiers and their
corresponding names. Mapping signatures are stored in an object's PR_MAPPING_SIGNATURE
property. Service providers must change the value for their PR_MAPPING_SIGNATURE property
whenever a change is made to the mapping that it represents. For example,
PR_MAPPING_SIGNATURE must be updated if a new identifier is assigned to a name or a new name
and identifier pair is added.

Clients working with the named properties of objects use the objects' PR_MAPPING_SIGNATURE
properties in comparison and copy operations. To compare named property identifiers belonging to two
objects, clients not using mapping signatures must call GetNamesFromIDs on both objects to retrieve
the names for each of the identifiers. Using the mapping signatures of objects can render this call
unnecessary. When two objects have the same value for their PR_MAPPING_SIGNATURE properties,
they use the same mapping. Identifiers that use the same mapping can be compared directly. Service
providers that implement IMAPIProp::CopyTo and CopyProps can also take advantage of an object's
mapping signature. When copying named properties between objects, service providers can avoid the
conversion step when the source and destination objects have the same mapping signature.

 About IMAPIProp::GetIDsFromNames

Clients can call the IMAPIProp::GetIDsFromNames method to:

· Create identifiers for new names.
· Retrieve identifiers for specific names.
· Retrieve identifiers for all named properties that are included in the object's mapping.

To create a new identifier and name pair, clients pass the MAPI_CREATE flag to GetIDsFromNames
and a MAPINAMEID structure that describes the name. When clients do not pass this flag, the set of
property identifiers that have already been associated with the specified list of names is returned. To
retrieve identifiers for particular names, clients pass the names to GetIDsFromNames in an array of
MAPINAMEID structures. To retrieve all identifiers in the object's mapping, clients do not specify any
names.

Because property types are not returned from GetIDsFromNames along with the property identifiers,
clients must combine the identifiers that are returned with an appropriate type to form property tags
usable in other method calls.

 About IMAPIProp::GetNamesFromIDs

Clients call the IMAPIProp::GetNamesFromIDs method to:

· Retrieve names for specific property identifiers in a specific property set.
· Retrieve names for specific property identifiers in any property set.
· Retrieve names for all named properties that are included in the object's mapping.

To retrieve all of the named properties for an object, clients must first call the object's
IMAPIProp::GetPropList method and then pass the returned identifiers that are above the 0x8000
range to GetNamesFromIDs.

GetNamesFromIDs includes three parameters:

· A property set
· An array of property tags
· A flag that indicates the format for the returned names

Both the property set and property tag array can contain valid values or be set to NULL. The flag can
be set to MAPI_NO_IDs to request that only names stored as Unicode strings be returned or
MAPI_NO_STRINGS to request that only names stored as numeric identifiers be returned.

Service providers implement GetNamesFromIDs as described in the following table depending on the
values for the property tag array and property set parameters.

Property tag
array

Property set Result

One or more valid
identifiers

Valid GUID Property set ignored;
returns all names that
map to the identifiers
regardless of the property
set

One or more valid
identifiers

NULL Returns all names that
map to the identifiers

NULL NULL Returns names for all
named properties

NULL Valid GUID Undefined

When GetNamesFromIDs receives a valid property set without a valid property tag array, service
providers can choose one of the following paths to take in their GetNamesFromIDs implementations:

· Ignore the property set and return the names for the identifiers in the property tag array.
· Return the names for only the identifiers in the property tag array that belong to the specified

property set.
· Fail the call, returning MAPI_E_INVALID_PARAMETER.

Clients using an implementation of GetNamesFromIDs that takes the middle path, returning names
from the specified property set, should be aware of the approach used when the property set is
PS_PUBLIC_STRINGS. GetNamesFromIDs returns all names that were ever created regardless of
whether the object or any other object supported by the service provider actually stores a property
under each of the identifiers associated with the public strings.

For example, a client could use code similar to the following code to retrieve the names for all of an
object's named properties:

LPSPropTagArray FAR * lppPropTags = NULL;
LPGUID lpPropSetGuid = NULL;

ULONG FAR * lpcPropNames;
LPMAPINAMEID FAR * FAR * lpppPropNames;

lpMAPIProp->GetNamesFromIDs (lppPropTags,
 lpPropSetGuid,
 0,
 lpcPropNames,
 lpppPropNames);

To request all names from the PS_PUBLIC_STRINGS property set, a client would replace the NULL in
the property set parameter to PS_PUBLIC_STRINGS as follows:

LPSPropTagArray FAR * lppPropTags = NULL;
LPGUID lpPropSetGuid = &PS_PUBLIC_STRINGS;
ULONG FAR * lpcPropNames;
LPMAPINAMEID FAR * FAR * lpppPropNames;

lpMAPIProp->GetNamesFromIDs (lppPropTags,
 lpPropSetGuid,
 0,
 lpcPropNames,
 lpppPropNames);

 Handling Named Property Errors

When a request is made to IMAPIProp::GetIDsFromNames or IMAPIProp::GetNamesFromIDs that
is too large for the implementor to handle, the error value MAPI_E_TOO_BIG is returned. Callers must
divide their request into several requests, calling the appropriate method in a loop.

When a call results in partial success, such as when the request is for names that map to specific
identifiers and one or more names can not be found, GetNamesFromIDs returns
MAPI_W_ERRORS_RETURNED and places PT_ERROR in the property type for the missing property
in the property tag array.

Sometimes a client makes a call to GetNamesFromIDs that results in no properties being returned,
such as when there are no properties in a specified property set or when all named properties are of a
type excluded by the flags. Clients can expect service providers to:

· Return S_OK.
· Set the contents of the property tag array pointer to a newly allocated property tag array with its

cValues member set to zero.
· Set the contents of the MAPINAMEID structure array to NULL.
· Set the contents of the count of MAPINAMEID structures to zero.

 About Transmitting and Copying Named Properties

Whenever named properties are sent, moved, or copied, the name remains constant but the identifier
must change to adhere to the mapping of the destination object. The only exception to this rule is when
the source and destination have the same mapping signature, making re-mapping unnecessary.

It is the responsibility of the transport provider to re-map the names of transmitted named properties to
appropriate identifiers that work at the destination. The sending transport provider cannot know what
the correct mapping is at the destination; it must transmit the names and rely on the receiving transport
provider to map them to identifiers that work. MAPI's implementation of TNEF handles the re-mapping
of named properties for transport providers. Transport providers can either handle the re-mapping
manually or use the TNEF implementation.

A similar re-mapping of named properties must occur when these properties are copied between
message stores. However, because message store providers can retrieve the name to identifier
mapping of the destination, they can re-map the properties right away and not have to rely on the
destination message store.

 Tables

A MAPI table is an object that is used for looking at a summary view of the properties of other MAPI
objects. MAPI tables are structured in a row and column format with each column representing a
property and each row representing the object owning the property. One of the properties usually
included in each row is an identifier that can be used to open and modify the object. Because rows
contain property values, retrieving a row from a table is similar to getting a set of properties directly
from the object represented by the row. Both operations result in the return of a property value array.
The main difference is in the handling of long string and binary properties. For inclusion in a table,
some service providers truncate these properties to 255 bytes. When retrieved directly from the object,
the full value is always available.

Tables are usually implemented by the implementor of the objects presented in the rows. For example,
a message store provider implements messages and also implements the tables that display
information about those messages. An address book provider implements address book containers
and the hierarchy table that shows their organization. MAPI implements several different tables, some
for use by client applications, some by service providers, and some by both.

The following illustration shows one of the frequent uses of a table in MAPI: to display the contents of a
folder. On the right is a display of two messages as might appear in a typical messaging client
application. The display contains four pieces of information about each message: the sender, the
recipient, the subject, and the message text. Each piece of information is represented by a message
property.

On the left is a typical view of the contents table for these messages. The view represents how this
user sees the underlying data of the entire table. The view has two rows, one row for each message.
Each row has three columns, one column for each message property included in the table. The
columns are as follows:

PR_SENDER_NAME Sender name
PR_ORIGINAL_DELIVERY_TI
ME

Date and time when the
message was sent

PR_SUBJECT Message subject line

Notice that the set of properties displayed in the message are not the same as the set of columns
displayed in the table. The implementor of the table, in this case a message store provider, supplies a
default set of columns in a default order. The client can modify this column set, requesting additional
columns or rejecting default ones, and ask that they be ordered in a specific way. The client can also
order the rows, sorting them according to the value of one or more columns.

{ewc msdncd, EWGraphic, groupx832 0 /a "MAPI_54.WMF"}

All tables implement the IMAPITable : IUnknown interface. IMAPITable gives clients and service
providers a read-only view of the underlying data of a table. It allows them to view and change the
presentation of the data in a table's rows and columns. Multiple users can access the same data
concurrently through IMAPITable.

 Types of Tables

There are many different types of tables, each differentiated by the information that it presents. Tables
enable client applications and service providers to readily access and manipulate the important
properties of many types of objects. Some tables, such as contents tables, provide an alternate way of
accessing sets of properties for MAPI objects. A client can retrieve the subject of a message, its
PR_SUBJECT property, either directly from the object by calling its GetProps method or through the
contents table. Other types of tables, such as attachment tables, provide the only way to access the set
of properties for an object. A client can access the PR_ATTACH_METHOD property, for example, only
by retrieving the attachment table which includes it as one of its columns.

A table view can be static or dynamic. With a static table view, changes to the underlying data do not
cause the view to be updated. Once the view has been instantiated, it does not change. Users of static
tables can be informed of changes to table data through notifications. A dynamic table view always
reflects the underlying data.

All tables have a default column set, or a set of columns that a table user expects to find in a table that
has not yet been affected by a SetColumns call. Static or dynamic additions to a default column set
can be made. Some table implementors include additional optional columns in every table view they
create. Dynamic additions of columns can occur following a client request; not all table implementors
support this type of column set modification.

The following table lists the MAPI tables and includes the typical implementor and the typical user for
each.

Table Implementors Users
Attachment Message store

providers
Clients and transport
providers

Contents Message store and
address book
providers

Clients

Display MAPI and service
providers

MAPI and service
providers

Hierarchy Message store and
address book
providers

Clients

Message service MAPI Clients
Message store MAPI Clients
One-off Address book

providers
MAPI

Outgoing queue Message store
providers

MAPI spooler

Profile MAPI Clients
Provider MAPI Clients
Receive folder Message store

providers
Clients

Recipient Message store
providers

Clients and transport
providers

Status MAPI Clients

About Attachment Tables

An attachment table describes the attachment objects that are associated with a submitted message or
a message under composition. Attachment tables are implemented by message store providers and
used by client applications, which call the IMessage::GetAttachmentTable method to retrieve a
pointer to the table object. Some message store providers also support access through the
IMAPIProp::OpenProperty method, where the caller specifies the PR_MESSAGE_ATTACHMENTS
property.

The following properties make up the required column set in attachment tables:

PR_ATTACH_NUM
PR_INSTANCE_KEY
PR_RECORD_KEY
PR_RENDERING_POSITION

All of the properties except for PR_INSTANCE_KEY are attachment object properties.
PR_INSTANCE_KEY is specific to tables and uniquely identifies a particular row in a table.

PR_ATTACH_NUM is a nontransmittable property that contains a value for uniquely identifying an
attachment within a message. PR_ATTACH_NUM is often used as an index into the rows of the table.
While an attachment table is open, the value of PR_ATTACH_NUM remains constant.

PR_RECORD_KEY is a common property for many objects and is used in attachment tables to identify
an attachment. Unlike PR_ATTACH_NUM, PR_RECORD_KEY has the same scope as a long term
entry identifier; it remains available and valid even after the message is closed and reopened.

PR_RENDERING_POSITION is an offset in characters that identifies where a client should display the
attachment within a message. The first character of PR_BODY has offset 0. Not all attachments use
PR_RENDERING_POSITION. Applications may assign a value of 0xFFFFFFFF to
PR_RENDERING_POSITION, indicating that the attachment should not be rendered within the
message body. When sorting the attachment table by rendering position, message stores should treat
this as a signed value (PT_LONG). That is, an attachment whose rendering position is 0xFFFFFFFF
should sort before an attachment whose rendering position is 1.

Message store providers are free to add other columns to their attachment tables. The following
properties are often added because they are easy to compute or retrieve:

PR_ATTACH_ENCODING PR_ATTACH_EXTENSION
PR_ATTACH_FILENAME PR_ATTACH_LONG_FILENAM

E
PR_ATTACH_PATHNAME PR_ATTACH_LONG_PATHNAM

E
PR_ATTACH_METHOD PR_ATTACH_TAG
PR_CREATION_TIME PR_ATTACH_TRANSPORT_NA

ME
PR_DISPLAY_NAME PR_LAST_MODIFICATION_TIM

E

The attachment table is dynamic, so it can change while it is open. That is, if a client creates or deletes
an attachment or modifies one of the properties in the column set, the changes will be reflected in the
table. However, only attachments that have been saved are included in the table.

Message store providers are not required to support sorting. If sorting is not supported, the table must
be presented sorted on PR_RENDERING_POSITION.

About Contents Tables

A contents table lists summary information about messaging user or distribution list objects in address
book containers or about messages in folders. Address book providers implement contents tables for
each of their containers. Both message store and remote transport providers implement contents
tables for folders.

Folders support two types of contents tables:

· Standard
· Associated

Standard contents tables contain standard messages, or messages that are transmitted and are visible
to the user. Associated contents tables contain hidden information with a specific purpose for the client.
For example, some clients might want to store an alternate representation of a standard message as
associated information. To retrieve a contents table with only this hidden information, clients specify the
MAPI_ASSOCIATED flag on the GetContentsTable call.

There are two methods that a client or provider can call on a folder or container to access its contents
table and table implementors must support them both:

· IMAPIContainer::GetContentsTable
· IMAPIProp::OpenProperty with PR_CONTAINER_CONTENTS or

PR_FOLDER_ASSOCIATED_CONTENTS (folders only) specified as the property tag and
IID_IMAPITable as the interface identifier

The call to IMAPIProp::OpenProperty involves accessing the contents table by opening its
corresponding property, PR_CONTAINER_CONTENTS for standard contents tables, and
PR_FOLDER_ASSOCIATED_CONTENTS for associated contents tables. Although neither or these
properties can be retrieved through a folder or container's IMAPIProp::GetProps method, they are
included in the property tag array that is returned by the IMAPIProp::GetPropList method.

PR_CONTAINER_CONTENTS can also be used to include or exclude a contents table from a copy
operation. If a client specifies PR_CONTAINER_CONTENTS in the lpExcludeProps parameter for
IMAPIProp::CopyTo in a copy operation, the new folder or container will not support the contents table
of the original folder or container.

GetContentsTable accepts as input several flags that specify preferences. The
MAPI_DEFERRED_ERRORS flag indicates to the service provider that any errors encountered during
the table creation do not need to be reported until some later time.

All contents tables can support categorization, or sorting by categories. Whereas many folder contents
tables can sort by categories, few address book container tables can. Address book providers usually
do not support categorization on the contents tables of their containers.

Address book container and standard folder contents tables have a lengthy list of required columns, or
columns that clients can expect to be available through the IMAPITable pointer returned from
GetContentsTable or OpenProperty. Associated contents tables do not have a required column set.
Clients must define their own column set for these contents tables by calling
IMAPITable::SetColumns if the default one returned by the provider is inappropriate.

The contents tables implemented by address book, message store, and remote transport providers
have different required column sets. The following table lists the required columns for each of the types
of contents tables.

Required column Type of contents table
PR_ADDRTYPE Address book container tables
PR_DISPLAY_NAME Address book container tables
PR_DISPLAY_CC Message store folder tables

PR_DISPLAY_TO All folder contents tables
PR_DISPLAY_TYPE Address book container tables
PR_ENTRYID All contents tables
PR_HASATTACH All folder contents tables
PR_INSTANCE_KEY All contents tables
PR_LAST_MODIFICATION_TIME Message store folder tables
PR_MAPPING_SIGNATURE Message store folder tables
PR_MESSAGE_CLASS All folder contents tables
PR_MESSAGE_DOWNLOAD_TIM
E

Remote transport folder tables

PR_MESSAGE_FLAGS All folder contents tables
PR_MESSAGE_SIZE All folder contents tables
PR_MSG_STATUS All folder contents tables
PR_OBJECT-TYPE All contents tables
PR_PARENT_ENTRYID Message store folder tables
PR_RECORD_KEY Address book container and message

store folder tables
PR_SENT_REPRESENTING_NA
ME

Remote transport folder tables

PR_STORE_ENTRYID Message store folder tables
PR_STORE_RECORD_KEY Message store folder tables

The entry identifier available with each row can either be a short- or long-term entry identifier,
depending on the table. Short-term entry identifiers are typically used in situations where performance
is an issue. Either type of entry identifier can be used to access the corresponding object.

Contents tables also have a set of columns that are optional, but they are commonly included by
service providers in their implementations. The following table lists these optional columns.

Optional column Type of contents table
PR_CLIENT_SUBMIT_TIME Message store folder tables
PR_CONVERSATION_INDEX Message store folder tables
PR_CONVERSATION_KEY Message store folder tables
PR_EMAIL_ADDRESS Address book container tables
PR_IMPORTANCE All folder contents tables
PR_MESSAGE_DELIVERY_TIME All folder contents tables
PR_NORMALIZED_SUBJECT All folder contents tables
PR_PRIORITY All folder contents tables
PR_SEARCH_KEY Address book container tables
PR_SEND_RICH_INFO_ Address book container tables
PR_SENDER_NAME All folder contents tables
PR_SENSITIVITY All folder contents tables
PR_SUBJECT All folder contents tables
PR_TRANSMITTABLE_DISPLAY_
NAME

Address book container tables

Message store providers must also include PR_PARENT_DISPLAY for search-result folders contents
tables.

This list of properties does not include all the properties that can be included in a contents table.
Clients can request other properties; it is up to the service provider as to whether the table can include
them. Named properties may be added to the column set of a folder contents table only if all messages
in the folder have the same mapping signature, that is, the same mapping of property names to
property identifiers. Folder contents tables should support adding message class specific properties to
the column set, at least if they support the creation of arbitrary messages in the folder.

About Display Tables

A display table describes how to show a specific type of dialog box ¾ one having one or more tabbed
property pages dedicated to displaying and possibly editing properties using an implementation of the
IMAPIProp interface. The rows in a display table represent the controls, or user interface objects, that
appear in the dialog box. MAPI defines many types of controls, some with static values and some with
values that a user can change. Most controls can be associated with properties maintained with the
IMAPIProp implementation. When a user changes the value of a modifiable control, the corresponding
property is updated.

Creating a display table is similar to writing a program with a scripting language. Service providers can
create a display table using one of the following techniques:

· Calling the BuildDisplayTablefunction.
· Including custom code that populates the display table directly using a table data object.

The BuildDisplayTable function combines information from display table structures with visual
elements from a dialog box resource to build display table rows. The function returns a pointer to an
IMAPITable interface implementation, and, if requested, a pointer to an ITableData interface
implementation.

Using BuildDisplayTable to create a display table is straightforward and makes maintenance easier
when visual elements of the display change. However, service providers that do not need to use
BuildDisplayTable can create a display table with custom code that uses the methods of ITableData.
For example, service providers that have an existing template structure for their property pages might
prefer custom code over BuildDisplayTable for display table creation.

Associated with every display table is an IMAPIProp interface implementation. Service providers
supply this implementation to maintain the property data that is presented in the dialog box. There are
a variety of ways service providers can implement the property interface for their display table; these
include:

· Supplying a standard IMAPIProp implementation.
· Supplying a wrapped IMAPIProp implementation that includes special processing before making the

standard calls.
· Supplying an IPropData implementation.

The type of implementation depends on the characteristics of the data to be displayed and the
responsible service provider. For example, if there is an implicit relationship between the data in two
edit controls and one of the controls changes, the IMAPIProp implementation must change the value
of the other control appropriately.

About Display Table Columns

Display tables have the following properties in their required column set:

PR_XPOS PR_YPOS
PR_DELTAX PR_DELTAY
PR_CONTROL_TYPE PR_CONTROL_FLAGS
PR_CONTROL_STRUCTU
RE

PR_CONTROL_ID

PR_XPOS and PR_YPOS specify the X and Y coordinates of the upper left corner of the control. The
horizontal units are 1/4 of the dialog base width unit; the vertical units are 1/8 of the dialog base height
unit. Windows computes the current dialog base units from the height and width of the current system
font. The coordinates are relative to the origin of the property page area. The size of property pages is
limited to approximately 200 by 180 dialog units.

PR_DELTAX and PR_DELTAY are the width and height of the control. These are ULONG values. The
width units are 1/4 of the dialog base width unit; the height units are 1/8 of the dialog base height unit.
The coordinates are relative to the origin of the control.

The other four properties describe various characteristics of the control. PR_CONTROL_TYPE
indicates the type of control. MAPI defines twelve types of controls, each with a different set of
attributes. These attributes are desribed in the flags property, PR_CONTROL_FLAGS. Examples of
attributes include whether or not a control is editable or required.

The control structure, PR_CONTROL_STRUCTURE, contains information relevant to the particular
type of control. Each type of control is described with a different structure. For example, edit controls
are described with the DTBLEDIT structure. DTBLEDIT structures contain members that list the
number of and specific types of characters that can be placed on the control and a property tag that
identifies the property whose value is to be displayed in the control. PR_CONTROL_STRUCTURE is
stored as a binary property.

The control identifier, PR_CONTROL_ID, uniquely identifies the control in the dialog box described by
the display table. PR_CONTROL_ID is set from the values placed in the lpbNotif and cbNotif members
of the DTCTL structure that is used by BuildDisplayTable to create the display table. Because MAPI
sometimes combines display tables, the PR_CONTROL_ID should always be unique. Typically,
providers assign a GUID structure to PR_CONTROL_ID to ensure its uniqueness. The
PR_CONTROL_ID property is included in the TABLE_NOTIFICATION structure when a display table
notification is generated.

To illustrate how the rows and columns of a display table map to fields on a dialog box, consider the
following example. This dialog box is typical of the type that an address book provider might display to
allow users to define new Internet recipients. There are only four controls: two labels and two edit
controls.

{ewc msdncd, EWGraphic, groupx832 1 /a "MAPI.BMP"}

The corresponding display table contains four rows, one for each control. The values for the columns
that indicate position would be as follows:

Control XPOS YPOS DELTAX DELTAY
Label (name) 14 18 49 8
Edit (name) 76 16 89 12
Label (address) 14 42 50 8
Edit (address) 76 40 89 12
Checkbox 14 64 90 12

This next table suggests appropriate values for the control type, flags, and structure columns for each
of the rows. Notice that the value for the label controls appears in memory directly following the
structure.

Control Type Flags Structure
Label
(name)

DTCT_LABEL 0 {sizeof(DTBLLABEL)
, 0}
"Display name:"

Edit
(name)

DTCT_EDIT DT_EDITABL
E |
DT_REQUIR
ED

{sizeof(DTBLEDIT),
0, 80,
PR_DISPLAY_NAM
E}

Label
(address
)

DTCT_LABEL 0 {sizeof(DTBLLABEL)
, 0}
"E-mail address:"

Edit
(address
)

DTCT_EDIT DT_EDITABL
E |
DT_REQUIR
ED

{sizeof(DTBLEDIT),
0, 80,
PR_EMAIL_ADDRE
SS}

Checkbo
x

DTCT_CHECKB
OX

DT_EDITABL
E

PR_SEND_RICH_IN
FO

Note The OK, Cancel, and Help buttons are not included in the display table. The user interface can
add context to a dialog box by adding controls not in the display table.

About Display Table Scenarios

Display tables are used to show dialog boxes:

· By address book providers to view and edit detailed information about messaging users.
· By address book providers to view and edit advanced search dialog boxes.
· By address book providers to view and edit templates for new users.
· By transport providers to view and edit message option information.
· By all providers to view and edit configuration information.

In some of these scenarios, a service provider creates a display table and passes it and a pointer to an
IMAPIProp interface implementation to MAPI. In other scenarios, the display table is obtained from the
IMAPIProp implementation when MAPI calls its OpenProp method and requests
PR_DETAILS_TABLE.

MAPI is responsible for displaying the dialog box to the user with property values made available either
through the IMAPIProp implementation or the display table. As the user works with the dialog box,
changing values in the controls, MAPI calls IMAPIProp::SetProps to save a changed control if the
control's DT_SET_IMMEDIATE flag is set. For controls without the DT_SET_IMMEDIATE flag set,
changes to properties are saved when the user dismisses the dialog box by selecting the OK or Apply
Now button. When either of these buttons or the Cancel button is selected, MAPI removes the dialog
box from view.

For example, in the first scenario, a user of a client application selects an entry from the address book
and requests a detailed display. Processing proceeds as follows:

1. The client calls IAddrBook::Details, implemented by MAPI.
2. MAPI calls the address book provider's IABLogon::OpenEntry method to open the messaging user

object that represents the selected entry.
3. MAPI calls the messaging user's IMAPIProp::OpenProperty method to retrieve the

PR_DETAILS_TABLE property, the display table for the details dialog box.
4. MAPI displays the dialog box, handling the user's interaction with the information, and removes it

when the user has finished.

In another more complicated scenario, the user of a client application requests the message options
dialog box, a collection of properties supported by the transport provider. To make these properties
available, a transport provider must return an OPTIONDATA structure with information about its
supported options when MAPI calls its IXPLogon::RegisterOptions method and implement a function
that conforms to the OPTIONCALLBACK prototype. The OPTIONCALLBACK function handles the
data stored in the OPTIONDATA structure.

The client calls IMAPISession::MessageOptions to display a message options dialog box. MAPI calls
the transport provider's OPTIONCALLBACK function which returns an IMAPIProp interface
implementation. The OpenProperty method of this implementation supports the PR_DETAILS_TABLE
property. When the OPTIONCALLBACK function returns, MAPI calls OpenProperty to open
PR_DETAILS_TABLE and retrieve the display table describing the message options dialog box.

About Display Table Structures

There are two display table structures that relate directly to the BuildDisplayTable function; they have
no meaning outside the context of BuildDisplayTable. Therefore, these structures are only used by
service providers that call BuildDisplayTable to create their display tables.

There are three types of display table structures:

· A structure to describe a single tabbed property page (DTPAGE)
· A structure to describe a single control (DTCTL)
· A structure to describe the data of a single control, one of the controls in the display table (such as

DTBLEDIT, DTBLLBX)

When BuildDisplayTable is called to create a display table, the service provider passes one or more
DTPAGE structures as an input parameter. The DTPAGE structures contain an array of DTCTL
structures and a count of the number of DTCTL structures in the array. There is one structure for every
control to appear in the dialog box. DTPAGE structures also have a character string that represents the
name of a corresponding help file and dialog resource.

Each DTCTL structure in a DTPAGE structure contains data that is used to set properties for the
control:

· Control type for setting PR_CONTROL_TYPE
· Control flags for setting PR_CONTROL_FLAGS
· Notification data for setting PR_CONTROL_ID
· Control structure for setting PR_CONTROL_STRUCTURE

DTCTL structures also contain a resource identifier and, for edit and combo box controls, a character
filter.

The control structure member of a DTCTL structure describes the data that is unique for the type of
control. MAPI defines a different structure for each control type. For example, the data of an edit
control is represented by a DTBLEDIT structure; the data of a list box by a DTBLLBX structure.

The relationship between these three types of display table structures is illustrated in the following
diagram. The dialog box described by this display table has two controls: a label and an edit control.
The DTBLLBX structure has a label offset member, as do several of the control structures, that
describes where the character string for the label begins. Label character strings are typically placed in
memory immediately following the structure.

{ewc msdncd, EWGraphic, groupx832 2 /a "MAPI.BMP"}

About the DTCTL Structure

The DTCTL structure describes one control of any type. Most of its members are used to set properties
on the control. Every DTCTL structure contains the following members:

· A constant that represents the type, such as DTCT_EDIT or DTCT_CHECKBOX, and corresponds
to the control's PR_CONTROL_TYPE property.

· A set of flags that describe the control's features, such as DT_SET_IMMEDIATE or DT_EDITABLE,
and corresponds to the control's PR_CONTROL_FLAGS property.

· A structure that holds the data for the control, such as DTBLEDIT or DTBLCHECKBOX, and
corresponds to the PR_CONTROL_STRUCTURE property.

The lpbNotif and cbNotif members relate to notification data. The lpbNotif member points to a
structure made up of a GUID to represent the service provider and an identifier for the control. The
cbNotif member holds the number of bytes in the structure pointed to by lpbNotif. These members
correspond to the control's PR_CONTROL_ID property and are used to notify the user interface when
the control needs updating.

The lpszFilter member holds a character string that describes which characters can be entered into an
edit or combo box control. For other types of controls, the lpszFilter member can be NULL. For edit
and combo box controls, it should be a regular expression that applies to a single character at a time.
The same filter is applied to all characters in the control.

The format of the filter string is as follows:

Symbol Description Example
* Any character is

allowed.
"*"

[] Defines a set of
characters.

[0123456789]

- Indicates a range of
characters.

[a-z]

~ Indicates that these
characters are not
allowed.

[~0-9]

\ Used to quote any of the
above symbols.

[\-\\\[\]] means -, \, [,
and] characters are
allowed

The ulItemID member is a value that identifies the control in the dialog box resource. For tabbed
pages, controls of type DTCT_PAGE, the ulItemID member is optionally used to load the component
name for the page from a string resource.

The ctl member is a union of structures that relate to a particular type of control. If the DTCTL structure
is describing an edit control, for example, the ctl member will point to an DTBLEDIT structure. This
structure corresponds to the control's PR_CONTROL_STRUCTURE property. The union has as its first
member a variable of type LPVOID to permit compile time initialization of the DTCTL structure.

About Control Flags

MAPI specifies several flags that are used to describe the attributes of one or more controls. These
flags are grouped together and stored in the ulCtlFlags member of the control's DTCTL structure and
in its PR_CONTROL_FLAGS property. Most of the control flags apply to all of the controls that allow
user input; a few apply only to the edit control. Controls that do not allow user input, such as a button or
a label, set 0 for their control flags.

Many of the flag values are self-explanatory. For example, when DT_REQUIRED is set for a control, it
must contain a value before the dialog box is allowed to be dismissed. Either the service provider can
supply a value through its IMAPIProp implementation or the user can enter one. DT_EDITABLE
indicates that the value for the control can be modified. DT_MULTILINE allows the value for an edit
control to span multiple lines.

Some control flags are not so obvious in their meaning. When a control sets the DT_SET_IMMEDIATE
flag, any changes to its value take affect as soon as the user moves to a new control. MAPI makes a
single call to the property interface's IMAPIProp::SetProps method for the control's property. This is
different from the default behavior, which is to postpone having changes to control values take effect
until after the user selects the OK button or dismisses the dialog box. The DT_SET_IMMEDIATE flag is
often used in combination with display table notifications.

The following table lists the types of controls and all of the flag values that can be set for each type.

Control Valid control flags
Button Must be zero
Check box DT_EDITABLE, DT_SET_IMMEDIATE
Combo box DT_EDITABLE, DT_REQUIRED,

DT_SET_IMMEDIATE
Drop-down list box DT_EDITABLE, DT_SET_IMMEDIATE
Edit DT_ACCEPT_DBCS, DT_MULTILINE,

DT_EDITABLE, DT_PASSWORD_EDIT,
DT_REQUIRED, DT_SET_IMMEDIATE

Group box Must be zero
Label Must be zero
List box Must be zero
Multivalue drop-down
list box

Must be zero

Multivalue list box Must be zero
Tabbed page Must be zero
Radio button Must be zero

About Display Table Notifications

Notifications on a display table are sent by the service provider responsible for creating the display
table to MAPI. MAPI registers for these notifications by calling a display table's IMAPITable::Advise
method and specifying the table modified event.

Each display table notification contains a TABLE_NOTIFICATION structure. Only the ulTableEvent
and the propIndex members of this structure are significant; the other members are ignored. The
ulTableEvent member is set to TABLE_ROW_MODIFIED and the propIndex member is set to the
value of the PR_CONTROL_ID column in the corresponding row. MAPI responds to the notification by
calling the IMAPIProp::GetProps method for the property displayed in the control and by displaying
the new value.

Display table notifications can be used by a service provider to coordinate changes to related controls
on the dialog box. For example, if the property interface implementation needs to refresh one or more
fields on the dialog box, perhaps in response to another control that has set the DT_SET_IMMEDIATE
flag in its PR_CONTROL_FLAGS property, it can generate a display table notification. A display table
notification can alert the property interface implementation that the value of one or more controls needs
to be re-read due to a change being made or an external event occurring.

Service providers can issue display table notifications in one of two ways:

· With a call to ITableData::HrNotify, if the display table was built with a table data object.
· With its own code, if the display table was built with the provider's IMAPITable implementation.

MAPI responds to display table notifications when necessary by re-reading a control's value from the
property interface implementation. The following table describes the details surrounding how MAPI
handles notifications for specific types of controls.

Control Action
Button Calls IMAPIProp::OpenProperty to

retrieve the control object via the
property represented by the
ulPRControl member of the
DTBLBUTTON structure if the call had
failed previously.
Calls the control object's
IMAPIControl::GetState to determine
whether the button should be enabled
and enables or disables the button
accordingly.

Check box Rereads the value for the
ulPRPropertyName member .

Combo box Reopens the table associated with the
ulPRTableName member of the
DTBLCOMBOBOX structure.
Rereads all of the rows including the
value for the ulPRPropertyName
member.

Drop-down list box Reopens the table associated with the
ulPRTableName member of the
DTBLDDLBX structure and rereads all
of the rows.
Calls IMAPIProp::GetProps to retrieve
the values for the properties stored in
the ulPRDisplayProperty and the

ulPRSetProperty members.
Edit Rereads the property and redisplays.
Group box Ignores the notification.
Label Ignores the notification.
Multiple selection list box If one of the columns is an entry

identifier, refreshes the list box. The
corresponding object is not closed or
reloaded.

Single selection list box Reads the set property, trying to identify
it.

Multivalued list box Rereads the property and re-populates
the list box.

Tabbed page There are no notifications for this
control; everything is static.

Radio button Rereads the property that is associated
with the button and is stored in the
ulPropTag member of the
DTBLRADIOBUTTON structure and
makes the appropriate selection with
the controls.

 About Types of Controls

There are many different types of controls, none unique to MAPI. However, MAPI defines its own
structures that are used in conjunction with BuildDisplayTable to describe the unique set of data
involved with each control.

The following table describes the structures that describe each type of control.

Control structure Description
DTBLBUTTON Describes a button control.
DTBLCHECKBOX Describes a check box control.
DTBLCOMBOBOX Describes a combo box control.
DTBLDDLBX Describes a drop down list box control.
DTBLEDIT Describes an edit control.
DTBLGROUPBOX Describes a group box control.
DTBLLABEL Describes a label control.
DTBLLBX Describes a list box control.
DTBLMVDDLBOX Describes a multi-value drop down list

box control.
DTBLMVLISTBOX Describes a multi-value list box control.
DTBLPAGE Describes a tabbed page control.
DTBLRADIOBUTTO
N

Describes a radio button control.

 About Button Controls

Button controls allow users to begin an operation. Typically clicking a button causes a modal dialog box
to be displayed or a programmatic task to be invoked. Service providers can implement anything
through a button control. If the button is supposed to perform a task based on the values of other
controls, those controls must have set the DT_SET_IMMEDIATE flag.

The control structure that describes a button control, DTBLBUTTON, has three members:

· A label offset
· A flags value
· A property tag for a property of type PT_OBJECT, the ulPRControl member

The label offset is the position in memory of the character string that is displayed on the button. Service
providers can add an ampersand character (&) to indicate a Windows accelerator in the button label.
Typing an accelerator has the same effect as pushing the button.

The flags value indicates whether or not the button label is in Unicode or ANSI format.

The property tag describes an object property that, when opened with the I MAPIProp::OpenProperty
method, returns a pointer to a control object. Implementing a control object ¾ an object that supports
the IMAPIControl interface ¾ is a way to extend the MAPI feature set and define the operation or task
that occurs when the button is clicked. IMAPIControl supplies two methods for manipulating buttons:
GetState to disable or enable buttons and Activate to handle button presses.

 About Check Box Controls

A check box is a control that reflects one of two states: enabled or disabled. A check box control is
described by the DTBLCHECKBOX which has three members:

· A label offset
· A flags value
· A property tag for a property of type PT_BOOLEAN, the ulPRPropertyName member

The label offset is the position in memory of the character string that is displayed with the check box
and the flags value indicates whether or not the check box label is in Unicode or ANSI format.

The property tag describes a boolean property whose value is manipulated by changing the state of the
check box. When the check box is first displayed, MAPI calls the IMAPIProp implementation's
GetProps method to retrieve a set of default properties. If one of the properties maps to the property
tag in the DTBLCHECKBOX structure, the value for that property is displayed as the check box's initial
value.

Check box controls can be modifiable, allowing a user to change their states. Modifiable check boxes
set the DT_EDITABLE flag in the ulCtlFlags member of their DTCTL structure and in their
PR_CONTROL_FLAGS property. When a check box changes its state, MAPI calls
IMAPIProp::SetProps to set the property identified in the property tag member of the
DTBLCHECKBOX structure to the new state.

For example, an address book provider might include a modifiable check box control in its configuration
dialog box to manipulate the setting of a recipient's PR_SEND_RICH_INFO property. When the user
selects the check box, MAPI sets this property to TRUE. When the check box is unselected, the
property is set to FALSE.

 About Combo Box Controls

A combo box control consists of a list box and a selection field. The list box presents the information
from which a user can select and the selection field displays the current selection. The selection field is
an edit control that can also be used to enter text not already in the list.

The following dialog box includes an example of a combo box.

{ewc msdncd, EWGraphic, groupx832 3 /a "MAPI.BMP"}

Combo box controls share some characteristics with edit controls and some characteristics with list box
controls. They are described with a DTBLCOMBOBOX structure which contains the following
members:

· A character filter
· A flags value
· A character count
· A property tag for a property of type PT_TSTRING, the ulPRPropertyName member
· A property tag for a property of type PT_OBJECT, the ulPRTableName member

The character filter is a numeric value that is an offset from the beginning of the DTBLCOMBOBOX
structure to a character string that describes restrictions, if any, to the characters that can be entered
into the combo box's edit control.

The flags value indicates whether or not the information displayed in the list box and entered in the edit
control is in Unicode or ANSI format.

The character count indicates the maximum number of characters that can be entered into the combo
box's edit control.

The two property tag members work together to coordinate the list box display with the edit control.
When MAPI first displays the combo box, it calls the IMAPIProp implementation's OpenProperty
method to retrieve the table represented by the ulPRTableName member of the DTBLCOMBOBOX
structure. This table has one column, a column that contains values for the property represented by the
ulPRPropertyName member. Therefore, this column must be of the same type as the
ulPRPropertyName property and both columns must be character strings.

The values for the column are displayed in the list box portion of the combo box. Therefore, PR_NULL
is not a valid property tag for ulPRPropertyName. When a user either selects one of the rows or
enters new data into the edit box, the ulPRPropertyName property is set to the selected or entered
value.

To display an initial value for the edit control, MAPI calls IMAPIProp::GetProps to retrieve the property
values for the display table. If one of the retrieved properties matches the property represented by the
ulPRPropertyName member, its value becomes the initial value.

 About Drop-Down List Box Controls

A drop-down list box control is a list box that is displayed as a single item until the user elects to
expand it. The following illustration provides an example of a drop-down list box.

{ewc msdncd, EWGraphic, groupx832 4 /a "MAPI.BMP"}

A drop-down list box is described with a DTBLDDLBX structure. DTBLDDLBX structures contain the
following members:

· A flags value which is reserved and must be zero
· A property tag for a property of type PT_OBJECT, the ulPRTableName member
· A property tag for a property of type PT_TSTRING, the ulPRDisplayProperty member
· A property tag for any type of property, the ulPRSetProperty member

The three properties identified by the property tags work together to display the information in the list
box and set a related property. The ulPRTableName member is a table object that is accessed through
a call to IMAPIProp::OpenProperty. The table has two columns: one column for the property identified
by the ulPRDisplayProperty member and the other for the property identified by the ulPRSetProperty
member.

The ulPRDisplayProperty property drives the list box display. When a user selects one of the values
from the display, MAPI calls IMAPIProp::SetProps to set the corresponding property as identified by
the ulPRSetProperty member, meaning the property in the same row as the selected display property.
The ulPRSetProperty member cannot be set to PR_NULL.

An initial value is displayed in the list box if MAPI has retrieved the property represented by the
ulPRSetProperty member through a call to IMAPIProp::GetProps and located a row in the table with
the value for the ulPRSetProperty member. The initial displayed value is the contents of the
ulPRDisplayProperty column from that row that matches the property in the ulPRDisplayProperty
member of the structure. The value returned by GetProps for the property identified by the
ulPRDisplayProperty member becomes the initial value that is shown when the list box is first
displayed.

 About Edit Controls

Edit controls are areas that contain alphanumeric information. Almost all dialog boxes have at least one
edit control. Edit controls can be modifiable by a user or read-only.

Edit controls can also be single line or multiline. Multiline edit controls typically have a scroll bar
associated with them as is shown in the following illustration.

{ewc msdncd, EWGraphic, groupx832 5 /a "MAPI.BMP"}

The DTBLEDIT structure is used to describe an edit control. DTBLEDIT structures have the following
members:

· A character filter
· A flags value
· A character count
· A property tag for a property of type PT_TSTRING, the ulPropTag member

The character filter is a numeric value that is an offset from the beginning of the DTBLEDIT structure to
a character string that describes restrictions, if any, to the characters that can be entered into the edit
control.

The flags value indicates whether or not the information entered in the edit control is in Unicode or
ANSI format.

The character count indicates the maximum number of characters that can be entered into the edit
control.

The ulPropTag member identifies the string property whose data is displayed and edited in the edit
control.

 About Group Box Controls

Group box controls are used to visually associate other controls in the dialog box. The highlighting
technique involves surrounding the other controls by a box, as is illustrated in the following dialog box.

{ewc msdncd, EWGraphic, groupx832 6 /a "MAPI.BMP"}

Group box controls are described with the DTBLGROUPBOX structure which has the following two
members:

· A label offset
· A flags value

The label offset is the position in memory of the character string that accompanies the group box. If
displayed, the label appears on the top, left-hand side of the box.

The flags value indicates whether or not the group box label is in Unicode or ANSI format.

 About Label Controls

Label controls are text displayed with another type of control to add meaning to that control. For
example, most edit controls are placed next to labels to inform the user of the type of information to be
entered. Some controls, such as group boxes and radio buttons, hold their own labels.

Label controls are described with the DTBLLABEL structure which has the following two members:

· A label offset
· A flags value

The label offset is the position in memory of the character string that is displayed as the label, the value
of the control. The label can include a Windows accelerator, identified as the character following the
ampersand (&). Typing the accelerator character puts the focus in the first non-label, non-button control
following this label in the display table.

The flags value indicates whether or not the label is in Unicode or ANSI format.

There is no support for multiline labels. Showing multiple lines requires multiple labels.

It is not possible to use a label as a read-only edit control. The distinction is that an edit control can be
selected and copied while a label cannot.

 About List Box Controls

List box controls are used to show multiple items and allow a user to select one or more of the items.
List box controls are described with the DTBLLBX structure which contains the following three
members:

· A flags value
· A property tag for a property of any type, the ulPRSetProperty member
· A property tag for a property of type PT_OBJECT, the ulPRTableName member

The flags value indicates whether or not a horizontal or vertical scroll bar should be displayed with the
list box. The default is to be have types of scroll bars appear if necessary. Service providers can set
MAPI_NO_HBAR to suppress a horizontal scroll bar and MAPI_NO_VBAR to suppress a vertical scroll
bar.

The two property tag members work together to display values in the list box and set corresponding
properties when an item in the list box is selected. When MAPI first displays the list box, it calls the
IMAPIProp implementation's OpenProperty method to retrieve the table identified in the
ulPRTableName member. The number of columns in the table depend on the value of the
ulPRSetProperty member. If ulPRSetProperty is set to PR_NULL, the list box is a multiple selection
list box based on an object that contains recipients, such as an address book container, a recipient
table for a message, or a distribution list contents table.

A table for a multiple selection list box must include the following columns:

PR_DISPLAY_NAME
PR_ENTRYID
PR_INSTANCE_KEY

PR_DISPLAY_TYPE and a maximum of five other multivalued string properties can also be displayed
with the three required columns.

If the ulPRSetProperty member is not set to PR_NULL, the list box is a single selection list box. The
initial value of ulPRSetProperty determines the initially selected row. When a user selects one of the
rows, the ulPRSetProperty is set to the selected value and this value is written back to the property
interface implementation with a call to IMAPIProp::SetProps.

 About Multivalue List Box Controls

Multivalue list box controls are read-only lists of items. There are two types of multivalue list boxes:
standard and drop-down. Whereas standard list boxes are displayed immediately, drop-down dialog
boxes are displayed when a user clicks on a scroll bar.

The two structures have only two members: ulMVPropTag and a flags value. The flags value that is
reserved and must be zero.

The properties that are displayed must be of type PT_MV_TSTRING and the data comes from the
ulMVPropTag member of either the DTBLMVLISTBOX structure, for multivalue list boxes, or
DTBLMVDDLBOX structures, for multivalue drop-down list boxes. There is no need to read from the
property interface. Also, because users are not allowed to make selections from these types of list
boxes, data is also not written to the property interface.

 About Radio Button Controls

Radio button controls are buttons that are associated with a group. Only one button in the group can be
checked; setting a button causes all of the other buttons in the group to be unset. The following dialog
box includes an example of a group of three radio button controls.

{ewc msdncd, EWGraphic, groupx832 7 /a "MAPI.BMP"}

Radio buttons are described with a DTBLRADIOBUTTON structure. DTBLRADIOBUTTON structures
contain the following members:

· A label offset
· A flags value
· The number of buttons in the group
· A property tag for a property of type PT_LONG, the ulPropTag member
· A return value identifying the selected button

The label offset is the position in memory of the character string that can be displayed with the radio
button and the flags value indicates whether or not this label is in Unicode or ANSI format.

The button count is the number of radio buttons in the group. The structures for the other radio buttons
in the group must be in subsequent rows in the display table. Each of these structures should have the
same value for its button count.

 About Tabbed Page Controls

Tabbed page controls are used to separate several related property sheets, dialog boxes that show
configuration, message, or recipient options. By clicking the tab, the user can switch from one sheet to
another.

The following dialog box includes four tabbed page controls: one control for each type of property
relating to a particular address type.

{ewc msdncd, EWGraphic, groupx832 8 /a "MAPI.BMP"}

Tabbed page controls are described with the DTBLPAGE structure which contains the following
members:

· A label offset
· A flags value
· A component string
· A context identifier

The label offset is the position in memory of the character string that specifies the text to appear on the
tab and the flags value indicates whether or not this label is in Unicode or ANSI format.

The component string and context identifier provide information about whether or not extended help is
available for the tabbed page and if it is available, how to access it. The component string maps to the
help file; the context identifier maps to the initial help topic. If the context identifier is zero and the
component string is NULL, extended help is not available.

About Hierarchy Tables

A hierarchy table displays information about the folders in a message store or the containers in an
address book container. Each row of a hierarchy table contains a set of columns containing information
about one folder or address book container. Hierarchy tables are used by message store providers to
show a tree of folders and subfolders and by address book providers to show a tree of containers
within the address book. Containers that cannot hold subcontainers, as indicated by the absence of the
AB_SUBCONTAINERS flag in their PR_CONTAINER_FLAGS property, do not implement a hierarchy
table.

Your address book provider can support table notifications on its hierarchy tables to alert client
applications to changes affecting the containers if those containers support change.

There are two methods that a client or provider can call on a folder or container to access its hierarchy
table and table implementors must support them both:

· The IMAPIContainer::GetHierarchyTable method.
· The IMAPIProp::OpenProperty method passing PR_CONTAINER_HIERARCHY as the property

tag and IID_IMAPITable as the interface identifier.

The call to IMAPIProp::OpenProperty involves accessing the hierarchy table by opening its
corresponding property, PR_CONTAINER_HIERARCHY. Although PR_CONTAINER_HIERARCHY
cannot be retrieved through a folder or container's IMAPIProp::GetProps method, it is included in the
property tag array that is returned by the IMAPIProp::GetPropList method.

PR_CONTAINER_HIERARCHY can also be used to include or exclude a hierarchy table from a copy
operation. If a client specifies PR_CONTAINER_HIERARCHY in the lpExcludeProps parameter for
IMAPIProp::CopyTo in a copy operation, the new folder or container will not support the hierarchy
table of the original folder or container.

The following properties make up the required column set in hierarchy tables:

PR_COMMENT PR_DEPTH
PR_DISPLAY_NAME PR_DISPLAY_TYPE
PR_ENTRYID PR_OBJECT_TYPE
PR_STATUS

PR_DISPLAY_NAME contains the name for the container or folder that should appear in the display of
the hierarchy.

PR_ENTRYID is the entry identifier associated with this container or folder. It is expected to be a long-
term entry identifier. Clients and MAPI can pass this entry identifier to OpenEntry to open the container
or folder and view its contents by calling IMAPIContainer::GetContentsTable.

PR_DEPTH is the hierarchy level; it indicates the level of indentation for this container or folder with
zero being the top level.

PR_OBJECT_TYPE is always set to MAPI_ABCONT for address book hierarchy tables and
MAPI_FOLDER for folder hierarchy tables.

PR_DISPLAY_TYPE identifies the type of container or folder in the row. It is mainly used for display
purposes, to differentiate visually between types of containers or folders. It is up to the address book
provider to supply icons to represent display type; MAPI does not supply defaults.

PR_CONTAINER_FLAGS indicates various attributes about this container in the hierarchy and is used
to distinguish one container from another.

In addition to these required columns, address book hierarchy tables must include the following
properties:

PR_CONTAINER_FLAGS
PR_INSTANCE_KEY

An optional property for address book hierarchy tables is the PR_AB_PROVIDER_ID property.

Message-store hierarchy tables include these properties in their required column set:

PR_FOLDER_TYPE
PR_SUBFOLDERS

An address book provider's IMAPITable implementation for the hierarchy table of its containers must
support the following methods because they are required by MAPI's integrated address book:

QueryColumns QueryPosition
SeekRow SeekRowApprox
FindRow Restrict
CreateBookmark FreeBookmark
QueryRows

About Message Service Tables

A message service table lists information about the message services in the current profile. There is
one message service table for every MAPI session. The message service table is a static table,
meaning that once it has been created, it will not reflect any changes in underlying data of the table.
The message service table is implemented by MAPI and used by special purpose client applications
that provide configuration support. Clients retrieve a message-service table object by calling the
IMsgServiceAdmin::GetMsgServiceTable method.

The following properties make up the required column set in message service tables:

PR_DISPLAY_NAME PR_INSTANCE_KEY
PR_RESOURCE_FLAGS PR_SERVICE_DLL_NAME
PR_SERVICE_ENTRY_NA
ME

PR_SERVICE_NAME

PR_SERVICE_SUPPORT_
FILES

PR_SERVICE_UID

PR_DISPLAY_NAME is the displayable name for the message service and the default sort key column.

PR_INSTANCE_KEY serves as the index column for the table, uniquely identifying a row.

PR_RESOURCE_FLAGS describes the message service's capabilities.

PR_SERVICE_DLL_NAME is the name of the DLL file that contains the message service
implementation.

PR_SERVICE_ENTRY_NAME is the name of the message service's entry point function that conforms
to the MSGSERVICEENTRY prototype.

PR_SERVICE_NAME is a required entry in the [Services] section in MAPISVC.INF. The value for this
property will never be changed or localized. PR_SERVICE_NAME can be used to programmatically
identify the message service.

PR_SERVICE_SUPPORT_FILES is a list of files that must be installed with the message service.

PR_SERVICE_UID is a unique identifier for the message service.

About Message Store Tables

The message store table lists information about message store providers in the current profile. Clients
can use this table, for example, to locate all instances of a particular provider or to locate a specific
message store. Clients access the message store table by calling the
IMAPISession::GetMsgStoresTable method.

MAPI implements one message store table for each session. The message store table is dynamic; it
always reflects what is in the current profile. If the user of a client application edits the profile, changing
the default message store, for example, the values of the PR_DEFAULT_STORE properties for the
affected message stores are immediately updated.

The following properties make up the required column set in message stores tables:

PR_DEFAULT_STORE PR_DISPLAY_NAME
PR_ENTRYID PR_INSTANCE_KEY
PR_MDB_PROVIDER PR_OBJECT_TYPE
PR_PROVIDER_DISPLAY PR_RECORD_KEY
PR_RESOURCE_FLAGS PR_RESOURCE_TYPE

About One-Off Tables

A one-off table lists the templates that an address book provider supports for creating new recipients.
One-off tables are implemented by address book providers, individual address book containers, and by
MAPI, and can be persistent or temporary.

Note Do not confuse the templates in one-off tables with template identifiers; while their purposes are
similar, their code constructs are nothing alike. Templates are used to create recipients of a particular
type while template identifiers are used to bind the data of one recipient belonging to a host provider
with code to support another recipient belonging to a foreign provider.

Clients create new recipients under two conditions:

· To add to the recipient list of an outgoing message
· To add to one of the containers in the address book

In both scenarios, an address book provider is asked to return a one-off table. Address book providers
can implement either a single one-off table to be used in both scenarios or a unique one-off table for
each scenario.

When the recipient will be included with an outgoing message, MAPI calls the address book provider's
IABLogon::GetOneOffTable method to retrieve its one-off table. The one-off table includes templates
which allow a user to enter information resulting in the creation of a recipient with a valid address.
MAPI registers for notifications on this table, keeping it open so that changes can be reflected back to
the user. MAPI releases the table only when its subsystem or address book status objects'
IMAPIStatus::ValidateState method is called.

When the recipient will be added to a container, MAPI makes a different call, invoking the container's
IMAPIProp::OpenProperty method to retrieve its PR_CREATE_TEMPLATES property. The set of
templates included in this one-off table represents the types of recipients that can be added to the
container. For example, mail servers often expose one container for every gateway that is installed so
that each container only holds addresses specific to the corresponding gateway.

MAPI provides a one-off table that includes its own templates as well as templates from each of the
address book providers in the session. MAPI provides a generic template that can be used to create a
new recipient for any address type, assuming that the user knows its format. Address book providers
use this one-off table by calling IMAPISupport::GetOneOffTable. Each of the templates included in
MAPI's one-off table results in the creation of recipients with valid recipient addresses.

Address book providers typically supply one template for every address type they support. However,
support for templates is not required. Address book providers that do not allow the creation of new
addresses can return MAPI_E_NO_SUPPORT when MAPI calls to request a one-off table. Address
book providers that do allow new address creation but do not supply any templates can call
IMAPISupport::GetOneOffTable to use the templates listed in MAPI's one-off table.

The following properties make up the required column set in one-off tables:

PR_ADDRTYPE PR_DEPTH
PR_DISPLAY_NAME PR_DISPLAY_TYPE
PR_ENTRYID PR_INSTANCE_KEY
PR_SELECTABLE

The PR_ADDRTYPE column indicates the type of address that can be associated with the new
recipient created with the template.

The PR_DISPLAY_NAME and PR_DISPLAY_TYPE columns associate data with the new recipient.
PR_DISPLAY_NAME contains a character string that identifies the new recipient and
PR_DISPLAY_TYPE contains a constant that identifies the type of icon to be displayed with the row.

Templates for messaging users have their PR_DISPLAY_TYPE column set to DT_MAILUSER;
templates for distribution lists have their PR_DISPLAY_TYPE column set to DT_DISTLIST.

The PR_ENTRYID column is the entry identifier of the template to be used to create a new recipient.
This entry identifier can be passed to future IAddrBook::NewEntry, IAddrBook::OpenEntry, and
IABContainer::CreateEntry calls. Containers set the PR_ENTRYID column of their row for the default
messaging user template to PR_DEF_CREATE_MAILUSER and the PR_ENTRYID column of their row
for the default distribution list template to PR_DEF_CREATE_DL.

The PR_DEPTH column is used to support the hierarchical display of the entries in a one-off table by
indicating the level of indention for the template. Although one-off tables can be displayed either as a
flat list or a hierarchical display, the latter is preferable and address book providers should support it by
setting the PR_DEPTH column for each row appropriately. PR_DEPTH is zero-based; rows with a
value of 0 in their PR_DEPTH column are not indented. The higher the value of PR_DEPTH, the more
the row is indented. For example, rows with PR_DEPTH set to 1 are indented one tab while rows with
PR_DEPTH set to 3 are indented three tabs.

The PR_SELECTABLE column is used to indicate whether or not a row in the table represents a
template that can be selected and used to create a new recipient. Although most rows in a one-off table
do represent templates, providers can include non-template rows. For example, a provider might want
to organize the one-off table by template type, including a category row that appears in the display but
is not used for recipient creation. The following dialog box illustrates a one-off table with five rows, four
of which represent templates and have their PR_SELECTABLE column set to TRUE. The one non-
template row, indicated by the text "Special Address Types," has its PR_SELECTABLE column set to
FALSE.

{ewc msdncd, EWGraphic, groupx832 9 /a "MAPI.BMP"}

About Outgoing Queue Tables

An outgoing queue table lists all of the outgoing messages for a message store. Message store
providers implement outgoing queue tables for the MAPI spooler to use. Stores that do not support the
sending or receiving of messages need not implement this table.

To retrieve a pointer to an outgoing queue table, the MAPI spooler calls the
IMsgStore::GetOutgoingQueue method.

There is a requirement that messages be preprocessed and submitted to the transport provider in the
same order as they were sent by the client application. The MAPI spooler is designed to accept
messages from the message store in ascending order of submission time. Because of this
requirement, there can be some delay before some messages appear in the outgoing queue table.

Message stores should either allow sorting on the outgoing queue table so that the MAPI spooler can
sort the messages by submission time, or the default sort order should be by ascending submission
time.

The outgoing queue table must send notifications when the contents of the queue changes.

The following properties make up the required column set in outgoing queue tables:

PR_CLIENT_SUBMIT_TIM
E

PR_DISPLAY_BCC

PR_DISPLAY_CC PR_DISPLAY_TO
PR_ENTRYID PR_MESSAGE_FLAGS
PR_MESSAGE_SIZE PR_PRIORITY
PR_SENDER_NAME PR_SUBJECT
PR_SUBMIT_FLAGS

About Profile Tables

A profile table lists information about all profiles associated with a particular client application. MAPI
implements the profile table for use by clients. A pointer to the table is returned when clients call the
IProfAdmin::GetProfileTable method.

There is one profile table for every session. The profile table is a static table, meaning that if profiles
are added or deleted while the table is open, the table will not change. Profiles that have been marked
for deletion are not included in the profile table.

As with most table implementations, if GetProfileTable is called and there are no profiles available to
the client, a table object is returned with zero rows in the table.

The following properties make up the required column set in profile tables:

PR_DEFAULT_PROFILE
PR_DISPLAY_NAME

About Provider Tables

A provider table lists information about service providers for client use. There are two different provider
tables. The IMsgServiceAdmin::GetProviderTable method creates a MAPI table object that holds all
of the providers for the current profile. The IProviderAdmin::GetProviderTable method creates a
table that stores all of the service providers for a message service.

The following properties make up the required column set in provider tables:

PR_INSTANCE_KEY PR_DISPLAY_NAME
PR_PROVIDER_DISPLAY PR_PROVIDER_DLL_NAME
PR_PROVIDER_ORDINAL PR_PROVIDER_UID
PR_RESOURCE_FLAGS PR_RESOURCE_TYPE
PR_SERVICE_NAME PR_SERVICE_UID

The provider table can be used to display the current transport order or to change it. To display the
current order, build a restriction to retrieve only those rows with the PR_RESOURCE_TYPE property
set to MAPI_TRANSPORT_PROVIDER. Then use PR_PROVIDER_ORDINAL as a sort key to sort the
table and retrieve all of the rows with either the IMAPITable::QueryRows method or the API function
HrQueryAllRows.

To change the transport order, apply the same restriction and retrieve the rows. Then create an array of
values from the PR_PROVIDER_UID property that represents the unique identifiers for the tranport
providers. When the identifiers are in the desired order, pass them to the
IMsgServiceAdmin::MsgServiceTransportOrder method.

Once a provider table has been returned to a client, it will not reflect changes to the environment, such
as the addition or deletion of a provider.

About Receive Folder Tables

A receive folder table lists information for all of the folders designated as receive folders for a message
store. A receive folder is a folder where incoming messages of a particular message class are placed.
Message store providers implement receive folder tables and client applications use them by making a
call to the IMsgStore::GetReceiveFolderTable method.

The following properties make up the required column set in receive folder tables:

PR_ENTRYID
PR_MESSAGE_CLASS
PR_RECORD_KEY

About Recipient Tables

The recipient table lists information about all of the recipients for a message. Message store providers
implement recipient tables and client applications use them. Clients access a recipient table by making
a call to the IMessage::GetRecipientTable method, or if the message store provider supports it, to the
IMAPIProp::OpenProperty method. Clients access recipient tables with OpenProperty by specifying
PR_MESSAGE_RECIPIENTS for the property tag and IID_IMAPITable for the interface identifier.
Changes to a recipient table can be made by calling the IMessage::ModifyRecipients method.

Recipient tables have a different column set depending on whether the message has been submitted.
The following properties make up the required column set in recipient tables:

PR_DISPLAY_NAME
PR_RECIPIENT_TYPE
PR_ROWID

The optional properties are:

PR_DISPLAY_TYPE
PR_ENTRYID
PR_SPOOLER_STATUS
PR_OBJECT_TYPE

Submitted messages should include these additional properties in their required column set:

PR_ADDRTYPE
PR_RESPONSIBILITY

Depending on a provider's implementation, additional columns, such as PR_SENDER_NAME and
ENTRYID, might be in the table.

Any message store provider that supports message transmission, as indicated by the
STORE_SUBMIT_OK bit being set in the provider's PR_STORE_SUPPORT_MASK property, should
offer support for a particular set of restrictions in a recipient table implementation. The And, Or, Exists,
and Property restrictions are among the types of restrictions that should be available to recipient table
users. Only the equal and not equal operators need to be supported on the Property restriction. These
restrictions must work with the following properties:

PR_ADDRTYPE
PR_EMAIL_ADDRESS
PR_RECIPIENT_TYPE
PR_RESPONSIBILITY
PR_SPOOLER_STATUS
PR_TRANSPORT_STATUS

About Status Tables

The status table lists information relating to the state of the current session. There is one status table
for every session that includes information provided by MAPI and by service providers. MAPI provides
data for three rows: a row for the MAPI subsystem, a row for the MAPI spooler, and a row for the
integrated address book. Because transport providers are required to supply status information to the
status table, there is one row for every active transport provider. Address book and message store
providers can choose whether or not to support the status table.

Because each row is provided by a different resource, the set of columns can vary from row to row.
There is a set of columns that every status object is required to supply and a set of columns that MAPI
supplies. A service provider can add to these sets to expose provider-specific properties. For example,
message store providers might add PR_STORE_RECORD_KEY to supply clients with the identifier of
their message store. Clients must have advance knowledge of the existence of this extra information to
be able to use it.

The following table lists the properties that must be in every status table row. The implementor of the
status object provides some of the properties; others are computed by MAPI.

Properties provided by
status object

Properties provided by MAPI

PR_DISPLAY_NAME PR_PROVIDER_DLL_NAME
PR_STATUS_CODE PR_RESOURCE_FLAGS
PR_RESOURCE_METHODS PR_RESOURCE_TYPE

If the status object provides an identity, it should set PR_IDENTITY_DISPLAY,
PR_IDENTITY_ENTRYID, and PR_IDENTITY_SEARCH_KEY, and include these properties in the
table.

Four properties are computed by MAPI for each status table row:

PR_ENTRYID PR_INSTANCE_KEY
PR_OBJECT_TYPE PR_ROWID

MAPI assigns an entry identifier to the status row to enable clients to open the corresponding status
object. A row identifier is also assigned to identify the row in the table as is an instance key to identify
the data in the status object. The PR_OBJECT_TYPE property is set to MAPI_STATUS.

To access the status table, clients call the IMAPISession::GetStatusTable method. This call should
not be made immediately upon startup. This is because GetStatusTable has to wait for the MAPI
spooler to initialize the transport providers, an operation that is postponed until after the client has
finished its logon. GetStatusTable is a relatively fast call after the MAPI spooler has completed its start
up processing.

Status table information can be used in a variety of ways, such as to access a status object, to
determine whether a client is running in a connected or offline mode, and to monitor a provider's state.
For example, clients can open a specific service provider's status object by passing the value of the
PR_ENTRYID property to the IMAPISession::OpenEntry method. The status object supports the
IMAPIStatus interface, an interface that contains methods to change a service provider password,
flush the message queue, display a configuration property sheet, or confirm status with a provider
directly. Status table information can also be used to build a dialog box to inform clients of progress
during a lengthy operation.

Service providers who do support the status table use the IMAPISupport::ModifyStatusRow method
to create and update their row. Whenever a change occurs to their row, all advise sink objects
registered to receive status table notifications must be notified. Service providers can call the
IMAPISupport::Notify method if they are using MAPI's notification utility or call each advise sink's
IMAPIAdviseSink::OnNotify method directly.

Common Table Operations

Working with a MAPI table is a little like working with a relational database table. In every row, the
same columns appear in the same order. A user can limit the number of rows and columns in the view
and specify their order. Rows can be retrieved one at a time or in groups. A cursor that keeps track of
the current position can be moved to a specific place in the table.

To work with tables, client applications use the read-only interface, IMAPITable : IUnknown, whereas
service providers, depending on whether they own the data that the table is based on, can use either
IMAPITable or ITableData : IUnknown. The operations defined in these interfaces can be divided into
three groups: operations that affect single columns, operations that affect single rows, and operations
that affect the entire table. Column operations include specifying the properties to be included in the
column set and the order in which they should be included. Row operations include data retrieval and
the maintenance operations: adding, deleting, and modifying a single row or rows. Operations of a
global nature include event notification, searching, and sorting.

Defining Column Sets

The column set of a table is the group of properties that are displayed in the table view. Table
implementors have a default column set that they return to a user if the user has made no attempt to
change it. A user can request that the default set be changed to include other columns, if the table
implementor supports them, or different columns. A table's current column set is either the set of
columns established when the user made a call to change the default set, or if no call was made, it is
the default set.

To change a column set, a client or service provider calls the IMAPITable::SetColumns method or the
API function, HrAddColumnsEx. When a column set is altered with SetColumns, columns from the
default set can be removed and new columns added, and the order in which these columns appear can
be changed. HrAddColumnsEx operates slightly differently in that it always adds columns to the
beginning of the column set and never removes columns. Whatever was in the column set before the
call will still be there after the call, positioned after the newly added columns. Whereas SetColumns is
used on most tables to provide their users with a customized view of the data, HrAddColumnsEx is
used mostly to add to the column set of recipient tables.

SetColumns specifies the columns that are returned with each row and the order of these columns
within the row. The success of this operation is apparent only after a table user makes a separate call
to retrieve the table data. It is then that the table implementor reports an error if not all of the columns
in the property tag array passed to SetColumns are supported. No error is returned from SetColumns
due to unsupported columns.

SetColumns is typically a synchronous operation. However, callers can request that it operate
asynchronously by setting the ulFlags parameter to TBL_ASYNC, but service providers are not
required to honor the request. If a service provider that does not support asynchronous column set
definition receives a SetColumns call with the TBL_ASYNC flag set, the provider should perform the
operation synchronously. With asynchronous column modification, SetColumns will return before the
operation completes and the caller must use the IMAPITable::GetStatus method to determine when
completion occurs.

Another flag, TBL_BATCH, allows callers to specify that the table implementor can defer evaluating the
results of the operation until a later time. Whenever possible, callers should set this flag because
batched operation improves performance.

It is often convenient for callers to reserve some columns in the retrieved row set for values to be
added later. Callers do this by placing PR_NULL at the desired positions in the property tag array
passed to SetColumns; the table will then pass back PR_NULL at those positions in all rows retrieved
with QueryRows.

Working with Large Columns

Columns with string or binary property data can be large, possibly many thousands of bytes long.
Because including one or more columns with hundreds of bytes in a view is often impractical, MAPI
enables table implementors to truncate the value, most often to 255 bytes and less often to 510 bytes.
Table implementors should whenever possible include the full value of a property in a table column.
The recommended alternative is to include only the first 255 bytes.

Clients cannot know ahead of time whether or not a table they are using truncates large columns. They
should assume that a column represents a truncated property if the length of the column is either 255
or 510 bytes. Clients can retrieve the full value of a truncated column if necessary from the object
directly by callings the object's IMAPIProp::GetProps method.

Clients building restrictions with large properties should be aware that it is up to the table implementor
as to how these restrictions operate. Some table implementors allow restrictions that are built with a
truncated column to be based on the truncated size while others base it on the entire value.

Using Row and Row Set Data Structures

A row represents a MAPI object of a particular type and is defined using the SRow data structure. The
SRow structure contains an array of property values, or SPropValue structures, that describe the
column set and a count of the number of structures in the array. Rows are sometimes combined into
row sets, or arrays of SRow structures. Row sets are defined using the SRowSet data structure.

The following illustration shows the relationship between an SRow and an SRowSet data structure.

{ewc msdncd, EWGraphic, groupx832 10 /a "MAPI_17.WMF"}

Table Positioning

The current position within a table is always indicated by a cursor. There is one cursor for each view of
a table; its value is set by the table's implementor. When a client or service provider using the table
makes a call to change the position of the table, the value of the cursor is reset. Clients and service
providers change the position of a table by:

· Using a bookmark, a resource that indicates a particular location in a table.
· Using a fractional value.
· Setting a restriction.
· Retrieving rows.

Setting a bookmark makes it possible to return to the associated position at a later time, a feature that
can significantly improve the performance of table operations. MAPI defines three standard bookmarks:

BOOKMARK_CURREN
T

Points to the present row in a
table.

BOOKMARK_BEGINNIN
G

Points to the first row in a table.

BOOKMARK_END Points to the last row in a table.

Table implementors are required to support these standard bookmarks but can support others.
However, there are not unlimited numbers of bookmark resources available, and clients and service
providers must free them as soon as possible.

To establish a bookmark at the current position, call IMAPITable::CreateBookmark. Occasionally
there will be insufficient memory available to allocate the new bookmark, causing CreateBookmark to
return the MAPI_E_UNABLE_TO_COMPLETE error value. To free a bookmark, call
IMAPITable::FreeBookmark.

To move the cursor to the position identified by an established bookmark, call IMAPITable::SeekRow.
SeekRow establishes a new value for the BOOKMARK_CURRENT position. SeekRow can be used,
for example, to position a table ten rows from the current position or to start over at the beginning.
Clients or service providers can seek to the current, beginning, or end of a table, or any other position
that is associated with a predefined bookmark. They can move in either a forward or backward
direction and limit the operation to a specified number of rows. As a rule, callers should seek through
no more than 50 rows with SeekRow; IMAPITable::SeekRowApprox should be used with larger
numbers of rows.

To move the cursor to an approximate position based on a fraction, call SeekRowApprox.
SeekRowApprox moves to the row that represents a particular percentage of rows in relation to the
beginning of the table. This percentage is specified by the caller in the ulNumerator and ulDenominator
parameters. With SeekRowApprox, a client can move to the row that is one third of the rows from the
beginning of the table.

To determine a table's fractional position, call QueryPosition. QueryPosition informs the table's user
of an approximate position by setting a fractional value based on the number of rows in the table and
the row number. Service providers are not required to make this value accurate; it is meant to be an
approximation. In fact, because accurate implementations can be expensive to invoke, especially on
categorized tables, it is recommended that service providers avoid complete accuracy.

Clients and service providers use the SeekRowApprox and QueryPosition methods to implement a
scroll bar and inform a user of the current position.

To position a table to the first row that matches the criteria established in a restriction, call the FindRow
method. Starting with the row represented by a particular bookmark, FindRow searches in either a
forward or backward direction to locate a row that matches the criteria specified in the restriction.
FindRow can be useful for implementing a scroll bar that is based on character strings, rather than

fractional values. For example, a client can call MAPI's implementation of FindRow when searching
through the integrated address book to enable a user, by entering one or more characters, to locate the
first name that begins with the specified characters.

Retrieving Rows

To retrieve a row or rows, client applications or service providers obtain the underlying data of the
columns specified for the table view and modify the current position. Clients and service providers can
retrieve a single row, a group of rows, or all of the rows in a forward or backward direction starting from
the beginning of the table, the end of the table, or a position in the middle.

Often one of the columns in a returned row holds the PR_ENTRYID property, an entry identifier that
can be used to open the object that corresponds to the row. This entry identifier is a short term entry
identifier, one that that does not persist past the lifetime of the table. However, because some service
providers support only one type of entry identifier, entry identifiers returned from their tables will have
long term longevity.

Clients and service providers can make one of the following calls to retrieve rows:

IMAPITable::QueryRows Retrieves a specified number of
rows in a table.

HrQueryAllRows Retrieves all of the rows in a
table.

ITableData::HrQueryRow Retrieves a row in a table
identified by the value of a
particular column.

Using ITableData::HrQueryRow

To retrieve a row that has a value that matches the value of an index column, service providers and
client applications call the ITableData::HrQueryRow method. Most tables use the
PR_INSTANCE_KEY property as their index column. The returned row contains columns for all of the
properties that belong to the object associated with the row.

Using IMAPITable::QueryRows

To retrieve any number of rows in either a forward or a backward direction, service providers and
clients call the IMAPITable::QueryRows method. QueryRows retrieves rows beginning with the
current cursor position. The actual rows and columns that are returned and the order in which they are
returned depend on whether a successful call to the IMAPITable method SetColumns, Restrict, or
SortTable has been made prior to the QueryRows call. If none of these calls has been made,
QueryRows returns all of the rows in the table. Each row contains the default column set in default
order.

IMAPITable method Effect on output of QueryRows
SetColumns The particular columns in each row and

the order of those columns match the
set of columns specified in the call to
SetColumns.

Restrict Only the rows that match the criteria
specified in the restriction are returned.

SortTable The returned rows are in the order
specified in the SSortOrderSet
structure passed to SortTable.

It is possible that a client or service provider calling SetColumns requests an unsupported column to
be included in the column set. When this occurs, QueryRows places the special property type
PT_ERROR in the property tag and the error value MAPI_E_NOT_FOUND in the property value for the
unsupported column.

With IMAPITable::QueryRows, the caller can specify the number of rows to retrieve. Rows are always
returned in the current sorted order. A positive row count number means that rows are returned from
the current position. A negative row count number means to back up from the current position the given
number of rows and to start reading the rows in a forward direction. If the TBL_NOADVANCE flag is
set, the cursor is located at the first row returned. If the TBL_NOADVANCE flag is not set, the cursor
position ends up at the starting position.

Implementors of QueryRows can treat the row count as a request rather than a requirement. It is
acceptable for QueryRows to return anywhere from zero rows if there are no rows in the direction of
the query to the number requested.

When implementing QueryRows, return only the rows that the user will see when rows are requested
from a categorized table view. This allows the caller to make valid assumptions about the scope of the
data and avoid extra work.

When calling QueryRows, be aware that the timing of asynchronous operations such as notifications
and calls to the IMAPITable methods SetColumns, Restrict, or SortTable can affect the set of rows
that are returned. The returned set of rows might not accurately represent the underlying data. That is,
if an asynchronous operation such as Restrict is pending, QueryRows returns the MAPI_E_BUSY
value. This is not the case if table notifications are pending. For example, if a message has been
deleted from a folder, but a notification causing the folder's contents table to be updated has not yet
been processed, the message will still appear in the table view. Table users should wait for notifications
to arrive before updating their view of the data.

Using HrQueryAllRows

HrQueryAllRows is a helper function that combines the functionality of the IMAPITable methods
SetColumns, Restrict, SortTable, and QueryRows. With one call, a client application or service
provider can retrieve all of the rows in a table that have a particular set of columns, match a particular
set of criteria, and are sorted in a particular order. Specifying a row and column preference is optional,
however, and if no preferences are indicated, HrQueryAllRows returns all of the underlying data for
the table. The table's default column set and default sort order are used. HrQueryAllRows always
begins processing at the beginning of the table.

With HrQueryAllRows, the caller can specify a maximum number of rows to retrieve.
HrQueryAllRows always attempts to return all of the rows that it can. When no maximum number is
specified, this is all of the rows in the table. When a maximum number is specified, only that number is
returned. Setting a maximum limit allows HrQueryAllRows to fail when the specified number has been
reached, saving memory and processing time.

Memory Issues in Row Retrieval

An important issue connected with retrieving rows from a table is memory usage. Lack of available
memory can cause the IMAPITable::QueryRows method to fail to return the requested number of
rows and the HrQueryAllRows function to fail to return the specified maximum number or rows.
Deciding how to retrieve rows from a table depends on whether or not the table can be expected to fit
in memory, and if it cannot, if failure is acceptable. Since it is not always easy to determine the amount
of data that will fit into memory at one time, MAPI provides some basic guidelines for a client
application or service provider to follow. Bear in mind that there are always exceptions, based on the
particular table implementation and how the underlying data is stored.

The following guidelines can be used to evaluate table memory usage:

· Clients that can tolerate occasional working set memory usage in the megabyte range and are
written for 32-bit platforms can assume they will have no problems reading an entire table into
memory. Clients written to run on 16-bit platforms should be more conservative.

· Restrictions have an affect on a table's usage of memory. A severely restricted table with an
extensive number of rows, such as a contents table, can be expected to fit into memory while an
unrestricted large table usually cannot. However, large unrestricted tables might fit in memory if the
table user has some extended knowledge about the table or control over its data.

· Several of the tables owned by MAPI such as the status, profile, message service, provider, and
message store tables, will usually fit in memory. These are generally small tables. However, there
are exceptions. For example, a server-based profile provider might generate a larger profile table
that will not be able to fit.

To retrieve all of the rows from a table that will fit into memory with no problems, call HrQueryAllRows,
setting the maximum number of rows to zero.

To retrieve all of the rows from a table that might or might not fit into memory, generating an error, call
HrQueryAllRows specifying a maximum number of rows. The maximum number of rows should be set
to a number greater than the minimum number of rows that are needed. That is, if a client must access
at least 50 rows from a 300 row table, the maximum number of rows should be set to at least 51.

To retrieve all of the rows from a table that is not expected to fit into memory, call QueryRows in a loop
with a relatively small row count, as the following code sample illustrates:

HRESULT hr;
LPSRowSet pRows = NULL;
LONG irow;
LONG cAsk = 50; // adjust this value

while ((hr = pTable->QueryRows(cAsk, 0, &pRows)) == hrSuccess
 && pRows->cRows != 0)
{
 for (irow = 0; irow < prows->cRows; ++irow)
 {
 // process the row...
 }
 FreeProws(pRows);
 pRows = NULL;
}
if (hr)
{
 // handle the error...
}

When this loop completes and all the rows in the table have been processed and cRows is zero, the

position of the cursor will usually be at the bottom of the table.

Determining a Table's End

A common error is to assume that the end of the table has been reached when:

· QueryRows has been called in a loop, with the end of the loop determined by the row count
returned by IMAPITable::GetRowCount. The count that GetRowCount returns does not always
represent the exact number of rows in the table; it is an approximate count.

· QueryRows has been called with a fixed number of rows and assume that if less rows are returned
that the end of the table has been reached. It is not until QueryRows returns a row set with a row
count equal to zero that there are no more rows to retrieve.

Note The only time that a caller can assume that the cursor is positioned at the end of the table for a
positive row count or at the beginning of the table for a negative row count is when the value S_OK and
zero rows are returned. The value MAPI_E_NOT_FOUND is never returned.

Tips for Better Table Performance

Because many of the table operations can be time-consuming and there is no way to show progress,
table users should be aware of a few techniques that can improve performance. The first technique
involves the ordering of IMAPITable calls. A client or service provider that is planning to define a
column set, build a restriction, and define a sort order before retrieving rows should perform these
tasks in exactly this order. First, the call to define a column set should be made. Specifying the
restriction should be next followed by the call to sort the table. Performing these tasks in this order
limits the number of rows and columns that will be sorted, thereby improving performance.

The second technique involves delaying the work of a particular method until a later time. Setting the
TBL_BATCH flag on a method allows the table implementor to collect several calls before acting on
any one of them. Rather than make potentially many calls to a remote server, a table implementor can
make one, performing all of the operations at one time. The results of the operations are not evaluated
until they are needed. For example, when a client calls IMAPITable::Restrict to specify a restriction
with the TBL_BATCH flag set, the restriction need not go into effect until the client calls
IMAPITable::QueryRows to retrieve the data. This allows the table implementator to combine the work
of two calls into one. Table users that take advantage of the TBL_BATCH flag should be aware that
error handling under these conditions can be more complex.

Service providers implementing tables can lessen the time it takes to create a view by caching copies
of commonly used object properties. Keeping a copy of these properties in memory saves having to
retrieve them from the object each time the view must be rebuilt.

Sorting and Categorization

Sorting a table places rows in an order that makes sense for its viewer. For example, one viewer might
prefer to see a contents table's messages in alphabetic order by subject so that all of the threads of a
conversation are together while another viewer might want the messages to appear in order by the
sender.

There are two types of sorting: standard and categorized. With standard sorting, all rows are displayed
in a flat list using one or more columns as a sort key. When a table is sorted by category, again one or
more columns are used as a sort key, but all rows with columns that have values that match the sort
key, or category, are displayed as a group. This group contains two kinds of rows: heading rows and
leaf rows. A heading row contains the column or columns designated as the category and a column for
each of four computed properties: PR_CONTENT_UNREAD, PR_INSTANCE_KEY, PR_DEPTH, and
PR_ROW_TYPE. A leaf row contains all of the columns in the column set minus the category columns.

Categorized tables are primarily supported by message store providers in their contents table
implementations. Some address book providers will also support categorization in their contents tables.

Defining Sort Orders

A newly instantiated table is not necessarily sorted in any particular order. Client applications and
service providers use two data structures to define a sort order: SSortOrder for specifying a sort key
and SSortOrderSet for combining sort keys and specifying other information.

The SSortOrder data structure is defined as follows:

typedef struct _SSortOrder
{
 ULONG ulPropTag;
 ULONG ulOrder;
} SSortOrder, FAR * LPSSortOrder;

The ulPropTag member is the property tag for a sort key column. All table implementations allow
columns in the current view to be used as a sort key. Support for sort keys defined with available
columns that are not in the current view, although valuable, is optional. Available columns are those
columns that are returned from IMAPITable::QueryColumns when the TBL_ALL_COLUMNS flag is
set.

The ulOrder member indicates both directional order and categorization information. Rows can be
sorted in either an ascending or descending sequence with all NULL entries placed last. The ulOrder
member can be set to TABLE_ASCEND, TABLE_DESCEND, or TABLE_SORT_COMBINE, for
categorized tables. The TABLE_SORT_COMBINE value indicates that the column specified in
ulPropTag should be combined with the previous category column to form a composite category. That
is, instead of categorizing on unique values of individual columns, TABLE_SORT_COMBINE allows
categorization on unique values of a combination of columns. A single category could be defined, for
example, to group messages received from a particular sender on a particular subject.

The SSortOrderSet structure is used to collect all of the sort key columns and is defined as follows:

typedef struct _SSortOrderSet
{
 ULONG cSorts;
 ULONG cCategories;
 ULONG cExpanded;
 SSortOrder aSort[];
} SSortOrderSet, FAR * LPSSortOrderSet;

The CSorts member specifies the number of columns in the sort key, which is the number of entries in
the SSortOrder structure array. The SSortOrder structure array can contain both categorized columns
and standard sort key columns.

The cCategories member specifies the number of columns that are designated as category columns.
When there are more columns than there are categories, the first columns are used for the
categorization. For example, consider the situation where cCategories is set to two and there are
three columns defined as sort keys in the SSortOrderSet structure: sender name, subject, and date
received. Sender name is the top level category grouping; subject is the secondary grouping. Every
leaf row that has columns with values that match the two category columns is ordered by date
received., so that the expanded display for such a grouping appears as shown in the following
illustration:

{ewc msdncd, EWGraphic, groupx832 11 /a "MAPI_58.WMF"}

The cExpanded member specifies the number of categories that are initially expanded. When there
are multiple categories, the table implementation begins with the first column to be designated as a
category and continues in sequential order with the subsequent category columns until the number of
cCategories has been exceeded. If there are more category columns than there are expanded

columns, the category columns are collapsed. If cExpanded is equal to zero, only the top level
heading row is available to the table user for display. If cExpanded is equal to one less than the
number of categories, then all of the heading rows but none of the leaf rows are available. If
cExpanded is equal to the number of categories, then the table is fully expanded.

Using SortTable

To perform the actual sorting of a table, client applications and service providers call the
IMAPITable :: SortTable method. SortTable accepts two input parameters: a pointer to the
SSortOrderSet data structure containing the sort criteria and a set of flags. The flags can request that
the sort operation be performed asynchronously and that evaluation of the results be deferred until they
are needed.

Table sorting is not a feature that service providers are required to implement. Service providers can
return the MAPI_E_NO_SUPPORT value if they do not support any level of sorting and the
MAPI_E_TOO_COMPLEX value if a sort request is too difficult. For example, a service provider can
return MAPI_E_TOO_COMPLEX if one of the columns specified in the SSortOrder array cannot be
used as a sort key or if the value of the cCategories member is greater than zero and categorization is
unsupported. Whenever SortTable fails, the sort order that was in effect before the failure is still in
effect.

Properties for Categorized Tables

To help with categorization, a table implementor computes several properties:

PR_ROW_TYPE
PR_INSTANCE_KEY
PR_DEPTH
PR_CONTENT_UNREAD

The PR_ROW_TYPE property is a 32-bit value that indicates whether a row is a leaf row
(TBL_LEAF_ROW), an expanded heading row (TBL_EXPANDED_CATEGORY), or a collapsed
heading row (TBL_COLLAPSED_CATEGORY).

The PR_INSTANCE_KEY property is a binary value that uniquely identifies a row in a table view.
PR_INSTANCE_KEY is a required column in most tables. If a row is included in two views, there will be
two different instance keys. The instance key of a row may differ each time the table is opened, but
remains constant while the table is open. Rows added while a table is in use do not reuse an instance
key that was previously used.

Although uncommon, some service providers support categorization on multivalue columns. The
expansion of a multivalue column logically occurs before categorization and every expanded row has a
unique instance key.

The PR_DEPTH property indicates the level of a row in a categorized display. PR_DEPTH begins at 0
for the top-level heading rows, adding 1 for each subsequent heading row, and ending with the number
of categories as the value of PR_DEPTH for each leaf row. For example, if there are three categories
and five rows that fit a particular grouping of those three categories, the first category as displayed in
the top level heading row has a PR_DEPTH of 0, the next heading row a PR_DEPTH of 1, and the
third last heading row a PR_DEPTH of 2. All five of the leaf rows have their PR_DEPTH property set to
3.

The PR_CONTENT_UNREAD property is valid for contents tables only. It is a count of the number of
unread messages in a category. Some client applications display the heading row of a category
differently depending on the value of PR_CONTENT_UNREAD. For example, a client can display a
category that includes unread messages in bold. PR_CONTENT_UNREAD cannot be used as a
category and an attempt to do so results in the MAPI_E_INVALID_PARAMETER value being returned
from the IMAPITable::SortTable method.

States of Categorized Tables

Categories have two states: collapsed and expanded. When categories are collapsed, only the heading
rows are returned from IMAPITable::QueryRows. When categories are expanded, both heading and
leaf rows are returned. Categories can be expanded or collapsed on an individual basis. That is, not all
categories in a table must be one state or the other; some categories can be collapsed while others
expanded.

The user of a categorized table decides how it is displayed. One common option is to use a control
provided in the Win32 SDK called the treeview control. Treeview controls are listboxes that support
information in a tree-like structure. Heading rows in the expanded state are marked with a minus sign
and heading rows in the collapsed state are marked with a plus sign. Expanded categories are
displayed with the leaf rows indented under the heading rows.

The following illustration shows a categorized contents table with an expanded category to illustrate the
difference between how an expanded and collapsed category can appear to the user. The table is
sorted by sender name, the PR_SENDER_NAME property. Heading rows contain the sender name
and the computed properties for the row. The category where sender name is equal to Bill Lee is
expanded to include five leaf rows. All of the leaf rows are visible and there is a minus sign next to the
heading row, indicating that no further expansion of the catgory is possible.

{ewc msdncd, EWGraphic, groupx832 12 /a "MAPI_59.WMF"}

In the following illustration, the category is collapsed with none of the leaf rows available to include in
the display. The heading row has a plus sign indicating that the category can be expanded further.

{ewc msdncd, EWGraphic, groupx832 13 /a "MAPI_57.WMF"}

Collapsing and Expanding Categories

To collapse and expand a category, a client application or service provider uses the following
IMAPITable methods:

GetCollapseState
SetCollapseState
ExpandRow
CollapseRow

GetCollapseState saves the data necessary for SetCollapseState to use to rebuild the expanded and
collapsed view categories of a categorized table. Although the format of the data and how to restore
the state are entirely up to the table implementor, data that is typically saved includes:

· The sort keys (standard columns and category columns).
· Information about the row that the instance key represents.
· Information to restore the collapsed and expanded categories of the table.

A call to GetCollapseState must always precede a call to SetCollapseState. Callers pass a pointer to
an instance key that represents the row at which the state will be rebuilt to GetCollapseState.
GetCollapseState saves the necessary information and passes it back to the caller. When
SetCollapseState is called, the information is passed in as input and a bookmark that identifies the
same row as was represented by the instance key passed to GetCollapseState is returned as output.
If this row no longer exists, service providers should return the bookmark BOOKMARK_BEGINNING.
Callers are responsible for freeing the bookmark by calling IMAPITable::FreeBookmark.

SetCollapseState implementors are responsible for verifying that the sort order and restrictions are
exactly the same as they were at the time of the GetCollapseState. If a change has been made,
ideally SetCollapseState should not be called because the results can be unpredictable. This can
happen if, for example, a client calls GetCollapseState and then SortTable to change the sort key
before calling SetCollapseState. However, to be safe, SetCollapseState should check that the saved
data is still valid before proceeding with the restoration.

To alter the display of a category, table users call the method IMAPITable::ExpandRow or
IMAPITable::CollapseRow. When a category is to be expanded with all of its leaf rows available, a
table user calls ExpandRow. Conversely, when a category is to be collapsed, CollapseRow is called
to remove the leaf rows from view.

Users calling ExpandRow pass the instance key of the row to undergo the expansion, the number of
bytes in the instance key, and the maximum number of rows to be returned. ExpandRow passes back
an SRowSet structure with the additional rows. The rows in the SRowSet might or might not equal the
number of rows that were actually added to the table, the entire set of rows for the category. Errors can
occur, such as when insufficient memory prohibits the return of all of the rows in the category, or when
the number of rows in the category exceeds the maximum number that can be returned. In either case,
BOOKMARK_CURRENT should be positioned to the last row returned. This allows the caller to
immediately call IMAPITable::QueryRows to retrieve the rest of the rows in the category.

CollapseRow requires an instance key identifying the category row to be collapsed and the number of
bytes in the key. It returns the number of rows that are removed from the table view. When a row that is
defined by a bookmark is collapsed out of view, the bookmark is moved to point to the next visible row.

Table notifications are not sent when a table is expanded or collapsed. A client maintaining the data
can update its copy of the leaf rows when making the ExpandRow or CollapseRow call.

About Restrictions

A restriction is a way to limit the number of rows in a view to only those rows with values for columns
that match specific criteria. There are many different opportunities for using restrictions with tables.
Client applications can use restrictions, for example, to filter a contents table for messages sent by a
particular person, to search for rows that either do not support a property or have set a property to a
specific value, or to look for duplicate recipients within a message.

The IMAPITable::Restrict and IMAPITable::FindRow methods are used to set restrictions on a table.
Restrict applies the restriction to the table without retrieving any rows. To retrieve only those rows that
meet the restriction, a subsequent call to IMAPITable::QueryRows or a similar method is required.
FindRow applies the restriction and retrieves the first row in the table that matches the criteria.
FindRow applies a temporary restriction, in existence only for the duration of the call, whereas
Restrict applies a more permanent restriction.

Some clients can build a restriction using columns that are not in the current column set. Supporting
such a restriction is optional and table implementors that do support it add value, particularly for
contents tables. Table implementors that do not support it can return the MAPI_E_TOO_COMPLEX
value from a Restrict call or the MAPI_E_NOT_FOUND value from a FindRow call.

Clients should be aware that, even if the provider does support restrictions on columns not in the
current column set, they will get better performance overall by specifying the columns they intend to
use in their restrictions with SetColumns.

Types of Restrictions

There are many types of restrictions, some that focus on specific columns. All table implementations
are expected to support restrictions on the columns in the current column set. However, to add value,
table implementors can also support restrictions based on object properties that are not currently in the
table view.

Some restrictions can be combined using a restriction that performs a logical AND, OR, or NOT
operation. For example, most Property restrictions must be joined with Exists restrictions using And
restrictions. There are a few exceptions, such as when the property used in the Property restriction is
the PR_ANR property or when it is a required column in a table. Clients building restrictions to limit
their view should use Exists restrictions with their Property restrictions because MAPI does not specify
how service providers should evaluate Property restrictions when a property does not exist. It is
reasonable and recommended that service providers fail the restriction, but there are no requirements.

A restriction is defined using the SRestriction data structure which contains a union of more
specialized restriction structures and an indicator of the type of structure included in the union.

Each of the specialized restriction structures in the union represents a different type of restriction. The
types of restrictions and their associated data structures are listed in the following table.

Type of
restriction

Associated data
structure

Description

Compare
Property

SComparePropsRestric
tion

Compares two properties of
the same type.

And SAndRestriction Performs a logical And
operation on two or more
restrictions.

Or SOrRestriction Performs a logical Or operation
on two or more restrictions.

Not SNotRestriction Performs a logical Not
operation on two or more
restrictions.

Content SContentRestriction Locates specified data.
Property SPropertyRestriction Specifies a particular property

value as criteria for matching.
Can be used, for example, to
search for a particular type of
attachment.

Bitmask SBitMaskRestriction Applies a bitmask to a
PT_LONG property, typically to
determine if particular flags are
set.

Size SSizeRestriction Tests the size of a property
using standard relational
operators.

Exists SExistRestriction Tests whether or not an object
has a value for a property.

Subobject SSubRestriction Used for searching through
subobjects, or objects that
cannot be accessed with an
entry identifier (recipients and
attachments). Can be used, for
example, to look for messages

for a particular recipient.
Comment SCommentRestriction Associates an object with a set

of named properties.

Some restrictions use regular expressions and MAPI supports a limited form of regular expression
notation in the style that is used in the grep utility.

The Comment restriction is used by clients that save restrictions on disk, to keep application-specific
information with the restriction. For example, a client saving the name of a named property used in a
Property restriction can do so with a Comment restriction. Saving the name is not possible in a
Property restriction; the SPropertyRestriction data structure holds only the property tag. Comment
restrictions are ignored by Restrict in that they have no effect on the rows returned by QueryRows
after a Restrict call has been made.

About Content Restrictions

Content restrictions are used to search for one or more characters in text. The SContentRestriction
structure includes a property tag, a property value, and a comparison indicator. This indicator, called
the fuzzy level, describes the degree of exactness or looseness that is applied when searching the text.

The fuzzy level can be defined with six different values, three of which are mutually exclusive. Although
table implementors are not required to support all of these values, it is recommended that they do.
Table implementors can return the MAPI_E_TOO_COMPLEX value from an IMAPITable::Restrict call
that sets a value that is not supported. The mutually exclusive values are as follows:

Fuzzy level value Description
FL_SUBSTRING Specified property value must

be included in the column.
FL_PREFIX Specified property value must

appear at the beginning of the
column.

FL_FULLSTRING Value of the column must
match the specified property
value exactly.

Three other fuzzy level values can also be set; callers can either set none of the values, some of the
values, or all of the values. These values are meant to be suggestions to the table implementor; exact
interpretation of them is totally implementation-dependent.

Fuzzy level value Description
FL_IGNORECASE Differences in upper and

lower case are ignored.
FL_IGNORENONSPACE Differences in non-spacing

characters, such as accents
and diacritics, are ignored.

FL_LOOSE Less strict rules for matching
are used.

About Address Book Restrictions

Address book providers are required to support three types of restrictions on the contents tables of
their containers:

· Ambiguous name property restrictions
· Instance key property restrictions
· Prefixed display name content restrictions

Ambiguous name restrictions are property restrictions using the PR_ANR property to match recipient
names with entries in address book containers. The PR_ANR property restriction is a "best guess" type
of search whereby address book providers can choose the matching property that works best for their
container. For example, one address book provider might implement the PR_ANR restriction by
matching recipient names against the PR_ACCOUNT property of each container entry whereas
another provider might use PR_DISPLAY_NAME.

MAPI recommends that implementations of the PR_ANR restriction strike a balance between adequate
performance and user satisfaction. User satisfaction can be compromised when an address book
provider implements the restriction in such a way that too few or too many matches are found. Some
address book providers support what is known as a distinguished, or common, name that is not
displayable in a dialog box but can match an ambiguous name restriction.

A typical implementation might be to parse the recipient's display name into words, matching any entry
that contains all of the words. Attention to details such as sensitivity to word position, whether or not
non-consecutive words are matched, and the choice of separator characters can vary. For example, if
the name to be resolved is "Bill L," a typical PR_ANR restriction would select the following entries as
matching:

Billy Larson
Bill Lee
Bill Logan Jr.
Sam Bill Lee

Instance key restrictions, or PR_INSTANCE_KEY property restrictions, are used in the implementation
of list boxes that are used in client applications for viewing MAPI tables. Some list box implementations
allow users to make multiple selections, scroll up or down, and return to the first item selected. To
implement this behavior, clients call IMAPITable::FindRow, passing a property restriction on the
PR_INSTANCE_KEY property to the method. Address book providers are required to support this
restriction.

Another feature of list boxes used for table viewing is the ability to position the cursor based on a set of
prefix characters. As the user starts typing prefix characters, the client moves the cursor to the first item
that begins with these characters. Clients implement this feature with a content restriction based on the
PR_DISPLAY_NAME property and the FL_PREFIX fuzzy level.

Building a Restriction

To build a restriction, a client application creates a hierarchy of one or more SRestriction structures of
various types and passes a pointer to the hierarchy to the IMAPITable::Restrict or
IMAPITable::FindRow method. The illustration and the code sample that follow illustrate how a typical
restriction is implemented with linked restriction structures of different types. A user of a client
application is trying to find all messages that contain the word "volleyball" in the subject line and were
sent to Sue from Sam. First, a generic SRestriction structure is allocated. This structure becomes the
basis for other calls to the MAPIAllocateMore function to create linked SRestriction and SPropValue
structures that can be freed with a single call to MAPIFreeBuffer. Because the criteria to apply to the
set of messages is in three parts, the top level restriction structure is an And restriction. The
SAndRestriction structure's cRes member is set to 3 to indicate the three restrictions to evaluate and
its lpRes member is set to a three member array of SRestriction structures.

To search for messages that are sent to a particular recipient, it is necessary to search the recipient
table for each message rather than the message itself. A Subobject restriction is used to perform the
recipient table search. Therefore, the first member of the array points to a SSubRestriction structure
with its ulSubObject member set to PR_MESSAGE_RECIPIENTS. Then, to specify what to look for in
the recipient table, a Content restriction is used.

The second and third members of the array are more straightforward. They both point to Content
restriction structures, one to search for messages that have a PR_SENDER_NAME property set to
"Sam" and another that has a PR_SUBJECT property set to "volleyball."

{ewc msdncd, EWGraphic, groupx832 14 /a "MAPI_61.WMF"}

Sample Restriction Code

The following sample code shows how to create a restriction that filters out all messages that do not
contain the word "volleyball" in the subject line and were not sent to Sue from Sam. A tree of
SRestriction structures is required, with the top node being an And restriction implemented with an
SAndRestriction structure. The three restrictions that are joined by the And operation are a Subobject
restriction that searches for messages sent to Sue, a Content restriction that searches for messages
from Sam, and another And restriction that searches for messages that have a subject containing
"volleyball." Because subject is not a required property, an Exists restriction must be included.

This code uses dynamic allocation and initialization; it is possible to allocate and initialize statically as
well. In the interest of brevity, the error checking that must occur following the allocation calls is not
included in the sample.

HRESULT BuildRestriction (LPTSTR pszSent, LPTSTR pszFrom,
 LPTSTR pszSubjectText);
{
 LPSRestriction pRest, pAndRes, pObjRes, pSubjAndRes;
 LPSPropValue pRecip, pSender, pSubject;
 HRESULT hResult;
 ULONG ulResCount = 3, ulSubjCount = 2

 // Allocate and build And restriction to join criteria
 hResult = MAPIAllocateMore (sizeof(SRestriction)*ulResCount, pRest,
 (LPVOID *)&pAndRes);
 pRest->rt = RES_AND;
 pRest->res.resAnd.cRes = ulResCount;
 pRest->res.resAnd.lpRes = pAndRes;

 // Allocate and build Subobject restriction to search recipient list
 hResult = MAPIAllocateMore (sizeof(SRestriction), pRest,
 (LPVOID *)&pObjRes);
 pAndRes[0].rt = RES_SUBRESTRICTION;
 pAndRes[0].res.resSub.ulSubObject = PR_MESSAGE_RECIPIENTS;
 pAndRes[0].res.resSub.lpRes = pObjRes;

 // Allocate and build Content restriction to look for recipient
 hResult = MAPIAllocateMore (sizeof(SPropValue), pRest,
 (LPVOID *)&pRecip);
 pObjRes->rt = RES_CONTENT;
 pObjRes->res.resContent.ulFuzzyLevel =
 FL_FULLSTRING | FL_IGNORECASE;
 pObjRes->res.resContent.ulPropTag = pRecip->ulPropTag =
 PR_DISPLAY_NAME;
 pObjRes->res.resContent.lpProp = pRecip;
 pRecip->Value.LPSZ = pszSent; // pszSent set to Sue

 // Allocate and build Content restriction to look for sender
 hResult = MAPIAllocateMore (sizeof(SPropValue), pRest,
 (LPVOID *)&pSend);
 pAndRes[1].rt = RES_CONTENT;
 pAndRes[1].res.resContent.ulFuzzyLevel =
 FL_FULLSTRING | FL_IGNORECASE;

 pAndRes[1].res.resContent.ulPropTag = pSend->ulPropTag =
 PR_SENDER_NAME;
 pAndRes[1].res.resContent.lpProp = pSend;
 pSend->Value.LPSZ = pszName; // pszName set to Sam

 // Allocate and build And restriction to look for subject
 hResult = MAPIAllocateMore (sizeof(SRestriction)*ulSubjCount, pRest,
 (LPVOID *)&pSubjAndRes);
 pRest->rt = RES_AND;
 pRest->res.resAnd.cRes = ulResCount;
 pRest->res.resAnd.lpRes = pAndRes;

 // Create an And restriction to search for subject
 hResult = MAPIAllocateMore (sizeof(SPropValue), pRest,
 (LPVOID *)&pSubjAndRes);
 pAndRes[2].rt = RES_AND;
 pAndRes[2].res.resAnd.cRes = ulSubjCount;
 pAndRes[2].res.resAnd.lpRes = pSubjAndRes;

 // Exists restriction to check that PR_SUBJECT exists
 hResult = MAPIAllocateMore (sizeof(SPropValue), pRest,
 (LPVOID *)&pSubj);
 pSubjAndRes[0].rt = RES_EXIST;
 pSubjAndRes[0].res.resExist.ulReserved1 = 0;
 pSubjAndRes[0].res.resExist.ulReserved2 = 0;
 pSubjAndRes[0].res.resExist.ulPropTag = PR_SUBJECT;

 // Content restriction to check for "volleyball" in subject
 hResult = MAPIAllocateMore (sizeof(SPropValue), pRest,
 (LPVOID *)&pSubj);
 pSubjAndRes[1].res.resContent.ulFuzzyLevel =
 FL_SUBSTRING | FL_IGNORECASE;
 pSubjAndRes[1].res.resContent.ulPropTag = pSubj->ulPropTag =
 PR_SUBJECT;
 pSubjAndRes[1].res.resContent.lpProp = pSubj;
 pSubj->Value.LPSZ = pszSubjectText;

 return hResult;
}

Advanced Table Operations

Advanced table operations are relevant to a minority of MAPI-compliant client applications and service
providers. Some advanced operations are more complex to implement; others are no more complex,
but are of interest to a small minority of MAPI components. For example, many clients and service
providers work with complex asynchronous table notifications but only a handful of clients and service
providers work with multivalued columns.

About Table Notifications

Service providers send asynchronous notifications to clients that have registered to receive them when
a change occurs to data in a table. To register for table notifications, a client creates an advise sink
object and passes a pointer to it in a call to the IMAPITable::Advise method. This advise sink object
can be implemented by the client or by MAPI through the API function HrAllocAdviseSink.

Clients often rely on table notifications to learn of changes to objects rather than registering for
notifications directly with the object. When notification arrive, clients can determine whether or not to
make another call to reload the table.

Typical changes that cause notifications to be sent include the addition, deletion, or modification of a
row and any critical error. Service providers can implement the registration and generation of
notifications themselves or delegate to the following support methods provided by MAPI:

IMAPISupport::Subscribe
IMAPISupport::Unsubscribe
IMAPISupport::Notify

When providers generate table notifications, they construct a NOTIFICATION structure that includes a
TABLE_NOTIFICATION structure in its info member. The TABLE_NOTIFICATION describes the
change that has occurred to the table. One of its members, ulTableEvent, specifies the type of change
that has occurred. There are several different events that can occur and table users that have
registered for notifications should be prepared to handle any of them. The list of possible events is as
follows:

TABLE_CHANGED TABLE_RELOAD
TABLE_ERROR TABLE_SORT_DONE
TABLE_ROW_ADDED TABLE_ROW_DELETED
TABLE_ROW_MODIFIED

TABLE_NOTIFICATION structures also include an HRESULT datatype for reporting an error value, the
instance key of the affected row, the instance key of the row just prior to the affected row, and an SRow
structure containing the property data for the affected row. If the affected row is the first row in the
table, propPrior must be set to PR_NULL and not zero. Zero is not a valid property tag. The properties
that are included in the SRow structure are ordered using the column set that was established from the
previous SetColumns call, if one occurred. If no SetColumns call was made prior to the notification
being sent, the columns are ordered in a default order decided by the table implementor.

Service providers that send batched notifications must order them so that they can be interpreted from
the first notification to the last. This ordering is especially necessary when a notification batch contains
a series of events such as TABLE_ROW_ADDED and one event refers to a prior row that was added in
another event in the same batch.

About Asynchronous Table Operations

Table notifications to registered client applications and service providers are always asynchronous as
can be a few of the table methods. When a method is asynchronous, it can return before the operation
being performed is complete. The three asynchronous table methods are the IMAPITable methods
SetColumns, Restrict, and SortTable.

As an advise sink receiving table notifications, there are a few problems to be aware of that can occur
due to the asynchronous nature of event notification. First, the data passed in the
TABLE_NOTIFICATION structure might not be the most current information about the state of the
table. For example, an advise sink might receive a TABLE_ROW_MODIFIED notification on a row that
has since been deleted. The corresponding TABLE_ROW_DELETED notification is pending.

Second, the columns that are returned in a notification and order of their return might not match the
order and selection defined in the most recent call to SetColumns. MAPI requires that the column set
match the set from the last SetColumns call that was in effect at the time that the notification is
generated. However, if a client makes a second SetColumns call after the notification is sent but
before the IMAPIAdviseSink::OnNotify call is made, the column set will not match the client's current
view.

Third, table notifications are only sent for rows that are part of the view. That is, if a row is excluded due
to a restriction or because the table is in a collapsed state, no notification will be sent if that row
changes.

To work with asynchronous table operations, table users can call one of the following three IMAPITable
methods:

GetStatus
Abort
WaitForCompletion

GetStatus returns information about the table type and if an operation is in progress or an error has
occurred from a completed operation. For example, if a client needs to cancel a sort operation because
it is taking too much time, the client can first call GetStatus to determine if, in fact, a sort operation is
presently processing. Then the client can call Abort to stop it. To suspend activity until an
asynchronous task has completed, a client or service provider can call WaitForCompletion. Calling
WaitForCompletion allows the task to complete without interruption.

Working with Multivalued Columns

A multivalued column contains the data of a multivalued property, or property that has an array of
values of the base type rather than a single value. Because none of the tables include multivalued
properties in their default column sets, multivalued properties are included in a table only if the user of
the table requests it.

Multivalued columns can be displayed in tables in one of two ways:

· In a single row, with all of the property values appearing in the single column instance. This is the
default.

· In a series of rows, with one row for each of the property values. Each unique value appears in the
column in its own row with there being as many rows as there are values in the multivalued property.
Each row has a unique value for the PR_INSTANCE_KEY property, but the same values for the
other columns.
If a row contains more than one column with multiple values, for example, two columns with M and
N values respectively, then M*N instances of the row appear in the table.

A table user requests the non-default type of display by calling the IMAPITable::SetColumns method
with the MVI_FLAG flag set in the property type of the multivalued column. The MVI_FLAG flag is a
constant defined as the result of combining the MV_FLAG and MV_INSTANCE flags with a logical OR
operation. In addition to being used in SetColumns, MVI_FLAG can also be passed to
IMAPITable::SortTable in the lpSortCriteria parameter and IMAPITable::Restrict in the ulPropTag
member of the lpRestriction parameter. When passed the MVI_FLAG, SortTable performs similarly to
SetColumns, adding one row for each value in the multivalued column and sorting on the single
values in the instances and rows are added for each value. Restrict, however, does not expand the
multivalued column into additional computed rows. A multivalued column with the MVI_FLAG set
instructs the service provider to use that column in restricting the table. If there is a property value in
the restriction, it must be a single value property tag identical to the one that would be returned by
IMAPITable::QueryRows for the column.

Table implementors are only required to support the default type of display and can return the
MAPI_E_TOO_COMPLEX value when a caller requests the other alternative. The ability to support
both types of display is most important for message store providers implementing folder contents
tables.

Working with Unicode Columns

Character strings in tables can be represented using standard 8-byte characters, which are property
type PT_STRING8, or 16-byte Unicode characters, which are property type PT_UNICODE. Table
implementors are free to choose whether or not their tables support Unicode strings. Because Unicode
adds value for both clients and service providers by extending the feature set, supporting Unicode
wherever possible is recommended. Although all of the methods in IMAPITable support Unicode, most
of the MAPI table object implementations do not.

Many table methods accept a flag that dictates whether or not string property values are expected to
be Unicode. On input, specifying the MAPI_UNICODE flag indicates to the table implementor that all
string property values passed in with the call are Unicode strings and have property types of
PT_UNICODE. On output, this flag indicates that all returned string property values should be Unicode
strings, if possible. Whether the flag has a meaning for input or output depends on the method. Table
implementors that do not support Unicode and are passed the MAPI_UNICODE flag return the
MAPI_E_BAD_CHAR_WIDTH value.

Using Table Data Objects

A table data object is a utility object implemented by MAPI to help service providers and client
applications implement table objects and perform table maintenance. To obtain a table data object,
service providers and clients call the API function CreateTable.

Table data objects support the ITableData : IUnknown interface, which has methods for:

· Adding data to rows.
· Deleting data from rows.
· Changing data in rows.
· Creating a table object.
· Retrieving rows in a special order.
· Retrieving property values.
· Generating table notifications.

A table data object holds all of the data and any associated restrictions in memory, making it unsuitable
for use with very large tables. Large restrictions and complex operations such as categorization are
unsupported.

Table data objects identify rows using an index column, a property that is guaranteed to have a unique
value for each row. Most table implementors use the PR_INSTANCE_KEY property as the index
column. Multivalued properties cannot be used as an index column.

To create a table object, table data object users call the HrGetView method. Callers can specify a sort
order and a callback function to be invoked when the view is released. Frequently, message store or
address book providers call HrGetView to generate a table object for a client. When the client is
finished using the table and calls its Release method, the callback function defined in the HrGetView
parameter list is called.

To change one row in a table, table data object users call the HrModifyRow method, and to change
multiple rows they call the HrModifyRows method. Callers specify the row or rows to be changed by
passing in one or more index columns.

To delete one row in a table, table data object users call the HrDeleteRow method, and to delete
multiple rows they call the HrDeleteRows method. As with the modify row methods, callers specify one
or more index columns indicating the row or rows to delete.

Table data objects generate a single notification regardless of the number of rows affected by a change
or deletion. If a target row in an operation does not exist, a row is added.

To retrieve rows from a table in the order that they were inserted, table data object users call the
HrEnumRow method. When a row is inserted, MAPI assigns it a sequential number. HrEnumRow
uses this number to determine the order for retrieval.

To insert a row at a particular position, table data object users call the HrInsertRow method. The
position is specified by callers with a sequential number, 0 being the first row in the table. For example,
if the value 50 is passed to HrInsertRow, MAPI inserts the new row as the 51st row in the table.

To generate a notification to all clients and service providers that hold pointers to table objects created
with HrGetView, table data object users call the HrNotify method. Callers pass in a set of properties;
MAPI generates table modified notifications for each of the rows with columns matching these
properties. Notifications are sent regardless of whether the data has actually changed. Users of display
tables, or tables whose rows represent information about user interface controls, reload the data
associated with the affected control upon receiving the table modified notification.

 MAPI Form Architecture

This section provides an overview of the MAPI form architecture. After reading this section you will
have an understanding of what MAPI forms are and how they interact with other components of the
MAPI subsystem. The purpose of this section is to give you the conceptual knowledge you need to
implement your own MAPI form servers.

Note Because the MAPI form architecture is based on the OLE component object model, developing
form server applications requires knowledge of OLE programming. For more information on OLE, see
the OLE Programmer's Reference in the Win32 Software Development Kit.

 About MAPI Form Components

The relationship between the MAPI components involved in using forms is shown in this diagram.
Following is a brief description of the components involved; more detailed descriptions are provided
later in this section.

{ewc msdncd, EWGraphic, groupx840 0 /a "MAPI.WMF"}

In the diagram, notice that the form manager plays a role that is similar to other MAPI service
providers, although it is not a service provider itself. That is, the form manager is a replaceable DLL
that implements a portion of the MAPI interfaces. Although developers can implement their own form
manager, most environments will use the form manager provided by Microsoft due to the form
manager's complexity.

The components shown in the diagram and their relationship to other components are:

· Messaging client: An application that is able to use form objects. The messaging client uses the
MAPI form interfaces to communicate with the form manager in order to load messages into form
objects.

· MAPI form interfaces: A defined standard for communication between MAPI components that are
related to forms.

· Form manager: The DLL that messaging clients use to handle installation of forms in form libraries,
loading of form servers, and initial communication between messaging clients and form servers.

· Form libraries: Permanent storage for the executable files associated with form servers.
· Form servers: Executable files which implement a form. Form servers create form objects and user

interfaces to deal with specific messages. This executable is also an OLE server and adheres to the
normal OLE conventions.

· Form objects: Run-time objects created by form servers that correspond to specific messages. Form
objects run in the same process context as their form server.

 About Form Servers

The user's perception of a form is usually a property sheet for a message or a data-entry form that
enables users to enter structured information. However, it can be any user interface that is associated
with a message class. From a programmer's point of view, a form consists of:

· A type of MAPI message with it's own message class and OLE identifier.
· The executable file that implements the form server.
· A collection of MAPI properties, custom or otherwise, that the form server uses. Some or all of these

may be available to messaging clients for use.
· The configuration file that describes the form and is used by the form manager.

Because forms are IMessage objects, they exhibit properties and behavior that is consistent with MAPI
message objects. However, because forms can have custom properties, controls, and a display
rendering that is application-specific, the MAPI interfaces that forms are generic enough to permit any
sort of interface that is needed. The actual definition of a form is stored in a form library, which is
discussed later in this section.

Note More accurately, all messages are instances of MAPI forms. However, it is usually easier to
think of custom forms as special cases of messages, since forms for composing and reading normal e-
mail messages are the most commonly used forms. The fact that all messages are really just forms
gives custom forms the same status as any other message in the MAPI system.

Every form has a set of properties, some of which are visible within the form's user interface. Usually,
properties are matched to fields within the form's user interface. For example, a purchase order form
might have the fields Item, Description, Price, Tax, and Subtotal. These fields are simply visual
renderings of form properties of the same names. Clients ascertain which properties are supported by
a particular message class through the IMAPIFormInfo::CalcFormPropSet method, which is
implemented by the MAPI form manager.

Like basic messages, MAPI forms can contain all the standard message properties such as the sender,
the intended recipient, and when the message was sent. Forms can also contain any number of
custom properties that are specific to the form. For example a "Bug Report" form might contain custom
properties for Bug Type, Bug Severity, and Product Version.

To create a form you must implement a form server. The form server is the executable file that is
loaded when a messaging client needs to display a message that is the type supported by the form
server. The form server in turn creates form objects as necessary to display specific messages and
handle user interactions with those messages.

Every form server has a configuration file associated with it. This file contains information that
describes the form server for the benefit of the form manager. The form manager uses this information
when installing the form server into a form library.

For details on creating the parts of a form, see Developing MAPI Form Servers.

 About MAPI Message Classes

Message classes are an important concept within MAPI, and of particular importance to forms. A
message class is a string property that is assigned to all MAPI messages and identifies the type of
message. The property associated with the message class string is PR_MESSAGE_CLASS.
Programmers often use the term "message class" to refer to the set of messages of a particular class.
For example, the string "IPM.Note" can be used to refer to the set of all messages where
PR_MESSAGE_CLASS is equal to "IPM.Note." For information on the format of a message class
string, see PR_MESSAGE_CLASS.

Each message class is associated with a form server that MAPI activates whenever a message of that
class must be rendered or handled. Form servers adhere to the OLE component object model (COM).
Form servers run as standalone executables, not as in-proc servers. For more information, see the
OLE Programmer's Reference.

Message classes can be perceived as forming a hierarchy, and one message class can be a
superclass of another message. For instance, IPM.Note is a superclass of IPM.Note.Secure and
IPM.Note.Ink. A message class is considered a superclass of another if the message class string of the
first appears as a period-delimited prefix of the second. For example, IPM.Note is a superclass of
IPM.Note.Signed, but is not a superclass of IPM.Phone or IPM.Noteworthy. A message class string that
is an extension of another message class string is referred to as a subclass.

Messages of a particular class contain the same set of properties. A superclass contains a set of
properties common to all of its subclasses. Subclasses may define additional properties beyond the
common ones defined by the superclass, or they may interpret the superclass's properties differently.

Each form server is identified by a unique OLE class identifier often written as just CLSID. There is
always a one-to-one mapping between a class identifier and it's message class. This does not mean,
however, that a form server can only work with messages of one message class. If no form server is
available to service a message of a particular class, the form manager being used should attempt to
find a form server for a message class higher in the message class hierarchy; the default form
manager supplied with the MAPI SDK does this. Such a form server will probably be able to render
only a subset of the message's properties (the ones supported by the superclass), but it will be better
than nothing. What happens when no matching form server is found at all is an implementation detail
specific to the form manager being used; the default form manager does not open messages when this
happens.

 About Form Verbs

A form's user interface typically offers menu items or controls that enable users to take some kind of
action with the form. It is the form server's job to handle these user actions. This interface is
implemented using standard Win32 APIs; writing one is just like writing other interfaces for regular
Win32 programs.

Often, user actions are associated with verbs. A verb is the name for an action that is specific to a
certain message class. For example, Reply is a verb that is implemented by many form servers, each
of which may have a different interpretation of that verb. Verbs are sometimes referred to as
commands.

Note Not all menu items and controls on a form correspond to a verb. For example, a Cancel button
does not correspond to a Cancel verb within the form server. Usually, verbs are associated with actions
that are specific to a particular message class or a set of message classes. Although different message
classes can support different sets of verbs, all support at least the Open verb, which displays the form's
user interface and loads it with the message's property values.

Verbs may take no parameters. Forms that export commands with variable parameters must use the
OLE Automation mechanisms.

Clients can determine which verbs are supported by a particular message class through the
IMAPIFormInfo::CalcVerbSet method, which is implemented by the MAPI form manager. The form
manager gets this information from the form's configuration file. The verb set returned by this method is
used by the client to show the user which commands can be executed on a message. For example, a
client might enable users to click the right mouse button over a message to display verbs applicable to
that message.

 About Form Objects

Form objects are created dynamically by form servers in order to display specific messages and allow
users to interact with them. A form object is, therefore, usually an instantiation of the IMAPIForm-
derived class implemented by the form server. When a client application opens a message, the form
server for that message class creates a form object to handle the message. The form object then
creates its interface, and displays the properties of the message in it. The form object and its interface
persists until the user closes it. The form object handles any changes to the values of the message's
properties.

Additionally, the MAPI form interfaces define a mechanism by which one form object can load and
display a series of messages. This is an efficiency mechanism, as it avoids needless destruction and
creation of message objects and their interfaces. When requested by the messaging client to load a
different message, the form object should save any changes to the current message's properties.

 About the Form Manager

A form manager is an object that implements the IMAPIFormMgr interface. Most organizations will use
the form manager supplied with MAPI, referred to as the default form manager. However, an
organization can replace the default form manager with a custom form manager if desired. The form
manager takes care of locating forms within form libraries, loading forms in response to user requests,
and installing forms into a user's local form library, folder form library, or personal form library.

When a user wants to interact with a message, the form which implements the message's message
class must be activated. Activation means that the form transitions from an idle state to a running state
so the user can interact with it.

To interact with a message, an instance of the form server for the message's message class must be
created and activated to display the message and carry out the requested operation on the message.
As described in the topic About Form Libraries, a form's implementation can exist in several different
locations (form libraries) and there is no guarantee that a form or its server will be locally available or in
a running state when a user wants to interact with it. The form manager takes care of the details of
locating and activating the form.

Clients use services provided by the form manager to find and activate forms. The IMAPIFormMgr
interface is implemented by the form manager and is called by clients to access its services. The form
manager is an essential component because it hides almost all the details of finding and activating
forms from messaging clients.

When loading form servers, the default form manager loads the form from the first form library in which
an implementation for the form's message class is found. The default form manager searches the form
libraries in the following order:

1. The user's local form library. This form library is searched first because it provides the fastest access
to a form's implementation if the implementation is installed in the local form library.

2. The folder form library of the message's container ¾ the folder that the message being loaded is
stored in.

3. The user's personal form library.

A custom form manager can search the available form libraries in any order, or can implement other
form libraries such as an organization-wide form library. For more details on form libraries, see About
Form Libraries.

 About Capabilities Not Supported by Form Managers

For performance reasons, the following capabilities aren't supported by the default form manager, but
may be supported by custom form managers:

· A hierarchy that enables forms to be grouped or categorized within a form library. A form library is
essentially a flat-file database of forms.

· Access control for categories of forms, corresponding to message classes or superclasses.
· Support for multiple language versions of the same form in a single form library.

Those are entirely implementation issues. There is nothing to prevent a custom form manager from
implementing those features.

The MAPI form architecture does not support multiple form managers running concurrently. Although
MAPI supports multiple concurrent message store providers, transport providers, and address book
providers, only a single form manager is supported.

Because only one form manager may be running at once, if you implement a custom form manager
you will have to re-implement any functionality from the default form manager that you need. Since
your custom form manager will entirely replace the default form manager, capabilities of the default
form manager will be unavailable unless they are duplicated in your custom form manager.

 About Disk Instances and Cache Tables

To activate a form, its executable files must be available on the user's computer. If they are not
available, they must be copied from the form library to the local disk. To do this, the default form
manager creates a subdirectory within the user's Windows directory to contain the form's executable
files (.EXEs, .HLPs). This directory is referred to as the disk instance of the form.

The default form manager maintains a table of all disk instances so that if a disk instance already exists
it can be used without having to copy files from the form library to the user's disk. The table of disk
instances is managed as a least frequently used cache. If a new disk instance is needed, it is copied to
the user's computer, replacing the least frequently used disk instance. The disk instance cache table is
then updated to reflect the latest configuration. The size of the disk cache is a user-configurable option,
enabling users to balance speed with available disk capacity.

In addition to the disk instance cache, the default form manager maintains a running instance table that
lists all running instances of form servers on the user's computer. This uses MAPI's ability to keep idle
form instances running in an invisible state until a form of that form server's message class is activated.
In other words, form servers can be cached in RAM to minimize the number of times a form's
executable must be located within a form library and loaded into memory from disk or over the network.
Like the disk instance cache, the running instance cache behaves in a least frequently used fashion so
that a running form instance can be purged from the cache to make room for another form instance.
This cache is searched for a running instance of a form server before the form libraries are searched
for the form server.

Note The default form manager displays a progress indicator when installing a form on a user's
workstation, enabling the user to cancel the operation. This is especially useful if the user's connection
to the form server's executable file is over a low bandwidth network.

 About Platform Independence

Form libraries are independent of the platform on which the forms in them are used. This means that a
single form definition in a form library can include versions of the form for multiple platforms such as
Windows for Workgroups, Windows NT, and Macintosh. However, if a form does not support the
platform that a user is using, the default form manager will attempt to find a form server for a
superclass of the message being opened to view the form instead, provided that any are available
which do support the user's platform.

 About Form Libraries

To help organize form servers and make them easily accessible to client applications, the MAPI form
architecture includes form libraries, which support the installation, administration, replication, and use
of form servers. Form libraries are repositories of form servers and configuration information about
them that the form manager uses when loading form servers.

Note Early in the history of MAPI, form libraries were called "registries." Because of this, the term
"registry" has persisted in some form-related MAPI interfaces, properties, configuration file entries, and
so forth. If your application's interface requires use of one of these terms, you should use the term
"library" exclusively.

 About Form Storage

Although it is not necessary to know all the details of how forms are physically stored, it is useful to
understand a few of the main concepts. Therefore, before describing the three types of form libraries
supported by the default form manager, this topic gives an overview of how forms are stored.

Form definitions can be physically stored within folders in one or more MAPI message stores. Every
MAPI folder can be thought of as having two areas for storing message objects: the standard part and
the associated part. The standard part of the folder includes the messages and folders that users
manipulate.

The associated part includes hidden message objects that are associated with the folder, including
form definitions, views, rule templates, reply templates, and so on. This alternate part is called the
folder associated contents table, and the set of messages in the associated contents table is referred
to as the folder-associated information. The hidden messages are an integral part of the folder and are
copied along with the standard folder contents when the folder is copied. Although physically stored as
messages, information in a folder's associated contents table behaves more like properties than like
viewable messages. Any folder object that supports an associated contents table is capable of storing
custom forms. The IMAPIContainer::GetContentsTable method can return either the standard
contents or the associated contents of the folder, depending on the value of the ulflags parameter of
the method.

A form library consists of form definitions stored in a folder's associated contents table. The form
definition includes the form's properties, the actions the form supports, and even the form server
executable file, which is stored as one or more message attachments.

Additionally, forms can be stored in any file or location that the form manager being used supports. The
default form manager stores form servers in MAPI folders, but a custom form manager could
implement its own storage for form servers.

A form can have multiple user interfaces that are bound to its message class. For example, a form can
have separate Compose and Read interfaces. The form takes care of invoking the proper interface for
different user requests, depending on which of the form's verbs is being called. For example, if your
form server has separate composing and reading interfaces, the Compose interface can be opened
automatically when the user creates a new message of the form's message class and the Read
interface can be opened automatically when the user opens an existing message of the form's
message class.

Most of the information stored within a form definition is available by invoking the
IMAPIFormInfo::IMAPIProp method on an IMAPIFormInfo object. The IMAPIFormInfo interface
simplifies access to form information by calling all the MAPI folder and message methods needed to
retrieve the information. An IMAPIFormInfo object can be obtained by calling the
IMAPIFormContainer::ResolveMessageClass method.

Each of the three types of form library is described in the following sections.

 About Local Form Libraries

Local form libraries are stored directly on a user's machine, usually in a file called FRMCACHE.DAT in
the %WINDOWS%\FORMS directory. Client applications can access forms in the local form library
without accessing any network resources. Local form libraries are an exception to the rule that forms
are stored in associated contents tables, since the local form library is just a file on disk that is not part
of any MAPI folder heirarchy.

 About Folder Form Libraries

In some cases, you might want to associate one or more forms with a specific folder. For example,
employees in your organization could all have a Progress Report folder in their personal message store
for creating and storing progress reports. Because the progress report is specific to each user's
Progress Report folder, it might not be appropriate to store the progress report form in the system wide
form library. However, a copy of the progress report form can be kept in the associated contents table
of each user's Progress Report folder. This restricts the user from using progress report forms outside
of the designated folder.

Conceptually, there is one folder form library for every folder in a message store, even if no form
servers are installed in it. Folder form libraries are implemented like other form libraries ¾ they are
stored as associated contents tables in the alternate part of the folder. Because folder form libraries are
contained within the folder, they are copied along with their parent folder in copy operations.

 About Personal Form Libraries

As its name suggests, personal form libraries contain forms of interest to a particular user. A user's
personal form library is the form library associated with the default message store identified in the
user's profile; each profile installed on a workstation can use a separate default store, and therefore, a
separate personal form library. A personal form library can contain copies of forms that are also
contained in other form libraries in addition to other forms.

A personal form library is implemented in the associated contents table of the root folder in a user's
default message store ¾ whether that resides on a server or locally on the user's workstation is
immaterial. If the user's default message store is a stored on the user's workstation, personal form
libraries offer enhanced performance by enabling applications to access forms locally rather than over
the network. It also makes forms available to users working off-line, which can occur when users want
to take their forms with them on portable computers and are without access to a network.

The properties and underlying implementation of personal form library entries include a "Container ID"
property that identifies a master container that the local entry must be synchronized with. This can be
the ID of an arbitrary folder that contains forms. This is useful if you are using a custom form manager
that supports some sort of organization-wide form library; the form manager would take care of
synchronizing the forms stored in the personal form library and the organization-wide form library. This
would probably happen when the form manager was loaded, but could theoretically happen at any
time.

 About Forms and MAPI Client Applications

Since all MAPI messages are instances of forms, client applications display and interact with form
objects just as they do with other message objects. Client applications that use the MAPI form
interfaces can provide additional interaction with form objects. Client applications can use any special
verbs defined by a form to provide users with the full range of interactions intended by the form's
designer. Clients can also use any custom properties that the form server exposes to help users sort,
preview, or otherwise manage forms in the client's interface.

 About MAPI Form Interfaces

MAPI defines the following interfaces relating to forms:

Interface name Description
IMAPIForm Manipulates form objects and handles form

object commands.
IMAPIFormAdviseSink Determines if the form object can handle the

next message and changes the next or
previous state of the form object.

IMAPIFormContainer Supports installation, de-installation, and
resolution of form servers against a specific
form container.

IMAPIFormFactory Supports the use of configurable run-time form
servers.

IMAPIFormInfo Enables client applications to work with
properties that are specific to a message class.

IMAPIFormMgr Enables client applications to get information
about form servers, activates form servers, and
installs form servers in the messaging system.

IMAPIMessageSite Used to manipulate messages associated with
form objects.

IMAPIViewAdviseSink Notifies client applications that an event has
occurred in the form object.

IMAPIViewContext Used to respond to Next, Previous, and Delete
commands in the form object.

IPersistMessage Used to save, initialize, and load form objects
to and from message storage.

For more information on the methods of the MAPI form interfaces, see MAPI Interfaces. You do not
have to implement all of the MAPI form interfaces in order to create a custom form. A form itself
requires only that you implement the IPersistMessage, IMAPIForm, and IMAPIFormAdviseSink
interfaces. Additionally, it is also a good idea to implement IMAPIFormFactory and IMAPIFormInfo.
IMAPIFormFactory is useful for OLE compliance, and IMAPIFormInfo allows well written client
applications to make better use of your forms.

Note Strictly speaking, IMAPIFormAdviseSink is an optional interface. However, it is strongly
recommended that you implement it in your form servers. This interface is critical to efficient interaction
between messaging clients and form servers, especially when several messages of your form server's
message class are being dealt with.

 MAPI Component Basics

The following topics apply to developers of client applications and service providers. These topics are
arranged in order of importance. That is, topics that are critical to all programmers appear first and
topics that are either of minimal importance or do not apply to all programmers appear last.

About Entry Identifiers

An entry identifier is a binary data structure called an ENTRYID that is used to uniquely identify and
open a message store or address book provider object. Message store providers assign entry
identifiers to message stores, folders, and messages; address book providers assign them to address
book containers, distribution lists, and messaging users. Entry identifiers are also used for accessing
an object represented by a row in a table, such as the status object implemented by a transport
provider and represented by a row in the status table. Objects store their entry identifiers in their
PR_ENTRYID properties.

Whereas service providers create, assign, and examine entry identifiers, client applications use them
only as tools for accessing the objects they represent. They retrieve them from an object's
IMAPIProp::GetProps method or a table's IMAPITable::QueryColumns method. They compare them
with the CompareEntryIDs method and pass them to the OpenEntry method to open the
corresponding objects. CompareEntryIDs and OpenEntry are available with several MAPI objects. To
clients, entry identifiers are opaque pieces of binary data and have nothing to do with the underlying
messaging system.

However, clients should always pass naturally aligned entry identifiers in their calls to service providers
because although service providers should handle entry identifiers that are arbitrarily aligned, this is not
always the case. A naturally aligned memory address allows the computer to access any data type it
supports at that address without generating an alignment fault. The natural alignment factor is typically
the same alignment factor used by the system memory allocator and is usually 8 bytes.

Entry identifiers come in two types: short-term and long-term. Short-term entry identifiers are faster to
construct, but their uniqueness is guaranteed only over the life of the current session on the current
workstation. Long-term entry identifiers have a more prolonged lifespan. Short-term entry identifiers are
used primarily for rows in tables and entries in dialog boxes whereas long-term entry identifiers are
used for many objects such as messages, folders, and distribution lists.

Constructing Entry Identifiers

Entry identifiers are constructed with the ENTRYID data structure. The ENTRYID data structure is
made up of a flag that describes the attributes of the entry identifier and the actual entry identifier. The
ENTRYID structure is defined as follows where MAPI_DIM is defined in the MAPIDEFS.H header file.

typedef struct
{
 BYTE abFlags[4];
 BYTE ab[MAPI_DIM];
} ENTRYID, FAR *LPENTRYID;

The first byte of the 4-byte abFlags member describes the type and use of the entry identifier and can
have the following values:

MAPI_NOTRESERVED MAPI_NOTRECIP
MAPI_NOW MAPI_SHORTTERM
MAPI_THISSESSION

MAPI_NOTRESERVED, when set, indicates that the entry identifier can be used by other service
providers for other objects. The MAPI_NOTRECIP value indicates whether or not the entry identifier
can be applied to a message recipient. When MAPI_NOW is set, the entry identifier can only be used
at the present time, and when MAPI_THIS_SESSION is set, the entry identifier can only be used for
the current session. MAPI_SHORTTERM identifies the entry identifier as a short-term identifier.

Clients expect to be able to check this first abFlags byte to determine the entry identifier's longevity. A
zero in abFlags[0] indicates a long-term identifier and a nonzero indicates a short-term identifier. The
last three bytes of the abFlags member must be zero.

The ab member of entry identifiers created by address book and message store providers is made up
of two pieces: a 16-byte MAPIUID that identifies the service provider and a piece to identify the object.
A MAPIUID is structure that contains a globally unique identifier, or GUID. A GUID is a byte order
independent identifier which can be created using the Microsoft utility UUIDGEN.EXE.

A service provider registers its MAPIUID with MAPI during the logon process in a call to
IMAPISupport::SetProviderUID. When a client calls an OpenEntry method to access an object,
MAPI uses the MAPIUID to determine which service provider can provide that access. Service
providers should use the same MAPIUID for all versions of their DLL. This enables clients with the
newer version to respond to messages sent and saved with the older verion. Service providers that are
using a profile that must work on two different processors, each with a different byte order, use a
MAPIUID to differentiate between objects.

The rest of the ab member after the 16-byte MAPIUID contains service provider-specific binary data for
identifying particular objects. A service provider typically includes the following in this part of their entry
identifiers:

· Version information
· Location information

Because it is common for a service provider to change the format of its entry identifiers from version to
version, storing version information makes it possible to quickly determine how to decipher any entry
identifier.

Location information is data that gives a service provider an indicator of how to locate the object
represented by the entry identifier. For example, a service provider can store the disk offset for the last
place in a data file that the object was stored. Because this type of information can change over time,
service providers should provide multiple ways for locating objects in their entry identifiers.

About Short-Term Entry Identifiers

A short-term entry identifier is assigned by a service provider to an object when the identifier must be
constructed quickly and does not need to last over time or distance. The uniqueness of a short-term
entry identifier is guaranteed only over the life of the current session on the current workstation.
Typically a short-term entry identifier is valid only until the object that it represents is released.

Short-term entry identifiers are assigned to rows in tables and to entries in dialog boxes, where it is
necessary to provide data quickly for browsing. For example, message store providers assign short-
term entry identifiers to rows of messages in a contents table and to recipients in a recipients table.
Clients can use these short-term entry identifiers to open the objects represented by the table rows.
However, unlike long-term entry identifiers that can be used with any of the OpenEntry methods, short-
term entry identifiers should be used with the container's OpenEntry method.

The most common ways to implement short-term entry identifiers include:

· Making the short-term entry identifiers the same as the long-term identifiers, leaving all of the flags
unset.

· Making the short-term entry identifiers different from the long-term identifiers, setting all of the flags.

Clients can identify a short-term entry identifier of the second type by examining its abFlags member
as follows:

abFlags[0] = 0xFF;

Some service providers create short-term entry identifiers that have greater validity by clearing one or
more flags. For example, the following abFlags members represent short-term entry identifiers that can
be used for multiple days or for multiple sessions:

abFlags[0] = 0xFF & ~MAPI_NOW;
abFlags[0] = 0xFF & ~MAPI_THISSESSION;

Clients quickly acquire, use, and discard short-term entry identifiers. For the most part, they can be
used in the same manner as long-term entry identifiers. They can be retrieved from a table, passed to
OpenEntry, and compared with CompareEntryIDs. The one exception is that they are never returned
from IMAPIProp::GetProps. The properties returned from GetProps are always long-term entry
identifiers.

About Long-Term Entry Identifiers

A long-term entry identifier is assigned by a service provider to an object when an object requires an
identifier with a prolonged lifespan. Long-term entry identifiers are always valid for weeks or months
and can be valid on other workstations, depending on the provider. The long-term identifiers created by
address book providers for custom recipients are universally valid.

Long-term entry identifiers are assigned to message stores, folders, messages, address book
containers, messaging users, and distribution lists. When client applications call the
IMAPIProp::GetProps method of these objects, it is always a long-term entry identifier that is returned.

Because long-term entry identifiers must be unique across all message stores in the active profile,
when a message or folder is copied from one message store to another, it must be assigned a new
entry identifier. However, when a message store object is moved, whether or not the original entry
identifier remains valid is up to the message store provider implementing the move. Some service
providers assign new entry identifiers to moved objects; others do not. Therefore, clients must be
prepared for either scenario depending on the provider.

Typically, message store providers implement the following behavior when moving folders:

· When moving a folder from one message store to another store of a different type, the entry
identifier is guaranteed to change.

· When moving a folder from one message store to another store of the same type, the entry identifier
almost always changes.

· When moving a folder to another location within the same message store, the entry identifier might
or might not change, depending on the message store provider.

Note Renaming a folder without changing its parent usually does not cause the entry identifier to
change.

About Record and Search Keys

Service providers assign two types of binary comparable identifiers to their objects: record keys and
search keys.

A record key is a required property of all message store and address book objects that uniquely
identifies an object and is used for comparison. Record key properties have property tags that end in
RECORD_KEY, such as PR_RECORD_KEY and PR_STORE_RECORD_KEY. Because a record key
identifies an object and not its data, every instance of an object has a unique record key. The scope of
a record key is the provider resource in which the object is contained. For message store providers,
this is the message store. For address book providers, this is the set of top-level containers used by
MAPI in its integrated view.

Record keys can be duplicated in another resource. For example, different messages in two different
message stores can have the same record key. This is different from long-term entry identifiers;
because they contain a reference to the service provider, they have a wider scope. A message store's
record key is similar in scope to a long-term entry identifier; it should be unique across all message
store providers. To ensure this uniqueness, message store providers typically set their record key to a
value that is the combination of their PR_MDB_PROVIDER property and an identifier that is unique to
the message store.

A search key is used to compare the data in a message or an address book entry to data in other
messages or address book entries. Folders and message stores do not have search keys. Each
search key has a property tag that ends in SEARCH_KEY, such as PR_SEARCH_KEY. Because a
search key represents an object's data and not the object itself, two different objects with the same
data can have the same search key. When an object is copied, for example, both the original object
and its copy have the same data and the same search. key.

The search key of a message is a required property, and message store providers are required to
furnish it at message creation time. It can be modified at any time. The search key of an address book
entry is computed from the address type (PR_ADDRTYPE) and address (PR_EMAIL_ADDRESS). If
the address book entry is writeable, its search key might not be available until the address type and
address have been set using IMAPIProp::SetProps and the entry saved using
IMAPIProp::SaveChanges. When these address properties change, it is possible for the
corresponding search key to be out of sync with the new values until the changes have been
committed with a SaveChanges call.

The value of an object's record key can be the same as or different from the value of its search key,
depending on the service provider. Some service providers use the same value for an object's search
key, record key, and its entry identifier. Other service providers assign unique values for each of its
objects' identifiers.

About Session Identity

Most MAPI sessions have one message service that provides the identity for the session. A message
service provides identity through an object, typically an address book object. When a service provider
supplies an object that can be used for session identity, it inserts the following entry in its section in the
MAPISVC.INF configuration file:

PR_RESOURCE_FLAGS=STATUS_PRIMARY_IDENTITY

Service providers that cannot supply an identity insert this entry in MAPISVC.INF:

PR_RESOURCE_FLAGS=STATUS_NO_PRIMARY_IDENTITY

Multiple service providers within a message service and multiple message services within a profile can
provide identity, as indicated by the presence of this flag in MAPISVC.INF. Message services publish
whether or not they can supply an identity through one of their providers by including one of the
following two entries in their MAPISVC.INF sections:

PR_RESOURCE_FLAGS=SERVICE_PRIMARY_IDENTITY
PR_RESOURCE_FLAGS=SERVICE_NO_PRIMARY_IDENTITY

Although it is possible for multiple providers and message services to supply primary identity, only a
single provider and a single message service is selected to represent each session. Selection occurs
when a profile is created or when a client calls IMsgServiceAdmin::SetPrimaryIdentity.

When a profile is created, MAPI designates the first message service to be configured that includes a
provider with the STATUS_PRIMARY_IDENTITY flag set in its PR_RESOURCE_FLAGS property is
chosen to supply the primary identity. Within the designated message service, the first provider to be
configured that with this resource flag set is chosen to provide the identity for the service. The
STATUS_PRIMARY_IDENTITY flag is cleared for all other providers in the profile. If at any time the
provider supplying primary identity is removed from the profile, the next provider to be configured that
can supply identity takes over the role.

When a client calls IMsgServiceAdmin::SetPrimaryIdentity, it specifies the MAPIUID for a service
provider within the target service. The service provider represented by the MAPIUID is designated to
supply the primary identity for the message service and for the session, and all of the other providers in
the service will share this identity.

When a message service is selected to provide the primary identity for a session, all service providers
within the message service share the same identity. Every provider in the service updates its row in the
status table to include three properties, set to the display name, search key, and entry identifier of the
primary identity object. These three properties are:

PR_IDENTITY_DISPLAY
PR_IDENTITY_SEARCH_KEY
PR_IDENTITY_ENTRYID

To retrieve the entry identifier for the primary identity, clients call the IMAPISession::QueryIdentity
method. QueryIdentity searches the status table for the row that contains the value
STATUS_PRIMARY_IDENTITY in its PR_RESOURCE_FLAGS column and returns the corresponding
PR_IDENTITY_ENTRYID as the entry identifier for the primary identity.

About Managing Memory

Knowing how and when to allocate and free memory is an important part of programming with MAPI.
MAPI provides both functions and macros that your client or service provider can use to manage
memory in a consistent way. The three functions are:

MAPIAllocateBuffer
MAPIAllocateMore
MAPIFreeBuffer

When clients and service providers use these functions, the issue of who "owns" (that is, knows how to
release) a particular block of memory disappears. A client making a service provider method call need
not pass a buffer large enough to hold a return value of any size. The service provider can simply
allocate the appropriate amount of memory and the client can later release it at will, independent of the
service provider.

The memory macros are used to allocate structures or arrays of structures of a specific size. Clients
and service providers should use these macros rather than allocate the memory manually. For
example, if a client needs to perform name resolution processing on a recipient list with three entries,
the SizedADRLIST macro can be used to create an ADRLIST structure to pass to
IAddrBook::ResolveName with the correct number of ADRENTRY members. All of the memory
macros are defined in the MAPIDEFS.H header file.

MAPI also supports the use of the OLE interface, IMalloc, for memory management. Service providers
are given an IMalloc interface pointer by MAPI at initialization time and can also retrieve one through
the MAPIGetDefaultMalloc function. The main advantage to using the IMalloc methods for managing
memory over the MAPI functions is that with the OLE methods it is possible to reallocate an existing
buffer. The MAPI memory functions do not support reallocation.

 About Memory Management Functions

MAPIAllocateBuffer, MAPIAllocateMore, and MAPIFreeBuffer are the three functions that enable
client applications and service providers to exchange blocks of memory. MAPIAllocateBuffer is called
to initially allocate memory for a buffer; MAPIAllocateMore can allocate a subsequent block of
memory that is linked to the initial block at a later time. Assume when calling these allocators that the
returned buffer is appropriately aligned for the CPU architecture.

The chaining of allocations supported by MAPIAllocateMore simplifies the handling of complex
memory objects for clients. An array of property values, for example, can consist of numerous blocks of
memory linked together by pointers that can be released with a single call to the third function,
MAPIFreeBuffer. Whenever a block of memory is returned from any MAPI method, such as
IMAPIProp::GetProps, MAPIFreeBuffer must be used to release it. MAPIFreeBuffer releases the
initial block and any subsequent blocks.

Whenever possible, allocate all of the necessary memory with a single call to MAPIAllocateBuffer.
MAPIAllocateMore exists merely as a convenience. However, if MAPIAllocateMore is used to
allocate additional memory for a buffer, this memory should always be freed with the initial buffer.
Ignore any errors returned from MAPIFreeBuffer. The function almost always succeeds, and in the
rare case that an error is returned, there is little that the caller can do about it.

Note Clients call the MAPIAllocateBuffer and MAPIAllocateMore functions directly, while service
providers must make an indirect call, retrieving the function pointers through a call to
IMAPISupport::GetMemAllocRoutines.

 About Managing Memory for ADRLIST and SRowSet Structures

The recommendation of allocating all memory for a buffer whenever possible with a single
MAPIAllocateBuffer call does not apply when using the address list, or ADRLIST, and row set, or
SRowSet, data structures. These two structures are exceptions to the standard rules for allocating and
releasing memory. They contain multiple levels of structures and are designed to enable individual
members to be added or removed. Therefore, each property is a separate allocation. Where most
structures are freed with one call to MAPIFreeBuffer, each individual entry in an ADRLIST or
SRowSet structure must be freed with its own call to MAPIFreeBuffer or a single call to either
FreePRows or FreePadrlist. FreePRows and FreePadrlist are API functions provided by MAPI for
simplifying the freeing of these data structures. FreePadrlist frees the memory for the ADRLIST
structure plus all associated memory for the structure members; FreePRows does the same for the
SRowSet structure.

The following diagram shows the layout of an ADRLIST data structure, indicating the separate memory
allocations required. The gray boxes show memory that can be allocated and released with one call.

{ewc msdncd, EWGraphic, groupx834 0 /a "MAPI_52.WMF"}

 About Allocating and Freeing Memory

In addition to specifying how to allocate and free memory, MAPI defines a model for knowing when
memory passed between public interface method and API function calls should be freed. The model
applies only to memory allocated for parameters that are not pointers to interfaces, such as strings and
pointers to structures. Interface pointers use the reference counting mechanism implemented through
IUnknown. When allocating and freeing non-MAPI related memory internally within a client application
or service provider, use whatever mechanism makes sense.

The model defines parameters as one of three types. They can be input parameters, set by the caller
with information to be used by the called function or method, output parameters, set by the called
function or method and returned to the caller, or input-output parameters, a combination of the two
types. Output parameters are frequently pointers to data or pointers to pointers to data. Although the
called function is responsible for allocating the data for output parameters, the caller allocates the
memory for the pointer.

The rules for allocating and releasing memory for these types of parameters are explained in the
following table.

Type Memory allocation Memory release
Input Caller is responsible and can

use any mechanism.
Caller is responsible and
can use any mechanism.

Output Called function is responsible
and must use
MAPIAllocateBuffer.

Caller is responsible and
must use MAPIFreeBuffer.

Input-
output

Caller is responsible for the
initial allocation and called
function can reallocate if
necessary using
MAPIAllocateBuffer.

Called function is
responsible for initial freeing
if reallocation is necessary.
Caller must free the final
return value.

During failure conditions, implementors of interface methods need to pay attention to output and input-
output parameters since the caller generally has no way to clean them up. If an error is returned, then
each output or input-output parameter must either be left at the value initialized by the caller or set to a
value that can be cleaned up without any action on the part of the caller. For example, an output
pointer-parameter of void ** ppv must be left as it was on input or can be set to NULL (*ppv =
NULL).

About Structured Storage

Structured storage refers to the hierarchical organization of storage introduced with OLE. Storage is
organized into two or three types of objects:

· Stream objects
· Lock bytes objects
· Storage objects

Stream and lock bytes are lower level objects that directly access the data. Stream objects implement
the IStream interface which defines methods for reading, writing, positioning, and copying bytes of
data. Lock bytes objects implement another OLE interface, ILockBytes, to access data with a byte
array. Byte arrays are typically used to provide customized access to underlying storage.

Storage objects are layered on top of the stream or lock byte objects; they can contain one or more of
these objects as well as other storage objects. Storage objects implement the IStorage interface which
defines methods for creating, accessing, and maintaining nested objects.

Because IStream, ILockBytes, and IStorage are OLE interfaces rather than MAPI interfaces, their
methods return OLE error values rather than MAPI values. Clients and service providers calling
methods in these interfaces must use the API function MapStorageSCode to translate these values
into MAPI error values.

Clients and service providers use structured storage for working with properties that are too large to
maintain with the IMAPIProp methods, typically large string and binary properties. One of the common
ways that clients or service providers access them is by specifying IStream or IStorage as the
interface identifier in a call to the IMAPIProp::OpenProperty method. For example, clients call
OpenProperty with PR_ATTACH_DATA_BIN as the property tag and IID_IStream as the interface
identifier to access a binary attachment in a message.

Clients and service providers can implement their own stream and storage objects or call API functions
to access implementations supplied by MAPI or OLE. Because the supplied implementations serve
most purposes, clients and service providers rarely need to create their own.

When a client calls OpenProperty on a MAPI object to access one of its properties through a storage
object, the service provider will typically open the storage object in direct mode. However, this is typical
rather than required behavior. Clients should assume that all storage objects opened or created by
service providers are transacted and require a call to IStorage::Commit. They should also remember
that changes to storage objects will not be made permanent until they call IMAPIProp::SaveChanges
after the final Commit to save the MAPI object.

MAPI and OLE provide several API functions for defining or accessing storage and stream objects. The
commonly used functions are described in the following table.

Function Description
CreateDocfile Creates a general purpose

storage object.
HrIStorageFromStream Creates a storage object to

access a stream or lock bytes
object.

OpenIMsgOnIStg Creates a message object to
access a storage object.

OpenStreamOnFile Creates a stream object to
access a file.

WrapCompressedRTFStream Creates a stream object that
contains the compressed or
uncompressed version of a

stream holding the rich text of a
message.

CreateDocfile is used frequently in OLE and in MAPI to create a storage object. For more information
on this function, refer to the OLE documentation.

To create a storage object that accesses an existing stream or lock bytes object, clients call
HrIStorageFromStream.

To create a message object that accesses an existing storage object, service providers and clients call
OpenIMsgOnIStg. The message object that is created differs from the typical message objects created
by message store providers in that it does not support all of the IMessage interface methods. For
example, service providers and clients cannot call IMessage::SubmitMessage on this message.

An optional input parameter to OpenIMsgOnIStg is a callback function that conforms to the
MSGCALLRELEASE prototype. This function is called by the new message object when its reference
count reaches zero. Implementing a MSGCALLRELEASE function can be useful for performing some
final processing before the new message is completely removed.

OpenStreamOnFile is commonly used for storing file attachments because it creates a stream that
reads from and writes to a file. OpenProperty with PR_ATTACH_DATA_BIN as the property tag
creates a stream for storing binary attachment data.

To compress or uncompress a stream containing the Rich Text Format message text, clients call
WrapCompressedRTFStream. WrapCompressedRTFStream creates a stream that wraps the RTF
stream. The wrapper stream does not implement all of the IStream methods; the following methods are
excluded:

Seek
SetSize
Revert
LockRegion
UnlockRegion
Stat
Clone

Because the stream objects created by WrapCompressedRTFStream do not support either SetSize
or Stat, there is not an easy way to either extend or retrieve their size. The best strategy is to pick a
reasonable buffer size and read or write in a loop.

Note OLE has a storage object implementation based on a byte array that returns an
IEnumSTATSTG object from the EnumElements method that is problematic.In particular, the
QueryInterface method does not work correctly. Service providers that implement their own storage
objects using OLE's implementation should create a thin wrapper for the IEnumSTATSTG object that
forwards calls on to the underlying IEnumSTATSTG methods but implements its own AddRef,
Release, QueryInterface, and Clone methods.

 About Error Handling

Success, warning, and error values are returned using a 32-bit number known as a result handle, or
HRESULT. An HRESULT is really not a handle to anything; it is merely a 32-bit value with several fields
encoded in the value. A zero result indicates success and a nonzero result indicates failure.

HRESULT values work differently depending on the platform your client or service provider is using. On
16-bit platforms, an HRESULT is generated from a 32-bit value known as a status code, or SCODE. On
32-bit platforms, an HRESULT is the same as an SCODE; they are synonymous data types. MAPI on
32-bit platforms works solely with HRESULT values.

SCODES on 16-bit platforms are divided into four fields: a severity code, a context field, a facility field,
and an error code. The format of an SCODE on a 16-bit platform is shown below; the numbers indicate
bit positions.

{ewc msdncd, EWGraphic, groupx834 1 /a "MAPI_48.WMF"}

HRESULTs on 32-bit platforms have the following format.

{ewc msdncd, EWGraphic, groupx834 2 /a "MAPI_49.WMF"}

The severity code in the 16-bit SCODE and the high order bit in the HRESULT indicates whether the
return value represents success or failure. If set to zero, the value indicates success. If set to 1, it
indicates failure.

In the 16-bit version of the SCODE, the context field is reserved as are the R, C, N, and r bits in the
HRESULT.

The facility field in both versions indicates the area of responsibility for the error. There are several
facilities, but the vast majority of MAPI errors use FACILITY_ITF to represent interface errors. The most
common facilities that are currently used are: FACILITY_NULL, FACILITY_ITF, FACILITY_DISPATCH,
FACILITY_RPC, and FACILITY_STORAGE. If new facilities are necessary, Microsoft allocates them
because they need to be unique. The following table describes the various facility fields.

Facility Description
FACILITY_NULL For broadly applicable common status codes such

as S_OK or E_OUTOF_MEMORY; the value is
zero.

FACILITY_ITF For most status codes returned from interface
methods; the value is defined by the interface.
That is, two SCODE or HRESULT values with
exactly the same 32-bit value returned from two
different interfaces might have different meanings.

FACILITY_DISPATCH For late binding IDispatch interface errors.
FACILITY_RPC For status codes returned from remote procedure

calls.
FACILITY_STORAGE For status codes returned from IStorage or

IStream method calls relating to structured
storage. Status codes with code (lower 16 bits)
values in the range of MS-DOS error codes (that
is, less than 256) have the same meaning as the
corresponding MS-DOS errors.

The code field is a unique number that is assigned to represent the error or warning.

Return Value Naming Convention

The MAPICODE.H header file contains many of the values that a client or service provider might return
from an interface method implementation or might see returned from a call. These values are SCODE
values rather than HRESULT values. The OLE SCODE value S_OK is used to represent success in
MAPI calls.

The codes to represent warning and failure conditions follow a different naming convention that begins
with the prefix MAPI, an underscore, and either a W or an E to indicate the type of code. The rest of the
code is a short character string to describe the condition. Each word in the string is separated by an
underscore. For example, the error value MAPI_E_TOO_COMPLEX indicates that the implementation
could not handle whatever was being requested in the call. The warning value
MAPI_W_PARTIAL_COMPLETION indicates that the call succeeded, but that there were problems.
Only part of the operation was completed successfully.

Using Macros for Error Handling

MAPI defines several macros for making it easier to work with SCODE values on 16-bit platforms and
HRESULT values on both platforms. Some of the macros and functions below provide conversion
between the two datatypes and can be used in client and service provider code that:

· Runs only on 16-bit platforms.
· Runs on both 16-bit and 32-bit platforms.
· Is 16-bit code being ported to 32-bit platforms.

For 32-bit environments, these datatype conversion macros are meaningless. They exist to provide
compatibility and to ease the porting effort.

There are two sets of macros that test for failure or success: HR_SUCCEEDED and SUCCEEDED and
HR_FAILED and FAILED.

On 32-bit platforms, because SCODE and HRESULT values are the same, SUCCEEDED is the same
as HR_SUCCEEDED and FAILED is the same as HR_FAILED. Developers that want to write cross-
platform clients or service providers are the only ones that need to distinguish between an HRESULT
and an SCODE.

Do not fall into the trap of confusing the two error types as is demonstrated in the following code
sample:

HRESULT hr = S_OK;
return hr;

Instead, use the ResultFromScode macro to set the HRESULT variable to the corresponding
HRESULT value for S_OK.

Warning The macro SCODE_FACILITY retrieves twelve bits from the SCODE in its Win16
implementation when it should only retrieve four. This can cause false negative results to occur when
comparing the facility retrieved from a particular SCODE against predefined facility values.
Programmers writing cross-platform code need to be aware of this problem.

Commonly used macros are briefly described in the following table.

Macro Description
GetScode Returns an SCODE given an HRESULT.
ResultFromScode Returns an HRESULT given an SCODE.
MAKE_SCODE Constructs an SCODE from its components.
HR_SUCCEEDED Tests an HRESULT for a success or warning

condition.
HR_FAILED Tests an HRESULT for an error condition.
HRESULT_CODE Extracts the error code part of the HRESULT.
HRESULT_FACILITY Extracts the facility from the HRESULT.
HRESULT_SEVERITY Extracts the severity bit from the SEVERITY.
SCODE_CODE Extracts the error code part of the SCODE.
SCODE_FACILITY Extracts the facility from the SCODE.
SCODE_SEVERITY Extracts the severity field from the SCODE.
SUCCEEDED Tests an SCODE for a success or warning

condition.
FAILED Tests an SCODE for an error condition.

Note Calling ResultFromScode for S_OK verification carries a performance penalty. Your client or
service provider should not routinely use ResultFromScode for successful results. GetScode and
ResultFromScode are externally defined and not MAPI support functions. They are not in the table of
support functions passed to service providers, but in a separate DLL that can be linked with providers.

How Return Values are Documented

The reference entries in the MAPI Programmer's Reference document only those return values that
require some handling by client applications or service providers. Return values that indicate common
error conditions and can be deduced by checking for failure are not included in the documentation. For
example, many interface methods can return MAPI_E_INVALID_PARAM if a caller specifies the wrong
value for an input parameter. This value is typically not listed in the set of expected return values
because there is no need to look specifically for MAPI_E_INVALID_PARAMETER and no need to
process it differently from any other error. On the other hand, some service providers do not support
event notification and will return MAPI_E_NO_SUPPORT to the Advise method made by clients
through IMAPISession. Because clients need to explicitly check for this value and provide code for
handling the condition that it represents should it occur, MAPI_E_NO_SUPPORT is included in the list
of return values for IMAPISession::Advise.

The following table describes error values that are commonly returned from methods and functions and
require explicit handling on the part of a client or service provider. These values fall into four
categories: values that indicate invalid input data, values that indicate resource problems, values that
indicate character set incompatibility, and values that indicate failure from an unknown origin.

Return value Description
MAPI_E_INVALID_PARAMETER One or more of the

parameters passed into the
method or functions were not
valid.

MAPI_E_UNKNOWN_FLAGS One or more values for a flags
parameter were not valid.

MAPI_E_DISK_ERROR There was a problem writing
to or reading from disk.

MAPI_E_NOT_ENOUGH_DISK Not enough disk space was
available to complete the
operation.

MAPI_E_NOT_ENOUGH_MEMO
RY

Not enough memory was
available to complete the
operation.

MAPI_E_NOT_ENOUGH_RESO
URCES

Not enough system resources
were available to complete
the operation.

MAPI_E_BAD_CHARWIDTH An incompatibility exists in the
character sets supported by
the caller and the
implementation.

MAPI_E_CALL_FAILED An error of unexpected or
unknown origin occurred.

Errors regarding invalid data passed in by a caller can be determined through either the parameter
validation API functions provided by MAPI or a set of macros. For more information on how to use the
MAPI parameter validation model in your programs, see Validating Parameters to Interface Methods.

Character set incompatibility arises when either of the following situations occurs:

· A client or service provider sets the MAPI_UNICODE flag on a method or function call and the
implementation does not support Unicode. Setting MAPI_UNICODE indicates that character strings
passed in as input are Unicode strings and that character strings passed back as output are
expected to be Unicode strings.

· A client or service provider does not set the MAPI_UNICODE flag on a method or function call and
the implementation only supports Unicode.

Strategies for Error Handling

Because interface methods are virtual, it is not possible to know, as a caller, the full set of values that
can be returned from any one call. One implementation of a method might return five values; another
might return eight. The reference entries in the MAPI Programmer's Reference list a few values that
can be returned for each method; these are the values that your client or service provider can check for
and handle because they have special meanings. Other values can be returned, but since they are not
meaningful, special code to handle those is not necessary. A simple check for success or failure is
adequate.

A few of the interface methods return warnings. If a method that your client or service provider calls can
return a warning, use the HR_FAILED macro to test the return value rather than a check for zero or
nonzero. Warnings, although nonzero, differ from error codes in that they do not have the high bit set. If
your client or service provider does not use the macro, it is likely that a warning might be mistaken for a
failure.

Although most interface methods and functions return HRESULT values, some functions, primarily
those defined for Simple MAPI, return unsigned long values. Also, some methods used in the MAPI
environment come from OLE and return OLE error values rather than MAPI error values. Keep in mind
the following guidelines when making calls:

· Never rely on or use the return values from IUnknown::AddRef or IUnknown::Release. These
return values are for diagnostic purposes only.

· IUnknown::QueryInterface always returns generic OLE errors where the facility is FACILITY_NULL
or FACILITY_RPC, rather than MAPI errors.

· All other interface methods return MAPI interface errors with a facility of FACILITY_ITF, or
FACILITY_RPC or FACILITY_NULL errors.

· Simple MAPI calls return Simple MAPI errors rather than SCODE or HRESULT values.
· CMC calls have their own defined set of error codes. CMC codes are unsigned long values.
· No MAPI call ever returns a Simple MAPI error value.

If your service provider works with clients that use both the Simple MAPI and MAPI client interfaces, be
aware that although the underlying values for some of the errors are different, the constants defined for
them are quite similar. For example, when a call is made to an unsupported feature in Simple MAPI,
the error MAPI_E_NOT_SUPPORTED is returned. When the same type of call is made to a MAPI
method, one of four possible errors can be returned: MAPI_E_NO_SUPPORT,
MAPI_E_INTERFACE_NOT_SUPPORTED, MAPI_E_INVALID_PARAMETER, or MAPI_E_VERSION.
For this reason, avoid including the Simple MAPI header file, MAPI.H, in your client or service provider.
The table below points out these similarities and differences.

Simple MAPI return value MAPI return value
MAPI_E_NOT_SUPPORTED MAPI_E_NO_SUPPORT

MAPI_E_INTERFACE_NOT_SUP
PORTED
MAPI_E_INVALID_PARAMETER
MAPI_E_VERSION

MAPI_E_DISK_FULL MAPI_E_NOT_ENOUGH_DISK
MAPI_E_NETWORK_FAILUR
E

MAPI_E_NETWORK_ERROR

MAPI_E_USER_ABORT MAPI_E_USER_CANCEL
MAPI_E_ACCESS_DENIED MAPI_E_NO_ACCESS
MAPI_E_AMBIGUOUS_RECIP
IENT

MAPI_E_AMBIGUOUS_RECIP

Using Extended Errors

Implementors of interface methods can choose to simply return success (S_OK) and failure
(MAPI_E_CALL_FAILED) or differentiate between error conditions, returning as many error values as
make sense for the situation. Most situations can use one of the error values defined by MAPI in the
MAPICODE.H header file. However, for situations that are not covered by a predefined code, the value
MAPI_E_EXTENDED_ERROR can be used. MAPI_E_EXTENDED_ERROR indicates to the caller that
more information about the error is available. The caller retrieves the additional information by calling
the GetLastError method on the same object that returned MAPI_E_EXTENDED_ERROR.

GetLastError can be called to retrieve information about any error code, not only
MAPI_E_EXTENDED_ERROR. Many MAPI objects implement interfaces that include the
GetLastError method. GetLastError returns a single MAPIERROR structure that, in theory, includes a
concatenation of all of the errors generated by the previous method call. As a caller, it is wise not to
depend on having this extra error information available because object implementors are not required
to provide it. However, it is strongly recommended that whenever implementors return
MAPI_E_EXTENDED_ERROR, they make it possible for callers to retrieve a MAPIERROR structure
with useful information about the error.

Because GetLastError is also an API function that is part of the Win32 SDK, it can be easy to forget
that in MAPI, GetLastError is an interface method and can only be called on MAPI objects. Another
easy mistake to make is calling GetLastError on the wrong object. GetLastError must be called on
the object that generated the error. For example, if your client makes a session call, and MAPI forwards
the call to a service provider to do the work, your client should not call GetLastError on the service
provider object. IMAPISession::GetLastError is the correct call; GetLastError should be invoked on
the session object.

Deferring Errors

Some interface methods accept the MAPI_DEFERRED_ERRORS flag as an input parameter. When
this flag is set, the method does not have to return immediately with a value; it can let the caller know
the result of the call at some later time.

Deferring errors helps service providers in their implementation of complex methods, making
processing faster. Rather than handling many requests and returning a value for each, deferring errors
allows the calls to be bundled within the service provider. Processing many requests at once cuts down
on network traffic, thereby improving performance. Deferring errors is especially useful in calls to delete
or copy properties, which can be very time-consuming operations.

When a client makes a call without setting the MAPI_DEFERRED_ERRORS flag that can only be
handled in a deferred manner, service providers can either defer the errors regardless or return
MAPI_E_TOO_COMPLEX. Most clients should defer errors as a preferable strategy to failing the call.

Setting the MAPI_DEFERRED_ERRORS flag changes a client's error handling implementation in that
the returned information can be delivered at any time rather than at a planned time. It is possible for an
error to be returned when it is too late to do anything about it or after data about the original request is
no longer available. For example, if a client calls IMsgStore::OpenEntry to open a deleted folder with
MAPI_DEFERRED_ERRORS set, the client will not know of the problem until an
IMAPIProp::GetProps call is made to retrieve one of the folder's properties. GetProps will then return
MAPI_E_NOT_FOUND.

 About Validating Data

Implementors and users of interface methods need to validate all types of data from simple integer
values to object pointers. Depending on the source of the data and its type, MAPI provides guidelines
for validation. Standard guidelines work to ensure consistent and accurate validation, an important
feature that helps to promote interoperability between MAPI components.

 Validating Parameters to Interface Methods

Interface method implementors can perform two types of validation:

· Debug validation whereby the implementor displays the values of the input parameters and provides
verbose information should there be errors, optionally calling a macro provided by MAPI.

· Full validation whereby the implementor calls a macro provided by MAPI to check that all necessary
parameters are present and set to valid values.

The type of validation performed depends on the caller. When the caller is MAPI or a service provider,
debug validation is adequate because MAPI and service providers are expected to pass parameters
correctly. When the caller is a client, however, full validation is recommended. Service providers cannot
and should not count on clients to always pass appropriate parameters.

MAPI performs debug validation in those interface implementations that are called internally or by
service providers and full validation in the implementations that are called by clients. All functions and
the utility interfaces, ITableData and IPropData, perform debug validation.

For every interface method, there are three macros that clients and service providers can call in their
implementations. Clients and providers can use one macro for debug validation and the other two for
full validation. One of the macros for full validation is called for methods that return HRESULT values
and the other is called for methods that return unsigned long values.

These macros conform to a three part naming convention with each part separated by an underscore.
The prefix identifies the macro being called, as described in the following table.

Macro name prefix Description
Validate Identifies a macro to be used for fully

validating methods that return
HRESULT values.

UlValidate Identifies a macro to be used for fully
validating methods that return
unsigned long values.

CheckParameters Identifies a macro to be used for
performing debug validation.

The other two parts identify the interface and method being validated. For example, to fully validate
IMAPIProp::GetProps, a method that returns an HRESULT value, service providers call
Validate_IMAPIProp_GetProps. To perform debug validation for this method, service providers call
CheckParameters_IMAPIProp_GetProps.

The parameters to these macros varies slightly depending on whether the call is being made in C or C+
+. As with calls made to interface methods, the first parameter in C must be a pointer to the object
implementing the method. In C++, the this pointer should be the first parameter. The rest of the
parameters are the same in either language; they are the same parameters that are passed to the
method being validated. Therefore, the number and type of parameters passed to a validation macro
varies depending on the method being validated. All parameters passed to the method must be passed
to a validation macro.

The three types of validation macros are platform independent; they are guaranteed to work on both
RISC and Intel platforms. Their predecessors, the ValidateParameters, UlValidateParameters, and
CheckParameters functions, perform the same functionality as the macros. However, these functions
are available only for Intel platforms. Clients and service providers operating on RISC platforms must
use the validation macros.

The ValidateParameters and UlValidateParameters macros and functions perform the following
tasks:

· Examine the validity of read and write pointers
· Examine the validity of structures
· Examine the validity of reserved flags
· Examine the incoming size of parameters if there is a size limit

The CheckParameters macro and function are intended to be used by service providers in method
implementations that are called by MAPI. They do not perform any real checking of parameters; they
supply assert statements. Because the parameters passed by MAPI should be assumed to be correct,
service providers do not need to perform full validation in these methods.

The following code samples illustrate how to call the ValidateParameters macro in C and C++. The
method being validated is IMAPITable::QueryRows, a method implemented by service providers that
returns an HRESULT value and requires three parameters: the number of rows that are requested, a
bitmask of flags, and the address of a pointer to an SRowSet structure.

For C, the validation occurs as follows:

STDMETHODIMP Table_QueryRows(LPTABLE lpTable, LONG lcRows,
 ULONG ulFlags, LPSRowSet FAR * lplprows)
{
 Validate_IMAPITable_QueryRows(lpTable, lcRows, ulFlags, lplprows);

 // rest of method implementation
}

For C++, this example would be written as follows:

STDMETHODIMP CTable::QueryRows(LONG lcRows, ULONG ulFlags,
 LPSRowSet FAR * lplprows)
{
 Validate_IMAPITable_QueryRows(this, lcRows, ulFlags, lplprows);

 // rest of method implementation
}

Validating Object Pointers

The need to validate object pointers arises when calls are made to retrieve MAPI objects or when
private method calls are made within your client or service provider. It is always a good idea to validate
these pointers. However, unlike parameter validation, MAPI does not provide a single API function to
use. Instead there is a recommended series of steps to ensure that object pointers given to your client
or service provider are valid. Not all steps are appropriate for all situations; the vtable verification step,
for example, is unnecessary in C++. These steps are as follows:

1. Check that the object pointer points to the correct amount of writeable memory.
2. Check that the vtable of the object contains the expected number of readable entries.
3. Check that one or more methods in the vtable have the expected address.
4. Check that the object's reference count is nonzero.

MAPI provides two API functions for validating pointer memory: IsBadWritePtr and IsBadReadPtr.
The following C code sample illustrates how to validate an object pointer using all of the steps outlined
above and these two API functions.

if (IsBadWritePtr(lpMyObject, sizeof(MYOBJECT)))
 return failure

if (IsBadReadPtr(lpMyObject->lpVtbl, size(MYOBJECT_Vtbl)))
 return failure

if (lpMyObject->lpVtbl->SetProps != MYOBJECT_SetProps)
 return failure

if (lpMyObject-> cRef == 0)
 return failure

Validating Data Structures

Standard MAPI data structures are often passed between methods. MAPI provides several API
functions to check the validity of these structures. The following table describes the common functions
used by clients and service providers to validate MAPI data structures.

Validation function Purpose
FBadColumnSet Validates an array of property

tags.
FBadEntryList Validates a list of entry

identifiers.
FBadProp Validates a single property

value.
FBadPropTag Validates a single property tag.
FBadRestriction Validates a restriction.
FBadRglpNameID Validates an array of name

identifiers.
FBadRglpszW Validates an array of Unicode

strings.
FBadRow Validates a single row in a table.
FBadRowSet Validates a set of rows in a

table.
FBadSortOrderSet Validates a sort order for a table.

About Notification

Event notification is the communication of information between two MAPI objects. Through one of the
objects, a client or service provider registers an interest in learning of a change or error, called an
event, that may take place in the other object. After the event occurs, the first object is informed, or
notified. The object receiving the notification is called the advise sink; the object responsible for the
notification is called the advise source.

There are three types of advise sink objects; all types are standard MAPI objects:

· Advise sink objects
· Form advise sink objects
· View advise sink objects

Advise sink objects are the most common type. Advise sinks are typically implemented by client
applications to receive address book and message store notifications and support the
IMAPIAdviseSink interface. IMAPIAdviseSink contains a single method, OnNotify. Form and view
advise sinks are less common, they are implemented to receive notifications about changes to custom
forms. Form advise sinks support the IMAPIFormAdviseSink interface and view advise sinks support
the IMAPIViewAdviseSink interface. Because most clients implement standard advise sink objects,
assume that discussions of notifications relate to address book and message store notifications rather
than forms notifications. For more information about forms notifications, see About Forms Notifications
and Writing Form Server Code.

Advise source objects are implemented by service providers and by MAPI. Not all service providers
support event notification; it is optional, but strongly recommended. Message store and address book
providers usually support object notifications on several of their objects and table notifications on their
contents and hierarchy tables. Transport providers do not support notifications directly; they rely on
alternative methods of communication with clients.

Unlike advise sinks, advise source objects are not a unique type of MAPI object. Many MAPI objects,
such as message stores and tables, can take on the role of advise source. An advise source is any
MAPI object that:

· Implements an Advise method to receive notification registrations.
· Implements an Unadvise method to receive notification cancellations.
· Generates notifications of the appropriate type to the appropriate advise sink objects that have

registered by calling their IMAPIAdviseSink::OnNotify methods.

Clients implementing advise sink objects call Advise when they want to register for a notification, in
most cases passing in the entry identifier of the object with which registration should occur, and
Unadvise when they want to cancel the registration. Clients pass a parameter to Advise that indicates
which of the several types of events they want to monitor. Advise returns a nonzero number that
represents a successful connection between the advise sink and advise source.

Before calling Advise, clients can determine if a message store provider supports notification by
checking that the STORE_NOTIFY_OK flag is set in the message store's
PR_STORE_SUPPORT_MASK property. There is no way for clients to determine ahead of time
whether or not an address book provider supports notifications. Clients must attempt to register and if
the attempt fails, they can assume notifications are unsupported.

When an event for which a client has registered occurs, the advise source notifies the advise sink by
calling its IMAPIAdviseSink::OnNotify method with a notification data structure that contains
information about the event. An advise sink's implementation of OnNotify can perform tasks in
response to the notification, such as updating data in memory or refreshing a screen display.

Service providers can implement support for notifications manually or take advantage of the help
provided in three IMAPISupport methods: Subscribe, Unsubscribe, and Notify. The Subscribe and

Unsubscribe methods handle notification registration and de-registration for providers; the Notify
method handles sending notifications when appropriate.

To use the support object methods for notification registration, service providers call
IMAPISupport::Subscribe in their Advise methods and pass to Subscribe the advise sink pointer
that clients pass to Advise. If an entry identifier is passed as an input parameter to specify an advise
source, service providers convert it to a binary key. Subscribe creates a unique connection number
and it is this number that service providers return to clients. Service providers can release the client's
advise sink object pointer at any time after the Advise call has completed.

When clients call Unadvise to cancel a registration, service providers either decrement the reference
count on the client's advise sink pointer or call Unsubscribe to do the same.

When it is time to generate a notification, service providers perform any internal processing that relates
to the notification and initializes a NOTIFICATION structure by setting all of its unused members to
zero. This technique for initializing the NOTIFICATION structure can help clients create smaller, faster,
and less error-prone OnNotify implementations.

The following diagram shows the communication between advise sink objects, advise source objects,
and MAPI. MAPI is involved only when the advise source calls the IMAPISupport methods for
notification support.

{ewc msdncd, EWGraphic, groupx834 3 /a "MAPI_51.WMF"}

About Notification Events

When clients register for event notification, they must specify one or more events of interest. The
events that they can specify depend on the set of events that the intended advise source supports.
There are nine types of notifications, each represented by a constant. Clients can register for eight of
the nine types; the only exception is the status object notification. This is an internal MAPI notification;
clients cannot register for it and service providers cannot generate it. The following table describes the
types of events and the advise source objects that can support them. The event constant is included
with the event type.

Event type Description Advise source
objects

Critical error
(fnevCriticalError)

A global error or
event has occurred,
such as a session
shut down in
progress.

Session, all types of
message store and
address book
objects, table, status

Object modified
(fnevObjectModifie
d)

A MAPI object has
changed.

Folders, messages,
all types of address
book objects

Object created
(fnevObjectCreated
)

A MAPI object has
been created.

Folders, messages,
all types of address
book objects

Object moved
(fnevObjectMoved)

A MAPI object has
been moved.

Folders, messages,
all types of address
book objects

Object deleted
(fnevObjectDeleted
)

A MAPI object has
been deleted.

Folders, messages,
all types of address
book objects

Object copied
(fnevObjectCopied)

A MAPI object has
been copied.

Folders, messages,
all types of address
book objects

Extended event
(fnevExtended)

An internal event
defined by a
particular service
provider has
occurred.

Any advise source
object

Search complete
(fnevSearchCompl
ete)

A search operation
has finished and the
results of the search
are available.

Folders

Table modified
(fnevTableModified
)

Information in a
MAPI table object
has changed.

Tables

New mail
(fnevNewMail)

A message has
been delivered and
is waiting4 to be
processed.

Message store,
folders

The extended event is defined by a service provider to represent an event that cannot be covered by
any of the other pre-defined events. Only clients that know before they register that a service provider
supports an extended event can register for that event. It is not possible for clients to determine without
advanced knowledge if a service provider supports an extended event and, if it does, how to handle

such an event when it is received.

About Forms Notifications

Registering for and handling notifications from form objects is a different process than for other MAPI
objects. Advise sinks for form notifications implement either the IMAPIViewAdviseSink or
IMAPIFormAdviseSink interface rather than IMAPIAdviseSink. IMAPIViewAdviseSink and
IMAPIFormAdviseSink each have multiple methods, one for each of the possible events that the
corresponding advise source is capable of generating. For example, IMAPIFormAdviseSink has two
methods: OnChange to handle a change to the form viewer's status and OnActivateNext to display a
new message with the correct form.

The event handling strategy for forms is similar to the event handling strategy implemented in OLE.
Clients do not register for specific event types as they do for most MAPI objects. The assumption is
that registering for notification enables them to receive any type of event that can be generated by the
particular advise source. Because IMAPIAdviseSink::OnNotify must be written so as to handle all
registered events, implementing it can be complex for clients that register for many different events.
Because the methods in the form advise sink objects target a single event, implementing these
methods is simpler.

 About Threading in MAPI

A thread is the basic entity to which a 32-bit operating system allocates CPU time. A thread has its own
registers, stack, priority, and storage, but shares an address space and process resources such as
access tokens. Threads also share memory, with one thread reading what another thread has written.

MAPI clients and service providers use the following generic threading models.

Threading model Description
Single threading model All objects are used on the single

thread.
Apartment threading model An object can be used only on

the thread that created it.
Free threading, or thread-party,
model

An object can be used on any
thread.

MAPI and MAPI service providers use the free threading model, supporting thread-safe objects that
can be used on any thread at any time. The current version of OLE uses the apartment threading
model. The apartment threading model supports objects that must be explicitly transferred when a
thread other than the one that created the object needs to use that object.

The mechanism that OLE uses to transfer objects from one thread to another is known as marshalling.
Marshalling involves a stub object and a proxy object. These special objects package the parameters
of the interface in the object to be marshalled, transfer these parameters to the other thread, and
unpackage them upon arrival. Conflict between the two multithreaded models arises when a free-
threading MAPI object is sent to another process using OLE "lightweight" Remote Procedure Call, or
LRPC. LRPC changes the object's semantics from free threading to apartment threading by interposing
stub and proxy interfaces with apartment threading behavior between the object and its caller.
Awareness of the situations in MAPI that lead to this conflict can help clients and service providers
prevent problems from occurring.

A MAPI object can be accessed in the following ways:

· Through direct calls to its methods using an interface pointer returned by a service provider or MAPI
linked to the client's process, such as the session object returned from MAPILogonEx.

· Through indirect calls to its methods using an interface pointer returned by any service provider,
such as the folder object copied from another folder in IMAPIFolder::CopyFolder.

· Through a callback function, such as the IMAPIAdviseSink::OnNotify method passed to a service
provider or to MAPI in an Advise call or the methods that can show progress on a lengthy operation.

Using Thread-Safe Objects

Client applications and service providers can assume that objects used directly or as callbacks are
always thread-safe except in the following cases:

· A transport provider's status object obtained through a client call to IMAPISession::OpenEntry with
an entry identifier from the provider's status table row.

· All MAPI form objects obtained through a client call to MAPIOpenFormManager. Form objects obey
apartment model rules and clients must use them and all objects contained by them only on the
thread that created them.

When a client accesses a transport provider's row in the status table that includes the entry identifier of
the associated status object, the client can call OpenEntry with that entry identifier to open the status
object. This status object is not thread-safe because transport providers run in the context of the MAPI
spooler and do not maintain a separate context for their status object. The status object obeys
apartment model rules and clients must use it only on the thread that created it.

A client must also invoke MAPIInitialize on every thread before using any MAPI objects and
MAPIUninitialize when that use is complete. These calls should be made even if the objects to be
used are passed to the thread from an external source. MAPIInitialize and MAPIUninitialize can be
called from anywhere except from within a Win32 DLLEntryPoint function, a function that is invoked
by the system when processes and threads are initialized and terminated, or upon calls to the
LoadLibrary and FreeLibrary functions. Clients should not need to use DLLEntryPoint functions
because the MAPI service provider interface has its own initialization and deinitialization entry points.

Indirect use objects should never be assumed to be thread-safe. Indirect use objects are returned by
methods that require destination interface pointers as input parameters. Examples of such methods are
IMAPIProp::CopyTo and CopyProps, IMAPIFolder::CopyFolder and CopyMessage, and
IMsgServiceAdmin::CopyMsgService. If a service provider wants to call such an object from a
thread other than the one on which it was passed, the provider is responsible for explicitly marshalling
the object.

Implementing Thread-Safe Objects

With objects that are returned from interface method calls directly, it is the provider's responsibility to
insure thread-safety. With callback objects, it is the client's responsibility. A service provider implements
a thread-safe object by serializing access to shared data within the object, insuring that one thread
does not inadvertently replace the work of another thread. A service provider can implement serialized
access to data in three ways:

1. Provide every object with its own critical section, calling the Win32 API function
EnterCriticalSection at the beginning of every method and LeaveCriticalSection at the end. Most
of the samples in the MAPI SDK use this method. This option has two drawbacks: a high overhead
and the possibility of deadlock. Deadlock can occur if, for example, the thread-safe object calls the
MAPI support object or an object returned indirectly through one of the copy methods.

2. Use a single critical section for all objects, calling EnterCriticalSection when the provider is loaded
and LeaveCriticalSection when the provider is unloaded. This option provides the most simplicity,
but suffers in performance when used with multithreaded clients.

3. Create a small number of critical sections to be associated with crucial shared data structures. The
data is isolated from the object, placed, for example, in memory or in a parent object. Access to the
data is handled through an internal interface. This option offers the best balance between
performance and simplicity.

A client can implement a thread-safe notification callback by calling the MAPI utility
HrThisThreadAdviseSink. HrThisThreadAdviseSink transforms a non-thread-safe advise sink into a
thread-safe one. For progress callbacks, there is no such utility at this time. A client can choose to use
the MAPI thread-safe progress object or create one manually.

A thread-safe object might or might not also be thread-aware. A thread-aware object maintains a
separate context for every thread that is using it. Service providers are not required to support thread-
awareness in their thread-safe objects, although supporting thread-awareness can be useful in some
situations. Two MAPI tables always provide their own context by definition. One table used on different
threads does not and should not provide unique context.

A client can choose between receiving notifications on the same thread that was used for the
MAPIInitialize call, on the same thread that was used for the Advise call, or on a separate thread
owned by MAPI. To insure that notifications arrive on the same thread that was used to call
MAPIInitialize, a client calls MAPIInitialize and passes zero in the ulFlags member of the MAPIINIT_0
structure. Notifications are then delivered during the main message loop.

To receive notifications on the MAPI-owned thread, a client calls MAPIInitialize with the ulFlags
member of the MAPIINIT_0 structure set to MAPI_MULTITHREAD_NOTIFICATIONS. The Advise call
is made with the client's advise sink object rather than a wrapped version.

To insure that notifications arrive on the same thread that was used to call Advise, a client calls
HrThisThreadAdviseSink and passes the newly created wrapped advise sink to Advise rather than
the original advise sink. MAPIInitialize can be called with either flag value.

 About Profile Administration

Profile administration is an important part of MAPI because without valid profiles, logon cannot occur
and a session cannot be established. Profile administration provides a means for adding, deleting, or
changing information about the message services and service providers installed on the workstation,
ensuring the validity of each profile using those services and providers.

Both clients and providers perform profile administration using interfaces implemented by MAPI. Some
clients choose not to perform profile administration, relying instead on the applications that MAPI
supplies, the Control Panel applet and the Profile Wizard.

Clients that perform profile administration can use the MAPI interfaces to:

· Create new profiles.
· Delete or copy existing profiles.
· Add message services to profiles.
· Access the message service and provider tables.
· Delete message services from profiles.
· Copy message services.
· Configure message services.
· Make modifications to profile sections belonging to service providers or message services, such as

add a service provider to a message service.

One of the major restrictions to clients' abilities to perform profile administration is that MAPI does not
allow them to open and modify profile sections that belong to service providers and message services.
This is because service providers are encouraged to store private information such as credentials in
their profile sections.

Service providers have a more limited use of the MAPI interfaces for profile administration. They make
changes to profile sections that they own or that describe the message service to which they belong.
They also provide one or more property sheets so that clients can view their configuration data and
optionally make changes.

 About Interfaces for Profile Administration

To support profile administration, MAPI provides the following interfaces:

IProfAdmin
IMsgServiceAdmin
IProviderAdmin)
IProfSect

The first two interfaces, IProfAdmin and IMsgServiceAdmin, are only used by clients. IProfAdmin
allows clients to create, delete, copy, and rename profiles as well as set passwords, establish a default
profile, and view the profile table. To retrieve an IProfAdmin pointer, clients call MAPIAdminProfiles.

IMsgServiceAdmin allows clients to make message service modifications within a particular profile. To
access an IMsgServiceAdmin pointer, clients call IMAPISession::AdminServices or
IProfAdmin::AdminServices and specify the name of the target profile. Messaging clients typically
use the session object for access while configuration clients use the profile administration object.

With IProfAdmin, all tasks are performed by MAPI; message services are not involved. Conversely,
most IMsgServiceAdmin methods require that MAPI start the message service to perform the
requested task by calling its entry point function. To enhance performance when either interface would
work, use IProfAdmin rather than IMsgServiceAdmin.

Both clients and service providers use the IProviderAdmin and IProfSect interfaces. IProviderAdmin
enables changes to be made to the members of a particular message service in a profile and grants
access to the provider table. To retrieve an IProviderAdmin pointer, clients call
IMsgServiceAdmin::AdminProviders and pass the MAPIUID for the target message service. Service
providers are given IProviderAdmin pointers by MAPI as an input parameter to their message service
entry point functions.

IProfSect is a derivative of IMAPIProp that has no additional methods of its own. Its purpose is solely
to manipulate the properties of a profile section. To retrieve an IProfSect pointer, clients call
IMAPISession::OpenProfileSection or IProviderAdmin::OpenProfileSection and service providers
call IMAPISupport::OpenProfileSection or IProviderAdmin::OpenProfileSection.

Note Message store providers can modify their profile sections by calling
IMAPISupport::ModifyProfile.

The following diagram shows all of the different calls that can be made to provide access to a profile
containing message service and service provider information.

{ewc msdncd, EWGraphic, groupx834 4 /a "MAPI_60.WMF"}

 About Profile Administration Objects

Profile administration objects, or objects that implement the IProfAdmin interface, enable clients to
create, copy, and delete profiles, and to change profile passwords.

To create a new profile, clients call IProfAdmin::CreateProfile. CreateProfile calls the entry point
function for each message service to be added to the profile with MSG_SERVICE_CREATE set as the
ulContext parameter. Clients pass one or more option flags that provide MAPI with information. For
example, clients set the MAPI_DEFAULT_SERVICE flag if the new profile should contain the message
services listed in the [Default Services] section of the MAPISVC.INF file. Clients set MAPI_DIALOG to
enable interactive configuration of each message service using the service's property sheets. If a
message service cannot display a user interface, it remains unconfigured.

To change a profile's password, clients call IProfAdmin::ChangeProfilePassword.
ChangeProfilePassword enables clients to change profile passwords on 16-bit platforms only; it is
unsupported on 32-bit platforms.

To delete a profile, clients call IProfAdmin::DeleteProfile. DeleteProfile calls the entry point function
of every message service in the profile with the ulContext parameter set to MSG_SERVICE_DELETE.
The calls to the entry point functions occur before the services are physically removed from the profile.
If the profile to be deleted is currently being used, DeleteProfile will wait until a later safer time to
delete it. The profile does not actually disappear until every client with an active session has
disconnected.

To mark a profile as the default, clients call IProfAdmin::SetDefaultProfile. The default profile is the
one that is used at logon time when a client calls the API function MAPILogonEx and sets the
MAPI_USE_DEFAULT flag. To set a new default profile, SetDefaultProfile sets the
PR_DEFAULT_PROFILE property for the new default profile and removes the setting for the previous
default profile.

Note A word of caution about modifying profiles. There are no safeguards to protect a client from
adversely modifying a profile that is in use. MAPI will prevent clients from deleting a profile in use, but
will not prevent them from deleting every message service in it, causing every message service
provider to stop and unpredictable results to occur.

 About Message Service Administration Objects

Message service administration objects, or objects that implement the IMsgServiceAdmin interface,
enable clients to:

· Create and reconfigure message services.
· Copy and rename message services.
· Display a message service's property sheet.
· Access the message service and provider tables.
· Access a provider administration object.
· Establish transport provider order.
· Establish a primary identity for the session.

Because clients are not allowed to directly access the profile sections that belong to service providers
and message services, all message service administration calls cause MAPI to call the message
service's configuration entry point function to perform the real work. Therefore, whenever possible,
clients should call IProfAdmin methods rather than IMsgServiceAdmin methods because profile
administration tasks can be completed without starting the message service.

To access a provider administration object, clients call IMsgServiceAdmin::AdminProviders.
Provider administration objects allow clients to add or delete instances of service providers from a
message service. Some message services do not allow this type of dynamic modification; whether or
not it is supported is up to the message service.

To access the message service table, clients call IMsgServiceAdmin::GetMsgServiceTable. The
message service table provides a view of properties for all of the message services in the current
profile. Three of the most commonly used properties in the table are:

PR_SERVICE_UID
PR_SERVICE_NAME
PR_RESOURCE_FLAGS

PR_SERVICE_UID is the unique identifier for the message service; many profile administration
methods require it as a parameter. PR_SERVICE_NAME can be used to programmatically identify the
type of message service. It comes from the [Services] section in MAPISVC.INF and should never be
changed or localized. PR_RESOURCE_FLAGS is a bitmask that describes the message service's
capabilities.

Once a client calls GetMsgServiceTable to access a view of the message service table, any changes
that occur to message services within the profile will not be reflected in the view.

To access another table, the provider table, clients call the IMsgServiceAdmin::GetProviderTable
method. The provider table lists all of the service providers for a message service and includes the
following properties in its column display:

PR_PROVIDER_DISPLAY
PR_PROVIDER_ORDINAL
PR_RESOURCE_TYPE
PR_RESOURCE_FLAGS

To add a new message service to a profile, clients call IMsgServiceAdmin::CreateMsgService. MAPI
first copies all of the relevant information in the MAPISVC.INF file and then calls the message service's
entry point function with the ulContext parameter set to MSG_SERVICE_CREATE. CreateMsgService
creates a provider section in the profile for every provider section in MAPISVC.INF. Once the message
service has been added, MAPI sets the service's PR_SERVICE_UID property. Clients must call
IMsgServiceAdmin::GetMsgServiceTable to access it.

To configure a newly added message service, clients call IMsgServiceAdmin::ConfigureMsgService.
Like many of the method calls in MAPI, ConfigureMsgService accepts a flag that specifies whether a
user interface can be displayed. Clients can ask that property sheets never be displayed, that property
sheets appear only if the service requires additional configuration, or have them appear regardless of
whether additional configuration is required. ConfigureMsgService configures all of the service
providers in a message service. To configure a single service provider, clients should call the provider's
IMAPIStatus::SettingsDialog method.

To copy a message service to the same profile or a different profile, clients call
IMsgServiceAdmin::CopyMsgService. When a message service is copied, the new instance of the
service is configured in exactly the same way as the original. Sometimes CopyMsgService returns the
error MAPI_E_ACCESS_DENIED. The most common cause of this error return is a message service
that does not allow itself to be duplicated.

To delete a message service from a profile, clients locate its unique identifier in the message service
table and call IMsgServiceAdmin::DeleteMsgService. DeleteMsgService calls the message
service's entry point function with the ulContext parameter set to MSG_SERVICE_DELETE. Message
services perform any clean up tasks at this time before they are removed from the profile.

To set a message service's primary identity, clients call IMsgServiceAdmin::SetPrimaryIdentity.
Usually the entry identifier for an entry in an address book container serves as a message service's
primary identity. Service providers that can supply an identity set the following status table properties:

PR_RESOURCE_FLAGS (to contain the STATUS_PRIMARY_IDENTITY flag)
PR_IDENTITY_DISPLAY
PR_IDENTITY_SEARCH_KEY
PR_IDENTITY_ENTRYID

Service providers that cannot supply an identity set the STATUS_NO_PRIMARY_IDENTITY flag in
their PR_RESOURCE_FLAGS property and do not set the other three PR_IDENTITY properties.

To change the order in which transports are called to deliver messages, clients use the information in
the provider table and the IMsgServiceAdmin::MsgServiceTransportOrder method. Transport order
is used by MAPI to resolve conflicts when multiple transport providers register to handle addresses of
the same type. Whenever clients make a change to the order, they pass in a list of all of the transport
providers in the profile in the desired order. It is not possible to switch the position of a few transports
by passing in only those few. A call to MsgServiceTransportOrder overrides any preferences a
transport provider specifies, such as the existence of the STATUS_XP_PREFER_LAST flag in its
PR_RESOURCE_FLAGS property.

 About Profile Section Objects

Profile section objects, or objects that implement the IProfSect interface, are used by client
applications and service providers to access and modify the properties of a service provider or
message service profile section.

Every profile has a name, stored in its PR_PROFILE_NAME property, and a binary key, stored in its
PR_SEARCH_KEY property. The profile name is a character string specified either by the client or by a
user. The search key is set equal to a value defined in MAPIGUID.H as MUID_PROFILE_INSTANCE.
Whereas it is possible for a profile's name to be ambiguous, such as when a profile is deleted and a
new one is created with the same name, a profile's search key is guaranteed to always be unique
among all profiles ever created. Clients and service providers using a profile section's search key
should treat it as binary data rather than data of any particular type.

There are two major differences between profile section objects and other objects that inherit from
IMAPIProp:

· Profile sections do not support transactions.
· Profile sections do not support named properties.

Because profile sections do not support transactions, any changes made with calls to
IMAPIProp::CopyProps, CopyTo, or SetProps immediately take effect. Clients and service providers
can call IMAPIProp::SaveChanges and it will succeed, but it has no affect on the profile section data.
Service providers wanting to implement an undo feature in their property sheets should implement the
property sheets with copies of their profile sections rather than the real sections. With copies, users
and clients can make property changes and later cancel those changes, leaving the original profile
sections untouched.

Because profile sections do not support the use of named properties, when clients or service providers
call IMAPIProp::GetIDsFromNames or GetNamesFromIDs, these methods return
MAPI_E_NO_SUPPORT.

Message store providers have some special rules in regards to their profile sections. They must
maintain the PR_DISPLAY_NAME property for their message store both in the message store and in
the profile section, keeping these two locations in sync. When the message store is created, its
PR_DISPLAY_NAME property is set based on the value in the profile section. When the message
store provider logs on or the message store is assigned a new display name, the profile section's
PR_DISPLAY_NAME property is set based on the new message store property.

Message store provider profile sections must also include the message store's PR_RECORD_KEY and
PR_ENTRYID properties, entered at the same time.

 About Provider Administration Objects

Provider administration objects, or objects that implement the IProviderAdmin interface, are used by
clients and service providers for managing service providers within a message service. Clients access
provider administration objects by calling:

1. IMAPISession::AdminServices to access a message service administration object.
2. IMsgServicesAdmin::AdminProviders to access the provider administration object.

Service providers are given pointers to provider administration objects by MAPI when their message
service entry point functions are called.

To access the provider table, clients and service providers call IProviderAdmin::GetProviderTable.
The provider table lists information about all of the service providers currently installed in the message
service. Clients and service providers can use the provider table to access the name of the provider
DLL file, for example, or the MAPIUID, display name, and type of the provider as well as information
about the message service.

To access a service provider's profile section, clients and service providers call
IProviderAdmin::OpenProfileSection. OpenProfileSection uses the provider's MAPIUID to locate
the correct profile section; callers can access this MAPIUID through the provider table.
OpenProfileSection returns an IProfSect interface pointer.

IProviderAdmin::CreateProvider and IProviderAdmin::DeleteProvider are used to dynamically add
or remove a service provider from a message service in the active profile. Many message services do
not support this functionality, allowing configuration of this kind to occur only when the profile is not in
use.

Working with Character Sets

MAPI-compliant client applications and service providers can use ANSI characters (single byte) or
Unicode characters (double byte). OEM character sets are not supported; an OEM string passed to a
MAPI method or function will cause that method or function to fail. Client applications that work with
filenames in the OEM character set must be careful to convert them to ANSI before passing them to a
MAPI method or function.

Supporting the Unicode character set is optional, both for clients and service providers. All service
providers should write their code so that they can compile the same regardless of whether or not they
support Unicode. Clients compile conditionally, depending on their level of support, but service
providers do not. They should not have to be recompiled when the character set changes. Nothing in
service provider code should be conditional.

When clients or service providers that support Unicode make a method call that includes character
strings as input or output parameters, they set MAPI_UNICODE flag. Setting this flag indicates to the
implementation that all incoming strings are Unicode strings. On output, setting this flag requests that
all strings passed back from the implementation should be to be Unicode strings if possible. Method
implementors that support Unicode will comply with the request; method implementors that do not
provide Unicode support will not comply. String properties that are not in Unicode format are of type
PT_STRING8.

MAPI defines the fMapiUnicode constant in the header file MAPIDEFS.H to represent the default
character set. If a client or service provider supports Unicode, fMapiUnicode is set to
MAPI_UNICODE. Clients and service providers that do not support Unicode set fMapiUnicode is set
to zero.

Service providers that do not support Unicode should:

· Refuse to perform conversions between character sets.
· Never pass the MAPI_UNICODE flag in method calls.
· Return MAPI_E_BAD_CHARWIDTH when the MAPI_UNICODE flag is passed in.
· Declare ANSI string properties explicitly.

Service providers can also return MAPI_E_BAD_CHARWIDTH when they only support Unicode and
clients do not pass the MAPI_UNICODE flag.

Note The current version of MAPI does not support Unicode. That is, clients and service providers
can expect strings returned from any of the methods in interfaces implemented by MAPI to be ANSI
character strings.

 About Supporting Formatted Text

The text of a message can be stored and transmitted using a plain text or formatted text. Formatted
text enhances the message text by altering its appearance with, for example, one or more fonts, font
sizes, or text colors. It is recommended that all clients and whenever possible, all message store
providers, support the formatted text. Supporting formatted text in messages adds value by improving
message readability and making message handling easier and more efficient.

Formatted text can be implemented in a variety of ways. The most common way is with the Rich Text
Format, or RTF. MAPI defines two transmittable properties for holding message text information:
PR_BODY for plain text and PR_RTF_COMPRESSED for RTF text that has been compressed.
Because the formatted version of a message text can be twice as large as the version without the
formatting, the formatted RTF text is compressed before it is transferred with the message and stored
in the PR_RTF_COMPRESSED property. When it is time to display the message on the screen, it is
uncompressed using a utility function provided by MAPI.

MAPI defines these two message text properties and mechanisms for conversion between them so
that RTF-aware clients can interoperate with clients and messaging systems that do not support
formatted text.

Synchronizing Text and Formatting

The main challenge in sending Rich Text Format (RTF) messages is keeping the text synchronized with
the formatting. To insure that when messages arrive at their destination, they are as their originators
intended and that the text and formatting are synchronized, MAPI provides the RTFSync function.
RTFSync is typically called by RTF-aware clients before displaying incoming messages and by the
MAPI spooler when it downloads messages to a transport provider. Callers specify the area of possible
discrepancy by passing one or two flags to RTFSync:

· RTF_SYNC_BODY_CHANGED to indicate a modification in message text.
· RTF_SYNC_RTF_CHANGED to indicate a modification in message formatting.

The synchronization process that occurs in RTFSync is a sophisticated cyclic redundancy check
(CRC) of the message text that ignores some characters and converts others. Characters that most
likely were added by transport providers are ignored. MAPI defines several auxilliary properties for
working with RTF as described in the following table.

RTF property Description
PR_RTF_SYNC_BODY_TAG Indicates the beginning of the

real message text.
PR_RTF_SYNC_BODY_CRC Contains the result of the cyclic

redundancy check of the
message text.

PR_RTF_SYNC_BODY_COU
NT

Contains the number of
characters in
PR_RTF_SYNC_BODY_CRC.

PR_RTF_IN_SYNC Set to TRUE when the message
text and formatting have been
synchronized.

PR_RTF_SYNC_PREFIX_CO
UNT

Contains the number of non-
whitespace characters that
preceed the message text.

PR_RTF_SYNC_TRAILING_C
OUNT

Contains the number of non-
whitespace characters that trail
the message text.

 Supporting Formatted Text in Outgoing Messages: Client Responsibilities

Clients set either the PR_BODY property, the PR_RTF_COMPRESSED property, or both properties for
an outgoing message. Clients that support only plain text set only the PR_BODY property. Rich Text
Format (RTF)-aware clients might set both properties or only PR_RTF_COMPRESSED, depending on
the message store provider being used.

It is important for a client to check its message store's PR_STORE_SUPPORT_MASK property to
determine whether the store supports rich text. If the message store is not RTF-aware, an RTF-aware
client sets both the PR_BODY and PR_RTF_COMPRESSED properties for each outgoing message.

If the message store is RTF-aware, only the PR_RTF_COMPRESSED property needs to be set.

RTF-aware clients should perform the following steps to set PR_RTF_COMPRESSED and ensure that
the synchronization process occurs as necessary:

1. Call the IMAPIProp::OpenProperty method to open the PR_RTF_COMPRESSED property, setting
both the MAPI_CREATE and MAPI_MODIFY flags. MAPI_CREATE insures that any new data
replaces any old data and MAPI_MODIFY enables your client to make those replacements.

2. Call the WrapCompressedRTFStream function, passing STORE_UNCOMPRESSED_RTF if the
message store sets the STORE_UNCOMPRESSED_RTF bit in its PR_STORE_SUPPORT_MASK
property, to get an uncompressed version of the PR_RTF_COMPRESSED stream returned from
OpenProperty.

3. Write the message text data to the uncompressed stream returned from
WrapCompressedRTFStream.

4. Commit and release both the uncompressed and compressed streams.

At this point, if the message store provider supports RTF, your client has done all that is required. Your
client can depend on the message store provider to handle the synchronization process and the
creation of the PR_BODY property, if necessary. However, if the message store provider does not
support RTF, your client must call the RTFSync function to synchronize the text with the formatting,
setting the RTF_SYNC_RTF_CHANGED flag.

 Supporting Formatted Text in Incoming Messages: Client Responsibilities

As messages are transferred between messaging systems, the MAPI spooler makes sure that the rich
text formatting remains synchronized with the message text. The MAPI spooler calls the RTFSync
function from within a wrapped version of the message that it passes to the transport provider. The
transport provider saves the changes made to the message by calling the IMAPIProp::SaveChanges
method and then routes it to the new recipient.

When the recipient's RTF-aware client application opens the message to display the text, it must
synchronize the text with the formatting and open either PR_RTF_COMPRESSED or PR_BODY,
depending on which property is available. RTF-aware clients should follow these steps for opening a
message:

1. Call RTFSync to synchronize the message text with the formatting if the message store is not RTF-
aware. The RTF_SYNC_BODY_CHANGED flag should be passed in the ulFlags parameter if the
PR_RTF_IN_SYNC property is missing or set to FALSE. Clients working with RTF-aware message
stores need not make the RTFSync call because the message store takes care of it.

2. Call IMAPIProp::SaveChanges if the message text has been updated.
3. Call IMAPIProp::OpenProperty to open the PR_RTF_COMPRESSED property. If

PR_RTF_COMPRESSED is not available, your RTF-aware client should open the PR_BODY
property instead to display the message content.

4. Call the WrapCompressedRTFStream function to create an uncompressed version of the
compressed RTF data, if available.

5. Display the uncompressed RTF data or the plain text data to the user.

RTFSync returns a boolean value that indicates whether or not the message has been updated. If this
value returns TRUE, call SaveChanges at some point to make the update permanent. The call does
not have to be made immediately after RTFSync returns.

Note Because so many components handle the rich text before your client receives it, there is the
possibility of corruption. This corruption could come from the message store provider, a third party
application, a gateway, or a transmission error.

 Supporting Formatted Text: Message Store Responsibilities

Message store providers use the PR_STORE_SUPPORT_MASK property to publish whether or not
they can handle rich text and, if they are RTF-aware, whether they store rich text in a compressed or
uncompressed format. Message store providers indicate that they are RTF-aware by setting the
STORE_RTF_OK bit and that they store the rich text is an uncompressed form by setting the
STORE_UNCOMPRESSED_RTF bit.

While it is important for an RTF-aware client to check for the STORE_RTF_OK bit to determine
whether or not a message store supports rich text, it is not necessary for a client to be concerned with
the format of an RTF-aware store's rich text.

All message stores must support for non-RTF-aware clients. A non-RTF-aware message store must
delete the PR_RTF_IN_SYNC property during a call to the message's IMAPIProp::SaveChanges
method if a client has changed PR_BODY without updating either PR_RTF_IN_SYNC or
PR_RTF_COMPRESSED. Deleting PR_RTF_IN_SYNC causes the PR_RTF_COMPRESSED
property to be recomputed from the PR_BODY property the next time an RTF-aware client calls
RTFSync.

Most RTF-aware message stores are not given the message text by clients; it must be computed on
request. Because this computation is time consuming and expensive, clients should use
PR_RTF_COMPRESSED whenever possible. To compute the PR_BODY property, the message store
provider must uncompress the contents of the PR_RTF_COMPRESSED property and remove the rich
text formatting. Clients that do not support the PR_RTF_COMPRESSED property require this
computation to take place for every message.

When copying messages, message store providers that do not use the IMAPISupport::DoCopyProps
or IMAPISupport::DoCopyTo methods run the risk of creating a message with no content if their
implementation excludes the PR_BODY property and relies on PR_RTF_COMPRESSED. It is possible
for the data in the PR_RTF_COMPRESSED property to be corrupt. Before excluding either of these
message content properties in the copy operation, check for corruption as follows:

1. If the value of PR_RTF_COMPRESSED is not larger than the compressed RTF, the property is
corrupt.

2. If the magic value in the RTF header is not dwMagicCompressedRTF or
dwMagicUncompressedRTF, the property is corrupt.

Message store providers using the support methods need not be concerned with implementing a check
for PR_RTF_COMPRESSED corruption; MAPI ensures that the appropriate properties exist and are
valid.

There are three different levels of RTF support that message store providers can implement; MAPI
recommends that RTF-aware message store providers implement their support at the middle or highest
level. All RTF-aware message store providers take care of generating PR_BODY from the data
included in PR_RTF_COMPRESSED on outgoing messages and make a call to RTFSync to
synchronize text and formatting on incoming messages.

The differences between these three levels are described in the following table.

Level of
support

Description

Low Message store provider calls RTFSync
whenever changes are saved to a message
and extracts the data for the PR_BODY
property from PR_RTF_COMPRESSED rather
than requiring clients to set it. Both PR_BODY
and PR_RTF_COMPRESSED are stored.

Middle Message store provider stores only the

PR_RTF_COMPRESSED property, computing
PR_BODY when necessary.

High Message store provider stores neither
PR_BODY or the auxilliary RTF properties.
RTFSync is called when the message text has
changed and the formatting remains
unchanged or when a new message is
downloaded by a transport provider.

 Supporting Formatted Text: Rendering Attachments

A client that cares about where in a message its attachments are rendered sets the
PR_RENDERING_POSITION property for these attachments during message composition. A client
that does not care about rendering placement leaves this property unset.

When a client opens a message with attachments, it attempts to retrieve each attachment's
PR_RENDERING_POSITION property to determine where in the message text the attachment should
be rendered. A client can use one of the following methods to retrieve PR_RENDERING_POSITION:

· IMAPIProp::GetProps on the open attachment to retrieve the PR_RENDERING_POSITION
property.

· IMessage::GetAttachmentTable on the open message to retrieve its attachment table.
PR_RENDERING_POSITION is a required column in all attachment tables. This is the preferable
method because it results in better performance.

RTF-aware messages stores can choose whether to return an accurate or approximate value for
PR_RENDERING_POSITION. Because message stores recalculate an attachment's
PR_RENDERING_POSITION value when asked for the message's PR_BODY property, some RTF-
aware message stores only guarantee the accuracy of rendering positions when a client asks first for
PR_BODY. RTF-aware message stores are allowed to provide clients with approximate rendering
position values to enhance performance. Providing an approximate rather than an accurate rendering
position saves time and is sufficient for most situations.

RTF-aware message stores should base their approximation on the value specified by the client
responsible for creating the attachment. Although all clients should set PR_RENDERING_POSITION,
message store providers should be prepared to deal with the possibility of its absence. When the client
does not set PR_RENDERING_POSITION, a message store can set it to -1 to indicate that the
rendering position is not within the message text. Attachments with a rendering position of -1 can be
displayed at any place within the message depending on the client. Many clients position these types
of attachments at the top of the message.

The degree of accuracy for a PR_RENDERING_POSITION property depends on whether or not a
message store saves both a message's PR_BODY and PR_RTF_COMPRESSED properties or only
PR_RTF_COMPRESSED. If the client generates PR_BODY and the message store saves it along with
the rich text, the rendering positions will be accurate. However, if the message store must generate its
own version of PR_BODY because it only saves PR_RTF_COMPRESSED, it is probable that the
rendering positions will be somewhat inaccurate. This is because of the differences in the way that
clients and message store providers generate the PR_BODY property.

To calculate an accurate PR_RENDERING_POSITION value, an RTF-aware store uses a tag
embedded in the rich text. The utility function RTFSync can be called to perform this calculation and
update an attachment's rendering position. Depending on the amount of state information available, the
message store can pass either RTF_SYNC_BODY_CHANGED, RTF_SYNC_RTF_CHANGED, or both
values to RTFSync.

 Supporting Formatted Text: Gateway Responsibilities

For outgoing messages, gateways should follow these steps for the correct handling of rich text:

1. Retrieve only a message's PR_RTF_COMPRESSED property from the message store. The main
advantage in retrieving only the PR_RTF_COMPRESSED property is that the message text does
not need to be sent between machines if the gateway and the message store exist on different
machines.

2. Generate the message text from the rich text either by calling the RTF library function
HrTextFromCompressedRTFStream or, if the message is stored locally, RTFSync. The
RTF_SYNC_RTF_CHANGED flag should be set in the call to RTFSync.

3. Make any irreversible modifications to the message text, such as dropping unsupported characters.
4. Ensure that both PR_RTF_IN_SYNC and all of the RTF auxilliary properties are either set or absent.
5. If any modifications were made, call RTFSync with both the RTF_SYNC_RTF_CHANGED and

RTF_SYNC_BODY_CHANGED flags set. RTFSync will recalculate the RTF auxilliary properties
from the modified text.

6. Make any reversable modifications to the message text, such as inserting attachment placeholders
and performing nondestructive code page conversions.

7. Send the message.

For incoming messages, gateways should perform the following steps for handling rich text:

1. Reverse any message text modifications that were made directly before the message was sent.
2. Call RTFSync if the message contains both the PR_RTF_COMPRESSED and PR_BODY

properties.
3. Update the message in the message store with the PR_RTF_COMPRESSED property if the

message contains it; update with the PR_BODY property only if PR_RTF_COMPRESSED is absent.
4. Discard PR_BODY if the message contains both this property and PR_RTF_COMPRESSED.

Gateways call RTFSync to avoid transmitting both the message text and rich text if the message store
is on a different machine. If the gateway is local, it can set both properties and allow the message store
to perform the synchronization.

 About Sending Across Messaging Domains

A messaging domain represents one or more messaging systems that share a common address
format. Communication across multiple messaging domains involves translating a message sent in the
format of the original messaging domain into the format of the destination messaging domain. Because
not all address formats are compatible, a gateway is needed to translate the addressing information
from the source format into the destination format. To ensure validity across messaging domains, client
applications store important addressing information in MAPI properties. In addition, gateways perform
the translation, examining the properties known to need translation and changing them to a format that
the destination messaging domain can use.

Previously, MAPI allowed this addressing information to be associated with only the users who
comprise a message's current recipient list. The properties describing each member of the recipient list
underwent the required translation by the gateway to ensure validity across messaging domains.
However, some applications require that their messages include addressing information about users
that perhaps were recipients in the past, will be recipients in the future, or will never be recipients. For
example, routing applications, which send messages in a specified order to a group of users, embed
addressing information about these users in the messages. The embedded information typically
includes the address and address type of the future recipients, and perhaps also their roles and
positions in the routing order, their names, and one or more binary identifiers per recipient.

To enable messages to include information about these non-recipient users, MAPI now includes a
strategy for ensuring that this non-recipient information is also translated correctly across messaging
domains. This strategy is based on the concept of gateway-mappable properties.

About Gateway Mappable Properties

Gateway-mappable properties are properties that may require translation when sent from one
messaging domain to another. MAPI's gateway-mappable properties allow messages to include
information that requires a gateway to ensure the destination messaging system uses it properly.
Although gateway developers are not required to provide this translation capability, they should
consider gateway-mappable properties as an opportunity to handle message content even better.

MAPI specifies five types of gateway-mappable properties:

· Display name
· E-mail address
· E-mail type
· Entry identifier
· Search key

This is the set of addressing properties that are associated with recipients, senders, report recipients,
and delegated senders and recipients. To help your client define these properties so that a gateway
handles them specially, MAPI specifies a naming convention using named properties and property
sets. Five property sets exist to hold named properties, the addressing properties that require mapping.
There is one property set for each type of mappable property. The property sets that will hold these
named addressing properties are as follows:

Property set Description
PS_ROUTING_DISPLAY_N
AME

Contains string properties used as
display names.

PS_ROUTING_EMAIL_ADD
RESSES

Contains string properties used as
e-mail addresses.

PS_ROUTING_ADDRTYPE Contains string properties used as
e-mail address types.

PS_ROUTING_ENTRYID Contains binary properties used
as long-term entry identifiers.

PS_ROUTING_SEARCH_K
EY

Contains binary properties used
as search keys.

 About Client Naming Responsibilities

Clients must follow a naming convention for their properties that need to be translated by a gateway. All
properties to be translated should be created as named properties in one of the five property sets
designated to hold mappable properties: PS_ROUTING_EMAIL_ADDRESSES,
PS_ROUTING_ADDRTYPE, PS_ROUTING_DISPLAY_NAME, PS_ROUTING_ENTRYID, or
PS_ROUTING_SEARCH_KEY. Addressing properties that relate to the same user must be given the
same name. Gateways rely on this naming convention, which enables them to match an address with
its correct address type. For address parsing, the mapping between address and address type must be
accurate.

MAPI named properties are represented with the MAPINAMEID data structure, which specifies that the
property name can be either a Unicode string or a 32-bit integer. Integer naming is recommended for
groups of addresses because it is a straightforward way to differentiate between sets of mappable
properties, and it can easily serve as an index to the user. The alternative to using integers is to assign
one string as the name for all five of a user's mappable properties. If only one user requires mapping,
assigning a string is acceptable. However, when there are multiple users, it is better to use integer
naming. The name, whether it be numeric or string-based, should be stored in either a message class-
specific property or in a property belonging to a property set that is defined by the client application.

Note Avoid translating integer names to strings, such as "route_recipient_1" and "route_recipient_2."
This effort is unnecessary.

To illustrate how this naming convention works, consider a routing application that sends a message to
each member of a four-person team. When one member receives the message, he or she must
respond to it before it can be sent along with the compiled responses to the next member. The original
message contains a recipient list with one entry: the first member of the team. Embedded within the
message are the gateway-mappable properties for the other three team members. Each member has
five core user properties residing in the gateway-mappable property sets, assigned a unique number
as a name.

The following table illustrates the settings for each of set of gateway-mappable properties stored for the
three remaining team members to whom the message is routed when the first team member is finished
with it.

Property Set
Second
Team
Member

Third Team
Member

Fourth Team
Member

PS_ROUTING_EMAIL_ADD
RESSES

Address = 0 Address = 1 Address = 2

PS_ROUTING_ADDRTYPE Address type
= 0

Address type
= 1

Address type
= 2

PS_ROUTING_DISPLAY_N
AME

Display name
= 0

Display name
= 1

Display name
= 2

PS_ROUTING_ENTRYID Entry
identifier = 0

Entry identifier
= 1

Entry
identifier = 2

PS_ROUTING_SEARCH_K
EY

Search key =
0

Search key =
1

Search key =
2

Clients that use mappable search keys as references to other message properties must recognize that
the other message properties will not be translated unless they are placed in one of these mappable
property sets. When a message with unmapped references to mapped search keys is sent to a
destination in another messaging domain, the references are invalid. To allow these other properties to
remain synchronized with the search keys, you can assign them string names in the
PS_ROUTING_SEARCH_KEY property set that do not interfere with the names given to any of the

core mappable properties. For example, suppose a client needs to transmit a property that contains the
search key for the last person in a long routing list. The client can create a named property in the
PS_ROUTING_SEARCH_KEY property set called "last_search_key." Because it is stored in a
mappable property set, the "last_search_key" property is translated along with the rest of the gateway-
mappable properties.

 About Gateway Mapping Responsibilities

When a MAPI-aware gateway receives a message containing named properties in one of the special
property sets designated to contain gateway-mappable properties, the gateway should map all of the
properties to the protocol of the destination messaging system. Although MAPI recommends that
gateways handle all named properties in the special property sets, gateways are expected to handle
only two: e-mail address and address type. Because the e-mail address and address type properties
directly affect message transmission, it is critical that gateways support the mapping of these two
properties. Because search keys consist of a user's address type and address, they should also be
translated if at all possible.

Entry identifiers are not expected to be handled frequently. To enable mapping of an entry identifier that
originates in one messaging system to an entry identifier that is usable by another messaging system,
the gateway must be able to use the format of both systems. Because most gateways are not aware of
entry identifier formats, the translation of entry identifiers is rare.

Another mappable property that is not expected to be translated frequently is the display name.
Gateways should store display names and transmit them, but not necessarily translate them.

 About the Idle Utility

MAPI provides several functions that are collectively known as the idle utility. These functions allow
clients, address book providers, and message store providers to perform various tasks during slow
times in the session or in response to a slow time. For example, clients and service providers can defer
slow operations or close files that have remained unused for a lengthy period. Transport providers
typically do not use the idle utility because the IXPLogon::Idle method takes its place.

To use the idle utility, clients and service providers create a callback function that contains the tasks
that should occur when the MAPI subsystem is idle. When MAPI detects idle time, it invokes this
callback function. The callback function follows the FNIDLE prototype, defined as follows:

BOOL (STDAPICALLTYPE FNIDLE) (LPVOID lpvContext)

The functions that make up the idle utility are:

ChangeIdleRoutine
DeregisterIdleRougine
EnableIdleRoutine
FtgRegisterIdleRoutine
MAPIDeInitIdle
MAPIInitIdle

To register a callback function, clients and service providers call the FtgRegisterIdleRoutine function.
The input parameters include an optional priority, a block of memory that is passed to your callback
function as input, an amount of time to be used as in any way appropriate, and a set of option flags.

Clients and service providers can specify a priority in the priIdle parameter that controls how the idle
function runs or specify zero if priority is not an issue. Because negative numbers represent higher
priorities than positive numbers or zero, compression and search operations should be assigned
negative numbers. Tasks that occur once should be assigned positive numbers.

To deregister an active callback function, clients and service providers call the DeregisterIdleRoutine
function. Because DeregisterIdleRoutine operates asynchronously, it is possible for the callback
function to be invoked at any time during the deregister call and possibly even after
DeregisterIdleRoutine has returned.

To modify some or all of the characteristics of a callback function, clients and service providers call the
ChangeIdleRoutine function. ChangeIdleRoutine any of the options set with the flags parameter
ircIdle to be changed, including the function itself, its priority, time setting, and input parameter.

MAPI's definition of idle is the same as the operating system, when the operating system has a
definition. On Win16, MAPI's installs a journalling hook that updates a variable with the time of the last
user action. Idle time calculations are based on this variable. On Win32, MAPI creates a thread with
idle-class priority to schedule idle tasks. This thread keeps track of the time and posts a message to
the thread that is to execute the idle task when the time for its execution arrives. Win32 schedules
threads, not processes. If tasks that have a priority higher than the idle priority are occurring on the
workstation, the idle task should not get scheduled for execution until the tasks have completed.

All idle tasks run on the thread that called MAPIInitIdle. MAPI has a separate thread for scheduling,
but when an idle task becomes eligible, it posts a message back over to the initialization thread and the
idle task is executed there. The implications for different types of clients are as follows:

Threading model Implication
Single-threaded No problem. Idle functions execute on your

client's main thread and are serialized
through the message loop.

Free-threaded Idle functions must be thread-safe, but your
client already has the necessary
infrastructure. Your client might not need
MAPI's idle utility at all.

Apartment-
threaded

Idle function has to execute on the same
thread that registered it if it wants to use
MAPI, OLE, or any other COM interfaces.
The most straightforward way is to register
an idle function with MAPI that posts a
message to the right thread and dispatch
the "real" idle function directly from that
thread's message loop.

 Developing a Client Application

MAPI client applications are applications that are written with the object oriented MAPI client interface.
MAPI client applications interact with a messaging system through service providers and through the
MAPI subsystem. This interaction can occur in many different ways; there is an enormous variety of
client applications. The most common client application either integrates messaging into its feature set
or performs messaging as its primary feature. Other features that MAPI clients might provide include
profile administration or address book and message store management.

Regardless of the type of MAPI client you are developing, you will:

· Initialize the MAPI libraries.
· Start up a session.
· Communicate with one or more service providers either directly or through the MAPI subsystem.
· End a session.

Use the following topics to help you implement these basic tasks and the specific features that will
make your MAPI client application unique.

 Types of Client Applications

There are primarily two types of messaging clients: those that handle interpersonal messages (IPM)
and those that handle interprocess communication, or IPC, messages. Within those types, messaging
client applications can be categorized as follows:

· Person-to-person
· Person-to-machine
· Machine-to-person
· Machine-to-machine
· Mix of persons and machines

Person-to-person applications involve a person initiating the exchange of messages and another
person responding. This category of applications includes traditional e-mail applications as well as
more structured exchanges such as document routing or expense approval.

Person-to-machine applications involve a person initiating the exchange of messages and a machine
responding. This category includes applications that use e-mail to, for example, submit a database
query or subscribe to a mailing list.

Machine-to-person applications involve a machine initiating the exchange of messages and a person
responding. This category includes applications that distribute documents such as news feeds and
opinion surveys.

Machine-to-machine applications involve a machine initiating the exchange of messages and a
machine responding. This category includes applications such as link heartbeat monitoring and
directory and database replication.

The final category, a mix of persons and machines, involves a more complex scenario. This category
includes applications that do not necessarily transmit messages between senders and recipients.
Instead they might post them directly into a public folder or to a bulletin board forum supported by a
message store. The messages can then be consumed on demand by other readers, an administrator,
or a software agent.

If you are writing a person-to-person application, machine-to-person application, or an application that
posts messages to public forums, set up your application to send and receive IPM messages. If you
are writing a person-to-machine or machine-to-machine application, it should be set up to send and
receive IPC messages. Any application that requires the interaction of a human user must support IPM
messages. Applications that involve both people and machines in a variety of scenarios often must
support both IPM and IPC messages. The only real difference between the two classes is that IPM
messages in a message store are visible to messaging clients, while IPC messages usually are not.

Rather than limiting your messages to the capabilities provided by MAPI's superclasses, IPM and IPC,
you can customize and enhance these classes by creating new IPM or IPC subclasses. Creating
message subclasses involves inventing new message classes that inherit from the superclasses. For
example, if your person-to-person application specializes in sending documents, you can subclass the
IPM superclass by defining an IPM.Document.MyDoc class and create properties that describe your
documents. In addition to supporting these custom properties, your IPM.Document.MyDoc messages
will inherit the properties supported by all IPM messages.

 Linking to the MAPI DLLs

MAPI clients can link to the MAPI DLLs implicitly or explicitly through the Windows functions
LoadLibrary and GetProcAddress.

MAPI provides type definition statements in the MAPIX.H header file for each of the following functions:

MAPILogonEx
MAPIUninitialize
MAPIInitialize
MAPIAllocateBuffer
MAPIAllocateMore
MAPIFreeBuffer
MAPIAdminProfiles

Use these type definitions to correctly call the corresponding entry points if your client links explicitly to
the MAPI DLLs.

Service providers can contain non-MAPI functionality, features that are completely unrelated to MAPI,
in their DLL. If your client needs to use these features, it is necessary to call LoadLibrary before using
the DLL and FreeLibrary to remove the DLL from memory after its use. Because MAPI is unaware of
non-MAPI uses of a service provider DLL, there is no guarantee that the DLL will be available when
needed. MAPI releases a service provider DLL when there are no longer any clients with active
sessions that require its services.

 Session Handling

Before your client can communicate with service providers and an underlying messaging system, a
session must be established. A MAPI session is a link from a client to other MAPI components. As the
result of successfully starting a session, MAPI returns to clients a pointer to a session object, an object
that implements the IMAPISession interface.

Your client can use the methods of the IMAPISession interface to open and compare address book
and message store objects, to access several tables, and to perform profile and message service
administration.

Your client starts a session by initializing the MAPI libraries and, if required, the OLE libraries, and by
selecting a valid profile. MAPI verifies the configuration of each of the service providers in the message
services included in the profile, prompting the user for additional information if necessary and your
client allows it. When session start up is complete, the configured service providers are ready to
service your client.

When it is time to end a session, your client uninitializes the initialized libraries and makes a call to
IMAPISession::Logoff. This call causes MAPI to shut down each of the active service providers.

 Starting a MAPI Client Session

Although there is a significant amount of work performed during session start up, the tasks required of
your client are minimal. Much of this work is done in MAPI's processing of the MAPIInitialize and
MAPILogonEx calls. Both of these functions accept flags as input parameters for controlling aspects of
the session such as notification handling and the user interface. It is important to understand the
consequences of setting each of these flags when calling MAPIInitialize to initialize the MAPI libraries
and MAPILogonEx to log on to the MAPI subsystem.

To start a MAPI session
1. Call MAPIInitialize to initialize the standard set of MAPI libraries.
2. If your client needs to use the OLE libraries, call the OLE function OleInitialize.
3. If your client needs to use the MAPI utility library, call ScInitMapiUtil.
4. Call MAPILogonEx to log on to the MAPI subsystem.

 Initializing the MAPI Libraries

All client applications that use the MAPI libraries must call the MAPIInitialize function. MAPIInitialize
initializes global data for the session and prepares the MAPI libraries to accept calls. There are two
flags that are important to set in some situations:

MAPI_NT_SERVICE
MAPI_MULTITHREAD_NOTIFICATIONS

The MAPI_NT_SERVICE flag must be set by clients that are implemented as Windows NT services. If
your client is a Windows NT service that does not pass the MAPI_NT_SERVICE flag in its call to
MAPIInitialize, MAPI will not recognize it as a service.

The MAPI_MULTITHREAD_NOTIFICATIONS flag relates to how MAPI manages notifications for
service providers. MAPI supports event notification by creating a hidden window that receives window
messages when changes occur in an advise source. Concurrently, MAPI places a copy of the
parameters to be included in the notifications in shared memory. The window messages are processed
at some point, causing the appropriate IMAPIAdviseSink::OnNotify methods to be called.

Because it must process messages, MAPI expects the thread that is used to create the notification
window to:

· Have a message loop.
· Remain unblocked throughout the life of the session.
· Have a longer lifetime than any other thread created by the client.

MAPI either creates the notification window on the thread that was used for your client's first
MAPIInitialize call or on a separate thread, dedicated to handling notifications. Your client can choose
which thread is used by setting a flag in the first MAPIInitialize call. The danger in allowing one of your
client's threads to handle the notifications is that if the thread disappears, the notification window is
destroyed and notifications can no longer be sent to any of the other threads in your client. Also,
special processing might be needed to control the dispatching of the notification messages that are
posted to the hidden window's message queue.

If your client uses a separate window to handle notifications, be assured that notifications will appear at
the appropriate time on an appropriate thread. Your client will not need any special code to check for
and process the Windows messages that are posted to the notification window.

MAPI recommends that the following types of client applications use a separate thread to create the
hidden window for notification support:

· All 32-bit multithreaded clients
· Single-threaded Windows NT services and Win 32 console applications
· Single-threaded clients that do not need to use their main thread for notification

To use the separate thread approach, call MAPIInitialize on every thread in your client, setting the
MAPI_MULTITHREAD_NOTIFICATIONS flag. Calls made from 16-bit clients operate as if the
MAPI_MULTITHREAD_NOTIFICATIONS flag is not set.

Note Only a client's first call to MAPIInitialize causes a hidden window to be created to support
notifications. Subsequent calls only cause a reference count to be incremented.

 Initializing the OLE Libraries

If your client application also uses OLE, an additional call to the OLE function OleInitialize must be
made. If your client is written for a 32-bit platform, such as Windows NT or Windows 95, this call must
be made on every thread in your application. OleInitialize initializes global data for the session and
prepares the OLE libraries to accept calls. For information about calling OleInitialize, see the OLE
Programmer's Reference.

Initializing the MAPI Utilities

If your client needs to use only the MAPI utilities, such as the ITableData and IPropData : IMAPIProp
interfaces, it does not need to call MAPIInitialize for initialization. Instead, call the API function
ScInitMapiUtil. ScInitMapiUtil allows client applications to use utility functions and methods that
require MAPI allocators, but that do not ask for them explicitly.

At shutdown time, your client must make a call to DeinitMapiUtil to free resources connected to the
utilities. Do not call MAPIUninitialize.

Be aware that the ITableData interface does not support table notifications for clients that have called
ScInitMapiUtil rather than MAPIInitialize.

 Logging On a MAPI Client

Client applications log on to the MAPI subsystem by calling the MAPILogonEx function with the
appropriate flags set. MAPILogonEx starts up and initializes each provider in the profile. If the
message service that your client is using has multiple service providers, the providers in the address
book are started first.

The logon process validates a client's choice of profile, the password for the profile, service provider
configuration, and establishes either a shared, individual, or non-messaging session with the MAPI
subsystem. Clients that supply partial information to MAPILogonEx must prompt the user for the
additional data by allowing a dialog box to be displayed. Clients that do not need user input can
suppress the dialog box display.

To specify a choice of profile
· Pass in a character string that represents the name of the profile in the lpszProfileName parameter.

 - Or -
· Allow the user to enter the profile by passing NULL in the lpszProfileName parameter and setting the

MAPI_LOGON_UI flag.
 - Or -

· Select the default profile by passing NULL in the lpszProfileName parameter and setting the
MAPI_EXPLICIT_PROFILE flag.

To specify a password
· Pass in a character string that represents the password in the lpszPassword parameter.

 - Or -
· Allow the user to enter the password by passing NULL in the lpszProfileName parameter and setting

the MAPI_PASSWORD_UI flag.

The flags that MAPILogonEx uses to enable a user interface are mutually exclusive; only one can be
set. Leaving these flags unset disables the user interface completely, causing MAPILogonEx to fail if
necessary information is missing. That is, if your client disables the user interface, passes NULL for the
lpszProfileName parameter, and does not set the MAPI_EXPLICIT_PROFILE flag, MAPILogonEx will
fail because it cannot retrieve a profile name.

There are three types of sessions that a client can choose: an individual messaging session, a shared
messaging session, and a non-messaging session. Individual messaging sessions are private
connections between your client and the MAPI subsystem and can be established by setting the
MAPI_NEW_SESSION flag in the call to MAPILogonEx. Shared messaging sessions are connections
that multiple messaging clients can use. Shared sessions are typically established for clients that are
members of a workgroup and use the same profile. To establish a new session as a shared session,
your client sets the MAPI_ALLOW_OTHERS flag.

To use an existing shared session
· Do not set the MAPI_NEW_SESSION flag.
· Do not set the MAPI_ALLOW_OTHERS flag.
· Pass NULL for the lpszProfileName parameter.
· Pass NULL for the lpszPassword parameter.

Non-messaging sessions allow clients to access the MAPI subsystem, but do not allow messages to
be sent or received. Configuration or administration applications are examples of clients that might
need to establish non-messaging sessions. To request a non-messaging session, your client sets the
MAPI_NO_MAIL flag. Setting this flag logs your client on without informing the MAPI spooler.

Messaging and non-messaging clients can share sessions. If your client logs on with the
MAPI_NO_MAIL flag set and establishes a shared session, a second client logging onto this session
that doesn't set the MAPI_NO_MAIL flag has no affect on the operation of your client. That is, as a

messaging client, the second client will be able to send and receive messages while your client will not.

Clients should only set the MAPI_NO_MAIL flag under the following conditions:

· When they do not send or receive messages during the session, such as with clients performing
profile configuration or message store access.

· When they have complete control over the contents of the profile, and messages are sent and
received using only the Microsoft Exchange default message store and transport providers.

MAPILogonEx defines a few other flags that your client can set:

· MAPI_FORCE_DOWNLOAD indicates that incoming messages should be downloaded before
MAPILogonEx returns. Not setting this flag causes messages to be downloaded in the background
at a later time.

· MAPI_SERVICE_UI_ALWAYS requests that every message service in the profile display a
configuration dialog box.

With every successful logon, MAPILogonEx returns a pointer to a MAPI session. Your client can use
this pointer to call the methods of the IMAPISession interface. Session pointers, regardless of the type
of session, are unique to the clients that receive them and are not valid across tasks.

 Ending a MAPI Client Session

When your client needs to terminate its session with the MAPI subsystem, it must cancel the
registrations for all of its notifications, release all of its open objects, call IMAPISession::Logoff, and
release its session pointer. The call to Logoff is optional; it gracefully shuts down all of the service
providers.

Clients can end their sessions in response to a user's request, either immediately or after all outbound
messages have been processed, and when a critical error occurs. Some clients need to stay logged on
so that pending outbound messages can reach the transport provider and the destination messaging
system. If this type of client sends a message and immediately logs off, the message remains in the
outgoing queue until a user logs back on and stays logged on long enough for the message to be
transmitted.

To end a session
1. Cancel all registrations for notification by calling the Unadvise method of every advise source.
2. If your client has active references to any of the following objects, release them by calling their

IUnknown::Release methods:
Advise sink
Status table
Outbox folder
Message store
Address book

3. Call MAPIFreeBuffer to free the memory for any cached entry identifiers, such as
PR_IPM_SUBTREE_ENTRYID.

4. Call IMAPISession::Logoff, setting the MAPI_LOGOFF_UI flag if your client allows a user interface
and the MAPI_LOGOFF_SHARED flag if your client owns the current shared session. Logoff
notifies all other clients that are using the current shared session that they should log off by sending
an error notification.

5. Release the session pointer by calling the session's IUnknown::Release method.
6. If your client called OleInitialize during session startup to initialize the OLE libraries, uninitialize

them now by calling OleUninitialize. Only clients that have called OleInitialize must call
OleUninitialize.

7. Uninitialize the MAPI libraries by calling MAPIUninitialize. If your client called OleInitialize at some
point, make sure that a call to OleUninitialize occurs before this call to MAPIUninitialize. The
timing is crucial. If the call to OleUninitialize follows the call to MAPIUninitialize, your client might
terminate ungracefully.

8. If your client called ScInitMapiUtil during session startup to initialize the MAPI utility library,
uninitialize it now by calling DeinitMapiUtil. Only clients that have called ScInitMapiUtil must call
DeinitMapiUtil.

Note All open objects must be released before the call to IMAPISession::Logoff. Objects that remain
open after Logoff is called become invalid, they cannot accept any calls and might never be freed. If a
call is made to one of these objects, your client should expect the call to fail.

When a MAPI session ends, all of the service provider DLLs are unloaded. They are not deleted. MAPI
has no mechanism for deleting DLLs during the session shutdown process. A service provider's DLL
can only be deleted when a configuration client such as the Control Panel calls its message service
entry point function with the MSG_SERVICE_INSTALL event.

The MAPI spooler remains running as long as there is one client with an active session on the system.
When the last client ends its session, the MAPI spooler is automatically shut down.

 Opening and Comparing Objects

Your client can use the IMAPISession : IUnknown interface for opening objects of several different
types. IMAPISession has the following methods for opening objects:

· OpenProfileSection to open a profile section.
· OpenMsgStore to open a message store.
· OpenAddressBook to open the MAPI integrated address book.
· AdminServices to open a message service administration object.
· OpenEntry to open any object that has an assigned entry identifier.

Some clients implement a feature enabling them to reconfigure the message services and service
providers in a profile. To support profile administration, your client can call the
IMAPISession::AdminServices method. AdminServices returns a pointer to a message service
administration object, or object that supports the IMsgServiceAdmin : IUnknown interface. With an
IMsgServiceAdmin pointer, your client can create, delete, copy, and configure a message service,
specify the sequence that MAPI uses for calling transport providers to deliver messages, access the
message service table, and access the profile.

With the OpenEntry method and a valid entry identifier, your client can open any address book or
message store provider object. There are many OpenEntry methods in MAPI, implemented by the
following objects:

Address book provider's logon
object

Message store provider's logon
object

MAPI address book Message store
Address book container Folder
Session Support object

Some OpenEntry methods require an entry identifier of the object to be opened, as does
IMAPISession::OpenEntry; other methods allow NULL to be specified. A NULL entry identifier is
interpreted differently depending on the object. For example, when your client calls
IAddrBook::OpenEntry with a NULL entry identifier, MAPI opens the root container of the address
book. The message store's OpenEntry method behaves similarly; it opens the root folder of the
message store. IMAPIContainer::OpenEntry, implemented by both folders and address book
containers, might return MAPI_E_INVALID_PARAMETER or the root container, depending on the
implementor.

In addition to disallowing a NULL value for the entry identifier, the session's OpenEntry method differs
from other OpenEntry methods because its job is not to open objects. Instead, it examines the entry
identifier and forwards the call to another OpenEntry method implemented by the appropriate service
provider. For example, if your client calls IMAPISession::OpenEntry with the entry identifier of a
message, MAPI calls the IMSLogon::OpenEntry method of the message store responsible for the
message.

The IMAPISession::CompareEntryIDs method compares two entry identifiers. If the MAPIUID
structures contained within the entry identifiers belong to the same service provider, MAPI forwards the
call to that provider. CompareEntryIDs returns an error value when the two entry identifiers do not
match. Although this method can compare entry identifiers that belong to either higher level objects
such as message stores and lower level objects such as messaging users, use CompareEntryIDs for
the higher level objects. To compare lower level objects, use the objects' search keys
(PR_SEARCH_KEY) or record keys (PR_RECORD_KEY). These values can be compared directly,
without calling a method.

Choose which OpenEntry and CompareEntryID method to use according to the amount of
information that your client has about the object or objects to be opened or compared. Use the

following guidelines when deciding which interface method to call:

· If your client has no information about the target objects, call IMAPISession::OpenEntry or
IMAPISession::CompareEntryIDs. This approach enables access to any object, but is the slowest
of the three.

· If your client knows that the target objects are address book entries rather than, for example, folders,
call the IAddrBook::OpenEntry or IAddrBook::CompareEntryIDs method.
IAddrBook::OpenEntry opens the root container of the address book when NULL is specified as
the target object. This approach enables access to any address book object and is faster than using
IMAPISession, but slower than using IMAPIContainer.

· If the entry identifier being used is a short-term entry identifier or if your client knows that the target
objects belong to a particular address book container or folder, call the
IMAPIContainer::OpenEntry method. This approach yields the fastest performance, but it enables
access only to objects in a specific container or folder.

 About Provider and Session Identity

Service providers, typically address book providers, have the option of supplying an identity that can be
used to represent the session in a variety of situations. Three properties describe a provider's identity:

PR_IDENTITY_ENTRYID
PR_IDENTITY_DISPLAY
PR_IDENTITY_SEARCH_KEY

These properties are set to the entry identifier, display name, and search key of the corresponding
identity object, which is typically a messaging user. Providers that supply an identity also set the
STATUS_PRIMARY_IDENTITY flag in their PR_RESOURCE_FLAGS property.

Depending on your client's needs, it might need to use a particular provider's identity or the primary
identity for the session. For example, your client can use the primary identity to include it on printouts
or use a provider's identity for display purposes or to retrieve properties, such as
PR_RESOURCE_PATH. PR_RESOURCE_PATH, if set, contains the path to miscellaneous files used
or created by a provider. The PR_RESOURCE_PATH property for the provider supplying the primary
identity when your client is interested in locating files that pertain to the user of the session rather than
a specific provider.

To retrieve the identity of a specific provider
1. Call IMAPISession::GetStatusTable to access the status table.
2. Build a restriction using an SPropertyRestriction structure to match the PR_PROVIDER_NAME

column with the name of the specified provider.
3. Call IMAPITable::FindRow to locate the provider's row. The provider's identity will be stored in the

PR_IDENTITY_ENTRYID column, if it exists.

To retrieve the primary identity for a session
· Call IMAPISession::QueryIdentity.

QueryIdentity bases session identity on the existence of the STATUS_PRIMARY_IDENTITY value in
the PR_RESOURCE_FLAGS column for one of the rows in the status table. If none of the status rows
have this value set, QueryIdentity assigns identity to the first service provider that sets the three
PR_IDENTITY properties. If no service provider supplies an identity, QueryIdentity returns
MAPI_W_NO_SERVICE. When this happens, your client should create a character string to represent
a generic user that can serve as the primary identity.

Note Do not call QueryIdentity during session start up; it will unnecessarily increase the amount of
time it takes to start your client's session. This is because to access the status table and query for the
PR_IDENTITY properties, the MAPI spooler must be available. The extra time it takes to start up the
MAPI spooler will add to your client's start up time.

To explicitly set the primary identity for a session
· Call IMsgServiceAdmin::SetPrimaryIdentity. Pass the MAPIUID for the target service provider.

 Using the Status Table and Status Objects

Your client calls IMAPISession::GetStatusTable to access the status table implemented by MAPI. The
status table provides information about the MAPI subsystem, MAPI spooler, address book, or a
particular service provider.

Each row in the status table represents a status object implemented by MAPI or a service provider.
Your client can use a status object to display a provider's configuration property sheet, to change a
provider password, to upload or download messages, and to communicate with a particular transport
provider.

To access the status object of a particular service provider
1. Call IMAPISession::GetStatusTable to retrieve the status table.
2. Call the status table's IMAPITable::SetColumns method to limit the column set to PR_ENTRYID,

PR_RESOURCE_TYPE, and PR_DISPLAY_NAME.
3. Build a property restriction using an SPropertyRestriction structure to match PR_DISPLAY_NAME

with the display name of the target provider.
4. Call HrQueryAllRows, passing in the SPropertyRestriction structure, to retrieve the row that

represents the status of the provider.
5. Pass the PR_ENTRYID column to IMAPISession::OpenEntry to open the provider's status object.

To display a property sheet, call the status object's IMAPIStatus::SettingsDialog method for the target
provider. SettingsDialog displays a property sheet for viewing and in some cases, changing the
configuration properties of a provider.

To communicate with a transport provider, call its status object's IMAPIStatus::ValidateState method.
ValidateState can reconfigure a transport provider, prevent the provider from displaying a user
interface, and control a session that involves downloading message headers from a remote server,
depending on the flags that your client passes in. For example, to cancel the downloading of remote
headers, pass the ABORT_XP_HEADER_OPERATION to ValidateState. To connect or disconnect
from the remote server, pass FORCE_XP_CONNECT or FORCE_XP_DISCONNECT. To reconfigure
the provider, pass CONFIG_CHANGED.

Clients that implement sending or receiving of messages on demand call either a transport provider's
or the MAPI spooler's IMAPIStatus::FlushQueues method. Your client can pass three flags into the
method: FLUSH_UPLOAD, FLUSH_DOWNLOAD, and FLUSH_FORCE. FLUSH_UPLOAD instructs
the provider or the spooler to send any messages waiting in the output queue while
FLUSH_DOWNLOAD instructs the provider or the spooler to receive any incoming messages.
FLUSH_FORCE can be set with either of the other flags to cause the status object to perform the flush
regardless of the timing.

Do not expect to be able to call SettingsDialog or ChangePassword on any of the MAPI subsystem,
MAPI spooler, or address book status objects. Both the subsystem and address book status objects
only support ValidateState; the MAPI spooler status object supports FlushQueues in addition to
ValidateState.

For more information about the status table and status objects, see About Status Tables and Status
Objects.

 Requesting Read and Delivery Status Reports

Your client can register to be informed when a message that it has sent has or has not been read or
delivered. MAPI is designed to automatically send nondelivery, or NDR, reports to senders when
messages cannot be successfully delivered. Reports of successful delivery and read status reports are
only generated on demand.

To request a delivery report, set the PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED property
to TRUE.

Read status reports are generated as a pair. That is, clients cannot request only read reports or only
non-read reports. To request a read status report, set the PR_READ_RECEIPT_REQUESTED
property to TRUE.

To suppress the delivery of nondelivery reports, set
PR_ORIGINATOR_NON_DELIVERY_REPORT_REQUESTED to FALSE.

For more information about message reports, see About Report Messages.

 Handling Outgoing Messages

To prepare a message for transmission, your client must open the default message store and the
Outbox folder, create the message, set several message and recipient properties, perform name
resolution, and finally save the message. When your client has completed these steps, the message is
ready to be sent.

Assuming that your client has opened the default message store, perform the following procedure to
create a transmittable message.

To create an outgoing message
1. Call the message store's IMAPIProp::GetProps method to retrieve the

PR_IPM_OUTBOX_ENTRYID property, which contains the entry identifier for the Outbox.
2. Call IMsgStore::OpenEntry, passing PR_IPM_OUTBOX_ENTRYID as the entry identifier, to open

the Outbox.
3. Call the Outbox folder's IMAPIFolder::CreateMessage method to create the new message.
4. Add one or more recipients to the message.
5. Optionally, add a subject.
6. Add the message text.
7. Optionally, add one or more attachments.
8. Add any other necessary properties, such as PR_CONVERSATION_INDEX.
9. Call the message's IMAPIProp::SaveChanges method to save it or IMessage::SubmitMessage to

save the message before it is sent.

 Opening the Default Message Store

In any particular session, one message store acts as the default message store. A default message
store supports the PR_DEFAULT_STORE property and sets it to TRUE. A default message store also
has a collection of special folders that MAPI automatically creates when the message store is opened.
The special folders include:

· IPM subtree of special folders (Inbox, Outbox, Deleted Items, and Sent Items)
· Root folder for search results
· Root folder for common views
· Root folder for personal views

The names that MAPI assigns to the IPM subtree folders are default names; your client can keep these
names or change them as necessary. MAPI assigns default names and associations for these folders
to keep messages from inadvertently disappearing if a client neglects to establish receive folders for
messages.

To open the default message store
1. Call the IMAPISession::GetMsgStoresTable method to access the message store table.
2. Build a restriction using the SAndRestriction structure to combine:

· A restriction using the SExistRestriction structure that tests for the existence of the
PR_DEFAULT_STORE property.

· A restriction using the SPropertyRestriction structure that checks for the TRUE value in the
PR_DEFAULT_STORE property.

3. Call HrQueryAllRows to retrieve the row that represents the default message store.
4. Pass the entry identifier included in the row's column set to IMAPISession::OpenMsgStore to open

the default message store.

 Opening the Outbox Folder

The Outbox folder is the folder that contains all outgoing messages. For clients that handle IPM
messages, this is the Outbox folder in the IPM subtree. For clients that handle IPC messages, this is
the receive folder.

To open the Outbox
1. For IPM classes:

a. Call the message store's IMAPIProp::GetProps method to retrieve the
PR_IPM_OUTBOX_ENTRYID property.

b. Call IMsgStore::OpenEntry with the entry identifier in PR_IPM_OUTBOX_ENTRYID to open the
Outbox.

2. For IPC classes, use the receive folder for creating outgoing messages.

 Creating an Outgoing Message

To create an outgoing message, call the Outbox folder method, IMAPIFolder::CreateMessage.
IMAPIFolder::CreateMessage assigns an entry identifier for the newly created message that uniquely
identifies it in the message store. The entry identifier is made up of a part that represents the message
store provider and a part that represents the individual message. A message's entry identifier is unique
within its message store and all the message stores that are open concurrently.

Your client, service providers, and possibly other clients will use this entry identifier, stored in the
message's PR_ENTRYID property, to open the message once it has been saved. Some message
store providers allow the entry identifier to be available immediately after CreateMessage returns;
others delay its availability until the message has been saved.

Outgoing messages, after they have been sent, can be deleted or saved in a folder, depending on a
property that your client sets. If your client sets PR_DELETE_AFTER_SUBMIT, each outgoing
message is removed after it is sent. If your client sets PR_SENTMAIL_ENTRYID, each outgoing
message is placed in the folder represented by the entry identifier in this property. Outgoing messages
are saved when your client sends them in a call to IMessage::SubmitMessage. Messages not being
sent must be saved with an explicit call to their IMAPIProp::SaveChanges method.

 Adding a Message Recipient

All outgoing messages require at least one recipient, a collection of properties that represents a
particular destination for the message. A recipient can represent a human user, a machine, or a folder.

Recipients are considered subobjects of the message with which they are associated because they
can only be opened when the message is open.

By the time the message is sent, its recipients always have the following properties:

PR_ADDRTYPE
PR_DISPLAY_NAME
PR_EMAIL_ADDRESS
PR_ENTRYID
PR_SEARCH_KEY

These properties are used to access the recipient, send messages to it, and to compare it to others.
Not all of these properties need to be available right away. Your client can add a recipient without
knowing its entry identifier. Recipients undergo a process called name resolution, whereby an address
book provider associates display names with entry identifiers. Clients typically initiate name resolution
for a message by calling IAddrBook::ResolveName before they call IMessage::SubmitMessage to
send it.

Another property, PR_RECIPIENT_TYPE, is assigned to each recipient by the message store provider.
It indicates whether a recipient appears as a primary, carbon copy, or blind carbon copy recipient on a
message. It also indicates for resent messages whether or not a recipient successfully received the
message with the original transmission.

Recipients undergo a process called name resolution, whereby an address book provider associates
an entry identifier with the display name.

Rather than calling an IMAPIProp method to manipulate these properties and others, clients call one
message method, GetRecipientTable, to access existing recipient properties; a table method,
QueryRows, to retrieve the rows in the table; and another message method, ModifyRecipients, to
add new properties or make changes. For more information about recipient properties, see About Base
Address Properties.

Recipients can be represented by permanent entries in an address book container or by independent
entries known as one-offs. One-offs are recipients that are not part of the address book. As with other
types of recipients, the address for one-offs follows a specific format. Their entry identifiers also
conform to a specific format. For more information about one-off addresses and entry identifiers, see
About One-Off Addresses and About One-Off Entry Identifiers.

Some clients limit their users to selecting recipients only from the address book. Other clients allow a
mixture of address book recipients and one-off recipients. Still other clients do not use the address
book at all.

To create a recipient list from the address book
1. Allocate an ADRPARM structure and a pointer to an ADRLIST structure.
2. Zero the memory in the ADRPARM structure and set the ADRLIST pointer to NULL.
3. Call IAddrBook::Address to display the address dialog box and populate the ADRPARM structure.
4. Call IMessage::ModifyRecipients, passing the ADRLIST pointer. This structure will contain the

properties of each of the recipients selected by the user.

To add one or more recipients to a recipient list
1. Allocate an ADRLIST structure that contains one ADRENTRY structure for each of the recipients to

be added. Make each ADRENTRY structure large enough to hold at least the following properties:
PR_ADDRTYPE

PR_DISPLAY_NAME
PR_EMAIL_ADDRESS
PR_ENTRYID
PR_RECIPIENT_TYPE
PR_SEARCH_KEY

2. For each recipient and each property, place the property tag and value in the appropriate
ADRENTRY structure. For example, the following code sample sets two properties for a recipient: its
entry identifier and display name.
LPADRLIST lpAdrList = NULL;

hr = MAPIAllocateBuffer(numProps * sizeof(SPropValue),
 (LPVOID FAR *(&lpAdrList->aEntries[0].rgPropVals);

lpAdrList->aEntries[0].rgPropVals[0].ulPropTag = PR_ENTRYID;
lpAdrList->aEntries[0].rgPropVals[0].Value.bin = RecipEID;

lpAdrList->aEntries[0].rgPropVals[1].ulPropTag = PR_DISPLAY_NAME;
lpAdrList->aEntries[0].rgPropVals[1].Value.LPSZ = szDisplay;

// other properties

lpAdrList->aEntries[0].cValues=numProps;

3. Call IMessage::ModifyRecipients with the MODRECIP_ADD flag set.

For more information about adding recipients, see About Message Recipients.

 Adding a Message Subject

Most message forms include a subject line where users can summarize the intent of a message. MAPI
defines two properties that clients can set to describe their message subjects: PR_SUBJECT and
PR_SUBJECT_PREFIX. PR_SUBJECT contains the text of the message subject.
PR_SUBJECT_PREFIX contains the characters that make up the subject's prefix, if there are any. Both
of these properties are optional; your client can choose to set one, both, or none.

For new outgoing messages, set PR_SUBJECT to a character string 128 bytes or less using the
message's IMAPIProp::SetProps method. The 128 byte limit is not a limit imposed by MAPI; it is a
limit imposed by some message store providers. To insure interoperability with providers that do
impose it, limit your client's subjects to 128 bytes.

The PR_SUBJECT_PREFIX property is a character string that holds the prefix characters of a subject
line. Therefore, for new messages, clients either do not set PR_SUBJECT_PREFIX or set it to a blank
string.

When messages are saved in a folder, the message store provider calculates another subject property,
PR_NORMALIZED_SUBJECT. PR_NORMALIZED_SUBJECT contains the message's subject with all
prefix characters stripped out. For more information about the relationship between these three subject
properties, see About Message Subject Properties.

 Adding Message Text

Although some messages are made up of nothing more than a recipient list and a subject line, the
content of most messages, specifically IPM.Note messages, includes text, either plain or formatted.
Message text is stored in two properties: PR_BODY and PR_RTF_COMPRESSED. If your client is
plain text-based, it will set PR_BODY. If your client supports formatted text in the Rich Text Format
(RTF), it will set either PR_RTF_COMPRESSED only or both PR_RTF_COMPRESSED and
PR_BODY, depending on the message store provider being used. When an RTF-aware client is using
an RTF-aware message store, it sets PR_RTF_COMPRESSED only. When an RTF-aware client is
using a non-RTF-aware message store, it set both properties.

Note Clients can use other types of formatted text in addition to RTF, but MAPI has not defined
properties for managing types other than RTF.

To add formatted message text
1. Determine whether or not the message store that your client is using is RTF-aware. Perform the

following tasks to find out if and how a message store supports RTF:
a. Call the message store's IMAPIProp::GetProps method to retrieve the

PR_STORE_SUPPORT_MASK property.
b. Check for the STORE_RTF_OK value. If STORE_RTF_OK is set, the message store provider

supports RTF text. If it is not set, the message store provider supports plain text only.
2. Set the appropriate message content property or properties. If your client is using an RTF-aware

message store, set only the PR_RTF_COMPRESSED property. If your client is using a non-RTF-
aware message store, set both PR_BODY and PR_RTF_COMPRESSED.
Your client can call RTFSync to generate the PR_BODY property from PR_RTF_COMPRESSED.

3. To set the PR_RTF_COMPRESSED property:
a. Call the message's IMAPIProp::OpenProperty method to open the PR_RTF_COMPRESSED

property, specifying IID_IStream as the interface identifier and setting the MAPI_CREATE flag.
b. Call the WrapCompressedRTFStream function, passing the STORE_UNCOMPRESSED_RTF

flag if the STORE_UNCOMPRESSED_RTF value is set in the message store's
PR_STORE_SUPPORT_MASK property.

c. Release the original stream by calling its IUnknown::Release method.
d. Call either IStream::Write or IStream::CopyTo to write the message text to the stream returned

from WrapCompressedRTFStream.
e. Call the Commit and Release methods on the stream returned from the OpenProperty method.

At this point, if the message store provider supports RTF, your client has done all that is required. Your
client can depend on the message store provider to handle synchronize the message content and
formatting and to create the PR_BODY property if necessary. RTF-aware message stores call
RTFSync to handle the synchronization. If the RTF_SYNC_BODY_CHANGED flag is set to TRUE, the
provider will recompute the PR_BODY property.

If your client's message store provider does not support RTF, your client must also add non-RTF
message content by setting the PR_BODY_property.

To add non-formatted message text
1. Call the IMAPIProp::OpenProperty method to open the PR_BODY property with the IStream

interface.
2. Call IStream::Write to write the message text data to the stream returned from OpenProperty.
3. Call the RTFSync function to synchronize the text with the formatting. Because this is a new

message, set both the RTF_SYNC_RTF_CHANGED and RTF_SYNC_BODY_CHANGED flags to
indicate that both the RTF and plain text version of the message text has changed. RTFSync will set
several related properties that the message store provider requires, such as PR_RTF_IN_SYNC,

and write them to the message.
4. Call IStream::Commit and IUnknown::Release on the stream to commit the changes and free its

memory.

 Adding Rendering Information to Formatted Text

To indicate where in formatted text an attachment is to be rendered, your client must insert a sequence
of placeholder characters in the message's PR_RTF_COMPRESSED property. The placeholder
sequence is made up of the following characters:

\objattph

To add rendering information to formatted message text
· When writing the stream of text to the message's PR_RTF_COMPRESSED property, insert the

placeholder sequence and a space character at the position where the attachment should be
rendered.

· Set the PR_RENDERING_POSITION property of each attachment to a numeric value. The lowest
value should be assigned to the PR_RENDERING_POSITION property of the first attachment to
appear in the formatted text; the highest value to the last attachment.

 Adding a Message Attachment

A message attachment is some additional data, such as a file, another message, or an OLE object, that
your client can send or save along with the message. Your client can support all of the available types,
some of them, or none of them. Attachments are considered subobjects of messages because they
cannot be accessed independently. The message to which an attachment is attached must be open for
the attachment to be usable.

To add an attachment to a message
1. Call the message's IMessage::CreateAttach method and pass NULL as the interface identifier.

CreateAttach returns a number that uniquely identifies the new attachment within the message. The
attachment number is stored in the PR_ATTACH_NUM property and is valid only as long as the
message containing the attachment is open.

2. Call IMAPIProp::SetProps to set PR_ATTACH_METHOD to indicate how to access the attachment.
PR_ATTACH_METHOD is required. Set it to:
· ATTACH_BY_VALUE if the attachment is binary data.
· ATTACH_BY_REFERENCE, ATTACH_BY_REF_RESOLVE, or ATTACH_BY_REF_ONLY if the

attachment is a file.
· ATTACH_EMBEDDED_MSG if the attachment is a message.
· ATTACH_OLE if the attachment is an OLE object.

3. Set the appropriate attachment data property:
· PR_ATTACH_DATA_BIN for binary data and OLE 1 objects.
· PR_ATTACH_PATHNAME for files.
· PR_ATTACH_DATA_OBJ for messages and OLE 2 objects.

4. Set PR_ATTACH_RENDERING to hold the graphic representation of the attachment for file or
binary attachments. Do not set it for OLE objects, which store the rendering information internally, or
for attached messages.

5. Set PR_RENDERING_POSITION to indicate where the attachment should be displayed.
PR_RENDERING_POSITION applies only to clients that set the PR_BODY property. If your client
only supports PR_RTF_COMPRESSED, place the following placeholder information in the
compressed stream:
\objattph

To set PR_RENDERING_POSITION, assign either a number that represents an ordinal offset in
characters, with the first character of PR_BODY being 0, if your client needs to know where in the
message the attachment is rendered, or 0xFFFFFFFF, if your client does not render attachments
within PR_BODY.

6. Set PR_ATTACH_FILENAME to indicate the short name of the file for a file attachment and
PR_ATTACH_LONG_FILENAME to indicate the name of the file as supported on a platform that
handles the long filename format. Both properties are optional. However, if your client sets
PR_ATTACH_LONG_FILENAME, it should also set the short version, PR_ATTACH_FILENAME.

7. Set PR_DISPLAY_NAME to indicate the name for the attachment that can appear in a dialog box.
PR_DISPLAY_NAME is optional.

To set PR_ATTACH_DATA_BIN
1. Call IMAPIProp::OpenProperty to open the property with the IStream interface.
2. If a file contains the data and it is open or if your client needs explicit control over buffer size, call

IStream::Write in a loop to place the data in the stream.
3. Another option is to call OpenStreamOnFile to create a stream to access the data file and then call

this stream's IStream::CopyTo method to copy the data to the stream returned by OpenProperty.
4. Call the new stream's IStream::Commit method.

To set PR_ATTACH_DATA_OBJ
1. Call IMAPIProp::OpenProperty to open the property with the IStreamDocfile interface to create a

stream that works with structured storage. If this call succeeds, create the stream with the same
steps outlined for setting PR_ATTACH_DATA_BIN.

2. If OpenProperty fails:
a. Call OpenProperty again asking for IStorage.
b. Call StgOpenStorage to open the OLE object and return a storage object.
c. Call the returned storage object's IStorage::CopyTo method to copy to the storage object

returned from OpenProperty.
d. Call the new storage object's IStorage::Commit method.

To set PR_ATTACH_PATHNAME
1. Allocate an SPropValue structure, setting the ulPropTag member to PR_ATTACH_PATHNAME and

the Value.LPSZ member to the character string that represents the filename.
2. Call the attachment's IMAPIProp::SetProps method.

Note If your platform supports long filenames, your client needs to set both
PR_ATTACH_PATHNAME and PR_ATTACH_LONG_PATHNAME. It might be necessary to make an
operating system call to retrieve the short filename.

For more information, see About Message Attachments.

 Saving an Outgoing Message

When your client is ready to make an outgoing message a permanent part of a folder, call
IMAPIProp::SaveChanges on the message and all of its attachments. It is a good idea to specify the
KEEP_OPEN_READWRITE flag, which allows the message to be modified at a later time. Other flags
your client can set include FORCE_SAVE, which indicates that the message or attachment should be
closed after changes are committed, KEEP_OPEN_READONLY, which indicates that no further
changes will be made, and the flag to allow the message store provider to batch client requests,
MAPI_DEFERRED_ERRORS.

It is essential that your client calls SaveChanges for every attachment in the message before calling
SaveChanges for the message. If your client fails to save an attachment, the attachment will not be
included with the message when it is sent and it will not appear in the message's attachment table. If
your client fails to save the message after saving all of the attachments, both the message and the
attachments will be lost.

When SaveChanges is called, the message store provider updates the following properties.

· PR_DISPLAY_TO lists all primary recipients.
· PR_DISPLAY_CC lists all carbon copy recipients.
· PR_DISPLAY_BCC lists all blind carbon copy recipients.
· PR_MESSAGE_FLAGS sets MSGFLAG_HASATTACH if one or more attachments have been

saved and clears MSGFLAG_UNMODIFIED to show the message has changed.
· PR_MESSAGE_SIZE contains the most current size of the message.

If SaveChanges returns MAPI_E_CORRUPT_DATA, assume that the data being saved is now lost.
Message store providers that use a client-server model for their implementation might return this value
when a network connection is lost or the server is not running. Before returning an error to the user, try
to write and save the data a second time by making a call to SetProps followed by another call to
SaveChanges. If the data is cached locally, this should not be a problem. However, if there is no local
cache or the second SaveChanges call fails, display an error to alert the user to the problem.

 Sending an Outgoing Message

Your client calls IMessage::SubmitMessage when it is ready to send a message. SubmitMessage
places the message in the outgoing queue and sets the MSGFLAG_SUBMIT flag in the message's
PR_MESSAGE_FLAGS property. The message store provider, if tightly coupled to a transport provider,
gives the message directly to the transport which delivers it to the messaging system. If not tightly
coupled, the message store provider informs the MAPI spooler that the outgoing queue has changed
and the MAPI spooler transfers the message to an appropriate transport provider.

If your client allows its users to cancel a send operation, call IMsgStore::AbortSubmit to implement
this feature. AbortSubmit removes the message from the output queue. Users can be allowed to stop
a send from happening until the message is given to the underlying messaging system.

If SubmitMessage returns MAPI_E_CORRUPT_DATA, assume that the data being sent is now lost.
Before attempting to send a second time, re-write the message by calling SetProps and
SaveChanges. Display an error to the user if these IMAPIProp calls fail or if SubmitMessage fails a
second time.

After a successful call to SubmitMessage, free any memory that was allocated for the recipient list and
release the message and its attachments. Once a message has been sent, MAPI does not permit any
further operations on the pointers for these objects. The one exception is calling IUnknown::Release.
No other calls are allowed because many message store providers invalidate entry identifiers for
messages that have been sent.

 Posting a Message

Posting a message is similar to sending a message. The main difference is the destination. Rather than
being directed to one or more recipients across one or more messaging systems, a posted message
remains in a folder in your client's message store.

To post a message
1. Call IMAPIFolder::CreateMessage to create the message.
2. Call the message's IMAPIProp::SetProps method to set:

· The MSGFLAG_UNSENT flag in the PR_MESSAGE_FLAGS property.
· The PR_SENDER properties.
· The PR_SENT_REPRESENTING properties.
· The PR_RECEIPT_TIME property.

3. Call the message's IMAPIProp::SaveChanges method to save the message.

Notice that your client does not create a recipient list. Instead, it must set several properties that are
normally set by a transport provider for a sent message.

 Resending an Undelivered Message

When your client application receives a nondelivery report, it should contain a copy of the undelivered
message as an attachment. Your client can choose whether or not to allow a user to attempt a resend.
Most clients use a form for resending that is provided through MAPI. The form can be a custom version
registered by your client to use with resent messages of specific classes or a default form provided by
MAPI. Your client can also implement the resending of a message manually.

To resend an undeliverable IPM message
1. Create a new outgoing message in the Outbox folder and copy the properties from the undelivered

message to the new message. Do not copy PR_MESSAGE_CLASS, PR_MESSAGE_FLAGS, or
PR_ORIGINAL_ENTRYID.

2. Set the new message's PR_MESSAGE_CLASS property to the message class of the original
message.

3. Set the MSGSTATUS_RESEND flag in the new message's PR_MESSAGE_FLAGS property.
4. Copy the recipient list and the corresponding PR_RECIPIENT_TYPE properties from the

undelivered message to the new message.
5. Set the MAPI_SUBMITTED flag in the PR_RECIPIENT_TYPE property for all recipients.
6. Make a copy of all recipients that failed to receive the message and set each of their

PR_RECIPIENT_TYPE properties to MAPI_P1.
7. Call IMessage::SubmitMessage to save and send the new message.

 Handling Replies and Forwarded Messages

Before an outgoing reply or forwarded message can be created, your client must open its default
message store, the folder that is designated to hold outgoing messages, and the folder that is holding
the original message. Typically the outgoing message folder is the Outbox and the folder holding the
original message is the Inbox. See Opening the Outbox Folder for information about how to open this
folder. Also, the entry identifier for the original message must be accessible.

A reply or forwarded message is based in part on the properties of the original message, the message
that is being replied to or forwarded. Some of the properties are copied exactly and some are explicitly
excluded.

The properties that are copied, excluded, and set vary somewhat depending on whether your client is
replying to or forwarding a message and the properties that are available from the original message. To
copy message properties, your client can call either IMAPIProp::CopyTo or IMAPIProp::CopyProps
on the original message. With IMAPIProp::CopyTo, your client specifies the particular properties to be
excluded; with IMAPIProp::CopyProps, it specifies the properties to be included.

To create an outgoing reply or forwarded message
1. Call the Outbox's IMAPIFolder::CreateMessage method to create the new reply or forwarded

message.
2. Call the original message's IMAPIProp::CopyTo method to transfer properties to the new message

and make modifications as necessary.
3. Call the new message's IMAPIProp::SetProps method to set properties that are unique to reply or

forwarded messages.
4. Call the new message's IMAPIProp::SaveChanges method to save the message or

IMessage::SubmitMessage to save and send it.

 Setting Properties on a Reply or Forwarded Message

Reply and forwarded messages require many properties, some that are copied from the original
message and some that are new.

To set properties on a reply or forwarded message
1. Copy PR_BODY or PR_RTF_COMPRESSED, depending on whether or not your client supports

formatted text, and add some separator text.
2. Copy PR_CONVERSATION_TOPIC.
3. Update PR_CONVERSATION_INDEX by calling ScCreateConversationIndex and passing in the

value of the original message's PR_CONVERSATION_INDEX property.
4. Set the PR_SENT_REPRESENTING properties to the corresponding values in the

PR_RCVD_REPRESENTING properties. Do not copy this group of properties from the original
message.

5. Copy PR_MESSAGE_ATTACHMENTS for forwarded messages only.
6. Copy PR_MESSAGE_RECIPIENTS only for replies that go to all recipients in the recipient list.
7. If your client uses a subject prefix, copy PR_NORMALIZED_SUBJECT from the original message

and concatenate the prefix onto the beginning of the string. Set the PR_SUBJECT property to this
new string that includes the prefix and the original subject.

8. If your client uses a non-standard prefix, such as a string that is longer than three characters, set
PR_SUBJECT_PREFIX to its value. Otherwise, do not set PR_SUBJECT_PREFIX. Typically clients
use RE: or FW: as prefixes for their reply and forward messages.

9. Set each of the entries in PR_REPLY_RECIPIENT_ENTRIES and
PR_REPLY_RECIPIENT_NAMES to the entry identifier and display name of a primary recipient for
replies only. Do not copy these properties from the original message.
PR_REPLY_RECIPIENT_ENTRIES and PR_REPLY_RECIPIENT_NAMES must be kept
synchronized, meaning that they must contain the same number of entries and entries at the same
position in each of the properties must represent the same recipient.

10. Do not copy the following properties from the original message to the new reply or forwarded
message:

PR_CLIENT_SUBMIT_TIME PR_MESSAGE_DELIVERY_TIM
E

PR_MESSAGE_DOWNLOAD_TI
ME

PR_MESSAGE_FLAGS

PR_ORIGINATOR_DELIVERY_
REPORT_REQUESTED

PR_RCVD_REPRESENTING
properties

PR_READ_RECEIPT_ENTRYID PR_READ_RECEIPT_REQUES
TED

PR_RECEIVED_BY properties PR_REPORT_ENTRYID
PR_SENDER properties PR_SENTMAIL_ENTRYID
PR_SUBJECT_PREFIX

 Selecting a Recipient for a Reply or Forwarded Message

Your client can enable users to reply only to the sender of the original message or to all of the primary
and carbon copy recipients in addition to the sender. When a reply is sent only to the sender, its
recipient list contains only that single entry, as represented by the original message's
PR_SEND_REPRESENTING properties. When a reply is sent to all recipients, its recipient list is based
on the original message's recipient list, with blind carbon copy recipients and
PR_RECEIVED_BY_SEARCH_KEY, the recipient that represents your client's user, removed.

To create a recipient list when replying to all recipients
1. Call the original message's IMessage::GetRecipientTable method to access its recipient table.
2. Call HrQueryAllRows to retrieve all of the rows in the table. Determine if each row represents a

primary or carbon copy recipient and should remain in the list or if it represents a blind carbon copy
recipient or your client's user and should be removed from the list.

3. Differentiate between recipient types by looking at the PR_RECIPIENT_TYPE column. This column
will be set to MAPI_TO for primary recipients, MAPI_CC for carbon copy recipients, and MAPI_BCC
for blind carbon copy recipients.

4. Compare the PR_SEARCH_KEY column with the PR_RECEIVED_BY_SEARCH_KEY property of
the original message to determine if the row represents the user.

5. Remove unwanted rows from the recipient list by calling MAPIFreeBuffer to free the memory
associated with the corresponding entries in the recipient table's SRowSet structure. Set all of the
values in the property value array to zero, all of the cValues members to zero, and all of the
lpProps members in each SRow structure in the SRowSet to NULL.

6. Add the sender to the recipient list, as represented by the original message's
PR_SENT_REPRESENTING_NAME and PR_SENT_REPRESENTING_ENTRYID properties.
Check that the sender is not duplicated in the list.

7. Call the reply message's IMessage::ModifyRecipients method, setting the ulFlags parameter to
zero, to create a new recipient list for the reply or forwarded message based on the list from the
original message.

Note Before calling IMessage::ModifyRecips to store changes in the recipient list, your client can
allow users to make additional modifications. Allowing users to make changes in a recipient list is an
optional client feature.

 Copying an Attachment on a Forwarded Message

When your client application is forwarding a message that includes one or more attachments, it should
include all of the properties associated with those attachments. Attachments are never included with a
reply.

There are a few ways to copy message attachments from the message being forwarded. The first way
is to call the original message's IMAPIProp::CopyProps method to copy the
PR_MESSAGE_ATTACHMENTS property, causing all of the attachment information to be copied.

The second way is to call the original message's IMAPIProp::CopyTo method. Make one call to copy
all of the message properties, including the attachments. Do not make a separate CopyTo call to copy
only the attachments.

The third way is to follow the following procedure for each attachment to be copied:

1. Call the new forwarded message's IMessage::CreateAttach method to create a new attachment.
2. Call the original message's IMessage::OpenAttach method to open the attachment to be copied.
3. Call the original message's IMAPIProp::CopyTo method to copy all of the attachment properties

from the old attachment to the new one.

Format the message content by adding indentation and a header paragraph that includes the original
sender, date of transmission, subject, and recipient list. Do not include Internet-style prefix characters
with the content.

 Handling Incoming Messages

Clients that have registered for new mail notifications learn of new incoming messages when the
message store provider calls their IMAPIAdviseSink::OnNotify method. Clients register for new mail
notifications by calling the message store's IMsgStore::Advise method with a NULL entry identifier.
Clients that do not register for new mail notifications must open their receive folders periodically to
check for the arrival of new messages.

Message store providers pass a NEWMAIL_NOTIFICATION structure in their
IMAPIAdviseSink::OnNotify call that contains the message class of the new incoming message. Your
client might want to handle only those messages with classes that it supports and ignore any incoming
messages with foreign message classes.

To handle an incoming message
· lf your client only supports specific message classes, determine if the message class of the

incoming message is a class that your client supports.
· As an option, open the receive folder that contains the message and display its contents table

(optional if your client already has the entry identifier of the message).
· If your client is interactive, determine the form to be used to display the message to the user.
· Process the message and its attachments.

 Selecting a Receive Folder

A receive folder is where incoming messages of a particular class are placed. For IPM and related
report messages, MAPI assigns the Inbox as the default receive folder. For IPC and related report
messages, MAPI assigns the root folder of the message store as the default receive folder. Your client
can change these assignments or make additional assignments for other message classes. Making
explicit receive folder assignments for your client's supported message classes is optional.

When an incoming message class does not have an assigned receive folder, the message store
provider automatically uses the receive folder for the class that matches the longest possible prefix of
the incoming class. For example, if your client receives a message of class IPM.Note.MyDocument and
the only receive folder that has been established is the Inbox for IPM messages, this message will be
placed in the Inbox because IPM.Note.MyDocument derives from the base class IPM.

When your client is assigning a receive folder for IPC messages, never use a folder from the IPM
subtree. These folders should be reserved for IPM messages only. Use instead a folder that is
contained within the message store's root folder.

To create a receive folder for an IPM message class
1. Call the message store's IMAPIProp::GetProps method to retrieve the

PR_IPM_SUBTREE_ENTRYID property.
2. Call IMsgStore::OpenEntry with PR_IPM_SUBTREE_ENTRYID as the entry identifier to open the

root folder of the IPM subtree in the message store.
3. Call IMAPIFolder::CreateFolder to create the receive folder.
4. Call IMsgStore::SetReceiveFolder to map the new folder to your client's IPM message class.

To create a receive folder for an IPC message class
1. Call IMsgStore::OpenEntry with a null entry identifier to open the root folder of the message store.
2. Call IMAPIFolder::CreateFolder to create the receive folder.
3. Call IMsgStore::SetReceiveFolder to map the new folder to your client's IPC message class.

Assign the receive folder that your client uses for messages for related report messages. For example,
if your client receives IPM.Note messages, set up one receive folder for future IPM.Note messages and
the same receive folder for future Report.IPM.Note messages.

Note Your client can use the IMsgStore::SetReceiveFolder method for more than establishing a
receive folder association with messages of a particular class. The character string passed to
SetReceiveFolder does not necessarily need to represent a message class. For example, you can
map a folder to a character string, making it easier to find the folder when necessary. The most obvious
alternative for associating folders to strings is to use message store named properties, an approach
that is not recommended because MAPI does not define a range of message store properties for use
by clients and message store providers do not always support named properties.

 Opening a Receive Folder

To access an incoming message, open the receive folder that is registered for the message class of the
message. Receive folders for IPM message classes will typically be the Inbox; for IPC messages, they
will typically be hidden folders. The message store method GetReceiveFolder can be used to retrieve
the entry identifier for any receive folder for any message class. The OpenEntry method for the
message store can be used to open the receive folder.

To open a receive folder
1. Call IMsgStore::GetReceiveFolder, specifying a character string that represents the message

class of the incoming message. If there is no registered receive folder for the message class,
GetReceiveFolder chooses the receive folder whose associated message class matches the
longest possible prefix of the message class passed in.

2. Call IMsgStore::OpenEntry with the entry identifier returned by GetReceiveFolder to open the
receive folder.

It is possible although undesirable to receive messages with no class, but your client should never
receive a message with a NULL class. When clients fail to set the PR_MESSAGE_CLASS property on
their outgoing messages, message store providers set it to IPM. On incoming messages, transport
providers set it either to IPM or IPM.Note.

 Determining Message Ownership

Your client might need to locate all messages that it has created and saved during composition or has
sent to one or more recipients. There are a few ways to evaluate message ownership. For example, it
is usually safe to assume that an incoming message was sent by your client if:

· Your client keeps outgoing messages in the Sent Items folder.
· The Sent Items folder is the same as the parent folder of the incoming message.

To compare the Sent Items folder with the incoming message's parent folder, call
IMsgStore::CompareEntryIDs and specify PR_IPM_SENTMAIL_ENTRYID and
PR_PARENT_ENTRYID as the entry identifiers to compare. A potential drawback to this assumption is
that it is possible for messages to have moved from the Sent Items folder to another folder.

Another way to evaluate message ownership is to assume that a message was never handled by a
transport provider if all of the properties that are rarely set by anyone except transport providers are
missing on the incoming message. These properties include:

PR_RECEIVED_BY properties
PR_MESSAGE_DOWNLOAD_TIME
PR_TRANSPORT_MESSAGE_HEADERS
PR_MESSAGE_TO_ME
PR_MESSAGE_CC_ME
PR_MESSAGE_RECIP_ME

Transports are required to set the PR_SENDER and PR_SENT_REPRESENTING groups of
properties, but sometimes also clients set these.

Your client can find all received messages that it has sent as well as messages that it has posted and,
depending on your client, messages that it has saved during composition by performing the following
tasks:

1. Call IMAPISession::GetStatusTable to retrieve the status table.
2. Retrieve all of the rows in the table, saving only the distinct values for the

PR_IDENTITY_SEARCH_KEY column.
3. Compare the value of the message's PR_SENT_REPRESENTING_SEARCH_KEY with the value of

each of the PR_IDENTITY_SEARCH_KEY values. If any of these match, your client can assume
that it sent the message.

If the PR_SENT_REPRESENTING properties are missing, your client can assume that it either sent
the message or saved it during composition and has not yet sent it. To determine if a message has
been sent, check if the MSGFLAG_UNSENT flag is set in its PR_MESSAGE_FLAGS property. If it is
set, the message has not been sent.

 Viewing a Folder Contents Table

To make summary information about new messages available, retrieve the contents table of the folder
containing the messages and display the relevant columns from each row.

To display the contents of a folder that contains new incoming messages
1. Call IMsgStore::GetReceiveFolder to retrieve the entry identifier of the receive folder for the

message class of the incoming message.
2. Call IMsgStore::OpenEntry, passing the entry identifier returned from GetReceiveFolder, to open

the receive folder.
3. Call the folder's IMAPIContainer::GetContentsTable method to open its contents table.
4. Optionally, limit your client's view of the contents table to rows representing the incoming message

class by:
a. Creating a property restriction in an SPropertyRestriction structure that matches the

PR_MESSAGE_CLASS property with the message class of the incoming message.
b. Creating a bitmask restriction in an SBitmaskRestriction structure that uses

PR_MESSAGE_FLAGS as the property tag and the MSGFLAG_UNREAD value as the mask.
c. Creating a restriction in an SAndRestriction structure that joins the property and bitmask

restrictions.
d. Passing the joined restriction structures to the contents table's IMAPITable::Restrict method.

5. Call IMAPITable::QueryRows to retrieve all of the rows from the contents table for processing.
6. Rely on new mail notifications to advise you of subsequent incoming messages.

 Opening an Incoming Message

When your client application is informed that a message has been placed in a receive folder, open the
message by passing its entry identifier to one of the following methods, listed in order from fastest to
slowest in response time:

· The receive folder's IMAPIFolder::OpenEntry method
· The message store's IMsgStore::OpenEntry method
· IMAPISession::OpenEntry

If your client has registered for message store notifications, it will learn of new incoming messages to
be processed through the new mail notification that it will receive. Included in the
NEWMAIL_NOTIFICATION structure that is sent in the IMAPIAdviseSink::OnNotify call is the entry
identifier and message class of the incoming message, the entry identifier of its folder, and its
PR_MESSAGE_FLAGS property. If your client has not registered to receive this type of notification, it
will have to periodically scan each receive folder to learn of incoming messages.

Interactive clients display incoming messages to their users with a form that is appropriate for the
message class of the message. The choice of forms is based on the message class of the incoming
message. Messages that belong to the IPM class use a default form implemented by MAPI. Messages
that belong to custom classes defined by clients can use either client-defined specialized forms or
MAPI's default form.

 Opening Message Text

The text of a message is stored either in its PR_BODY property or PR_RTF_COMPRESSED property.
If your interactive client supports Rich Text Format (RTF), open PR_RTF_COMPRESSED. If your client
does not support RTF, open PR_BODY. Because the contents of a message can be large regardless of
whether or not it is formatted, use IMAPIProp::OpenProperty to open these properties and specify
IID_IStream as the interface identifier, if necessary.

To display formatted message text
1. If your client is using a non-RTF aware message store, as indicated by the absence of the

STORE_RTF_OK flag in the store's PR_STORE_SUPPORT_MASK property:
a. Call the message's IMAPIProp::GetProps method to retrieve the PR_RTF_IN_SYNC property.
b. Call RTFSync to synchronize the message's PR_BODY property with the

PR_RTF_COMPRESSED property. Pass the RTF_SYNC_BODY_CHANGED flag if either the call
to retrieve PR_RTF_IN_SYNC failed because the property does not exist or it is set to FALSE.

c. If RTFSync returned TRUE, indicating that changes were made, call the message's
IMAPIProp::SaveChanges method to permanently store them.

2. Regardless of whether or not your client is using either an RTF-aware message store:
a. Call IMAPIProp::OpenProperty to open the PR_RTF_COMPRESSED property.
b. If PR_RTF_COMPRESSED is not available, call OpenProperty to open the PR_BODY property.
c. Call the WrapCompressedRTFStream function to create an uncompressed version of the

compressed RTF data, if available.
d. Copy the plain text from the stream to the appropriate place in the message form.

To display plain message text
1. Call the message's IMAPIProp::GetProps method to retrieve the PR_BODY property.
2. If GetProps returns either PT_ERROR for the property type in the property value structure or

MAPI_E_NOT_ENOUGH_MEMORY, call the message's IMAPIProp::OpenProperty method. Pass
PR_BODY as the property tag and IID_IStream as the interface identifier.

3. Copy the plain text from the stream to the appropriate place in the message form.

 Rendering Attachments in Plain Text

To render an attachment in a message with plain text, retrieve the attachment's
PR_RENDERING_POSITION property and apply it to the data in the PR_ATTACH_RENDERING
property. There are two ways to retrieve PR_RENDERING_POSITION:

· Open the attachment by calling the message's IMessage::OpenAttach method and then ask for the
PR_RENDERING_POSITION property by calling the attachment's IMAPIProp::GetProps method.

· Call the message's IMessage::GetAttachmentTable method to access its attachment table and
retrieve the column that holds the PR_RENDERING_POSITION property. This way is always
preferable.

Keep in mind that many RTF-aware message stores do not calculate PR_RENDERING_POSITION
until a client requests the PR_BODY property of a message. Until that time,
PR_RENDERING_POSITION usually represents an approximate value. Message store providers are
allowed to supply clients with an approximate value to enhance performance.

The rendering for a file or binary attachment is stored in its PR_ATTACH_RENDERING property. Your
client has the choice of retrieving PR_ATTACH_RENDERING in the same ways as it retrieved
PR_RENDERING_POSITION: directly from the attachment or from the attachment table. For
PR_ATTACH_RENDERING, the first strategy, although more time-consuming, is the safer of the two.
Because some message store providers truncate their table columns to 255 bytes, or in a few cases,
510 bytes, it is difficult to be sure that the PR_ATTACH_RENDERING column contains the complete
rendering. When retrieving the property directly from the attachment, it will always be complete.

Neither OLE or message attachments set PR_ATTACH_RENDERING. Instead, rendering information
for OLE 1 attachments is stored in the content stream. For OLE 2 attachments, it is stored in a special
child stream of the storage object. Rendering information for message attachments is available through
the form manager.

To retrieve the rendering for a message attachment, your client must
1. Use the message class of the message to access the form manager.
2. Access the form manager's PR_MINI_ICON property.

 Rendering Attachments in Formatted Text

RTF-aware clients can retrieve rendering position information from RTF message text by looking for the
following escape sequence in the message's PR_RTF_COMPRESSED property:

\objattph

To display attachments using the PR_RTF_COMPRESSED property of a message
1. Call IMessage::GetAttachmentTable to access the attachment table.
2. Build a property restriction that limits the table to rows that have PR_RENDERING_POSITION not

equal to -1.
3. Call IMAPITable::Restrict to register the restriction.
4. Call IMAPITable::SortTable to sort the attachments.
5. Call IMAPITable::QueryRows to retrieve the appropriate rows.
6. Call the message's IMAPIProp::OpenProperty method to retrieve PR_RTF_COMPRESSED with

the IStream interface.
7. Scan the stream, looking for the rendering placeholder, \objattph. The character following this

placeholder is the place for the next attachment in the sorted list.

 Opening an Attachment

Before your client can open an attachment, its attachment number must be available. The attachment
number is stored in the PR_ATTACH_NUM property. An attachment's PR_ATTACH_NUM property is
similar to a message's short-term entry identifier in that it is used to open the object. Your client can
access an attachment number through a message's attachment table. The attachment number is a
required column in this table.

To open every attachment in a message
1. Call the message's IMessage::GetAttachmentTable method.
2. Call HrQueryAllRows to retrieve all of the rows in the table.
3. For each row:

a. Open the attachment by passing the attachment number represented in the PR_ATTACH_NUM
column in a call to the message's IMessage::OpenAttach method.

b. Open the attachment's data by first examining the attachment's PR_ATTACH_METHOD property.
c. If PR_ATTACH_METHOD is set to ATTACH_BY_REF_ONLY, call IMAPIProp::GetProps to

retrieve the PR_ATTACH_PATHNAME property.
d. If PR_ATTACH_METHOD is set to ATTACH_BY_VALUE, call IMAPIProp::OpenProperty to

open the PR_ATTACH_DATA_BIN property with the IStream interface.
e. If PR_ATTACH_METHOD is set to PR_ATTACH_OLE and the attachment is an OLE 2 object:

1. Call IMAPIProp::OpenProperty to open the
PR_ATTACH_DATA_OBJ property with the IStreamDocfile
interface . Attempt to use this interface. IStreamDocfile is
the best choice for accessing OLE 2 attachments because
it involves the least amount of overhead.

2. If the OpenProperty call fails, call it again to retrieve the
PR_ATTACH_DATA_BIN property with the IStreamDocfile
interface.

3. If this second OpenProperty call fails, try again to call
OpenProperty to retrieve PR_ATTACH_DATA_OB\J.
However, rather than specifying IStreamDocfile, specify
the IStorage interface.

Your client can request that an attachment is opened in read/write or read-only mode. Read-only is the
default mode, and many message store providers open all attachments in this mode regardless of what
clients request. Pass the MAPI_BEST_ACCESS flag to request that the message store provider grant
the highest level of access it can and then retrieve the open attachment's PR_ACCESS_LEVEL
property to determine the level of access that was actually granted.

 Handling Notifications

Notifications enable one object to inform another object that it has undergone a change. The changed
object, referred to as the advise source, might be the session object, under MAPI's control, or an object
created by a service provider, such as a message. The informed object, referred to as the advise sink,
usually contains either an implementation of the IMAPIAdviseSink interface or the
IMAPIViewAdviseSink interface and is within a client application. Objects that can act as advise
sources implement an Advise method, which is called by clients to register for notifications. One of the
parameters to Advise is a pointer to an implementation of IMAPIAdviseSink or
IMAPIViewAdviseSink. The advise source caches this pointer so that it can call
IMAPIAdviseSink::OnNotify or one of the methods in IMAPIViewAdviseSink when a change occurs
for which the advise sink has registered.

Because receiving notifications enables users to view the most up-to-date information, it is
recommended that all clients register for and handle notifications. However, it is optional.

 Timing a Notification

Because event notification is an asynchronous process, your client can be notified at any time, not
necessarily immediately after the event has occurred. The timing of calls to your client's
IMAPIAdviseSink::OnNotify method varies depending on the service provider implementing the
advise source. Service providers can notify your client either:

· Simultaneously with the event.
· Directly after the event.
· At some later point following the event, possibly after an Unadvise call.

Most service providers call OnNotify after the MAPI method responsible for the event has returned to
its caller. For example, notifications on messages are sent either when changes are saved through a
call to IMAPIProp::SaveChanges or when the message object is released with a call to
IUnknown::Release. Until the notification is sent, no changes are visible in the message store.

Clients can receive notifications from an advise source after they have called Unadvise to remove their
registration. Be sure to release your client's advise sink only after its reference count has fallen to zero,
not following a successful Unadvise call. Do not assume that because your client called Unadvise that
the advise sink is no longer necessary.

 Ensuring a Thread Safe Notification

If your client runs on a multithreaded platform such as Windows NT, it may need insurance that calls to
its IMAPIAdviseSink::OnNotify methods occur on a particular thread. Because calls to OnNotify can
typically occur on any thread, it is possible for your client to receive notifications on unexpected and
unwanted threads, leading to errors that are difficult to debug.

To guarantee that calls to OnNotify for a particular notification are made on the same thread that was
used for its Advise call, call HrThisThreadAdviseSink before calling Advise.
HrThisThreadAdviseSink creates a new advise sink object from your client's advise sink object. Pass
this new object in the call to Advise. All clients with advise sink objects that might not work outside of
the context of a particular thread should always register advise sink objects created with
HrThisThreadAdviseSink.

Clients that run on 16-bit platforms can call HrThisThreadAdviseSink if desired without any negative
side effects; the only processing that occurs is an increment of the reference count on the original
advise sink.

 Handling an Object Notification

The vast majority of object notifications are generated by the message store provider. Because
message store providers can be flexible in how they implement notifications, there is variation from
provider to provider. Client applications must be aware that they will not always receive the same type
of notification in response to a particular event from all providers.

At one end of the spectrum are the message store providers that support "rich" notifications; these
providers generate the most descriptive notification possible and send that notification for all registered
advise sources. At the other end are the message store providers that support limited notifications;
these providers send the most general notifications for a restricted number of advise sources. For
example, a message being moved in one provider will cause the fnevObjectMoved notification to be
sent for the message store, the original parent of the moved message, the new parent of the moved
message, and the message itself while in another provider the same event will cause the
fnevObjectChanged notification to be sent only for the message store or the message. Some message
store providers do not allow clients to register with message stores at all.

When your client receives an object modified notification, bear in mind that the property tag array
portion of the OBJECT_NOTIFICATION may or may not be NULL. Message store providers are not
required to insert property information in this array and most do not. Implement your OnNotify method
to handle the case where the lpPropTagArray pointer is NULL.

For most, if not all object notifications, your client must update the view of the affected folder or folders.

 Registering for a Notification

Your client can register for address book or message store notifications as part of its initialization
process. MAPI supports notification on the address book regardless of whether any of the address
book providers support it. Support for notification on message stores depends on the particular
message store provider. To determine whether a particular message store provider supports
notifications, your client must check its PR_STORE_SUPPORT_MASK property. If the message store
that your client is using supports notifications, the STORE_NOTIFY_OK flag will be set. If it doesn't
provide notification support, this flag will not be unset.

Register for notifications by calling an Advise method. Many objects implement Advise and clients can
register with those objects in a variety of ways. Clients can register through the session, the address
book, or with a specific service provider object, such as a folder.

To register through the session, call the IMAPISession::Advise method. IMAPISession::Advise
enables clients to register for critical error notifications on the overall session or for various notifications
on individual objects. Sessions send critical error notifications to clients logged onto shared sessions
when another client using the shared session calls MAPILogoff. To register for session notifications,
pass NULL for the entry identifier parameter. To register for notifications on a particular object, specify
the entry identifier of the object and one or more event types that the object supports.
IMAPISession::Advise forwards the call to the appropriate service provider, as determined by the
MAPIUID portion of the entry identifier. Use IMAPISession::Advise rather than a service provider's
Advise method to register for object notifications as a short cut.

To register through the address book, call IAddrBook::Advise. Registering with the address book is
similar to registering with the session. To register for critical error notification from the address book,
pass NULL for the entry identifier. To register for notifications on a particular address book object,
specify the appropriate entry identifier and event or events of interest. Your client should be aware that
many address book providers do not support notifications on individual objects. Rather, they support
table notifications on their contents and hierarchy tables. Register for table notifications by calling the
particular table's IMAPITable::Advise method.

To register for notifications
1. Create a MAPI advise sink object and increment its reference count.
2. If appropriate, call HrThisThreadAdviseSink to create an advise sink object that wraps your client's

original advise sink.
3. Release the original advise sink.
4. Call the appropriate Advise method to complete the registration.
5. Cache the connection number returned from Advise.
6. If using a wrapped advise sink, release it. Once the wrapped advise sink is registered, your client no

longer needs it.

It is good practice to release the advise sink your client implements or creates with HrAllocAdviseSink
immediately after a successful return from an Advise call. This is because it is possible for service
providers to release your advise sink after the Advise call, but before an Unadvise call is made. Once
your client has given the advise source a pointer to its advise sink and the reference count has been
incremented on the advise sink, it is wise to release it unless your client has a long term use for it.

Note All connection numbers that represent valid advisory registrations will not be released until the
Unadvise call is made.

 Registering for a Message Store Notification

To register for message store notifications, call either the IMAPISession::Advise or
IMsgStore::Advise method and specify the entry identifier of the message store, folder, or message to
be the advise source. As do address book providers, message store providers support both object and
table notifications. Whether your client registers with particular message store objects, with the folder
hierarchy and contents tables that describe these objects, or with both objects and tables depends on
the notifications your client expects to see and the message store provider's implementation. Some
message store providers generate multiple notifications for events; other message store providers do
not. For example, suppose your client copies a message to a folder with which it has registered to
receive both object copied and object moved notifications. Whether or not your client actually receives
the object copied notification depends on:

· The method that your client called to perform the copy. This could be
IMAPIFolder::CopyMessages, IMAPIProp::CopyTo, or IMAPIProp::CopyProps.

· How the message store provider implements the copy method.
· Whether or not the message store provider supports object copied notifications on folders.

Because there are no strict guidelines that describe how to implement event notification for message
store providers, clients cannot expect consistent behavior. MAPI does make recommendations as to
how message store providers implement event notification and the following table outlines these
recommendations. Read the table as follows: after your client performs the operation in the first
column, it should expect to receive a notification of the type listed in the second column if it has
registered for that type with the object listed in the third column. For example, after your client has
created a folder, it will receive an fnevObjectCreated notification only if it has registered for
fnevObjectCreated notifications with the message store.

Operation Event type Advise source
Create a folder fnevObjectCreate

d
Message store

Delete a folder fnevObjectDeleted Message store
Deleted folder

Move a folder from one
folder to another

fnevObjectMoved Message store
Moved folder

Copy a folder from one
folder to another

fnevObjectCopied Message store and
copied folder (no
fnevObjectCreated
notification sent for the
new copy of the folder)

Change in a computed
folder property
(PR_SUBFOLDERS,
PR_CONTENT_UNRE
AD,
PR_CONTENT_COUN
T)

fnevObjectChang
ed

Message store
Changed folder
(No notification to parent
folder)

Create a message fnevObjectChang
ed

Message store

Delete a message,
causing a change in
the parent folder's
PR_CONTENT_COUN
T

fnevObjectDeleted Message store
Deleted message

Move a message from
one folder to another

fnevObjectMoved Message store
Moved message

Copy a message from
one folder to another

fnevObjectCopied Message store
Copied message
(No fnevObjectCreated
notification for new copy
of the message)

Save a message,
causing a change in
the parent folder's
PR_CONTENT_COUN
T property

fnevObjectCreate
d

Message store on first
save only

Save a message fnevObjectModifie
d

Message store on saves
after the first save
Changed message
(No notification to parent
folder)

Complete a search
operation

fnevSearchCompl
ete

Message store
Search folder

New message fnevNewMail Message store

 Registering for an Address Book Notification

Address book notifications enable your client to learn of events that occur to any recipient or to a
particular recipient in the address book. Your client can register for these notifications either through
the MAPI address book by calling IAddrBook::Advise or through an address book container's
hierarchy or contents table by calling IMAPITable::Advise.

Specify the entry identifier of an address book container, distribution list, or messaging user if
registering for notifications for a particular recipient and NULL if registering for notifications on the
entire address book. The entry identifier must represent an object in the address book.
IAddrBook::Advise examines this entry identifier to determine which address book provider is
responsible for the corresponding object and forwards the call to the appropriate address book
provider's IABLogon::Advise method.

The event type that your client specifies in the ulEventMask parameter represents the kind of change
that the client is interested in and that will cause the address book provider to call the client's
IMAPIAdviseSink::OnNotify method. For example, if a client needs to be notified when a recipient is
added to the container designated as the Personal Address Book, it can register for table modified
events on the container's contents table. Clients can register for the following types of events:

· Critical error
· Any of the object events (created, modified, deleted, moved, or copied)
· Table modified

Typically clients register only for notifications on address book container contents and hierarchy tables.
They do not register directly with address book objects such as messaging user objects or distribution
lists. This is because:

· Many address book providers do not support notifications on their messaging user and distribution
list objects.

· Table notifications are sufficient for tracking changes and reporting them to users.

 Registering for a Table Notification

As an alternative to registering directly with an advise source object, such as a folder or a messaging
user, your client can register for notifications on a contents or hierarchy table. Tracking changes to
address book entries, folders, and messages through a contents or hierarchy table can be simpler and
more straightforward than through individual objects. For example, your client can call
IMAPITable::Advise on a folder's hierarchy table to register to receive notifications whenever a
change occurs to any of the folders corresponding to the rows in the table. If your client supports the
viewing of remote messages, it can register with the status table to observe activity by transport
providers and the MAPI spooler.

However, it is not always preferable to use table notifications instead of object notifications. Monitoring
changes in the number of messages in a folder is an example of when your client might need to
register for object notifications on a folder rather than on a table implemented by the folder.

 Canceling a Notification

To cancel a notification for a particular advise source, client applications call its Unadvise method.
Calling Unadvise is important because it causes the service provider to release its reference to an
advise sink that no longer should receive notification.

Clients must make one call to an advise source's Unadvise method for every successful Advise call
that is made to prevent service providers from maintaining invalid references to their advise sink
objects possibly after the corresponding advise source objects have been destroyed. As long as a
service provider maintains a reference to an advise sink, the advise sink can continue to receive
IMAPIAdviseSink::OnNotify calls.

Because service provider implementations differ, clients that fail to call Unadvise to cancel notification
registration cannot assume anything about the timing of a service provider's release of the advise sink
reference. Some service providers release their references to advise sinks when they release their
advise sources. Some service providers do not. As long as a service provider maintains a reference to
an advise sink, that advise sink can continue to receive notifications. In fact, because of the
asynchronous nature of event notification, clients can be notified even after a successful Unadvise
call. You must write the notification handler of your client so that it can receive notifications at any time.

 Implementing an Advise Sink Object

Your client can either implement one or more of its own advise sink objects or use a utility function,
HrAllocAdviseSink. HrAllocAdviseSink creates an advise sink object with an implementation of
OnNotify that invokes a callback function provided by the client.

There are advantages and disadvantages to using HrAllocAdviseSink. It can save work, but it
provides no control over reference counting the resulting advise sink object. Therefore, clients that
need to carefully control their advise sink's release or that have interdependencies between their
advise sink and another client object should construct their own IMAPIAdviseSink implementation and
avoid using HrAllocAdviseSink altogether.

Clients implementing their own advise sink should make it an independent object not related to or
dependent upon any other objects so as to eliminate potential complications in reference counting and
object release. However, if your client must implement its advise sink as part of another object or
include a back pointer to another object as a data member, it is recommended that two separate
reference counts be maintained: one for the object referenced by the advise sink and one for the
advise sink.

When the object's reference count falls to zero, all of its methods can fail and its vtable can be
destroyed, but the memory for the object must remain intact until after the advise sink's reference count
also falls to zero. This means that in addition to decrementing its reference count, the advise sink's
Release implementation must also finish destroying the object when the count reaches zero. When two
separate reference counts are not maintained, it would be easy to inadvertently destroy the advise sink
as part of the encompassing object's Release process.

Clients must be prepared to receive a notification even after the completion of an Unadvise call and
free their advise sink objects only when their reference counts reach zero. This is due to the
asynchronous nature of event notification.

Clients using HrAllocAdviseSink to implement an advise sink must be equally careful not to include
their callback function as a method in another advise sink object. It is tempting to do this with C++
clients and pass the this pointer as a parameter. This is a dangerous strategy because clients typically
free an object when its reference count reaches zero. Freeing the memory for the advise sink object
would render the this pointer invalid.

Note Notification handlers such as implementations of IMAPIAdviseSink::OnNotify must be
reentrant if they explicitly yield control of the computer.

Depending on the type of event and the advise source responsible, an OnNotify implementation can
handle events in various ways. The following table offers suggestions for some of the standard events.

Type of event Handling in OnNotify
Object moved If the moved object's original

parent is related to the new
parent, update the view
beginning with the folder or
address book container highest
in the hierarchy.
If the two parent containers are
unrelated, update both of their
views.

New message Change the user interface to
inform the user of the arrival of
one or more new messages.
Place the receive folder in the
current view.

Error For all objects except the
session, log the error if
necessary and return.
For the session object, log off if
possible.

Search complete No processing necessary.

 Forcing a Notification

When service providers use the MAPI notification utility, MAPI delivers notifications using a hidden
window and its corresponding window procedure. For each process to receive a notification, MAPI
posts a special message to the hidden window. This message is named with the constant
szMAPINotificationMsg which is defined in MAPIDEFS.H.

Your client receives these notifications when the hidden window's window procedure processes the
szMAPINotificationMsg message. To guarantee that notifications are delivered to your client, it is
necessary to wait for and dispatch this szMAPINotificationMsg message. Implementing the logic to
achieve this can be done fairly simply, but MAPI now provides an entry point into the MAPI(32) DLL
called HrDispatchNotifications to make processing even simpler. Your client can use
HrDispatchNotifications as follows or implement a loop that accomplishes the same purpose as this
entry point.

HRESULT hr = HrDispatchNotifications(0);

The following code sample shows how to force notifications to occur without including logic for
processing errors.

void ForceNotifications()
{
 UINT wmNotify;
 MSG msg;

 wmNotify = RegisterWindowMessage(szMAPINotificationMsg);
 while (1)
 {
 if (PeekMessage(&msg, NULL, wmNotify, wmNotify, 0))
 {
 DispatchMessage (&msg);
 break;
 }
 }
 // at this point, calls to OnNotify have occurred
}

The next code sample extends the previous sample by adding error handling and a processing timer. It
returns TRUE if notifications were processed.

void ForceNotifications()
{
 UINT wmNotify;
 MSG msg;
 DWORD dwStart;
 DWORD dwNow;

 wmNotify = RegisterWindowMessage(szMAPINotificationMsg);
 dwStart = GetCurrentTime();
 dwNow = dwStart;

 do
 {
 if (PeekMessage(&msg, NULL, wmNotify, wmNotify, 0))
 {
 DispatchMessage (&msg);

 return TRUE;
 }
 if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))
 {
 if (msg.message == WM_QUIT || msg.message == WM_CLOSE)
 return FALSE;
 if (msg.message == WM_PAINT)
 {
 GetMessage(&msg, NULL, 0, 0);
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
 dwNow = GetCurrentTime();
 } while (dwNow - swStart < dwTimeout);

 return FALSE; // timed out

}

Because the HrDispatchNotifications entry point was added as of MAPI version 1.0a, your client
might want to implement logic that binds dynamically to the entry point if it is available and uses the
following code if it is not available.

#include <mapiwin.h>
HRESULT (STDAPICALLTYPE FAR *pDispatchFn)(ULONG ulFlags);
HINSTANCE hInst;
HRESULT hr;

hInst = GetModuleHandle("MAPI"szMAPIDLLSuffix".DLL");
pDispatchFn = GetProcAddress(hInst, "HrDispatchNotifications");
if (pDispatchFn)
 hr = (*pDispatchFn)(0);

 Handling the Address Book

Your client's handling of the MAPI address book includes the following tasks:

· Placing entries from one or more containers into the recipient lists of messages to be transmitted
· Adding entries into containers
· Modifying the properties of recipients
· Displaying common dialog boxes to allow users to browse address information and make changes.

 Opening the Address Book

After your client application calls MAPILogonEx to start up each of the address book providers in the
profile, call IMAPISession::OpenAddressBook to retrieve a pointer to MAPI's IAddrBook interface.
Clients use the IAddrBook methods to work with the entries in the containers of each of the address
book providers.

The MAPI address book is available regardless of whether all of the address book providers in the
profile are running, some of them, or none of them. Therefore, your client must always release its
IAddrBook pointer when the session ends.

To open the top-level container of the address book, clients call IAddrBook::OpenEntry with a NULL
entry identifier. To open any container, clients specify the entry identifier of the container in the
OpenEntry call.

OpenAddressBook might return a warning, MAPI_W_ERRORS_RETURNED, to indicate that there
were problems with one or more of the address book providers. Interactive clients should call
IMAPISession::GetLastError to retrieve additional error information and display the returned
information the first time that they call OpenAddressBook and it returns a warning.

Non-interactive clients should ignore the warning and proceed as if the method succeeded. The
returned IAddrBook interface is valid; release it at the end of the session.

 Opening an Address Book Container

After the integrated address book provided by MAPI is open, your client must open one or more
address book containers to access the recipients within them. Address book containers can be
modifiable, as are all Personal Address Book containers, or read-only used solely for browsing. The
procedures for opening these two types of containers are different.

To open the Personal Address Book container
1. Call IAddrBook::GetPAB to retrieve the personal address book's entry identifier.
2. Call IAddrBook::OpenEntry with the personal address book's entry identifier.

To open a container that is not the Personal Address Book
1. Call the IAddrBook::OpenEntry method with a NULL entry identifier to open the address book's

root container.
2. Call the IMAPIContainer::GetHierarchyTable method to retrieve the root container's hierarchy

table, a list of all of the top-level containers in the address book.
3. If the container is of a specific type:

a. Create an SPropertyRestriction structure with PR_DISPLAY_TYPE for the property tag, the
container's type for the property value, and RELOP_EQ for the relation. PR_DISPLAY_TYPE can
be set to many values, among them being:

· DT_GLOBAL to limit the hierarchy table to containers that
belong in the global address list.

· DT_LOCAL to limit the table to containers belonging to a
local address book.

· DT_MODIFIABLE to limit the table to containers that can be
modified.

b. Create an SPropTagArray structure that includes PR_ENTRYID, PR_DISPLAY_TYPE, and any
other columns of interest.

c. Call HrQueryAllRows, passing your property restriction and property tag array.
HrQueryAllRows will return zero or more rows, one row for every container that belongs to the
specified type. Your client must be prepared to handle the return of any number of rows.

d. Call IAddrBook::OpenEntry with the entry identifier from the PR_ENTRYID column of the row
that represents the container of interest.

4. If the container belongs to a specific address book provider:
a. Create an SPropertyRestriction structure with PR_AB_PROVIDERS for the property tag, a

provider-specific value for the property value, and RELOP_EQ for the relation. Typically the
provider-specific value is a globally unique identifier or GUID. You will find this value published in
one of the address book provider's header files.

b. Create an SPropTagArray structure that includes PR_ENTRYID, PR_AB_PROVIDER, and any
other columns of interest.

c. Call HrQueryAllRows, passing your property restriction and property tag array.
HrQueryAllRows will return zero rows if the specified address book provider is not in the profile.
It can return one or more rows for the provider's top-level containers, depending on how the
provider is organized.

d. Call IAddrBook::OpenEntry with the entry identifier from the PR_ENTRYID column of the row
that represents the container of interest. If the container that your client is interested in is not a
top-level container, find the top-level container and traverse the hierarchy.

 Setting Address Book Options

Your client can set three properties that describe options for using the address book:

PR_AB_SEARCH_PATH
PR_AB_DEFAULT_DIR
PR_AB_DEFAULT_PAB

The PR_AB_SEARCH_PATH property is used by IAddrBook::ResolveName to determine the
containers to be involved in name resolution and the order that they should be involved. For each
container in PR_AB_SEARCH_PATH, IAddrBook::ResolveName calls its
IABContainer::ResolveNames method. Containers at the beginning of PR_AB_SEARCH_PATH are
searched before containers at the end of PR_AB_SEARCH_PATH.

The search order in PR_AB_SEARCH_PATH is specified using an SRowSet data structure, the same
structure that is used to represent rows in a table. Your client can view the current search path by
calling the IAddrBook::GetSearchPath method and change it by calling the
IAddrBook::SetSearchPath method.

The PR_AB_DEFAULT_DIR property is entry identifier of the address book container tthat o be
displayed initially when the address book is displayed. The default directory setting remains in effect
until your client changes it by calling the IAddrBook::SetDefaultDir method. Your client can view the
default directory by calling the IAddrBook::GetDefaultDir method.

The PR_AB_DEFAULT_PAB property is the entry identifier of the modifiable address book container
that is to be used as the session's Personal Address Book Like PR_AB_DEFAULT_DIR, the value of
PR_AB_DEFAULT_PAB remains in effect until it is changed. Logging off and logging back on do not
affect their settings. Your client can access PR_AB_DEFAULT_PAB by calling IAddrBook::GetPAB
and change it by calling IAddrBook::SetPAB.

These three properties are special because your client cannot work with them using the standard
IMAPIProp methods. Instead, your client must use IAddrBook methods. Because none of these
properties can be changed with IMAPIProp::SetProps, there is no need to call
IMAPIProp::SaveChanges to make changes permanent. Modifications made through the IAddrBook
methods take effect immediately.

 Creating an Address Book Entry

Your client creates new entries for the address book when it is preparing to send an outgoing message
or when it is modifying a particular container. Depending on the address book provider, your client can
create new entries of one or more type. To create a new entry, call one of the following methods:

IAddrBook::CreateOneOff
IAddrBook::NewEntry
IABContainer::CreateEntry

The IAddrBook::CreateOneOff method creates recipients to be used in the recipient lists of outgoing
messages. When clients call CreateOneOff, they specify requires that clients specify the name of the
new recipient and the new recipient's e-mail address and address type. The resulting entry identifier
adheres to the special format for one-off entry identifiers. See About One-Off Entry Identifiers for
information about this format.

 Creating an Entry with IAddrBook::NewEntry

The IAddrBook::NewEntry method creates recipients for either an outgoing message or a modifiable
container. There are three pairs of parameters that your client can set to specify information about the
new entry:

Parameter pair Description
cbEidContainer and
lpEidContainer

Describes the entry identifier for the
container into which the new entry
should be placed.

cbEidNewEntryTpl and
lpEidNewEntryTpl

Describes the entry identifier for the
template to be used to create the new
entry.

lpcbEidNewEntry and
lppEidNewEntry

Describes the location for the entry
identifier for the new entry.

To create a new entry for the recipient list of an outgoing message, set cbEidContainer to zero and
lpEidContainer to NULL. The resulting entry is the same type of entry that is produced by a call to
IAddrBook::CreateOneOff.

To insert a new entry into a particular container, set lpEidContainer to the container's entry identifier
and cbEidContainer to the number of bytes in the container's entry identifier.

Most modifiable address book containers support one or more templates for creating entries of a
particular type. Entering information into the template produces a recipient with an address that is
correctly formatted for the type.

To specify the type of entry to be created, set lpEidNewEntryTpl to the entry identifier of the template to
be used and cbEidNewEntryTpl to the count of bytes in this entry identifier. Obtain the template entry
identifier from either:

· The PR_ENTRYID column in the container's one-off table, accessed by calling the container's
IMAPIProp::OpenProperty method and specifying PR_CREATE_TEMPLATES as the property tag
and IID_IMAPITable as the interface identifier.

· An address book provider's PR_DEF_CREATE_MAILUSER and PR_DEF_CREATE_DL properties
which hold the entry identifiers for the provider's messaging user object and distribution list
templates.

Note Do not confuse a new entry template's entry identifier with a different type of entry identifier
called a template identifier. A template identifier is used only by providers to maintain entries copied
from other providers; it is never used by clients and it is not used to create new entries.

To allow the user to determine the type of entry to be created, pass zero for cbEidNewEntryTpl and
NULL for lpEidNewEntryTpl. When this occurs, NewEntry displays a common dialog box built from
MAPI's one-off table, a hierarchical list of all of the templates supported by each address book provider
in the profile.

When an address type has been determined, either through the setting of the lpEidNewEntryTpl
parameter or a selection by the user from the one-off table display, NewEntry displays the
corresponding template using its display table. All new entry templates support the
PR_DETAILS_TABLE property.

To have NewEntry return the entry identifier of the created entry, pass a valid address for the
lpcbEidNewEntry and lppEidNewEntry parameters. MAPI places the new entry identifier at the address
pointed to by lppEidNewEntry and the byte count of the new entry identifier at the address pointed to
by lpcbEidNewEntry.

 Creating an Entry with IABContainer::CreateEntry

The IABContainer::CreateEntry method creates an entry in a particular container. Your client can use
this method only with modifiable containers, meaning containers that have the AB_MODIFIABLE flag
set in their PR_CONTAINER_FLAGS property. Address book providers with non-modifiable containers
do not support this method. Specify the entry identifier of the template for creating an entry of the
desired type in the lpEntryID parameter.

In the ulCreateFlags parameter, specify the type of duplicate entry checking required and whether or
not new entries should replace existing ones. If CreateEntry fails to create a new object because of
the duplicate entry checking imposed by the provider, do not expect to see an error or warning
returned. Under these conditions, providers return a success code.

To create a distribution list in the PAB
1. Call IAddrBook::GetPAB to retrieve the entry identifier for the PAB.
2. Call IAddrBook::OpenEntry to open the PAB.
3. Call the PAB's IMAPIProp::GetProps method to retrieve its PR_DEF_CREATE_DL property.
4. Call the PAB's IABContainer::CreateEntry method to create a new distribution list. Pass the value

of the PR_DEF_CREATE_DL. property in the lpEntryID parameter.
5. Call the returned object's IUnknown::QueryInterface method, passing IID_IDistList as the interface

identifier, to determine if the returned object is a distribution list. Because CreateEntry returns an
IMAPIProp pointer rather than the more specific IMailUser or IDistList pointer, your provider must
check to make sure a distribution list object was created. If QueryInterface succeeds and returns a
valid pointer, your provider can be sure that CreateEntry successfully created a distribution list
object.

6. Call the distribution list's IMAPIProp::SetProps method to set its display name and other properties.
7. Call the distribution list's IMAPIProp::SaveChanges method to save it.
8. Call IUnknown::Release for the distribution list and the PAB.

 Copying an Address Book Entry

To copy one or more recipients into a container, your client must first check that the container is
modifiable. Containers that are modifiable set the AB_MODIFIABLE flag in their
PR_CONTAINER_FLAGS property.

To copy one or more entries into a modifiable container, call the destination container's
IABContainer::CopyEntries method. Because copying address book entries can be time-consuming,
CopyEntries accepts four input parameters: an array of entry identifiers for the entries to be copied, a
window handle, a progress indicator, and a bitmask of flags.

The window handle and progress indicator are used by the address book provider to show the status of
the operation to the user. If your client wants to display progress, pass a window handle for the parent
window of the progress indicator in the ulUIParam parameter and do not set the AB_NO_DIALOG flag
in the ulFlags parameter. If your client has its own implementation of a progress indicator, pass a
pointer to the implementation in the lpProgress parameter. If not, pass NULL. The address book
provider will use MAPI's progress indicator implementation.

The bitmask of flags indicate whether or not your client wants to display a progress indicator and how
duplicate entry checking should be handled. Set the AB_NO_DIALOG flag to suppress a progress
indicator. Set the CREATE_CHECK_DUP_LOOSE flag to instruct the address book provider to loosely
check for duplicates or the CREATE_CHECK_DUP_STRICT flag for stricter duplicate checking. Set the
CREATE_REPLACE flag to have copied entries replace existing entries when the provider determines
there are duplicates.

When copying into a Personal Address Book container, the provider copies some or all of the
properties for each entry. Some PABs, such as the PAB supplied by MAPI, copy all of the properties.
Other PABs eliminate properties. Because MAPI does not establish requirements for providers
implementing container copy operations, your client cannot make assumptions as the number and type
of properties that are copied with an address book entry.

 Deleting an Address Book Entry

To remove one or more address book entries from a modifiable container, call the
IABContainer::DeleteEntries method, passing an array of entry identifiers that represent the address
book entries to be deleted.

DeleteEntries can return a warning, MAPI_W_PARTIAL_COMPLETION, to indicate that it couldn't
delete one or more of the entries. Test for this return value with the HR_FAILED macro and call the the
container's IMAPIProp::GetLastError method if more information about the problem is needed.

 Preparing a Recipient with IAddrBook::PrepareRecips

Preparing recipients involves converting their short-term entry identifiers to long-term entry identifiers
and possibly adding, changing, or reordering properties. Your client can prepare recipients that are part
of a recipient list for a message or recipients that are unrelated to a message. Typically clients call
IAddrBook::PrepareRecips directly to translate short-term entry identifiers into long-term entry
identifiers for recipients that are included in the common address dialog box. For recipients that are
associated with an outgoing message, recipient preparation is handled by the name resolution process.

To prepare a list of recipients, call IAddrBook::PrepareRecips. PrepareRecips accepts an ADRLIST
structure and a list of property tags. The ADRLIST structure contains the recipients to be prepared
while the property tag list represents properties that each recipient should support. PrepareRecips
attempts to place the properties that are included in the property tag list at the beginning of the
ADRLIST. If any of the properties in the list are missing from the ADRLIST structure, MAPI calls the
address book provider to supply them. If your client only needs to check for long-term entry identifiers,
pass NULL for the lpSPropTagArray parameter.

For an example, suppose your client is working with five recipients. All five recipients appear in the
ADRLIST structure with the following properties in the following order:

1. PR_ENTRYID
2. PR_DISPLAY_NAME
3. PR_SEARCH_KEY
4. PR_EMAIL_ADDRESS
5. PR_ADDRTYPE

Three other properties are included in the ADRLIST structure for the first two recipients.

1. PR_ACCOUNT
2. PR_GIVEN_NAME
3. PR_SURNAME

Because your client needs all of the recipients to have as their first three properties PR_ADDRTYPE,
PR_ENTRYID, and PR_HOME_TELEPHONE_NUMBER, it creates a property tag array with these
properties and passes it and the ADRLIST structure to PrepareRecips. PrepareRecips calls each
recipient's IMAPIProp::GetProps method to retrieve PR_HOME_TELEPHONE_NUMBER because it
is not currently part of the ADRLIST structure. When PrepareRecips returns, the recipient list
represents a merged list of recipients with the properties included in the ADRLIST structure appearing
first for each recipient.

The recipient list for recipients 1 and 2 includes properties in the following order:

1. PR_ADDRTYPE
2. PR_ENTRYID
3. PR_HOME_TELEPHONE_NUMBER
4. PR_DISPLAY_NAME
5. PR_SEARCH_KEY
6. PR_EMAIL_ADDRESS
7. PR_ADDRTYPE
8. PR_ACCOUNT
9. PR_GIVEN_NAME

10. PR_SURNAME

The recipient list for recipients 3, 4, and 5 includes properties in the following order:

1. PR_ADDRTYPE
2. PR_ENTRYID
3. PR_HOME_TELEPHONE_NUMBER
4. PR_DISPLAY_NAME
5. PR_SEARCH_KEY
6. PR_EMAIL_ADDRESS
7. PR_ADDRTYPE

As an alternative to calling IAddrBook::PrepareRecips to work with properties, your client can call
each recipient's IMAPIProp::GetProps method and, if necessary, its IMAPIProp::SetProps method.
When only one recipient is involved, either technique is satisfactory. However, when multiple recipients
are involved, calling PrepareRecips rather than the IMAPIProp methods saves time and, if your client
is operating remotely, many remote procedure calls. PrepareRecips processes all recipients in a
single call whereas GetProps and SetProps make one call for each recipient.

 Retrieving Address Book Entry Properties

To access one or more properties of an address book entry, there are two approaches. The first
approach involves the following tasks for each address book entry of interest:

1. Call IAddrBook::OpenEntry, passing the entry identifier of the target messaging user or distribution
list.

2. Call the messaging user or distribution list's IMAPIProp::GetProps method with a list of the one or
more properties to retrieve.

The second approach involves calling IAddrBook::PrepareRecips, passing an ADRLIST structure
that holds all of the properties for all of the desired address book entries. Because one call to
PrepareRecips can return information for multiple address book entries, it is the preferable strategy
when your client is interested in more than one recipient.

 Searching the Address Book

MAPI enables address book providers to implement two levels of search functionality:

· A basic level that matches a specified name with the PR_DISPLAY_NAME property of address book
entries. This level allows users, for example, to view distribution lists with names beginning with
Northwest or locate individual messaging users whose last name is Brown.

· An advanced level that matches on properties other than PR_DISPLAY_NAME. This level allows
users, for example, to further narrow their searches, allowing users, for example, to find messaging
users named Brown with a particular address type.

Because address book providers can support searching for each of their containers at the basic level,
at both levels, or choose not to support it at all, your client should not expect searching to be
implemented as a standard feature. To determine if a particular container supports searches, attempt to
establish search criteria in a call to its IMAPIContainer::SetSearchCriteria method. If
SetSearchCriteria returns MAPI_E_NO_SUPPORT, the container does not support searches.

In a container that supports searches, your client can retrieve established criteria by calling
IMAPIContainer::GetSearchCriteria. Your client can also request that the user be prompted for
search criteria before a container's contents table is displayed. To choose this option, set the
AB_FIND_ON_OPEN flag of the container's PR_CONTAINER_FLAGS property. After the user enters
the criteria, it is stored as a restriction and passed to the SetSearchCriteria method. Setting
AB_FIND_ON_OPEN is particularly useful if your client is using an online service or any address book
provider that has a slow link to its data.

To perform a basic search in an address book container
1. Call the container's IMAPIContainer::GetContentsTable method to open its contents table.
2. Choose a search technique that meets your client's needs. The choices include:

· IMAPITable::FindRow to locate a specific row in the table.
· IMAPITable::SortTable to order rows in the table.
· IMAPITable::Restrict to limit the table view.
· Property restriction using the PR_ANR property for resolving ambiguous names. Call

IMAPITable::Restrict to impose this restriction.
· IABContainer::ResolveNames to resolve ambiguous names.

3. Call IMAPITable::QueryRows to retrieve any rows that meet your applied search criteria.
QueryRows can return zero or more matching rows.

The FindRow, SortTable, and Restrict methods are table methods that are available for any table that
can be created, either by a client or a service provider. The PR_ANR property restriction and
IABContainer::ResolveNames method are specific to address book providers and are used for
resolving ambiguous names. Ambiguous names are entries in a recipient list that do not have a
PR_ENTRYID property associated with them.

The PR_ANR restriction invokes an algorithm that separates a character string into words and matches
those words with information in the address book using prefix-matching. The information used for the
matching depends on the address book provider. All address book providers are required to support
the PR_ANR restriction for their address book containers. For more information, see Implementing the
PR_ANR Property Restriction.

IABContainer::ResolveNames performs PR_ANR restriction processing on multiple names without
requiring the container's contents table to be open. Calling ResolveNames once to resolve multiple
names can be much faster than invoking a PR_ANR restriction multiple times. However, address book
providers are not required to support ResolveNames.

 Using an Advanced Search Dialog Box

Some address book containers support an advanced searching capability that allows clients to search
on properties other than PR_DISPLAY_NAME. Address book containers that support advanced
searches have an container object property called PR_SEARCH. This container object provides
access to a display table that describes the search dialog box, a dialog box used to enter and edit the
advanced search criteria.

To perform an advanced search on an address book container
1. Call the container's IMAPIProp::OpenProperty method, specifying PR_SEARCH for the property

tag and IID_IMAPIContainer for the interface identifier.
2. Call the search object 's IMAPIProp::OpenProperty method, specifying PR_DETAILS_TABLE for

the property tag and IID_IMAPITable for the interface identifier.
3. Call the search object's IMAPIProp::SetProps to establish values for the properties to be used in

the advanced search.
4. Call the search object's IMAPIProp::SaveChanges method to save the advanced search criteria.

This sequence of calls results in a restriction being available when a client calls the search object's
GetSearchCriteria method.

 Resolving a Name

When users compose messages, they enter the names of one or more recipients. Each of these
names must go through a process known as name resolution, which involves associating an entry
identifier to each name.

To resolve all of the names in a recipient list
1. Build an ADRLIST structure that contains an ADRENTRY structure for the properties of each

recipient.
2. Pass the ADRLIST structure in a call to the IAddrBook::ResolveName method.

ResolveName begins processing by ignoring the entries in the ADRLIST that have already been
resolved, as is indicated by the presence of an entry identifier in the corresponding ADRENTRY
structure's SPropValue array. Next, ResolveName automatically assigns one-off entry identifiers to
two types of recipients:

· Recipients with an address formatted as an Internet address
· Recipients with an address formatted as follows:
displayname[address type:e-mail address]

For all remaining entries, ResolveName searches the address book for an exact match on the display
name. ResolveName uses the PR_AB_SEARCH_PATH property to determine the set of containers to
search and the search order. MAPI calls the IABContainer::ResolveNames method of every
container to attempt to resolve all of the names. Because some containers do not support
ResolveNames, if the container returns MAPI_E_NO_SUPPORT, MAPI applies a PR_ANR property
restriction against its contents table. All address book containers are required to support name
resolution with this restriction. Once all of the names are resolved, no further container calls are made.
If all of the containers have been called, but ambiguous or unresolved names remain, MAPI displays a
dialog box if possible to prompt for the user's help.

The PR_ANR restriction matches the value of the PR_ANR property against the display name in the
ADRLIST. Limiting the view of a container's contents table with the PR_ANR property restriction
causes the address book provider to perform a "best guess" type of search, matching against the
property that makes sense for the provider. For example, one address book provider might always
match names in the recipient list against PR_DISPLAY_NAME while another might allow an
administrator to select the property.

To set a PR_ANR property restriction on an address book container's contents table
1. Create an SRestriction structure as shown in the following code:

SRestriction SRestrict;

SRestrict.rt = RES_PROPERTY;
SRestrict.res.resProperty.relop = RELOP_EQ;
SRestrict.res.resProperty.ulPropTag = PR_ANR;
SRestrict.res.resProperty.lpProp->ulPropTag = PR_ANR;
SRestrict.res.resProperty.lpProp->Value.LPSZ = lpszName;

2. Call the contents table's IMAPITable::Restrict method, passing the SRestriction structure as the
lpRestriction parameter.

 Handling a Message Store

Handling a message store is an important part of your client's tasks. These tasks can include:

· Opening one or more message stores.
· Performing maintenance on a folder.
· Validating the folder hierarchy.
· Handling user access to folders.
· Setting message store properties that define features.

 Opening a Message Store

Your client will open one or more message stores during a typical session, either directly after logon or
after a profile modification. With the Control Panel, MAPI provides the means for users to add message
stores to the profile during an active session. If your client permits this, it can either ignore the newly
added message stores until the next session or open them to make them immediately available during
the current session.

To open a message store, pass the store's entry identifier to one of two methods:

IMAPISession::OpenMsgStore
IMAPISession::OpenEntry

Message store entry identifiers are published in the message store table, a summary list of dynamic
information about each of the message stores in the profile. Most clients access the entry identifiers for
the message stores they wish to open through this table. However, some clients know how to construct
a message store entry identifier for a particular type of message store. If your client can construct a
message store-specific entry identifier, it can pass this identifier directly to OpenMsgStore or
OpenEntry, bypassing the message store table.

To use the message store table to open a message store
1. Call IMAPISession::GetMsgStoresTable to open the message store table.
2. Call IMAPITable::SetColumns to limit the table to a small column set that includes the following

columns:
PR_PROVIDER_DISPLAY or PR_DISPLAY_NAME
PR_ENTRYID properties
PR_MDB_PROVIDER
PR_RESOURCE_FLAGS

3. Search for the row in the table that represents the message store. To look for a temporary message
store or a store that is the default, primary, or secondary store, apply a bitmask restriction to
PR_RESOURCE_FLAGS. Specify for example, STATUS_DEFAULT_STORE as the restriction mask
to search for the session's default message store.
To look for a message store by name, build a property restriction using any of the following
properties:
· Match PR_PROVIDER_DISPLAY with the general name for this type of message store. For

example, PR_PROVIDER_DISPLAY might be set to "Personal Folders."
· Match PR_MDB_PROVIDER with the specific name for this type of message store. For example,

PR_MDB_PROVIDER might be set to "Microsoft Exchange Personal Folders."
· Match PR_DISPLAY_NAME with the name for this particular message store. For example,

PR_DISPLAY_NAME might be set to "My Messages for Fiscal Year 1995."
4. Pass the restriction in a call to HrQueryAllRows.
5. Retrieve the row from the table by calling IMAPITable::QueryRows.
6. Pass the entry identifier from the row to one of two methods to open the message store:

IMAPISession::OpenMsgStore or IMAPISession::OpenEntry. Call OpenMsgStore if your client
needs to specify a variety of special options for the message store.

7. Call FreePRows to free the SRowSet data structure returned by IMAPITable::QueryRows.
8. Release the message store table by calling its IUnknown::Release method.

To use an internal identifier to open a message store
1. Call the WrapStoreEntryID function to convert the internal identifier to a regular entry identifier.
2. Pass the converted entry identifier returned from WrapStoreEntryID to one of two methods to open

the message store: IMAPISession::OpenMsgStore or IMAPISession::OpenEntry. Call

OpenMsgStore if your client needs to specify a variety of special options for the message store.
OpenEntry allows clients to access session options only.

 Validating a Message Store

Every message store that is opened in a session without the MAPI_NO_MAIL flag set should have a
subtree of IPM folders. This subtree is more extensive if the message store is the default message
store and less extensive if it is not. MAPI automatically creates the correct set of IPM folders for
message stores when your IPM client calls IMAPISession::OpenMsgStore and assigns them default
names and roles. MAPI is responsible for creating the folder subtree to avoid the incompatibilities that
would inevitably occur if either clients or message store providers were responsible for the creation.

Your client can verify that the appropriate folders have been created and that they are valid by calling
the API function HrValidateIPMSubtree. If the message store is the default, your client should pass the
MAPI_FULL_IPM_TREE flag. When HrValidateIPMSubtree receives the MAPI_FULL_IPM_TREE
flag, it checks for the following folders:

· Root folder for the IPM subtree
· Deleted Items folder in the IPM root folder
· Inbox folder in the IPM root folder
· Outbox folder in the IPM root folder
· Sent Items folder in the IPM root folder
· Folder views in the message store's root folder
· Common views in the message store's root folder
· Search folder in the message store's root folder

If the message store is not the default, your client has the option of setting the MAPI_FULL_IPM_TREE
flag. When this flag is not set, HrValidateIPMSubtree checks for only the root folder for the subtree,
the Deleted Items folder, and the root folder for message store search results.

During message store initialization your client might need to cache two message store properties:
PR_VALID_FOLDER_MASK and PR_STORE_SUPPORT_MASK. These properties are bitmasks that
describe, in the case of PR_VALID_FOLDER_MASK, the set of folders that have been validated and,
in the case of PR_STORE_SUPPORT_MASK, the features that the message store supports.

Other properties that your client should store locally include the entry identifiers for the folders that the
PR_VALID_FOLDER_MASK property describes as valid. Each of these special folders, except for the
Inbox folder, has an entry identifier property associated with it. For example, the entry identifier for the
Outbox folder is its PR_IPM_OUTBOX_ENTRYID property. Because these folders are the folders that
your client will open frequently, it is a good idea to have their entry identifiers readily available.

 Setting Message Store Features

Every message store supports the PR_RESOURCE_FLAGS property which describes the store's
features. Some message stores can act as temporary stores or the default store for a session. Your
client can identify a particular message store as the default by calling the message store's
IMAPISession::SetDefaultStore method and passing the MAPI_DEFAULT_STORE flag. As a result of
this call, SetDefaultStore sets the message store's PR_RESOURCE_FLAGS to
STATUS_DEFAULT_STORE.

Your client can also use the IMAPISession::OpenMsgStore method to set message store features by
setting two flags:

MDB_NO_MAIL
MDB_TEMPORARY

Setting the MDB_NO_MAIL flag indicates to MAPI that the message store will not be used for sending
or receiving messages. MAPI does not inform the spooler about the existence of this message store.
The MDB_TEMPORARY flag designates a message store as temporary, implying that it cannot be
used to store permanent information. Temporary message stores do not appear in the message store
table.

 Handling User Access to Folders

Some folders support the PR_ACCESS property which describes the type of operations a user can
perform. For example, one of the valid settings for PR_ACCESS is MAPI_ACCESS_DELETE,
indicating that the folder can be removed. Another setting, MAPI_ACCESS_MODIFY, indicates that
your client can write to the folder.

Although some message store providers include the PR_ACCESS property in the column set of their
hierarchy tables or on the folder itself, other message store providers support it by calculating its value
on demand. This is because calculating the value for PR_ACCESS is time consuming. When your
client needs to determine whether or not a user can perform an operation on one or more folders, it is
more practical to attempt the operation and return an error if necessary than to retrieve a folder's
PR_ACCESS property first. Only prompt for PR_ACCESS when absolutely necessary.

 Deleting a Message

Your client can delete messages when they are open while the user is reading them, or when they are
closed while the user is viewing the contents table. To protect users from inadvertently removing
messages, MAPI defines message deletion as a two step process. First, your client marks a message
for deletion by moving it to the folder that has been designated as the Deleted Items folder, the folder
whose entry identifier is stored in the PR_IPM_WASTEBASKET_ENTRYID property. Second, your
client removes the message by calling the IMAPIFolder::DeleteMessages method.

When a user chooses to delete a message in a folder other than the Deleted Items folder, your client
should mark it for deletion. Only when a user selects messages from within the Deleted Items folder
should the messages be physically removed from the workstation. Your client can prompt the user to
make sure that he or she really intended to perform the deletion.

To delete a message
1. Confirm with the user that the impending deletion is intentional.
2. Determine the parent of the folder to be deleted. If it is the Deleted Items folder or a subfolder within

the Deleted Items folder, call DeleteMessages to remove the message.
3. If the folder is not contained within the Deleted Items folder, call CopyMessages with the

MESSAGE_MOVE flag set to relocate the message to the Deleted Items folder.

 Copying or Moving a Message

There are several ways to copy messages. The best way is to call the IMAPIFolder::CopyMessages
method of the folder with the message to be copied. Your client can also call the
IMAPIFolder::CreateMessage method of the folder to receive the copy and then copy all of the
appropriate properties from the original message. However, because CreateMessage returns a new
unique entry identifier for the copy, all links to the original are lost. Also, with CreateMessage, the
message store provider generates object created notifications rather than object copied notifications.

To copy or move a message
1. Locate the entry identifiers for the source and destination folders.
2. Validate these entry identifiers.
3. Open these folders in read/write mode by calling IMAPISession::OpenEntry or

IMsgStore::OpenEntry and setting the MAPI_MODIFY flag.
4. Check that the interface pointer returned from OpenEntry is an IMAPIFolder interface pointer.
5. Call IMAPIFolder::CopyMessages.
6. Release the interface pointers for the source and destination folders.

If your client copies messages from one message store to another and Unicode is not supported by
both, information can be lost due to code page conversion. It is impossible to know ahead of time
whether to copy the text as an ASCII string or as a Unicode string. If your client supports Unicode, try
to perform a Unicode copy; if it fails with the error value MAPI_E_BAD_CHARWIDTH, resort to ASCII.

 Handling a Transport Provider

Communication with a transport provider is accomplished through the IMAPIStatus interface ¾ the
interface made available through the session's status table. Your client may or may not communicate
with a transport provider, depending on whether or not it includes configuration support in its feature
set.

 Sending or Receiving a Message on Demand

Clients typically rely on the MAPI subsystem ¾ the MAPI spooler and the service providers ¾ to handle
the timing of message transmission and reception. However, your client can alter this timing by
requesting the immediate sending or receiving of messages. The following procedures describe two
techniques of how to send or receive messages on demand. The first procedure works with all of the
transport providers simultaneously through the MAPI spooler's status object; the second procedure
works on individual transport providers through the status object of each provider.

To send or receive messages on demand
1. Call IMAPISession::GetStatusTable to access the status table.
2. Call the status table's IMAPITable::SetColumns method to limit the column set to PR_ENTRYID

and PR_RESOURCE_TYPE.
3. Build a property restriction using an SPropertyRestriction structure to match

PR_RESOURCE_TYPE with MAPI_SPOOLER.
4. Call HrQueryAllRows, passing in the SPropertyRestriction structure, to retrieve the row that

represents the status of the MAPI spooler.
5. Pass the PR_ENTRYID column to IMAPISession::OpenEntry to open the MAPI spooler's status

object.
6. Call the MAPI spooler's IMAPIStatus::FlushQueues method, passing the FLUSH_NO_UI flag to

suppress the user interface and either the FLUSH_DOWNLOAD or FLUSH_UPLOAD flag to flush
the outgoing or incoming queues.

7. Release the status object and the status table, as well as the SRowSet structure that is allocated for
the table.

To send or receive messages on demand and flush each transport provider individually
1. Call IMAPISession::GetStatusTable to access the status table.
2. Call the status table's IMAPITable::SetColumns method to limit the column set to PR_ENTRYID

and PR_RESOURCE_TYPE.
3. Build a property restriction using an SPropertyRestriction structure to match

PR_RESOURCE_TYPE with MAPI_TRANSPORT_PROVIDER.
4. Call HrQueryAllRows, passing in the SPropertyRestriction structure, to retrieve the row that

represents the status of the MAPI spooler.
5. For each row returned from HrQueryAllRows:

a. Pass the PR_ENTRYID column to IMAPISession::OpenEntry to open the transport provider's
status object.

b. Check that the transport status object supports the FlushQueues method by checking that its
PR_RESOURCE_METHODS property has the STATUS_FLUSH_QUEUES flag set.

c. If supported, call the transport object's IMAPIStatus::FlushQueues method. If unsupported; call
the MAPI spooler's IMAPIStatus::FlushQueues method, passing the entry identifier of the
transport in the lpTargetTransport parameter. Set the FLUSH_DOWNLOAD flag to flush the
outgoing queues or the FLUSH_UPLOAD flag to flush the incoming queues.

d. Release the status object and the status table, as well as the SRowSet structure that is allocated
for the table.

The MAPI spooler honors the FLUSH_NO_UI flag as do most LAN transport providers. However, not
all transport providers honor this flag, particularly those that use the Remote Access Service (RAS)
because it is not designed to allow the suppression of a user interface and those that use the modem
explicitly. It is possible for a client to be configured so that it can connect without requiring the
interaction of a user, but it is difficult and requires intimate knowledge of the message services that the
client will be using.

 Setting Transport Order

The MAPI spooler assigns responsibility for outgoing messages based on one or more address types
and unique identifiers, represented in MAPIUID structures, that a transport provider declares it can
handle. Transport providers publish a list of address types and MAPIUIDs through their
IXPLogon::AddressTypes method, which MAPI calls directly after logon. Address types are stored in
the PR_ADDRTYPE property.

When a transport provider returns an address type from IXPLogon::AddressTypes, it is implying that
it can deliver messages to recipients that have their PR_ADDRTYPE property set to this address type.
Likewise, when a transport provider returns a MAPIUID in the lpppUIDArray parameter, this indicates
that the transport provider can deliver to recipients that are represented by entry identifiers that include
the MAPIUID.

Most transport providers handle messages by address type. Transport providers that are tightly
coupled with an address book provider and understand its entry identifier format can register to handle
messages by MAPIUID, thereby improving performance. These tightly coupled transport providers can
extract the recipient's e-mail address and other necessary information from the entry identifier without
having to open it with an IMAPISupport::OpenEntry call.

MAPI maintains an order for transport providers, used when multiple transport providers have
registered for the same address type or MAPIUID. Your client can override this order by:

· Calling IMsgServiceAdmin::MsgServiceTransportOrder and passing an ordered list of the
MAPIUIDs of all of the active transport providers in the lpUIDList parameter.

· Using the Delivery property page of the Control Panel applet.

To retrieve a list of all of the address types that can be handled by one of the active transport providers,
call IMAPISession::EnumAdrTypes. EnumAdrTypes returns an array of strings that describe
address types supported by the transport providers that are active in the current session.

 Reconfiguring a Transport Provider

Your client application can use a transport provider's status object to change some of the properties of
the properties of the provider. The range of properties that your client can change depends on the
properties that are included with the provider's property sheet, a dialog box implemented by each
service provider, and how those properties are defined.

To reconfigure an active transport provider
1. Call IMAPISession::GetStatusTable to access the status table.
2. Locate the row for the transport provider to be reconfigured by creating a property restriction that

matches PR_DISPLAY_NAME with the name of the target provider.
3. Call IMAPITable::FindRow to retrieve the appropriate row.
4. Check that the STATUS_SETTINGS_DIALOG and STATUS_VALIDATE_STATE flags are set in the

target transport provider's PR_RESOURCE_METHODS property. These are optional methods for
transport providers to support in their status objects.

5. If STATUS_SETTINGS_DIALOG is not set, the transport provider does not display a configuration
property sheet. If STATUS_VALIDATE_STATE is not set, your client cannot perform dynamic
reconfiguration.

6. If STATUS_SETTINGS_DIALOG is set, call IMAPIStatus::SettingsDialog to display the transport
provider's property sheet and allow the user to make changes.

7. After the user has finished with the reconfiguration, call IMAPIStatus::ValidateState if
STATUS_VALIDATE_STATE is set, passing CONFIG_CHANGED.

 Handling Profiles

Some MAPI clients have nothing more to do with profiles than allowing their users to select one at
logon time. Other clients provide a complete set of configuration features. Your client might need to
create a profile or modify an existing profile with the interfaces supported by MAPI for profile and
message service administration.

There are three approaches for creating profiles:

· Invoke the New Profile wizard, which allows users to select message services interactively. The
message services that are selected must support Wizard-based configuration. If your client uses this
approach, be aware that when the profile has been created, one or more message services might
not be completely configured.

· Invoke the NEWPROF utility, a tool that reads from a template file called DEFAULT.PRF to populate
a profile with a set of message services and service providers.

· Write C or C++ code, often the best choice for non-interactive client applications which require a
specific set of message services.

To modify profiles, use the following interfaces:

· IProfAdmin : IUnknown for profile administration.
· IProfSect : IMAPIProp for access to profile section properties.
· IMsgServiceAdmin : IUnknown for message service administration.
· IProviderAdmin : IUnknown for administration of service providers within a message service.

New address book providers added to the profile do not show up until a new session is created.
Address book providers can add or remove top-level containers dynamically by issuing notifications on
their hierarchy table. MAPI receives these notifications and updates the address book.

 Locating the Default Profile

The default profile is the profile that your client uses if another profile is not explicitly chosen. Default
profiles are typically designated as such at installation time.

To locate the default profile
1. Call MAPIAdminProfiles.
2. Call IProfAdmin::GetProfileTable to access the profile table.
3. Build a property restriction with an SPropertyRestriction structure to match

PR_DEFAULT_PROFILE with the value TRUE.
4. Call IMAPITable::FindRow to locate the row in the profile table that represents the default profile.

The PR_DISPLAY_NAME column contains the name of the default profile.

 Understanding Profile Order

When your client application is creating a profile, be careful as to the order in which information is
entered. MAPI makes assumptions and assignments based on the order in which service providers
and message services appear in the profile. Resources such as the default message store, default
personal address book, and default search path for address book containers are usually configured
based on the order in which they appear in the profile.

Keep the following issues in mind when creating profiles or a .PRF file for the NEWPROF utility.

MAPI resource Configuration issue
Default message store If not set explicitly, this is the first

message store in a profile that is
capable of being the default
store.

Personal address book If not set explicitly, this is the first
container that is writeable and
can contain names.
Its PR_CONTAINER_FLAGS
property is set to
AB_RECIPIENTS and
AB_MODIFIABLE.

Default address book directory First container in the hierarchy
that can contain names and is
not the personal address book
(PAB), unless the PAB is the
only container that can hold
names.

Default search path Is the PAB followed by each
directory that:
· Has its PR_DISPLAY_TYPE

property set to DT_GLOBAL.
· Has names.
· Does not have the

AB_NOT_DEFAULT flag set
in its
PR_CONTAINER_FLAGS
property.

If there are no containers of type
DT_GLOBAL, this is the PAB
and the default directory.

Transport order If not explicitly set, this is the
same order that the transports
were added to the profile, except
that transports which set the
STATUS_XP_PREFER_LAST
flag are serviced last. The
transport order is unimportant
unless your profile contains two
or more transports which handle
the same e-mail address type.

These guidelines for ordering service providers and message services might sometimes conflict. If

there is a conflict, your client must include C or C++ code to configure one or more of the provider
orders. Your client can use the Delivery and Addressing pages of the Mail and Fax Control Panel applet
to inspect a profile that it has created to determine if the providers have been ordered as expected.

If your client must run unattended, perhaps as a background application or a Windows NT service,
some special cautions apply. For more information, see Writing an Automated Client and Windows NT
Service Client Applications.

If your application requires a specific profile other than the default profile, you must save its name in
your own configuration database or use a specific naming convention. MAPI does not expose any
profile attributes other than the name and default flag in the profile table, and the default profile flag is
reserved for the messaging client and related IPM applications.

 Creating a Profile with NEWPROF

Using the NEWPROF utility to create a profile requires that your client application have available
a .PRF file, or file with the .PRF extension. A default .PRF file called DEFAULT.PRF that contains the
profile entries for the message services that are installed with MAPI is included with every MAPI
installation. This file is divided into four sections:

· Section 1 includes the [General] section.
· Section 2 includes the [Service List] section.
· Section 3 includes sections that describe individual message services.
· Section 4 includes sections that map to profile properties.

Your client can create a new .PRF file using portions of DEFAULT.PRF as a model or modify
DEFAULT.PRF directly, adding portions that pertain to your configuration.

To create a .PRF file
1. Assemble information from existing .PRF files. For each service you plan to use, copy the section

that lists the name, type, and property identifier for each configuration property. The section must
have the same name as the service. Services implemented by Microsoft are listed in DEFAULT.PRF.

2. Place the profile name in the ProfileName= line of the [General] section.
3. Create the [Service List] section after the [General] section. In this section, list each message

service that you require and the name of the section that contains its configuration properties. For
information about ordering services in profiles, see Understanding Profile Order.

4. For each service listed in the [Service List] section, create a section that lists the value for each
configuration property. The section must have the same name as the service. This information
appears in Section 3 of the file.

5. Invoke the NEWPROF utility. On 32-bit operating systems, NEWPROF can be run from a command
line or batch file. On 16-bit Windows systems, NEWPROF cannot be run from an MS-DOS shell; it
can be run by a Windows-based setup script, by the Run command on the File menu in Program
Manager or File Manager, or by the WinExec system call.

Note References to Sections 1, 2, 3, and 4 in the preceding procedure refer to comments in the
DEFAULT.PRF file distributed with the MAPI SDK.

 Creating a Profile with Custom Code

When a client application opts to write code to create a profile, it must fully understand how the
ordering of entries within a profile work and fully realize how much information is required. The code
written to create a profile must add each message service and each service provider within the
message service.

To create a profile with C or C++ code
1. Read the header file for each message service. Understand what properties you will need to

configure and what values you will use.
2. Call the MAPIAdminProfiles function to obtain a profile administration object.
3. Call the profile administration object's IProfAdmin::CreateProfile method to create your profile.
4. Call the profile administration object's IProfAdmin::AdminServices method to obtain a message

service administration object.
5. Use the message service administration object to add message services to the profile. For

information about ordering message services in profiles, see Understanding Profile Order. For each
message service to be added:
a. Call the IMsgServiceAdmin::CreateMsgService method to create the new message service.
b. Call the IMsgServiceAdmin::GetMsgServiceTable method to access the message service

table.
c. Call HrQueryAllRows to retrieve all rows from the table.
d. Obtain the MAPIUID structure of the service you just created.
e. Get the PR_SERVICE_UID column from the last row. This is the MAPIUID structure of the last

service added. You may wish to check with an assertion that other properties of the service are as
you expect.

f. Call IMsgServiceAdmin::ConfigureMsgService, passing the MAPIUID structure of the service
you just created and a property value array with its configuration properties.

To make the profile temporary, call the IProfAdmin::DeleteProfile method immediately after logging
on to the profile. It will be deleted after you log off, and will not be visible to other applications in the
meantime.

If your client must make configuration calls that require an IMAPISession interface, such as
IMAPISession::SetDefaultStore, IAddrBook::SetPAB, or IAddrBook::SetABSearchPath, pass the
MAPI_NO_MAIL flag to the MAPILogonEx function.

 Copying a Profile

One way to create a profile is to copy from an existing profile and alter the necessary message
services and service providers. Copying a profile involves using a profile administration object,
provided by MAPI through the MAPIAdminProfiles function.

To copy a profile
1. Call MAPIAdminProfiles.
2. Call IProfAdmin::GetProfileTable to access the profile table.
3. Build a property restriction with an SPropertyRestriction structure to match PR_DISPLAY_NAME

with the name of the profile to be copied.
4. Call IMAPITable::FindRow to locate the appropriate row in the profile table.
5. Call IProfAdmin::CopyProfile, passing the value of the PR_DISPLAY_NAME column as the

lpszOldProfileName parameter.

 Modifying a Profile

Modifying a profile can involve adding or deleting a message service or a service provider or
manipulating a property of a message service or a service provider. All of these activities require that
your client have access to a message service administration object or a provider administration object.

To modify a profile, your client can call
· IMAPISession::AdminServices or IProfAdmin::AdminServices to access a message service

administration object.
 - Or -

· IMAPISession::OpenProfileSection or IProviderAdmin::OpenProfileSection to access a profile
section created by your client.

A message service administration object allows your client to make changes to the active profile while
in an active session.

To add a message service to a profile
1. Call MAPIAdminProfiles to access a profile administration object.
2. Call IProfAdmin::AdminServices to access a message service administration object.
3. Call IMsgServiceAdmin::CreateMsgService to add the message service to the current profile.

One technique for adding a service provider, specifically a message store provider, to a profile involves
constructing an entry identifier for the provider. Because constructing an entry identifier requires
knowledge of its format, this technique can only be used if the service provider has made its entry
identifier format public.

With the newly constructed entry identifier, call IMAPISession::OpenMsgStore. MAPI automatically
creates a profile section in the profile for the service provider, but does not add it to a message service.

When your client adds a service provider to a profile, the addition is not apparent until a new session is
created.

 Modifying a Message Service

Modifying a message service involves adding or deleting one or more service providers using a
message service administration objects. Your client may or may not be allowed to modify the message
services included in the profile; few providers allow it.

To add a service provider to a message service
1. Call IMAPISession::AdminServices to access a message service administration object.
2. Call IMsgServiceAdmin::GetMsgServiceTable to access the message service table.
3. Build a property restriction using an SPropertyRestriction structure that matches

PR_DISPLAY_NAME or PR_SERVICE_NAME with the name of the message service your client
needs to modify.

4. Call the message service table's IMAPITable::FindRow method to locate the row in the table that
represents the targeted message service.

5. Call IMsgServiceAdmin::AdminProviders to retrieve an IProviderAdmin pointer. Pass the
PR_SERVICE_UID column from the message service table row as the lpUID parameter.

6. Call IProviderAdmin::GetProviderTable to access the provider table.
7. Build a property restriction using an SPropertyRestriction structure that matches

PR_DISPLAY_NAME or PR_PROVIDER_DISPLAY with the name of the service provider your client
needs to add.

8. Call the provider table's IMAPITable::FindRow method to locate the row in the table that represents
the targeted service provider.

9. Call IProviderAdmin::CreateProvider to add the provider to the message service. Pass the
provider's PR_DISPLAY_NAME property as the lpszProvider parameter and the PR_SERVICE_UID
property as the lpUID parameter.

 Advanced Client Topics

This section discusses how to implement some of the more uncommon or difficult features in a client
application.

 Writing an Automated Client

An automated client application is an application that runs unattended, displaying no user interface.
Many MAPI interface methods by default show a user interface. All of these methods have flags that
allow a client to either allow or suppress this display. Although MAPI expects service providers to honor
these flags, there are some providers that do not always meet these expectations. A legitimate reason
for not honoring the flags is the reliance of the service provider on another service that does not allow
user interface suppression. If you are developing an automated client, pay careful attention to the
service providers your client is using and how they are configured. Do not assume that all of your
client's calls to suppress a user interface will be successful.

Automated clients must have all of the necessary information available for proper configuration of each
of the message services in the profile. There are two ways to supply configuration information at logon
time:

· The service provider can retrieve information from the profile.
· The service provider can prompt the user for information.

Since the second option is unavailable to automated clients, these clients must use the first option.
Clients must configure their profiles carefully to ensure that this option always works.

Using a profile created previously for another purpose is allowable, but will not work if the user has
chosen not to cache credentials for one or more services. On Windows 95, caching credentials may
not work due to password cache control. If the profile is created when the user is logged on to a
network, and subsequently used when not logged on to a network, cached credentials will be
unavailable.

Automated clients always set the MAPI_NO_MAIL flag in the MAPILogonEx function call to begin a
MAPI session.

 Writing a Remote Viewer

A remote viewer is a window in a client application that provides controlled access to messages stored
on another computer. This controlled access might be with a modem or other type of slow link. Rather
than retrieve a complete selection of available messages every time a user opens a folder, the remote
viewer prompts for headers only first. The user then selects from the headers which of the real
messages to display in full. Remote viewer clients can allow their users to delete messages before they
are ever downloaded.

To retrieve the headers of messages stored remotely
1. Call IMAPISession::GetStatusTable to access the status table.
2. Limit the status table by calling IMAPITable::Restrict to only those rows that have their

PR_RESOURCE_TYPE column set to MAPI_TRANSPORT_PROVIDER.
3. Establish the column set of the status table by calling IMAPITable::SetColumns to include the

PR_ENTRYID, PR_RESOURCE_METHODS, PR_RESOURCE_TYPE, PR_PROVIDER_DISPLAY,
and PR_STATUS_CODE columns.

4. Call HrQueryAllRows to retrieve all of the rows in the status table.
5. Pass the entry identifier for each row in the table in a call to IMAPISession::OpenEntry. Because

this interface is marshalled from the MAPI spooler's process context to the client's process context,
unlike interfaces typically obtained from address book or message store providers, issues
concerning multithreading are of more importance.

6. Call the status object's IUnknown::QueryInterface method, passing IID_IMAPIFolder as the
interface identifier, to retrieve the remote folder.
The remote folder is not a complete folder implementation; it supports only a subset of folder
methods and properties. One of the required methods, IMAPIProp::GetProps, supports the retrieval
of the following properties:

PR_ACCESS PR_ACCESS_LEVEL
PR_CONTENT_COUNT PR_ASSOC_CONTENT_CO

UNT
PR_FOLDER_TYPE PR_OBJECT_TYPE
PR_SUBFOLDERS PR_CREATION_VERSION
PR_CREATION_TIME PR_DISPLAY_NAME
PR_DISPLAY_TYPE

Remote folders must also support the IMAPIProp::GetPropList,
IMAPIContainer::GetContentsTable, and IMAPIFolder::SetMessageStatus methods. Remote
folder contents tables typically support the following columns:

PR_DISPLAY_TO PR_ENTRYID
PR_HASATTACH PR_IMPORTANCE
PR_INSTANCE_KEY PR_MESSAGE_CLASS
PR_MESSAGE_DELIVERY_TIM

E
PR_MESSAGE_FLAGS

PR_MESSAGE_DOWNLOAD_TI
ME

PR_MESSAGE_SIZE

PR_MSG_STATUS PR_OBJECT_TYPE
PR_NORMALIZED_SUBJECT PR_PRIORITY
PR_SENDER_NAME PR_SENSITIVITY
PR_SENT_REPRESENTING_NA

ME
PR_SUBJECT

7. Call the transport provider's IMAPIStatus::ValidateState method the first time that one of the
transfer options are picked. Either the REFRESH_XP_HEADER_CACHE or
PROCESS_XP_HEADER_CACHE process flag should be set as well as the
SHOW_XP_SSESSION_UI flag to allow the user interface to be shown.

Note To mark a particular message header for downloading or deletion, a client calls
IMAPIFolder::SetMessageStatus and sets either the MSGSTATUS_REMOTE_DOWNLOAD or
MSGSTATUS_REMOTE_DELETE flags.

 Writing a Hierarchy Viewer

A hierarchy viewer is a user interface component that is used for displaying folder and address book
container hierarchy tables. Hierarchy viewers can display members of the hierarchy at different levels,
expanding and contracting each level on demand.

If your client is using the 32-bit version of MAPI, it can implement its hierarchy viewer manually or with
the standard tree control from COMCTL32.DLL.

The container property, PR_DEPTH, controls the level at which a hierarchy member is displayed.
Entries that represent top-level address book containers or folders have their PR_DEPTH property set
to zero. The value of this property is incremented sequentially for entries in sequential levels. That is,
when a user selects a top-level container to expand, your client displays all containers with PR_DEPTH
set to 1. When a user expands one of these subcontainers, all containers with PR_DEPTH set to 2 are
made visible, and so on.

Hierarchy viewers support a different range of depths. Your client can limit its viewer to only one or two
levels or support multiple levels, if displaying a expansive hierarchy is a priority.

The address book provides your client with a hierarchy viewer for all of the top-level containers in the
address book.

To access the address book hierarchy viewer
1. Call IAddrBook::OpenEntry, passing a null entry identifier, to open the address book's root

container.
2. Call the root container's IMAPIContainer::GetHierarchyTable method to access the hierarchy table

of the MAPI address book.

To access the default message store's hierarchy viewer
1. Call IMAPISession::GetMsgStoresTable to access the message store table.
2. Build a restriction using the SPropertyRestriction structure to limit the table to only those rows that

have a PR_DEFAULT_STORE property set to TRUE.
3. Call IMAPITable::FindRow, passing it the SPropertyRestriction, to locate the row representing the

default message store.
4. Call IMAPISession::OpenEntry, passing in the PR_ENTRYID property from the default message

store's row in the message store table.
5. Call the message store's IMAPIProp::GetProps method to retrieve the

PR_IPM_SUBTREE_ENTRYID property.
6. Call the message store's IMsgStore::OpenEntry method, passing the

PR_IPM_SUBTREE_ENTRYID property, to open the root folder of the message store's IPM subtree.
7. Call the IPM root folder's IMAPIContainer::GetHierarchyTable method to access its hierarchy

table.

Using the MAPI Utilities

Occasionally, a client application will make only MAPI utility calls. Not all clients are messaging or
configuration clients, which are clients that communicate with service providers and messaging
subsystems. Clients using MAPI utilities only, such as some testing applications and the ITableData
and IPropData interfaces, call the API function ScInitMapiUtil rather than the MAPIInitialize function.
Clients that have not called MAPIInitialize and are using tables through the ITableData methods
should be aware that table notifications will not work. Notifications require the use of the MAPI libraries.

ScInitMapiUtil enables clients to use utility functions that require MAPI allocators, but that do not ask
for the allocators explicitly. When it is time to shut down, a client that has called ScInitMapiUtil at
startup time needs to call DeinitMapiUtil to free resources. There should be no call made to
MAPIUninitialize.

 Converting to OLE Messaging Library Identifiers

Some clients use multiple client interfaces to take advantage of what more than one client API has to
offer. Typically these clients use MAPI for some tasks and a simpler API such as the OLE Messaging
Library for other tasks. If your client takes advantage of both the MAPI and the OLE Messaging Library
client interfaces, it will need to convert between the two types of identifiers that are used for each
interface. Whereas MAPI objects are accessed with binary entry identifiers, OLE Messaging Library
objects are accessed with hexadecimal message identifiers.

To convert a MAPI entry identifier to an OLE Messaging Library message identifier
1. Call the message's IMAPIProp::GetProps method to retrieve its PR_ENTRYID property.
2. Call HexFromBin to convert the entry identifier to a hexadecimal string or use client code to perform

the conversion.
3. Call the Win32 function SysAllocString, if necessary, to make the string compatible with Visual

Basic.
4. Make the hexadecimal string available to the Visual Basic application.
5. Use the Session.GetMessage method in the OLE Messaging Library to open the message.

To reverse the process, converting an OLE Messaging Library message identifier to a MAPI entry
identifier, call FBinFromHex. FBinFromHex converts a hexadecimal string to binary data.

 Implementing a Progress Indicator

Many of the operations initiated by clients take a significant amount of time. One of the input
parameters to these potentially lengthy operations is a pointer to a progress object, an object that
implements the IMAPIProgress interface. Progress objects control the appearance and display of
progress indicators and are implemented by clients and by MAPI. Your client can choose whether or
not to implement a progress object; the MAPI implementation is available for service providers to use if
your client elects not to supply an implementation.

Progress objects work with the following pieces of data:

· A global minimum value which, when your client's IMAPIProgress::Progress method is called,
should be less than or equal to the value of the ulValue parameter. At the beginning of the operation,
ulValue will be equal to this minimum value.

· A global maximum value which, when when your client's IMAPIProgress::Progress method is
called, should be greater than or equal to the ulValue parameter. At the end of the operation, ulValue
will be equal to this maximum value.

· A flags value which indicates whether the progress corresponds to a top or lower level item.
· A value that indicates the current level of progress for the operation.
· The number of the currently processed item relative to the total.
· The total number of items to be processed during the operation.

The minimum and maximum values represent the beginning and end of the operation in numeric form.
Use 0 for the initial minimum value and 1000 for the initial maximum value, passing these values to
service providers in the IMAPIProgress::GetMin and IMAPIProgress::GetMax methods. Service
providers reset these values when they call IMAPIProgress::SetLimits.

The flags value is used by service providers to determine how they should set the other values.
Initialize the flags value to MAPI_TOP_LEVEL and return this value in your client's implementation of
GetFlags until the service provider resets it by calling SetLimits.

In your client's implementation of the SetLimits method, save local copies of each of the parameters:
lpulMin, lpulMax, and lpulFlags. These values should be readily available when a service provider calls
your client's GetMin, GetMax, or GetFlags methods.

To update the display of the progress indicator, service providers call your client's
IMAPIProgress::Progress method. There are three parameters to this method: a value, a count, and
a total. Use the first parameter, ulValue, to display the progress indicator. The ulValue parameter is the
progres indicator and will be equal to global ulMin only at the very beginning of the operation and equal
to global ulMax only at the completion of the operation.

Use the second and third parameters, ulCount and ulTotal, if available, to display an optional message
such as "5 items completed out of 10." If the second and third parameters are set to 0, your client can
choose whether or not to visually change the progress indicator. Some service providers set these
parameters to zeroes to indicate that they are processing a subobject whose progress is monitored
relative to a parent object. In this situation, it makes sense to change the display only when the parent
object reports progress. Some service providers pass zeroes for these parameters every time.

Improving Client Performance

The following tips will help you create a client application with the best possible performance.

 Avoid Certain Methods at Startup

To improve performance at startup time, avoid making the following calls:

IMAPISession::EnumAdrTypes IMAPISession::Logoff
IMAPISession::GetStatusTable IMAPISession::MessageO

ptions
IMAPISession::QueryDefaultMes
sageOpt

IMAPISession::Release

IMAPISession::QueryIdentity IMAPIStatus::ValidateState

The call to IMAPIStatus::ValidateState affects performance only when made on either the MAPI
spooler or the MAPI subystem. The reason that these methods slow start up processing is because
they cannot complete until the MAPI spooler has finished its startup tasks.

Another task to avoid at startup is searching the message store. Make your
IMAPIContainer::SetSearchCriteria call when startup processing has finished.

 Get and Set Multiple Properties

By getting and setting as many properties as possible with the least number of calls, remote activity is
curtailed and the overhead involved with each property is reduced. Although service providers try to
collect properties before making a remote procedure call for the retrieval or modification, your client
can optimize this effort by requesting multiple properties to begin with.

For example, if your client works with routing lists that describe future recipients with named properties
belonging to particular property sets, process all of the recipients with two calls, one to
IMAPIProp::GetIDsFromNames to retrieve the identifiers for all of the recipient properties and the
other to IMAPIProp::GetProps to retrieve all of the values. The alternative, making a call to
GetIDsFromNames followed by a call to GetProps for each recipient, is much less efficient.

 Use a Table to Work with Properties

Many properties are available both from the objects that support them and as columns on tables.
Whenever possible, retrieve these properties through the table.

The IMAPITable interface enables your client to access properties by calling:

1. SetColumn to include all of the properties that your client needs.
2. QueryRows to retrieve all of the rows of the table.

These two calls are usually sufficient for retrieving enough information to display to a user and
frequently sufficient for any internal processing that your client performs, making a call to OpenEntry to
open the object unnecessary.

There are only two exceptions:

· If the property is over 255 bytes. The IMAPITable interface might not return the entire property
value, instead truncating it at 255 bytes. Think about this tradeoff, though. If your client is displaying
this data to the user, 255 bytes may be enough for a textual field such as a comment.

· If your client needs a specific property from a single row in a table. In this case it is unnecessary to
create a table with properties that will never be used. Most of the time your client will need the same
properties for all rows.

 Get and Set Properties with GetProps and SetProps

Whenever possible, try to retrieve or modify a property with the IMAPIProp::GetProps and
IMAPIProp::SetProps methods. Unless the property your client is working with is very large, these
methods should be adequate. The other alternative is to read from or write to a stream with the OLE
interface IStream. Streams can handle very large properties successfully, but they are a greater drain
on resources because they require the OLE libraries. Use the IStream interface only after your call to
IMAPIProp::GetProps or IMAPIProp::SetProps fails.

 Save Frequently Used Properties

Improve your client's performance by storing data that takes time and resources to get and is accessed
frequently. Using extra memory can sometimes be a better option that repeated retrievals. Use caution
and care when creating a cache for storing this data. Keep in mind that a poorly designed cache can
negatively impact performance.

For example, most IPM clients need to display and open the IPM subtree of folders many times during
a typical session. Your client can improve performance by storing the entry identifiers for each of these
folders.

 Defer Processing

Pass the MAPI_DEFERRED_ERRORS flag to method calls as much as possible. Many of the MAPI
method calls have been optimized to accept this flag, causing the provider to either postpone the
requested task until multiple tasks can be performed at once or your client can wait no longer for the
results.

For example, if your client passes MAPI_DEFERRED_ERRORS to IMsgStore::OpenEntry to open a
folder, the opening of the folder and a possible remote call can be postponed until your client makes
another call such as the folder's GetHierarchyTable or GetProps methods. Both GetHierarchyTable
and GetProps require the return of data from the service provider, a task that must be performed
immediately.

Another way to defer processing is to simply not make a call. By being aware of the user and when the
user can perceive a drain on resources or processing time, your client can determine when it makes
sense to make calls. There is an opportunity to improve performance by making calls either at a time
when the user will not notice or not making them at all.

For example, consider the situation when your client is receiving more than one notification per second
from a message store that is moving a great number of messages. A progress indicator is displayed to
indicate the percentage of the operation's completion. Users typically will not perceive this operation to
be slow until a few seconds have passed. Therefore, if your client is updating the progress indicator, do
not make any changes until at least four seconds after the initiation of the move operation. This will
save time in the common cases when the operation is fast and inform users in a timely manner when
the operation is slow.

 Write Uncompressed Formatted Text

When preparing to send a message with formatted text, your client can either set the message's
PR_RTF_COMPRESSED property to compressed or uncompressed text. Writing compressed text in
the PR_RTF_COMPRESSED property is a very CPU intensive operation and can dramatically affect
performance.

To improve the performance of sending formatted messages, your client can either:

1. Upgrade the CPU, a solution that is not always plausible.
2. Write uncompressed text in the PR_RTF_COMPRESSED property.

The procedure for setting PR_RTF_COMPRESSED with uncompressed text is the same as for setting
it with compressed text, with one exception. When calling WrapCompressedRTFStream, set the
STORE_UNCOMPRESSED_RTF flag in the ulFlags parameter. Setting uncompressed text has the
disadvantage in that it increases the size of messages.

 Avoid Using IStream::SetSize to Extend a Stream

When writing to streams, it is sometimes necessary to enlarge them because their initial size is no
longer sufficient. Use the OLE method IStream::Write to accomplish this rather than
IStream::SetSize. IStream::Write automatically extends the stream, making IStream::SetSize
unnecessary. Calling IStream::Write without IStream::SetSize can be up to three times faster than
making the SetSize call prior to Write.

 Sort Tables after Setting Columns and Restrictions

When your client needs to limit the view of a sorted table, always make the following IMAPITable calls
in the following order:

1. IMAPITable::SetColumns to define the column set.
2. IMAPITable::Restrict to impose the restriction.
3. IMAPITable::SortTable to perform the sort.

If the sorted table is categorized, make a call to SetCollapsedState if necessary after the SortTable
call. This ordering of calls is important because most service providers sort a table as the last task to
achieve the best performance. If, for example, your client needs a message store provider to
categorize a folder contents table before a restriction is imposed, this categorization will be removed
during the processing of the restriction. A second categorization will be necessary.

 Call QueryRows for Small Tables

When your client is retrieving rows from a small table, call IMAPITable::QueryRows instead of first
building a restriction. Creating a restriction impacts performance because the provider must first create
a table, find the matching rows in the original table, and then copy the rows to the new table. If the total
number of rows in the table is less than one hundred, it is probably more effective to read all of the
rows and then call IMAPITable::FindRow to find the row that your client is looking for. This is a
particularly good strategy if your client only occasionally retrieves this information.

A proper time to use a restriction is when the restricted or filtered information will be used over a longer
period of time or used frequently. For instance, if your client always needs a view with unread
messages, then a restriction is the proper call to use.

 Open OLE Attachments with IStreamDocfile

When opening an OLE object attachment, use the IStreamDocfile interface rather than IStream or
IStorage. IStreamDocfile provides direct access to the object using structured storage, eliminating the
need to perform a copy operation and reducing overhead.

 Name Folders with Character Strings

If your client has one or more folders that it accesses frequently during a session, consider assigning it
a name with the IMsgStore::SetReceiveFolder method. Although IMsgStore::SetReceiveFolder is
used primarily to establish special folders to receive incoming messages for particular message
classes, it can also be used to associate any folder with a name. The name can be the same as the
message class or it can be any character string, customized for your client's use. Associating a name
with a folder decreases the time it takes to find and open the folder.

 Service Provider Basics

The following topics apply to most, if not all, types of service providers. Details specific to one or more
types of service providers are covered in the topics that relate to the particular service provider.

There are three common types of service providers: address book, message store, and transport.
Developers can also create messaging hook providers and profile providers. Because messaging hook
providers are active processes, they more closely resemble client extensions to the MAPI spooler than
the other service providers. The MAPI spooler is the only process not driven directly by client actions.
Another difference between messaging hook and other types of service providers is that messaging
hook providers use a session object instead of a support object. MAPI provides the other types of
service providers with a customized support object.

Your service provider should have three header files: one public header file and two internal files. Use
the public header file for configuration and for documenting properties and their values. Include in one
of the internal header files all of the necessary public MAPI headers; this header file should be included
in all of your service provider source files. Use the other internal file to define resource identifiers.

Assign file names for your provider's executable files trhat are six characters or less in length. This is to
allow a suffix to be appended to the end of the name to identify the platform.

Loading Service Providers

Your service provider's DLL will be loaded by MAPI either when a client makes a request that requires
the services of your provider or as part of the standard logon process. At logon time, clients call the
IMAPISession::OpenAddressBook method to load each of the address book providers included in
the profile and the IMAPISession::OpenMsgStore method to load specific message store providers.
There is no specific call that clients make to load transport providers; they are loaded when they are
needed to send or receive messages.

To load your service provider, MAPI
1. Locates the name of your provider's DLL in the active profile.
2. Calls the Windows API function LoadLibrary.
3. Calls your service provider's DLL entry point function.

Service providers are required to register the name of their DLL in the MAPISVC.INF configuration file
to ensure that it appears in the profile. When your service provider is added to a profile, either
individually or as part of a message service, all of the [Service Provider] sections from MAPISVC.INF
that apply to your provider are copied into the profile.

Because MAPI calls the Windows function LoadLibrary either every time it uses a service provider
DLL, regardless of whether it has already been loaded, or only the first time, your service provider must
not make assumptions about the number of times that it will be loaded. For every call to LoadLibrary,
MAPI makes a call to the Windows API function FreeLibrary when a service provider DLL is no longer
needed.

MAPI calls your service provider's DLL entry point function to initiate the logon process. The lengthy list
of parameters passed to an entry point function include pointers to the standard memory allocators and
version information. Service provider entry point functions ensure that a provider is using a version of
the service provider interface (SPI) that is compatible with the version being used by MAPI and return
pointers to newly created provider objects.

Address book providers that are part of a message service are loaded by MAPI before any of the other
providers in the service.

About Provider DLL Entry Point Functions

Your service provider implements a DLL entry point function that MAPI calls during the load operation.
Depending on the type of provider, this function will adhere to a different prototype. MAPI defines four
different entry point function prototypes for service providers:

Address book providers ABProviderInit
Message store providers MSProviderInit
Transport providers XPProviderInit
Messaging hook providers HPProviderInit

Much of the functionality in these prototypes is identical across service provider types. Address book,
message store, and transport DLL entry point functions initiate the process of configuration by
performing two main tasks:

· Checking the version of the service provider interface (SPI) to make sure MAPI is using a version
that is compatible with the version that your service provider is using.

· Instantiating a provider object appropriate for your type of service provider.

Messaging hook providers do not implement the same functionality as the other providers. Whereas
the other providers instantiate provider and logon objects, messaging hook providers instantiate
spooler hook objects, or objects that implement the ISpoolerHook interface.

Checking Service Provider Interface Versions

Because MAPI supports multiple versions of the Service Provider Interface (SPI) and every provider
can support multiple versions, your DLL entry point function must check that MAPI's version is
compatible with your version. Two input parameters are passed to your provider DLL entry point
function for version checking. The lpulMAPIVer parameter contains the version of the SPI that MAPI is
using while the lpulProviderVer parameter contains the version that your provider is using. These
parameters are 32-bit unsigned integers composed of three parts:

· Bits 24-31 represent the major version.
· Bits 16-23 represent the minor version.
· Bits 0-15 represent the micro version.

Although the major version number rarely changes, the minor version number changes whenever
MAPI is released and the SPI has changed. The micro version is the Microsoft internal build version; it
is used to track changes during the development process.

MAPI defines the CURRENT_SPI_VERSION constant, documented in the MAPISPI.H header file, for
indicating the present SPI version. Your provider's version check should fail with MAPI_E_VERSION if
your provider is using a version of the SPI that is newer than the version that MAPI is using.

Service Provider Logon

Your service provider begins its logon process when MAPI calls your provider object's logon method.
This call is made after your entry point function has completed. Logon methods are called Logon for
address book and message store providers and TransportLogon for transport providers. Regardless
of the type of service provider, all logon methods are passed a pointer to a support object and perform
a basic set of tasks.

To implement a provider logon method
1. Increment the reference count on the support object by calling IUnknown::AddRef.
2. Call IMAPISupport::OpenProfileSection to access your provider's profile section.
3. Call the profile section's IMAPIProp::SetProps method to set the following properties:

PR_DISPLAY_NAME PR_ENTRYID
PR_PROVIDER_DISPLAY PR_RECORD_KEY

Note Do not attempt to set the profile section's PR_RESOURCE_FLAGS or
PR_PROVIDER_DLL_NAME properties. At logon time, these properties are read-only.

4. Verify configuration by checking that the appropriate properties are either stored in the profile or
available from the user.

5. Call IMAPISupport::SetProviderUID to register a unique identifier, or MAPIUID, if your provider is
an address book or message store provider. Transports register MAPIUIDs when MAPI calls their
IXPLogon::AddressTypes method.

6. Instantiate a logon object and return.

Your logon method will usually return one of the following values:

· S_OK to indicate a successful logon.
· MAPI_E_UNCONFIGURED to indicate that one or more of the configuration properties were

unavailable.
· MAPI_E_USER_CANCEL to indicate that the user canceled the configuration dialog box, causing

configuration properties to be unavailable.
· MAPI_E_FAILONEPROVIDER to indicate that your provider could not be configured, but that MAPI

should allow it to be used regardless. Logon methods should return this value to report a non-fatal
error, such as when the provider requires a password and cannot prompt the user for it because the
user interface is disabled.

This list of tasks is the minimum set required. Your service provider might want to include additional
functionality such as calling IMAPISupport::ModifyStatusRow to add a row in the status table.

Note To achieve the best performance at logon time, avoid calling either
IMAPISupport::PrepareSubmit or IMAPISupport::SpoolerNotify for any reason. These calls require
that the MAPI spooler complete its start up processing before they can complete.

Verifying Service Provider Configuration

Your service provider's logon method must check that all of the properties needed for full operation are
set and set correctly. The number of required properties varies from provider to provider depending on
the amount of user input required. Some service providers keep all of the necessary properties in the
profile. Other service providers keep a partial set of properties in the profile and prompt the user for
missing values. Still other providers do not store properties in the profile at all, relying on the user to
supply all of the information needed for configuration.

To retrieve properties stored in the profile, call the IMAPISupport::OpenProfileSection method.
OpenProfileSection opens the section of the profile that belongs to the service provider identified by a
MAPIUID specified as an input parameter. MAPI passes back a pointer to the profile section object that
can be used for further access.

To prompt the user for configuration property values, your service provider displays a dialog box. All
logon methods allow a user interface display unless MAPI sets a flag on the call prohibiting the display.
Logon methods fail with the error value MAPI_E_UNCONFIGURED when:

· The flag disallowing a user interface is set and not all of the configuration properties are available
through the profile.

· The flag disallowing a user interface is not set, but the user did not supply all of the required
information.

When your service provider fails configuration with MAPI_E_UNCONFIGURED, MAPI calls its DLL
entry point function again. If the information cannot be located with the second call, depending on how
important your service provider is, the session might terminate.

The following illustration shows the logic required for configuration in a service provider logon method.

{ewc msdncd, EWGraphic, groupx835 0 /a "MAPI_62.WMF"}

 About Service Provider Logon Objects

Every address book, message store, and transport provider instantiates a logon object as part of its
provider object's logon method implementation. Logon objects implement methods that help MAPI
service client requests. Because the different types of service providers supply different types of
services, there are different types of logon objects. Address book logon objects, which implement the
IABLogon : IUnknown interface, and message store logon objects, which implement the IMSLogon :
IUnknown interface, have the following features in common:

· Support for event notification (Advise and Unadvise methods).
· Entry identifier comparison (CompareEntryIDs method).
· Access to additional error information (GetLastError method).
· Access to objects implemented by the service provider (OpenEntry method).
· Access to status objects if available (OpenStatusEntry method).
· Logoff (Logoff method).

Address book logon methods also provide MAPI with a table of custom recipient templates through the
GetOneOffTable method, access to a particular template through the OpenTemplateID method, and
recipient list preparation through the PrepareRecips method.

A transport provider's logon object, which implements IXPLogon, is quite different from the logon
objects implemented by the other types of service providers. It has only two features in common with
the other logon objects: access to a status object through the OpenStatusEntry method and a logoff
operation through the TransportLogoff method. Transport providers implement the following unique
features in their logon objects:

· Registration for address types (AddressTypes method) and message options (RegisterOptions
method).

· Control of message transmission (StartMessage, EndMessage, SubmitMessage).
· Internal state validation (ValidateState method).
· Ability to download or upload messages on demand (FlushQueues method).
· Ability to query for pending messages (Poll method).
· Idle state detection (Idle method).
· Interaction with the MAPI spooler (TransportNotify method).

 Registering Service Provider Unique Identifiers

Address book, message store, and transport providers are represented by one or more unique
identifiers, or MAPIUIDs. A MAPIUID is a 16-byte identifier that contains a globally unique identifier, or
GUID, and can be statically defined using a constant or created with the Microsoft utility
UUIDGEN.EXE. The following constant is an example of a statically defined MAPIUID for an address
book provider:

#define AB_UID_PROVIDER { 0Xe3, 0x3c, 0x67, 0xa0, \
 0xc8, 0x1f, 0x11, 0xce, \
 0xb2, 0xe4, 0x0, 0xaa, \
 0x0, 0x51, 0xe, 0x3b }

If you are writing an address book or message store provider, call IMAPISupport::SetProviderUID to
register a MAPIUID for each instantiated logon object and include this MAPIUID in the first 16 bytes of
the ab member of every entry identifier that your provider creates. MAPI uses MAPIUIDs to associate
objects with service providers. When a client calls the IMAPISession::OpenEntry method to open an
object, MAPI examines the MAPIUID portion of the entry identifier, matching it against the registered
MAPIUID, to determine which logon object should receive the open request.

If you are writing a transport provider, you will register MAPIUIDs when MAPI calls your provider's
IXPLogon::AddressTypes method. MAPI uses the MAPIUIDs registered by transport providers to
assign responsibility for message delivery.

Although service providers typically register a single MAPIUID, your provider can register multiple
MAPIUIDs. If your address book or message store provider supports multiple logon objects, perhaps
by permitting a user to add more than one instance of your provider to their profile, you might want to
implement a different MAPIUID for each logon object. There are a few other reasons to support more
than one MAPIUID:

· Your provider must support more than one version of its entry identifiers. Assign a different MAPIUID
for each version.

· Your provider wants to distinguish between the types of objects it supports. For example, an address
book provider might want to register one MAPIUID to use in the entry identifiers of its messaging
user objects and a different MAPIUID to use for distribution lists.

When there are multiple logon objects that are concurrently active, it makes sense to have unique
MAPIUIDs for each one. This increases the accuracy with which MAPI matches entry identifiers to
service providers and saves some work. When every logon object has its own unique identifier, MAPI
can guarantee that any request it routes to a logon object can be handled by that object. When logon
objects share MAPIUIDs, MAPI routes the request to the first logon object that is identified by the
MAPIUID. If one of your logon objects receives a request that it cannot process because it does not
handle the entry identifier, pass the request on to your next logon object before returning an error.

 Shutting Down Service Providers

Your service provider will be shut down when a client calls IMAPISession::Logoff. If your provider is a
message store, a client call to IMsgStore::StoreLogoff will also initiate the shutdown process. Logoff
ends the session and shuts down all active service providers whereas StoreLogoff shuts down one
particular message store provider and has no affect on the session. There is no explicit way for shutting
down a particular address book or transport provider; these providers can only be shut down at
session's end.

Your DLL will be unloaded when MAPI calls the Win32 API function FreeLibrary after the last active
client has called MAPIUninitialize. By this time, your service provider will have finished shutting down.

After a client has called IMAPISession::Logoff to end a session, MAPI calls your provider's logoff
method in its logon object. For address book providers, MAPI calls IABLogon::Logoff; for message
store providers, MAPI calls IMSLogon::Logoff; for transport providers, MAPI calls
IXPLogon::TransportLogoff.

In your provider's logoff method
1. Release all open objects, including subobjects and status objects.
2. Call IUnknown::Release on the support object to decrement its reference count. The support

object's Release method removes all of your provider's registered MAPIUIDs and its row in the
status table.

When your provider's logoff method returns, MAPI makes the following calls to your provider:

1. A call to your logon object's IUnknown::Release method.
2. A call to your provider object's Shutdown method (IABProvider::Shutdown,

IMSProvider::Shutdown, or IXPProvider::Shutdown).
3. A call to your provider object's IUnknown::Release method.

In your Shutdown implementation, perform any necessary final cleanup tasks.

Shutting Down a Message Store Provider

If your provider is a message store provider, it can be shut down in two ways: when a client or the
MAPI spooler calls IMsgStore::StoreLogoff or when a client calls IMAPISession::Logoff.

Your message store provider's implementation of IMsgStore::StoreLogoff calls
IMAPISupport::StoreLogoffTransports to inform MAPI that it is being shut down and that any related
transport providers should be logged off. Calling StoreLogoff causes a message store provider to be
shut down in an orderly and controlled manner, under the control of the client.

When IMsgStore::StoreLogoff returns, its caller invokes the message store's IUnknown::Release
method. Your implementation of IMsgStore::Release releases your provider's support object by calling
its IUnknown::Release method.

MAPI performs the following tasks in its implementation of IMAPISupport::Release:

1. Removes all of the MAPIUIDs registered by the message store provider.
2. Removes the message store provider's row from the status table.
3. Calls IMSLogon::Logoff to release all open objects, subobjects, and status objects.
4. Calls IMSLogon::Release to release the message store provider's logon object.

Some clients might omit the call to IMsgStore::StoreLogoff, initiating the shutdown of your message
store provider with the call to the message store's IUnknown::Release method. A shutdown under
these circumstances without the call to StoreLogoff is less orderly and controlled. Write your message
store's Release method to handle this possibility and keep track of whether or not a call to
IMAPISupport::StoreLogoffTransports has occurred. StoreLogoffTransports must be called once
during the shutdown process. If you detect in your Release method that StoreLogoffTransports has
not yet been called, invoke it with the LOGOFF_ABORT flag.

Invalidating Objects

The support object has a method called MakeInvalid which replaces an object's vtable with a vtable
containing implementations for the three IUnknown methods: AddRef, Release, and QueryInterface.
Your service provider can use the IMAPISupport::MakeInvalid method in the implementation of your
logon object's logoff method to give MAPI the ultimate responsibility for freeing the memory associated
with an object. Your service provider can free all of the resources connected with an object and then
call MakeInvalid to invalidate all of the methods in its inherited interfaces. Calls to any of these
methods will return MAPI_E_INVALID_OBJECT. Using MakeInvalid is an option that many service
providers choose to ignore.

Using Support Objects

MAPI furnishes a support object for all service providers during logon. The purpose of the support
object is to provide implementations for a fairly large number of methods commonly used by the
providers. Each support object also contains contextual data specific to its own instance, such as the
session the provider is running in, the profile section the provider is using, and error information for the
session.

There are four different types of support objects: one for each major provider type (address book,
message store, and transport) and one for configuration support when the message service entry point
function is called. Messaging hook providers run within the same thread as the MAPI spooler and are
given a session object instead of a support object.

Each type of support object has a different set of methods that are operational. Some methods, such
as OpenProfileSection, are used in all four types. Other methods apply only to some of the types, for
example SpoolerNotify, which is used only by message store and transport providers. A call to a
method not supported for the calling provider type returns MAPI_E_NO_SUPPORT.

Support objects are implemented by MAPI and called by service providers. They are not accessible by
clients. They expose the IMAPISupport : IUnknown interface, specified in the header file MAPISPI.H.
The interface identifier is IID_IMAPISup, and the pointer type to a support object is LPMAPISUP. No
MAPI properties are exposed by support objects.

Service providers and message services use support objects to accomplish the following tasks:

· Access a profile section for configuration
· Allocate and free memory
· Obtain a unique identifier for newly created objects
· Register message preprocessors
· Prepare message delivery reports
· Handle event notification
· Change provider status information

Using Support Objects During Logon

A provider is presented with a different support object every time MAPI logs it on, which is at least once
per session. Address book and transport providers are logged on every time a client logs on to MAPI
with a profile section requesting that provider. A message store provider is logged on whenever a client
calls IMAPISession::OpenMsgStore; in the case of multiple logons in a session, the provider can
choose either to retain and use each support object separately, or to discard the subsequent support
objects and call AddRef on the one it already has. In the latter case MAPI takes care of discarding the
unused support object.

MAPI logs on a service provider by calling the logon method of the provider object
(IABProvider::Logon, IMSProvider::Logon, or IXPProvider::TransportLogon). One parameter of
this call is a pointer to the new support object for the current logon. The logon method in turn
instantiates a logon object, passing it the support object pointer. The logon object should use this
pointer to call AddRef on the support object. When the client logs off, MAPI calls the logoff method of
the logon object, which should call Release on the support object.

If a provider returns from a logon call with MAPI_E_UNCONFIGURED or a client requests provider
configuration, MAPI instantiates a configuration support object and calls the message service entry
point function for that provider. The support object, which is passed by pointer in this call, is valid only
until the return from the entry point function; the message service should not call AddRef on it or retain
it in any way.

A service provider normally has no need to call its message service's entry point function directly, since
MAPI calls it on behalf of an unconfigured provider. However, a provider may need to reconfigure while
actively running, for example during servicing of an IMAPIStatus::SettingsDialog call. In such a case
the provider must call IMAPISupport::GetSvcConfigSupportObj to obtain a configuration support
object. The provider then passes a pointer to this object in a call to the message service's
implementation of the MSGSERVICEENTRY prototype.

Using Support Objects for Configuration

Following logon, the service provider's logon method calls IMAPISupport::OpenProfileSection to
obtain a profile section object. The provider should avoid unnecessary interaction with the user during
session startup, but it must be prepared to allow the user to alter some of the configuration properties
in the profile section. Therefore, it should include MAPI_MODIFY in the ulFlags parameter in the
OpenProfileSection call. This also creates a profile section if none exists. Note that the message
service entry point function and the provider's logon method both call OpenProfileSection, but under
different circumstances.

The profile section object exposes the IProfSect : IMAPIProp interface and furnishes several
properties including PR_DEFAULT_PROFILE, PR_PROVIDER_DISPLAY, and
PR_PROVIDER_DLL_NAME. The IProfSect interface is nontransactional, meaning its properties can
be modified without waiting for a SaveChanges call. Because of this, operating a user dialog directly
from the profile section permits the settings to change before the user even selects OK or Cancel.
Therefore it is recommended that, once the profile section is opened, the relevant properties be copied
to a property data object instantiated from the IPropData : IMAPIProp interface. The provider can
perform the configuration itself using the property data object, and then copy the properties back to the
profile section when the user has confirmed them.

If service provider configuration is to interact with the user, it is recommended that a property sheet be
used. This maintains consistency with the Windows user interface. To prepare for using a property
sheet, the provider or message service constructs a display table containing a row for each control that
is to appear on the property sheet. The PR_CONTROL_STRUCTURE column in each row points to a
structure that references the corresponding property either by tag or by name. One option available for
creating this table is the BuildDisplayTable function.

Once a display table is built and populated, the provider or message service calls
IMAPISupport::DoConfigPropsheet, which displays the property sheet based on the display table,
performs the user dialog, and stores the new configuration settings in the object pointed to by the
lpConfigData parameter. This object, supplied by the DoConfigPropsheet caller, exposes the
properties referenced in the display table. It must be a property object, that is, it must derive from the
IMAPIProp : IUnknown interface. A suitable candidate for this object is the property data object
recommended earlier in preference to the profile section object. This object serves both purposes since
IPropData derives from IMAPIProp.

Using Support Objects for Utility Services

The IMAPISupport::GetMemAllocRoutines method is available for determining the addresses of the
memory allocation and deallocation functions without having to link with MAPI. Using
GetMemAllocRoutines also makes it easier to trace memory leaks by surrounding the allocation
function calls with debugging code. If the provider calls GetMemAllocRoutines, as is recommended, it
should do so before calling the CreateIProp function, which requires the allocation function addresses
as parameters.

When a provider or message service needs to create a new object such as an address book entry or a
message, it should furnish a search key on this object. For a distribution list or messaging user object,
MAPI specifies how the PR_SEARCH_KEY property should be constructed. For address book
containers and messages, the provider should call IMAPISupport::NewUID to obtain a unique
identifier it can use in building a search key. The provider's own hard-coded MAPIUID should be used
only in a PR_ENTRYID and not in a search key.

A client application can sometimes release an object without releasing one or more of its affiliated
objects. In such a case a provider may wish to render an unreleased object unusable. To do this, the
provider frees all of the resources connected with the object and then calls
IMAPISupport::MakeInvalid to invalidate the object's vtable. MakeInvalid replaces the vtable's
IUnknown methods (QueryInterface, AddRef, and Release) with standard MAPI implementations
and causes all other methods to return MAPI_E_INVALID_OBJECT. MakeInvalid also frees all the
object's memory other than the vtable.

If a call to one of the support object's methods returns an error, the provider may elect to inform the
user and possibly request a course of action. The IMAPISupport::GetLastError method populates a
MAPIERROR structure with character strings and context useful for displaying information about the
error. This method is most helpful when the error is MAPI_E_EXTENDED_ERROR; for other errors
such as MAPI_E_CALL_FAILED, GetLastError may return NULL in the lppMAPIError parameter,
meaning no additional information is available. Note that GetLastError, which is exposed in several
interfaces, can only be used for errors that occurred in its own object. Providers cannot forward
GetLastError calls to IMAPISupport::GetLastError.

Using Support Objects Among Service Providers

A provider sometimes needs to open an object belonging to another provider. For example, an
incoming transport provider might receive a message in Rich Text Format and need to find out if a
particular recipient can receive it in that format. The transport provider must open the recipient to check
its PR_SEND_RICH_INFO property. The recipient belongs to an address book container that the
transport provider does not normally have access to. So the transport provider obtains the recipient's
entry identifier from the PR_ENTRYID column of the recipient table.

Next, the transport provider calls IMAPISupport::OpenEntry, in this example with NULL for the
lpInterface parameter since it doesn't know yet whether the recipient is a distribution list or messaging
user. The support object's method calls IMAPISession::OpenEntry to let the session determine which
of its providers has access to the desired recipient. Finally, the session object calls the appropriate
address book provider's OpenEntry method to open an interface to the recipient, a pointer to which is
passed back through the OpenEntry calls to the transport provider.

A provider that has opened several objects from other providers may occasionally need to find out if
two entry identifiers refer to the same object. For example, a short-term entry identifier may have to be
compared with a long-term entry identifier to avoid redundant processing. In such a case the provider
calls the IMAPISupport::CompareEntryIDs method, since entry identifiers cannot be compared
directly.

Using Support Objects for Event Notification

A service provider can optionally support event notification, which allows other objects to register with
the provider to be advised whenever an event of a selected type occurs within the provider. The object
subscribing for notification is called the advise sink and must implement the IMAPIAdviseSink :
IUnknown interface. Event notification can be complicated, so MAPI supplies three methods in the
support object that implement the most difficult parts of the process. These methods work as a unit,
and a provider must use all three or none of them.

The service provider calls IMAPISupport::Subscribe when a client registers for notification by calling
the provider's Advise method. The provider must allocate a NOTIFKEY structure and create a unique
notification key for the object that is to generate the event. For example, if a message store provider is
asked to notify a client when a message is received in a particular folder, the provider creates a
notification key for that folder. A pointer to the NOTIFKEY structure is one of the parameters the
provider passes to Subscribe.

Another parameter to Subscribe is a pointer to the client's advise sink object, which was supplied in
the call to Advise. Subscribe calls AddRef on the advise sink object, and MAPI retains the pointer
until the subscription is terminated. Once Subscribe has returned, the provider has no further need to
access the client's advise sink and can release its copy of the pointer.

Subscribe returns a nonzero connection number that the service provider in turn returns to the client.
The connection number represents the link between the advise sink and the provider and remains valid
until the client makes a successful call to Unadvise.

When the client is ready to terminate its subscription it calls the provider's Unadvise method. The
provider then calls IMAPISupport::Unsubscribe to cancel the registration indicated by the connection
number. Unsubscribe calls Release on the advise sink object, and MAPI relinquishes the link. The
advise sink object itself is freed when all other references to it are released. As with Advise and
Unadvise, calls to Subscribe and Unsubscribe must be paired. The provider must make one call to
Unsubscribe for every call that is made to Subscribe.

When a subscribed event occurs, the service provider allocates one or more NOTIFICATION
structures and calls IMAPISupport::Notify to ask MAPI to notify all registered advise sinks. Note that a
separate NOTIFICATION structure is necessary for each subscribed event, even for multiple events of
the same type. For example, if three clients are registered for table notification on a particular table and
an operation adds five rows to that table, the provider populates five NOTIFICATION structures and
calls Notify once. A batch notification such as this results in better performance than calling Notify five
times. For each Notify call, MAPI calls the IMAPIAdviseSink::OnNotify method of every registered
advise sink. If there are no registered advise sinks, MAPI ignores the call.

Considerations for Event Notification

The normal process of event notification is asynchronous, that is, the OnNotify methods registered for
an event are called at some indeterminate time after Notify has returned to the calling service provider.
Clients always expect such behavior, and in particular MAPI guarantees that the call during which an
event happens will return to the client before any notification callback is made. Therefore a provider
responding to an Advise call from a client must never set the NOTIFY_SYNC flag when it calls
Subscribe.

For its own internal use a provider can request synchronous notification, where Notify does not return
until all callbacks have been completed. This is requested by passing the NOTIFY_SYNC flag to the
Subscribe method. If this option is specified, the provider must not make any changes to the advise
sink object after calling Subscribe. Also, it must not call the HrThisThreadAdviseSink function and
pass the wrapper object that it creates. HrThisThreadAdviseSink creates a thread-safe version of an
advise sink to be used with asynchronous notification only.

If an advise sink registered for synchronous notification returns from OnNotify with the
CALLBACK_DISCONTINUE flag set, MAPI sets the NOTIFY_CANCELED flag and returns from the
Notify call without making any more callbacks. The provider should not initiate any more notifications
for that advise sink.

Although Advise and Unadvise calls must be paired, as must Subscribe and Unsubscribe calls,
these pairs do not themselves have to be paired. A provider's implementation of Advise and Unadvise
can handle everything itself and not call MAPI. Similarly, a provider setting up internal notifications can
call Subscribe and Unsubscribe purely on its own behalf without the client being involved. A provider
implementing part of the notification process and calling the MAPI methods for the rest does not
necessarily call Subscribe every time its Advise is called.

The MAPI support methods use notification keys to manage the connections between the advise sinks
and the objects that generate the subscribed events. A notification key is a NOTIFKEY structure of
binary data that identifies an object across processes. It is typically copied from the long-term entry
identifier of the object that is expected to generate an event. If the client has supplied an entry identifier
in the call to Advise, the provider can use it for the notification key. If the lpEntryID parameter to
Advise is NULL, the provider should use the entry identifier of the outermost possible container object,
such as the entire message store.

When the service provider sends a notification, it is recommended that all the unused members of the
NOTIFICATION structure be set to zero. This technique for initializing the NOTIFICATION structure
can help clients create smaller, faster, and less error-prone OnNotify implementations.

Implementing a Message Service

A message service is a grouping of one or more related service providers that simplifies provider
installation and configuration for users. A message service supplies a layer between your service
provider and a user, enabling the user to install and configure your service provider without detailed
knowledge of the workings of your provider. It is recommended that all service providers be part of a
message service.

To implement a message service
1. Design the message service, determining the number and type of service providers to be included.
2. Create a setup program to install the service providers in the message service.
3. Create an entry point program to support the configuration of the service providers in the message

service.
4. Create a public header file containing the property tags and descriptions of valid values for any

custom properties that the message service supports.

Designing a Message Service

The following issues are involved in message service design:

1. Determine how many service providers should be included in the message service.
2. Determine what type of service providers should be included in the message service.
3. Determine how many DLLs should contain the message service.
4. Determine how the message service DLL(s) should be named.

The number of service providers that should be included in your message service depends on the
relationship between the providers that are possible candidates for the service. If the service providers
are related, they should belong to the same message service.

Typically, there is only one provider of each type in a message service. For example, if a message
store provider uses the same underlying messaging system as an address book and transport provider,
create a message service to install and configure these three related providers. Alternatively, if a
message store provider works independently, create a message service for this one provider.
Unrelated service providers do not belong in the same message service. Use the profile for integrating
unrelated service providers and message services.

Message services can be implemented in one or more DLLs. The number of DLLs that a message
service uses depends on:

· The degree of complexity that you as the writer of the message service are willing to handle.
· The type of service providers in the message service.
· The relationship that the message service might have with another message service.

The simplest and recommended implementation uses one DLL. This single DLL contains the code to
install and configure all of the service providers in the message service as well as the implementations
of the service providers. More complex options include one DLL for a message service's installation
and configuration code and another DLL for the implementations of the service providers or one DLL
per provider implementation.

Do not include multiple service providers of the same type in a single message service DLL. This
limitation is due to the fact that MAPI stores only one entry point per provider type. If it makes sense for
your message service to include multiple providers of one type, they must either reside in separate
DLLs or share an entry point function.

Two or more related message services can be implemented to share a DLL. Related message services
are message services that are able to use the same installation and configuration code and the same
DLL entry point function.

Assign a name to your message service that is six characters or less. The six character restriction
allows MAPI to concatenate characters onto the end of the filename to indicate a 32-bit target platform.
For example, if a message service that uses two DLLs, TEST and PROVS, is built for both a 16-bit
platform and a 32-bit platform, MAPI would produce four different message service DLLs: TEST.DLL,
PROVS.DLL, TEST32.DLL, and PROVS32.DLL. The DLLs without the suffix on the name are for the
16-bit platforms; the files with the suffix are for the 32-bit platforms.

Installing a Message Service

To allow the Control Panel to install your message service, create a SETUP.EXE program in a
designated public directory. When users select the Add button and invoke the Have Disk dialog box to
install your message service, they enter the name of this directory. The Control Panel runs the
SETUP.EXE program in the specified directly and calls your message service entry point function with
the MSG_SERVICE_INSTALL context.

Your message service's SETUP.EXE program should perform the following tasks:

· Copy message service files, such as the message service and service provider DLLs, from a CD or
disk to the local drive. The files that need to be copied depend on your message service. Typically
this is at least one DLL.

· Create a default profile if necessary.
· Add entries to the MAPISVC.INF configuration file.
· Add entries as appropriate to the WIN.INI initialization file for 16-bit services or the system registry

for 32-bit services. For details about the entries that should appear in the WIN.INI file or the system
registry, see About MAPI Installations.

Depending on the target workstation, a default profile might already exist. If a default profile does not
yet exist, your installation program can either create one manually or with the NEWPROF utility or
invoke one of MAPI's configuration applications, either the Profile Wizard or the Control Panel applet.
Both of these applications present a series of dialog boxes that prompt the user for selections that
affect the creation and settings of the profile.

Warning Because profiles are an expendable part of the MAPI architecture, make sure that your
installation program does not store anything in the default profile that would be difficult to recreate.
There are no utilities for profile recovery, for moving profiles from one machine to another, for off-line
backup, or for individual or global restoration from backup copies.

About the MAPISVC.INF File

MAPI uses the MAPISVC.INF file to configure the MAPI subsystem, message services and service
providers. Profiles are built from the information within the MAPISVC.INF file. When building a new
profile or adding to an existing one, information that is required or helpful for configuring each message
service and service provider is copied from MAPISVC.INF into the new or changed profile.

MAPISVC.INF acts as the central database for MAPI message service configuration information. The
file contains information for MAPI, information for each of the message services installed on a
computer, and information for the service providers that belong to each message service. Some of this
information is mandatory; without it, MAPI cannot load or configure the message service or service
provider in question. Message service and service provider implementors must explicitly add the
required information as part of their installation process. For example, MAPI cannot load a service
provider without information on its name and path. Therefore, MAPISVC.INF must contain an entry for
the name and an entry for the full path of each service provider. Other configuration information is
optional; its inclusion in MAPISVC.INF depends on the particular message service or service provider.

MAPISVC.INF is divided into linked hierarchical sections. The top level, divided into three sections
called [Services], [Help File Mappings], and [Default Services], contains entries that apply to all profiles.
Entries in the [Services] section link to subsequent MAPISVC.INF sections that are specific to
individual message services.Entries in the message service sections in turn link to subsequent sections
that are specific to individual service providers belonging to the message service.

The following illustration shows the organization of a typical MAPISVC.INF file. The sections are
organized hierarchically, with the [Help File Mappings], [Default Services], and [Services] sections at
the top of the hierarchy. The [Help File Mappings] section has one entry for every .HLP file provided by
an installed message service. The [Default Services] section has one entry for each message service
that should be added to the profile designated as the default. These are the message services that are
loaded at session startup if the user has not explicitly selected any others.

The [Services] section contains one entry for every message service installed on the computer
workstation. In this example, there are three message services: AB, MsgService, and MS. The name
on the right hand side of the equal sign for each message service is the service's display name. Each
message service has its own section elsewhere in the file that is linked to one or more service provider
sections. There is one service provider section for every service provider that belongs to the message
service. The AB and MS message services are single provider services whereas three service
providers belong to the MsgService service.

{ewc msdncd, EWGraphic, groupx835 1 /a "MAPI_30.WMF"}

All MAPISVC.INF files have a similar organization with [Help File Mappings], [Default Services], and
[Services] sections and the corresponding message service and service provider sections. Depending
on the particular message services included, there can be more or less service provider sections and
possibly some special sections.

Updating MAPISVC.INF

MAPI provides a skeletal version of the MAPISVC.INF file that contains the entries for the MAPI
subsystem. Message service implementors add entries appropriate both for their service and the
service providers that belong to their service as part of their installation program.

Service providers can add entries within their installation program to either the Message Service
section or the Service Provider sections. The placement depends on the number of service providers in
your message service. If your message service is a single provider service, you should store all of the
entries in the section for the service provider rather than in the Message Service section. Accessing the
Service Provider section is faster and more direct than accessing the Message Service section. If your
message service is a multiple provider service, you can store entries in the Message Service section or
in all of the Service Provider sections so that each service provider has access to the information. To
avoid replication and the need to keep multiple copies synchronized, it is better to store the information
once in the Message Service section.

A message service should include only public configuration data in the MAPISVC.INF file. Information
that is private or requires extra protection, such as passwords or other credentials, should not be
included in this file. Store information of this type in the profile as secure properties or don't store it at
all. Secure properties have built-in protection features such as encryption.

To add entries to MAPISVC.INF using a temporary file, call the MERGEINI utility as follows where
TMP.INI is the temporary file:

MERGEINI C:\MAPI\TMP.INI -m -q

The [Help File Mappings] Section in MAPISVC.INF

The [Help File Mappings] section contains entries that each map one message service to the file that
provides Help for errors generated by the service. Entries in this section use the following format:

[Help File Mappings]
message service name=Help file name

The message service name is the name of the installed message service; the Help file name is the
name of the file where the error information resides. The example following shows a typical [Help File
Mappings] section that contains entries for three services: MAPI, the MsgService service, and the MS
service.

[Help File Mappings]
MAPI=MAPI.HLP
MsgService=MYHELP.HLP
MS=STORE.HLP

The [Services] Section in MAPISVC.INF

The [Services] section lists the message services that are installed on a computer. Entries in this
section use the following format:

[Services]
message-service section name=message service name

The message-service section name is a string defined by the message service that links this entry to a
corresponding section for the service elsewhere in MAPISVC.INF. The message service name is the
name of the installed service. The following section shows three message services: the Default
Address Book, My Own Service, and the Message Store Service. These services are fictional, for
illustration purposes only. Each message service implementor would substitute the appropriate entry
for his or her message service in this section.

[Services]
AB=Default Address Book
MsgService=My Own Service
MS=Message Store Service

Each entry in this section has a corresponding section of its own where information for the message
service is stored. For example, the corresponding section for the Default Address Book is called [AB].

The [Default Services] Section in MAPISVC.INF

The [Default Services] section lists all of the message services that are selected as default message
services. These default message services are a subset of the message services listed in the [Services]
section. When a profile configuration program creates a default profile, the message services in this
section are automatically included.

The entries use the same format as entries in the [Services] section, as shown following:

[Default Services]
message-service section name=message service name

The following entries would be included in the [Default Services] section for the MAPISVC.INF shown
in the earlier illustration:

[Default Services]
AB=Default Address Book
MsgService=My Own Service

Message Service Sections in MAPISVC.INF

MAPISVC.INF includes one message service section for each of the entries listed in the [Services]
section. There are two types of entries in these sections: one for setting certain properties and the
other for listing names of sections that are related to the message service being configured.

Property Entries

Entries that set properties use this format:

property tag=property value

The property tag can be a standard MAPI property tag if the configuration data represents one of the
properties predefined by MAPI, or a nonstandard tag if the data does not represent a MAPI property.
The nonstandard tag is made by combining the value for a property identifier with a property type. The
result is an 8 digit hexadecimal number. The property value can be whatever makes sense for the
property tag.

Message service sections can contain a variety of entries depending on the message service being
configured. The following MAPI properties are typically included in a message services section in the
listed format:

PR_DISPLAY_NAME=string
PR_SERVICE_DLL_NAME=name of DLL file
PR_SERVICE_ENTRY_NAME=name of entry point function
PR_SERVICE_SUPPORT_FILES=list of files
PR_SERVICE_DELETE_FILES=list of files
PR_RESOURCE_FLAGS=bitmask

The PR_DISPLAY_NAME string is the name of the message service that is shown in the user
interface, the name that the user associates with the message service. The display name is an optional
entry in MAPISVC.INF. Sometimes the display name will be made up of two parts; a part assigned by
the message service and a part assigned by the user. If the user is responsible for assigning one of the
parts, this is typically handled with a special dialog box known as a property sheet supplied by the
message service under the control of a client application.

The information provided for the PR_SERVICE_DLL_NAME entry is the name of the DLL that contains
the message service. The information provided for the PR_SERVICE_ENTRY_NAME entry is the
name of the entry point function within that DLL that MAPI calls to configure the message service.

The files listed in the PR_SERVICE_SUPPORT_FILES entry are files that must be installed with the
message service. Likewise, the files in the PR_SERVICE_DELETE_FILES entry must be removed
when the message service is removed.

The PR_RESOURCE_FLAGS entry is a collection of options defined for the message service. For
example, the SERVICE_SINGLE_COPY bit is set when the message service can only appear once in
a given profile. The SERVICE_NO_PRIMARY_IDENTITY bit is set if the message service does not
provide identity information.

Two examples of nonstandard property entries follow. The first entry specifies the path to the file used
by the Default Address Book as the property value; the second entry specifies a numeric property
value. Both entries have meaning specific to the AB message service.

6600001e=full path to file
66040003=integer

Message Service Section List Entries in MAPISVC.INF

There are two types of section list entries: one that lists service provider sections and one that lists
miscellaneous message service-specific sections. These two types of entries appear in MAPISVC.INF
using the following formats:

Providers=provider section1, provider section2, provider sectionX
Sections=section name1, section name2,section nameX

Each section in the Providers entry maps to an individual section providing configuration information for
a service provider that belongs to the message service. Each section in the Sections entry maps to a
section that contains extra configuration information needed by the message service. Message service
implementors define extra sections when they want to include special information that does not fit in
the standard sections. Message services that have complicated configurations typically use the
Sections entry to add extra information. Every message services section has a Providers entry with at
least one section in the list; not all message service sections have a Sections entry.

Two examples of message service sections follow. The first section is for the Default Address Book
service from the earlier illustration, a straightforward message service with a single service provider.
The second section is for the MsgService service, a more complex sample message service with three
service providers.

[AB]
PR_DISPLAY_NAME=Default Address Book
Providers=AB Provider
PR_SERVICE_DLL_NAME=AB.DLL
PR_SERVICE_SUPPORT_FILES=AB.DLL
PR_SERVICE_ENTRY_NAME=DABServiceEntry
PR_RESOURCE_FLAGS=SERVICE_NO_PRIMARY_IDENTITY

[MsgService]
PR_DISPLAY_NAME=My Own Service
Providers=MsgService Prov1, MsgService Prov2, MsgService Prov3
Sections=First_Special_Section, Second_Special_Section
PR_SERVICE_DLL_NAME=MYSERV.DLL
PR_SERVICE_SUPPORT_FILES=MYSERV.DLL, MYXXX.DLL, MYZZZ.DLL
PR_SERVICE_ENTRY_NAME=MyServiceEntry
PR_RESOURCE_FLAGS=SERVICE_SINGLE_COPY
66040003=00000000

The Sections entry in the [MsgService] section lists two additional sections, one called
[First_Special_Section] and the other called [Second_Special_Section]. The data that might appear in
extra sections is meaningful to the specific message service. These sections appear following to
illustrate extra sections.

[First_Special_Section]
UID=13DB0C8AA05101A9BB000AA002FC45A
66020003=01000000
66000003=00040000
66010003=06000000
66050003=03000000

Service Provider Sections in MAPISVC.INF

MAPISVC.INF includes one service provider section for each of the entries listed in the Providers entry
in the preceding message services section. Service provider sections are similar to message service
sections in that both types of sections contain entries in this format:

property tag=property value

However, service provider sections and message service sections differ in that such property entries
are the only type of entry included in service provider sections. There can be no additional or linked
sections for service providers; all service provider information must be contained within the one
section.

Some of the properties set in message service sections are also set in service provider sections
because these properties make sense for both. The PR_DISPLAY_NAME property is an example. Both
service providers and message services have a name that is used for display in the configuration user
interface. Depending on the service provider, that name may or may not be the same. Other properties
are specific to service providers.

Typical service provider sections include the following entries, all of which are required:

PR_DISPLAY_NAME=string
PR_PROVIDER_DISPLAY=string
PR_PROVIDER_DLL_NAME=name of DLL file
PR_RESOURCE_TYPE=long
PR_RESOURCE_FLAGS=bitmask

The PR_PROVIDER_DLL_NAME entry is similar to PR_SERVICE_DLL_NAME; it indicates the
filename for the DLL that contains the service provider. Message service code may be stored with one
of its service providers in the same DLL file or exist as a separate DLL. Note that no suffix is included in
the entry regardless of the target platform; MAPI takes care of adding a suffix if necessary.

PR_RESOURCE_TYPE entry represents the type of service provider; service providers set it to the
appropriate predefined constant. Valid values include MAPI_STORE_PROVIDER,
MAPI_TRANSPORT_PROVIDER, and MAPI_AB_PROVIDER.

Another property entry that applies to both message services and service providers, the
PR_RESOURCE_FLAGS entry indicates options. The settings for this property entry can differ
depending on the service provider. For example, some message store providers might set
PR_RESOURCE_FLAGS to STATUS_NO_DEFAULT_STORE if they can never operate as the default
message store.

Three examples of service provider sections follow. The [AB Provider] section is the service provider
section for the Default Address Book service. The [MsgService Prov1] and [MsgService Prov2]
sections belong to My Own Service; the first is an address-book provider section and the second is a
message-store provider section.

[AB Provider]
PR_DISPLAY_NAME=Default Address Book
PR_PROVIDER_DISPLAY=Default Address Book
PR_PROVIDER_DLL_NAME=AB.DLL
PR_RESOURCE_TYPE=MAPI_AB_PROVIDER
6600001e=C:\WINNT35\System32\DEFAB.TXT

[MsgService Prov1]
PR_DISPLAY_NAME=My Own Service
PR_PROVIDER_DISPLAY=My Own Address Book
PR_PROVIDER_DLL_NAME=MYXXX.DLL

PR_RESOURCE_TYPE=MAPI_AB_PROVIDER

[MsgService Prov2]
PR_DISPLAY_NAME=My Folders
PR_PROVIDER_DISPLAY=My Own Message Store
PR_RESOURCE_TYPE=MAPI_STORE_PROVIDER
PR_PROVIDER_DLL_NAME=MYZZZ.DLL
PR_RESOURCE_FLAGS=STATUS_NO_DEFAULT_STORE
66060003=00000000
66030003=00000000
34140102=78b2fa70aff711cd9bc800aa002fc45a
66090003=06000000
660A0003=03000000

Configuring a Message Service

Message service writers have a minimum set of tasks that they must perform to support message
service configuration. In addition, they can provide support for a configuration application called the
Profile Wizard. The Profile Wizard, implemented by MAPI, creates profiles with very little user
intervention. Default settings are used whenever possible. Support for this application implies that the
message service can be included in any profile that the Profile Wizard creates.

To support generic message service configuration
· Implement an entry point function that conforms to the MSGSERVICEENTRY prototype.
· Publish the name of your message service entry point function in the MAPISVC.INF configuration

file.
· Create one or more property sheet dialog boxes for displaying configuration data.

To support the Profile Wizard
· Implement an entry point function that conforms to the WIZARDENTRY prototype.
· Implement a standard Windows dialog procedure.
· Enhance your message service entry point function to respond to additional events.

About Message Service Entry Point Functions

Message services entry point functions manage access to profile data and respond to configuration
requests from clients. Although most message services will provide entry point functions and MAPI
strongly recommends that they do, these functions are not strictly required. Message services can
provide access to configuration data in other ways. However, using an entry point function standardizes
and simplifies the processing of configuration tasks.

If your message service implements an entry point function, publish its name in the message service
section of the MAPISVC.INF file as follows:

PR_SERVICE_ENTRY_NAME=<name of message service>

After MAPI has been initialized, your message service's entry point function will be called:

· When a client logs on to retrieve information for configuring your message service.
· When a client wants to view or change a configuration property.

MAPI expects all message service entry point functions to be able to store and retrieve properties from
the profile sections that are associated with their message service. They can support this functionality
interactively, programmatically, or both interactively and programmatically.

To support interactive configuration, your service's entry point function provides a property sheet that
displays the properties involved in configuring your message service. As an option, your entry point
function can also supply property sheets for each configurable provider. Some message services
restrict users to a read-only view of configuration properties; other message services allow them to
make changes.

To support programmatic configuration, your service's entry point function must be able to reconfigure
the service itself or one of its members without user intervention. If your message service can be called
by the Profile Wizard, it must support programmatic configuration in its entry point function. If your
message service does not support the Profile Wizard, support for programmatic configuration is
optional.

Implementing a Message Service Entry Point Function

Every message service entry point function follows the MSGSERVICEENTRY prototype. There are
many input parameters and one output parameter, the MAPI error structure for reporting detailed error
information. The input parameters include:

· An application handle.
· A pointer to an OLE memory allocator.
· A pointer to a support object.
· A window handle.
· An operation context.
· An array of property values and a count of the number of entries in the array.
· A pointer to a provider administration object.

The most significant of these parameters is the operation context, the property value array, and the
provider administration object pointer. A message service entry point function is typically called after
MAPI or a client has completed or is in the process of completing an operation. The operation context
represents the particular operation.

Your message service's response to a particular operation context is similar to a response to event
notification. With some operations, your entry point function will do little else except return S_OK. With
other operations, there can be extensive processing required. There are seven possibilities for the
operation context:

MSG_SERVICE_INSTALL
MSG_SERVICE_UNINSTALL
MSG_SERVICE_CREATE
MSG_SERVICE_CONFIGURE
MSG_SERVICE_DELETE
MSG_SERVICE_PROVIDER_CREATE
MSG_SERVICE_PROVIDER_DELETE

The MSG_SERVICE_INSTALL and MSG_SERVICE_UNINSTALL operations usually require very little
work. The operation context will be set to MSG_SERVICE_INSTALL after the caller, typically the
Control Panel or another configuration client, has run your setup program to install your message
service. With the Control Panel, this occurs when a user selects the Have Disk dialog box through the
Add button. The entry point function can either return immediately with S_OK or can perform post-
installation processing if necessary.

When the operation context is set to MSG_SERVICE_UNINSTALL, typically the user of a client
application has selected an option on a dialog box to remove your message service from the
workstation. By the time the entry point function is called, either the user has finished removing your
service, in which case any message service files or data can be deleted, or has canceled the removal.
To determine whether or not the removal was successful, your provider must query the user. If the
removal was canceled, another query is necessary to make sure that the user intentionally chose to
cancel the operation. Your message service entry point function should return
MAPI_E_USER_CANCEL for canceled service removals and redisplay the message service dialog box
if the cancel was unintentional, giving the user another chance.

Your message service can also decide to cancel the uninstall operation by returning
MAPI_E_USER_CANCEL regardless of whether the user has cancelled. Before deciding to cancel,
your message service can:

· Query the user to ask if the message service should be removed.
· Check for related services before deciding if the message service should be removed.

· Decide to cancel the removal, explaining the reasons to the user and returning
MAPI_E_USER_CANCEL unconditionally.

The MSG_SERVICE_CREATE, MSG_SERVICE_CONFIGURE, and MSG_SERVICE_DELETE
operations apply to a profile that contains your message service. Your message service can identify the
profile that is working with by examining one of the following two profile section properties:

PR_PROFILE_NAME
PR_SEARCH_KEY

In most situations, checking the profile name will be sufficient. The search key can be used for profile
identification in those few situations where the name may not be unique enough, possibly because the
profile has been deleted and a new one has been created with the same name. A profile section's
search key is an arbitrarily sized binary identifier that is defined in the MAPIGUID.H header file as
MUID_PROFILE_INSTANCE.

With the MSG_SERVICE_CREATE context, your message service is being added to a profile. With
MSG_SERVICE_CONFIGURE, your message service is being configured; one or more of the entries
in the profile might change. The entry point function's handling of the create and configure operations
will depend on the settings of the flags parameter, ulFlags. The SERVICE_UI_ALWAYS flag must be
set on a create operation because prompting the user through a dialog box is always necessary. If this
flag is not set when the operation context is MSG_SERVICE_CREATE, the entry point function should
fail.

The handling of the MSG_SERVICE_CONFIGURE operation is more complicated.

Perform programmatic configuration without a user interface if one of the following conditions is true:

· The property value array parameter contains a complete set of configuration properties.
· Neither the SERVICE_UI_ALWAYS nor SERVICE_UI_ALLOWED flags are set.

Perform interactive configuration with the aid of a user interface if one of the following conditions is
true:

· The SERVICE_UI_ALLOWED flag is set and the property value array is empty.
· The SERVICE_UI_ALLOWED flag is set and the property value array does not contain a complete

set of configuration properties.
· The entry point function does not support programmatic configuration.

The operation context is set to MSG_SERVICE_DELETE when your message service is removed from
a profile. Deletion occurs on a per-instance basis meaning that other instances of your message
service either in the same profile or in a different profile are unaffected. Your service can still be added
to profiles. The service entry point function can handle this operation by returning immediately with a
success code.

Note There is not a special context value signifying a copy operation because when your message
service is copied from one profile to another, your entry point function is not called. The configuration
settings for the new service instance take on the values from the original service.

The MSG_SERVICE_PROVIDER_CREATE and MSG_SERVICE_PROVIDER_DELETE operations
apply to a service provider that either will belong or already belongs your message service. When the
context is set to MSG_SERVICE_PROVIDER_CREATE, the caller is attempting to add a service
provider to your service. When the context is MSG_SERVICE_PROVIDER_DELETE, the caller is
trying to delete a provider. Supporting these operations is optional; it is acceptable to handle them by
returning MAPI_E_NO_SUPPORT. However, for services that do allow the dynamic addition or deletion
of service providers, MAPI supplies a pointer to an IProviderAdmin interface implementation. The
entry point function can handle the MSG_SERVICE_PROVIDER_CREATE operation with a call to
IProviderAdmin::CreateProvider and the MSG_SERVICE_PROVIDER_DELETE operation with a

call to IProviderAdmin::DeleteProvider.

Warning for 16-bit Message Services Be careful of stack consumption in your message service
entry point function and methods or functions that it calls. Because this code can be called from the
Control Panel applet, which has limited stack space, problems can occur if your entry point function's
stack usage is too excessive.

Supporting the Profile Wizard

The Profile Wizard displays a series of dialog boxes for creating a profile. Each message service
included in the profile is configured, using either default values or values entered by a user working
with a property sheet provided by the message service. To enable your message service to be included
in a Profile Wizard profile, your service must:

· Provide a standard entry point function that the Profile Wizard calls to invoke your service.
· Provide a standard Windows dialog procedure that will handle event processing.

About Profile Wizard Entry Point Functions

Profile Wizard entry point functions are written using the WIZARDENTRY prototype, defined as follows:

ULONG (STDAPICALLTYPE WIZARDENTRY)
 (HINSTANCE hProviderDLLInstance, LPTSTR FAR *lppcsResourceName,
 DLGPROC FAR *lpDlgProc, LPMAPIPROP lpMAPIProp,
 LPVOID lpMapiSupportObject);

The Profile Wizard passes in a handle to the message service DLL and a pointer to an IMAPIProp
interface implementation. Access to the configuration properties for your message service is handled
through this IMAPIProp implementation. Your message service should keep a reference to this
implementation because since the Profile Wizard works with the most basic set of properties, your
message service can use it to add extra properties. When the Profile Wizard has finished working with
your message service, it calls IMsgServiceAdmin::ConfigureMsgService to inform your service.

The Profile Wizard entry point function manages the display of one or more of your message service's
property sheets. Each property sheet can contain zero or more property pages. The Profile Wizard
displays your service's property sheets within its property pages; the controls of your property sheets
are created as children of the Profile Wizard's page. When the entry point function is called, your
message service should reveal only the controls for the first page in the first property sheet. As the
Profile Wizard moves from page to page, the function must hide all of the controls for the old page and
expose the controls for the new one.

About Profile Wizard Dialog Procedures

Profile Wizard dialog procedures are standard Windows procedures that handle Window messages
generated by the Profile Wizard during the display of your message service's property sheets.

The Profile Wizard creates a dialog frame with three buttons (Back, Next or Finish, and Cancel) and a
fixed size area. It is into this area that your message service displays its property sheets. Any Windows
messages or events that occur within this fixed area go directly to the Profile Wizard dialog procedure.

Because users of the Profile Wizard can move in a forward or backward direction through the pages of
a service's property sheets, generating a WM_INITDIALOG message repeatedly, message services
should keep the property sheets readily available.

The Profile Wizard is a single instance application. Therefore, your dialog procedure can be written as
a single instance procedure and can take advantage of static variables for storing data.

 Implementing Property Sheets

A property sheet is a dialog box for displaying the properties of an object. The properties can be read-
only, enabling the user only to view them, or read/write, enabling the user to make changes. A property
sheet contains one or more overlapping child windows called pages, each page contains control
windows for setting a group of related properties. Users navigate from page to page using a tab that
brings the selected page to the foreground of the property sheet.

Service providers are required to implement a property sheet that displays a minimal set of message
service properties. Implementing property sheets for service provider properties is optional. Providers
that allow these properties to be changed can either allow users of client applications such as the
Control Panel applet to make the changes or implement the changes programmatically.

Service providers can create a property sheet using one of the following three techniques:

· Manually, as they would any dialog box.
· Using the property sheet common control provided in the Win32 SDK.
· Using a MAPI display table.

MAPI recommends that service providers use a display table for property sheet implementations.
Creating a property sheet with a MAPI display table is simpler because it eliminates the need to work
with the Windows user interface.

Service providers can call the IMAPISupport::DoConfigPropSheet method to display a property
sheet based on a display table. Typically, a provider will need to display a property sheet:

· When a client calls the provider's IMAPIStatus::SettingsDialog method.
· When MAPI calls the provider object's logon method.
· When MAPI calls the provider's message service's entry point function.

To implement a property sheet
1. Call IMAPISupport::OpenProfileSection to open a section in the current profile. Pass a provider's

MAPIUID or NULL to open your provider's section.
2. Call CreateIProp to create a property data object.
3. Call the profile section's IMAPIProp::CopyTo method to copy all of the section's properties to the

property data object.
4. Create one or more DTPAGE structures that describe the controls for the property sheet.
5. Call BuildDisplayTable to create a display table.
6. Call IMAPISupport::DoConfigPropSheet to display a property sheet with the copied properties.

Pass a pointer to the property data object as the lpConfigData parameter and a pointer to the
display table as the lpDisplayTable parameter.

7. When all of the changes have been made in the property sheet, call the property data object's
IMAPIProp::CopyTo method to copy the changed properties back to the profile section.

 Displaying a Progress Indicator

Many of the operations that your service provider performs for clients can take a long time to complete.
To inform clients of the progress of a lengthy operation, your service provider can show an indicator
that displays graphically the finished portion of an operation at any given point from the start of the
operation to its completion. Typically the progress indicator looks something like the following
illustration, with each tic mark representing a percentage of the total operation to be completed.

{ewc msdncd, EWGraphic, groupx835 2 /a "MAPI.BMP"}

The following methods support lengthy operations and the display of a progress indicator:

· The CopyMessages, CopyFolder, DeleteMessages, DeleteFolder, EmptyFolder, and
SetReadFlags methods in IMAPIFolder

· The CopyProps and CopyTo methods in IMAPIProp
· The DoCopyProps, DoCopyTo, CopyFolder, and CopyMessages methods in IMAPISupport
· IMessage::DeleteAttach
· IABContainer::CopyEntries

To display a progress indicator, MAPI defines a progress object. Progress objects implement the
IMAPIProgress interface, an interface which includes methods for establishing the range of the
indicator and creating the display. MAPI provides a progress object implementation as do some clients.
Your service provider should use a client's implementation if one is supplied as an input parameter in
the method performing the operation. If the client passes NULL instead of a pointer to a progress
object, your provider should use MAPI's implementation. Service providers use the MAPI progress
object by calling their support object's IMAPISupport::DoProgressDialog method.

 Using Progress Objects

With the methods and data of a progress object, your provider can control how the indicator reports
progress. Although a client or MAPI implements the progress object, most of the burden of insuring the
correctness of the progress display falls on service providers. Service providers guarantee accuracy by
specifying a particular order and value for the parameters that they pass to progress object methods.

Service providers pass the following parameters to progress objects:

· A bitmask of flags, set with SetLimits and retrieved with GetFlags
· A minimum value (local and global), set with SetLimits and retrieved with GetMin
· A maximum value (local and global), set with SetLimits and retrieved with GetMax
· A value that indicates the current percentage of completion of the operation, passed to Progress
· A count of the number of objects that have so far been processed, passed to Progress
· A count of the total number of objects involved in the operation, passed to Progress

All service providers begin their progress display processing with a call to IMAPIProgress::GetFlags
to retrieve the present flags setting. Currently the flags can be set only to MAPI_TOP_LEVEL. Clients
and MAPI initialize the flag to MAPI_TOP_LEVEL, relying on service providers to clear it when
appropriate.

The flags value is set to MAPI_TOP_LEVEL while your provider is working with the top level object in
the operation. The top level object is the object that is called by the client to begin an operation. In a
folder copy operation, this is the folder being copied. In a folder delete operation, this is the folder being
deleted. When your provider makes a call to process a lower level object, or subobject, it clears the
flags value. In a folder copy operation, subobjects are the subfolders that are in the folder being copied.

MAPI allows service providers to differentiate between top level objects and subobjects with the
MAPI_TOP_LEVEL flag so that all objects involved in an operation can use the same IMAPIProgress
implementation to show progress, thereby causing the indicator display to proceed smoothly in a single
positive direction. Whether or not the MAPI_TOP_LEVEL flag is set determines how service providers
set the other parameters in subsequent calls to the progress object.

Because it can be nontrivial to set appropriate parameter values for a progress display at all levels of a
multi-level operation, some service providers elect not to show progress for subobjects. To avoid
showing progress for subobjects:

· Pass NULL for the lpProgress parameter in the call to process a subobject. For example, if copying
folders, this is the call to a subfolder's IMAPIFolder::CopyFolder method.

· Write special code to determine how to interpret the lpProgress parameter. Because a NULL value
for the lpProgress parameter can also mean that the client should display progress using MAPI's
implementation, special code is necessary to determine when to ignore the lpProgress parameter
and when to call IMAPISupport::DoProgressDialog.

Service providers call IMAPIProgress::SetLimits to set or clear the MAPI_TOP_LEVEL flag and to set
local and global minimum and maximum values. The value of the flags setting affects whether the
progress object understands the minimum and maximum values to be local or global. When the
MAPI_TOP_LEVEL flag is set, these values are considered global and are used to calculate progress
for the entire operation. Progress objects initialize the global minimum value to 1 and the global
maximum value to 1000.

When MAPI_TOP_LEVEL is not set, the minimum and maximum values are considered local and are
used internally by providers to display progress for lower level subobjects. Progress objects save the
local minimum and maximum values only so that they can be returned to providers when GetMin and
GetMax are called.

The other three parameters are input to the IMAPIProgress::Progress method. The first value, a

number that indicates percentage of progress, is required. If the MAPI_TOP_LEVEL flag is set, your
provider can also pass an object count and an object total. Some clients use these values to display a
phrase such as "5 items completed out of 10" with the progress indicator. Progress on an operation can
be reported strictly as a percentage or as a percentage and in terms of the number of items that have
been processed out of the total to be processed. For example, if your provider is a message store that
is copying 10 folders, the progress indicator can supply the user with additional information by
displaying a phrase such as 1 of 10, 2 of 10, 3 of 10, and so on until the operation is complete.

 Displaying Progress Step by Step

To display a progress indicator, call IMAPIProgress::GetFlags to retrieve the current flags setting.

 If the MAPI_TOP_LEVEL flag is set
1. Set a variable equal to the total number of items to process in the operation. For example, if your

provider is copying the contents of a folder, this value will be equal to the number of the subfolders
in the folder plus the number of messages.

2. Set a variable equal to 1000 divided by the number of items.
3. If your provider is showing progress for subobjects, call the progress object's

IMAPIProgress::SetLimits and pass the following values for the three parameters:
· Set the lpulMin parameter to 0.
· Set the lpulMax parameter to 1000.
· Set the lpulFlags parameter to MAPI_TOP_LEVEL.

4. For each object to be processed:
a. Call IMAPIProgress::SetLimits and pass the following values for the three parameters:

· Set the lpulMin parameter to the variable set in step 2

multiplied by the current item - 1.
· Set the lpulMax parameter to the variable set in step 2

multiplied by the current object.
· Set the lpulFlags parameter to 0.

b. Perform whatever processing should be done on this object. If this is a subobject and your
provider wants to display progress on subobjects, pass a pointer to the progress object in the
lpProgress parameter to the method.

c. Call IMAPIProgress::Progress and pass the following values for the three parameters:

· Set the ulValue parameter to variable set in step 2
multiplied by the current object.

· Set the ulCount parameter to the current object.
· Set the ulTotal parameter to the variable set in step 1, the

total number of objects.

If the MAPI_TOP_LEVEL flag is not set
1. Call the progress object's IMAPIProgress::GetMin method to retrieve the minimum value for the

display.
2. Call IMAPIProgress::GetMax to retrieve the maximum value for the display.
3. Set a variable equal to the total number of objects to be processed.
4. Set a variable equal to the result of subtracting the minimum value from the maximum value and

then dividing by the total number of objects.
5. For each object to be processed:

a. If your provider is showing progress for subobjects, call IMAPIProgress::SetLimits and pass the
following values for the three parameters:

· Set the lpulMin parameter to the minimum value plus the
current item - 1 multiplied by the variable set in step 4.

· Set the lpulMax parameter to the minimum value plus the
current unit multiplied by the variable set in step 4.

· Set the lpulFlags parameter to 0.

b. Perform whatever processing should be done on this object. If the object is a subobject, and your
provider displays progress for subobjects, pass a pointer to the progress object in the lpProgress
parameter to the method.

c. Call IMAPIProgress::Progress and pass the following values for the three parameters:

· Set the ulValue parameter to variable set in step 2
multiplied by the current object.

· Set the ulCount parameter to 0.
· Set the ulTotal parameter to 0.

The following code sample illustrates the logic required to show progress at all levels of an operation
that copies the contents of a folder containing five subfolders.

lpProgress->GetFlags (lpulFlags);
ulFlags = *lpulFlags;

/* Folder in charge of the display. It contains 5 subfolders. */
if (ulFlags & MAPI_TOP_LEVEL)
{
 ulItems = 5 // 5 subfolders in this folder
 ulScale = (ulMax / ulItems) // 200 because ulMax = 1000
 lpProgress->SetLimits(0, ulMax, MAPI_TOP_LEVEL)

 for (i = 1; i <= ulItems; i++) // for each subfolder to copy
 {
 lpProgress->SetLimits((i - 1) * ulScale, i * ulScale, 0)
 CopyOneFolder(lpFolder(i), lpProgress)
 lpProgress->Progress(i * ulScale, i, ulItems)
 }
}
else
/* One of the subfolders to be copied. It contains 3 messages */
{
 lpProgress->GetMin(&ulMin);
 lpProgress->GetMax(&ulMax);
 ulItems = 3;
 ulDelta = (ulMax - ulMin) / ulItems;
 for (i = 1; i <= ulItems; i++)
 {
 lpProgress->SetLimits(ulMin + (i - 1) * ulDelta,
 ulMin + i * ulDelta, 0)
 CopyOneFolder(lpFolder(i), lpProgress)

 /* Pass 0 for ulCount and ulTotal because this is not the */
 /* top level display and that information is unavailable */
 lpProgress->Progress(i * ulDelta, 0, 0)
 }
}

 Developing an Address Book Provider

An address book provider supplies recipient information to client applications, to message store and
transport providers, and to MAPI. Recipient information is organized hierarchically into storage
compartments known as containers. Every address book in the profile contributes one or more top
level, or parent, containers to the MAPI address book, an integrated view of recipient information from
all address book providers in a session. It is through the MAPI address book that clients and other
service providers gain access to the data of an address book provider.

MAPI builds the integrated address book by:

1. Retrieving the top-level containers from each address book provider.
2. Retrieving each container's hierarchy table.
3. Copying each hierarchy table into an integrated hierarchy table. It is the integrated hierarchy table

that is exposed to the client.

MAPI imposes few requirements on address book provider writers. The range of possible features you
can implement as an address book writer is varied and flexible. For example, your provider could be
limited to supplying a read-only view of a particular type of recipient information or implement a full set
of features, perhaps allowing clients or providers to make additions or modifications to the recipient
data and to impose search criteria for defining customized views.

Your provider's data can reside locally in a file or database or on a remote server. Some address book
providers are meant to work with a particular messaging system, tightly coupled with a transport
provider, while others can operate with any messaging system.

MAPI defines a special type of address book provider called a personal address book, or PAB, that
implements a single modifiable container and can hold recipient information copied from other
containers as well as information created directly. Although any address book provider can implement a
PAB and multiple PABs can be added to a profile, only one of these providers can be designated to
operate as the PAB during any one session.

 Features for Address Book Providers

Address book providers can work with recipient information that is temporary or permanent, local or
remote, understandable by one or more messaging systems, and formatted for a disk file or database
table. There are a variety of features that an address book provider can implement, thereby adding
value and improving interoperability with clients and other providers. However, few features are
required. The only features required of all address book providers are:

· Support for logon and logoff
· Ability to create entry identifiers
· Provide status information to the status table
· Limited status object support
· Support for interactive and programmatic configuration

In addition to these few features, there are many other features that can or must be implemented,
depending on your provider's characteristics. There are two additional sets of features that are required
of some address book providers: one set for providers that have containers and another set for
providers that allow recipients to be added to their containers or to a Personal Address Book (PAB).

The following table describes many of the common features that address book providers support and
the objects, properties, or interface methods that are implemented to supply that support.

Feature Requirement What to implement
Logon support Required of all

providers
IABProvider::Logon method

Logoff support Required of all
providers

IABProvider::Shutdown method

Entry identifier
creation

Required of all
providers

PR_ENTRYID property for
messaging user objects,
distribution lists, and containers

Status table support Required of all
providers

IMAPIStatus interface
Required properties for status
table
Call to
IMAPISupport::ModifyStatusRo
w

Limited status object
support

Required of all
providers

IMAPIStatus::ValidateState fully
Return MAPI_E_NO_SUPPORT
from other IMAPIStatus methods

Configuration
support

Required of all
providers

Message service entry point
function
Call to
IMAPISupport::DoConfigProps
heet

Access to objects Required of providers
with containers

IABLogon::OpenEntry method

Comparision of
objects

Required of providers
with containers

IABLogon::CompareEntryIDs
method

Summary
information about
recipients

Required of providers
with containers

PR_CONTAINER_CONTENTS
property for containers

Hierarchical list of
containers

Required of providers
with containers

PR_CONTAINER_HIERARCHY

property for containers
List of available
templates for
recipient creation

Required of providers
that support recipient
creation

IABLogon::GetOneOffTable
PR_CREATE_TEMPLATES
property for container

View of detailed
recipient information

Required of providers
with containers

PR_DETAILS_TABLE property for
messaging users and distribution
lists

View of detailed
container
information

Required of providers
with containers

PR_DETAILS_TABLE property for
containers

Grouping recipients
into named unit

Optional IDistList interface

Support for
individual recipients

Required of providers
with containers

IMailUser interface

Support for binding
code to data in a
host address book
provider

Optional PR_TEMPLATEID property for
messaging users and distribution
lists
IABLogon::OpenTemplateID
method

Prefix scrolling Optional Restrictions on container contents
tables

Support for
advanced searching
in a container

Optional PR_SEARCH property for
containers

Name resolution Required of providers
with containers

PR_ANR property restriction

 Implementing an Address Book Provider's DLL Entry Point Function

When a client application calls MAPILogonEx to begin a session using a profile that contains your
address book provider, MAPI loads your provider and all others that are part of the profile. MAPI learns
of the name of your provider's DLL entry point function by looking in the profile. There are several
entries, some of which must appear in the MAPISVC.INF configuration file, that are included in the
profile section of every address book provider. The following table lists these profile section entries and
whether or not the MAPISVC.INF file must include them.

Profile section entry MAPISVC.INF
requirement

PR_DISPLAY_NAME=string Optional
PR_PROVIDER_DISPLAY=string Required
PR_PROVIDER_DLL_NAME=DLL
filename

Required

PR_RESOURCE_TYPE=long Required
PR_RESOURCE_FLAGS=bitmask Optional

Your address book provider can place this information into a profile directly by calling its profile
section's IMAPIProp::SetProps method or indirectly by modifying MAPISVC.INF. Profiles are built
using the relevant information in MAPISVC.INF for the selected service providers or message services.
For more information about the organization and contents of MAPISVC.INF, see About the
MAPISVC.INF File.

The name of your address book provider's DLL entry point function must be ABProviderInit and it
must conform to the ABProviderInit prototype. Perform the following tasks in your provider's DLL entry
point function:

· Check the version of the service provider interface (SPI) to make sure MAPI is using a version that
is compatible with the version that your address book provider is using.

· Instantiate an address book provider object.

Do not call either MAPIInitialize or MAPIUninitialize in this function.

The DLL entry point function instantiates a provider object and returns to MAPI a pointer to that object.

 Implementing the IABProvider Interface

All address book providers must support a provider object, an object that implements the IABProvider
interface. The IABProvider interface inherits directly from IUnknown and adds only two other
methods: Logon and Shutdown. MAPI will call your provider's IABProvider::Logon method at the
beginning of every session and whenever your provider is added to the current profile and the client
supports dynamic reconfiguration. Shutdown is called when the session is ending.

 Implementing IABProvider::Logon

When MAPI calls the IABProvider::Logon method, your address book provider begins its logon
process.

To implement IABProvider::Logon
1. Initialize all of the output parameter pointers passed in by MAPI.
2. Call the support object's IUnknown::AddRef method to increment its reference count.
3. Call the support object's IMAPISupport::OpenProfileSection to open the section of the profile that

contains configuration information about your provider. Pass NULL for the lpUID parameter and the
MAPI_MODIFY flag if you intend to make changes.

4. Call the profile section's IMAPIProp::GetProps method to retrieve the properties that your provider
needs for logon, such as the name of the data file or database table.

5. Check that the properties are all available and valid. If necessary and allowed, display a dialog box
to prompt the user to make corrections or additions to invalid or missing information and call the
profile section's IMAPIProp::SetProps to save any changes. Some of the common properties that
should be available include:

PR_DISPLAY_NAME
PR_ENTRYID
PR_PROVIDER_DISPLAY
PR_RECORD_KEY

Note Do not set PR_RESOURCE_FLAGS or PR_PROVIDER_DLL_NAME. At logon time, these
properties are read-only.

6. If one or more configuration properties are unavailable, fail and return the value
MAPI_E_UNCONFIGURED.

7. Call IMAPISupport::SetProviderUID to register a MAPIUID. Your provider can create a MAPIUID
by:
· Calling the IMAPISupport::NewUID method
· Calling the UUIDGEN.EXE tool to define a GUID that your provider uses to include in one of its

header files.
8. If desired, save a newly created MAPIUID in the current profile by calling the profile section's

IMAPIProp::SetProps method.
9. Release the profile section by calling its IUnknown::Release method.

10. Instantiate a new logon object and set the contents of the lppABLogon parameter to the address of
this new object.

Because it is possible for MAPI to call your Logon method several times during a session, it is wise to
support this possibility in your implementation by being able to create multiple logon objects and keep
track of the each object that is created. Supporting multiple Logon calls enables a user of a client
application, for example, to log onto a session with different identities or use different delivery
destinations.

 Implementing IABProvider::Shutdown

MAPI calls your IABProvider::Shutdown method as one of the last tasks involved in shutting down a
session. MAPI has released all of your provider's logon objects and, when your provider receives this
call, it can assume that this is the last call it will receive. In your implementation of
IABProvider::Shutdown, perform any final clean up that you feel is necessary. For example, your
provider might call MAPIDeinitIdle if it has called MAPIInitIdle to use the idle utility during the session
or the IUnknown::Release method of any objects that have yet to be released.

If your provider has no final clean up, its implementation can be made up of a single line of code:

return ResultFromScode(S_OK);

 Implementing the IABLogon Interface

All address book providers support a logon object, an object that implements the IABLogon interface.
The IABLogon interface is used to service requests from clients that MAPI receives as calls to the
methods of the IAddrBook interface. Clients call the IAddrBook methods; MAPI calls the
corresponding methods in your provider's IABLogon implementation.

Although the implementation of a logon object is required, your provider is not required to fully support
all of the methods. That is, it is acceptable to return MAPI_E_NO_SUPPORT from method
implementations that are not fully supported. For example, because support for template identifiers is
optional, providers not supporting these identifiers return the MAPI_E_NO_SUPPORT value in their
IABLogon::OpenTemplateID method.

 Implementing IABLogon::OpenEntry

MAPI calls your provider's IABLogon::OpenEntry method when a client or provider has requested
that one of your objects be opened. MAPI determines that the entry identifier representing the target
object belongs to your provider by examining the MAPIUID portion of the entry identifier and matching
it to the MAPIUID that your provider registered in the call to IMAPISupport::SetProviderUID. MAPI
then calls your OpenEntry method. Your provider must respond by retrieving the corresponding object,
a container, distribution list, or messaging user.

A NULL entry identifier indicates a request to open the address book provider's root container. Clients
open the root container to access its hierarchy table and its recipients. Address book providers that
only supply templates for creating one-off recipients do not support the OpenEntry call for the root
container.

To implement IABLogon::OpenEntry
1. Check that the entry identifier is a valid identifier that your provider supports. If it is not a valid entry

identifier, return MAPI_E_INVALID_ENTRYID.
2. Check the flag that is passed in with the ulFlags parameter. If MAPI has passed in MAPI_MODIFY

and your provider does not allow its objects to be modified, fail and return the E_ACCESSDENIED
error value.

3. Check that the interface requested in the lpInterface parameter is valid for the type of object your
provider has been asked to open. If an invalid parameter has been passed in, fail and return the
E_NOINTERFACE error value.

4. If the cbEntryID parameter is zero, this is a request to open your provider's root container. Create
the root container and return a pointer to its IABContainer interface implementation.

5. If your provider implements several logon objects, each with its own registered MAPIUID, map the
MAPIUID contained in the entry identifier with the appropriate logon object.

6. Determine which type of object the entry identifier represents: a messaging user, distribution list, or
container belonging to your provider or a one-off messaging user or distribution list so that the
appropriate value can be set for the lpulObjectType parameter.

7. Create the object of the appropriate type and set the following basic properties:
PR_DISPLAY_TYPE
PR_ENTRYID
PR_OBJECT_TYPE
PR_ADDRTYPE

Calculate PR_EMAIL_ADDRESS and PR_DISPLAY_NAME from information in the entry identifier.
8. Return a pointer to the interface implementation for the object.

 Implementing IABLogon::CompareEntryIDs

Your provider's IABLogon::CompareEntryIDs implementation compares the entry identifiers for two of
your provider's objects. MAPI calls this method after determining that the two entry identifiers contain
your provider's registered MAPIUID. Therefore, your CompareEntryIDs method need not check that
the entry identifiers passed in for the lpEntryID1 and lpEntryID2 parameters belong to your provider.

Calling IABLogon::CompareEntryIDs is equivalent to retrieving the PR_RECORD_KEY for each of
the two objects and comparing them directly.

To implement CompareEntryIds
1. Check the type of the entry identifiers passed in if your provider stores that information. For

example, one entry identifier might belong to a messaging user while the other might belong to a
distribution list. If the types do not match, set the contents of the lpulResult parameter to FALSE and
return.

2. Compare the sizes of the two entry identifiers. If they are not the same, set the contents of the
lpulResult parameter to FALSE and return.

3. Check that the size of the entry identifiers is the correct size for their type. If not, set the contents of
the lpulResult parameter to FALSE and return the error value MAPI_E_UNKNOWN_ENTRYID.

4. Check if the entry identifiers are the same. If they compare equally, set the contents of the lpulResult
parameter to TRUE and return. Otherwise, set it to FALSE before returning.

5. If your provider is comparing a short-term entry identifier with a long-term identifier, they should
compare equally.

 Implementing IABLogon::OpenStatusEntry

The IABLogon::OpenStatusEntry method is called to grant a client access to your provider's status
object. The client calls IMAPISession::GetStatusTable to locate your provider's row in the status
table. Once located, the client calls IMAPISession::OpenEntry to open the status object associated
with the row. MAPI fulfills the open request by calling your provider's IABLogon::OpenStatusEntry
method, causing your provider to open its status object and return to the client a pointer to its
IMAPIStatus implementation.

To implement OpenStatusEntry
1. If your logon object has not yet created a status object:

a. Call the support object's IMAPISupport::OpenProfileSection to access your provider's profile
section.

b. Create a new status object.
c. Store a reference to the profile section in your provider's status object and call the profile section's

IUnknown::AddRef to increment its reference count.
d. Store a reference to the logon object in your provider's status object and call the logon object's

IUnknown::AddRef to increment its reference count.
e. Store a reference to the status object in your provider's logon object.

2. Call the status object's IUnknown::AddRef method to increment its reference count in the logon
object.

3. Set the status object's PR_OBJECT_TYPE property to MAPI_STATUS.
4. Set the lppMAPIStatus output parameter to point to the status object and return.
5. Check the ulFlags input parameter. If it is set to MAPI_MODIFY and your provider supports

read/write access to its status object, return a writeable object. However, if your provider does not
support read/write access to its status object, do not fail. Return a status object that is read-only.

 Implementing IABLogon::Advise and IABLogon::Unadvise

Your provider's IABLogon::Advise method is called by MAPI when a client calls IAddrBook::Advise
to register for notifications on any one of your provider's containers, messaging users, or distribution
lists. Because contents table notifications are the most important and most frequently supported form
of address book notifications, supporting object and error notification is optional. However, address
book providers are encouraged to support all types of object notification except for
fnevSearchComplete as well as the fnevCriticalError event to add value.

Your Advise implementation can keep track of registrations itself or call IMAPISupport::Subscribe to
take advantage of the MAPI implementation. Subscribe will generate a number to represent the
connection between the client's advise sink and your provider. When the client no longer wants to
receive the notification, it passes this connection number to your provider's IABLogon::Unadvise
method. Again, your provider can implement the cancelation itself or call
IMAPISupport::Unsubscribe.

For more information about notification in general, see About Notification.

 Implementing IABLogon::PrepareRecips

A client calls MAPI's IAddrBook::PrepareRecips method to modify or rearrange a set of properties for
one or more recipients. The recipients may or may not be part of the recipient list of an outgoing
message. MAPI transfers this call to your address book provider's IABLogon::PrepareRecips method.

PrepareRecips has two important input parameters: a property tag array and an ADRLIST structure.
The ADRLIST structure contains one ADRENTRY structure member for every recipient. Within the
ADRENTRY structure, there is a property value array that specifies all of the properties for the
recipient.

PrepareRecips performs four main tasks:

· Ensures that all recipients have a long-term entry identifier.
· Ensures that all recipients have the properties specified in the property tag array passed in by the

client.
· Ensures that the properties from the property tag array appear before any other properties that

existed prior to the call.
· Ensures that the order of the properties in each recipient's ADRENTRY structure in the ADRLIST is

the same as in the property tag array.

To implement IABLogon::PrepareRecips
1. Check if there are entries in the lpPropTagArray parameter. If the property tag array is empty, there

is no work to do. Return with a success code.
2. Process each recipient in the lpRecipList parameter. There is one ADRENTRY structure member for

each recipient in the list. Ignore the following types of recipients:
· Recipients without an entry identifier in the rgPropVals member of their ADRENTRY structure,

that is, unresolved recipients.
· Recipients with an entry identifier that does not belong to your provider. These recipients will be

passed on to another address book provider.
3. Open the recipient and retrieve the properties already set for the recipient.
4. Merge the property value array specified in the lpPropTagArray with the array of properties returned

from GetProps. If the same property exists in both property arrays, use the value from
lpPropTagArray.

5. If the lpPropTagArray property value array is big enough to hold all of the necessary properties, just
replace it with the merged array. If the lpPropTagArray property value array is not big enough,
replace it with a newly allocated array. Make sure the new array has an updated value in each of its
cValues members.

Note Never reallocate the ADRLIST structure that is passed into PrepareRecips or change its
number of entries.

 Implementing a Foreign Address Book Provider

A foreign provider is an address book provider that:

· Assigns template identifiers for its recipients.
· Supports the IABLogon::OpenTemplateID method.
· Supplies code for maintaining recipients that exist in the containers of other address book providers

known as host providers. The code involves a property object, typically an IMAPIProp interface
implementation, that wraps a property object from the host provider.

Acting as a foreign provider is an optional role; not all providers need to support template identifiers
and their related code. Implement your provider as a foreign provider if you want to maintain control
over recipients that host providers create using templates supplied by your provider.

The format that your provider uses for its entry identifiers can also be used for its template identifiers.
Template identifiers must include your provider's registered MAPIUID to allow MAPI to successfully
bind recipients to the appropriate providers.

MAPI calls your provider's IABLogon::OpenTemplateID method when a host provider calls
IMAPISupport::OpenTemplateID. The host provider passes the template identifier of the recipient in
the lpTemplateID parameter in its call to IMAPISupport::OpenTemplateID. MAPI determines that the
template identifier belongs to your provider by matching the MAPIUID in the template identifier with the
MAPIUID that your provider registered at logon time. MAPI then forwards the host provider's call to
your provider through the IABLogon::OpenTemplateID method.

The host provider also passes a pointer to its property object implementation for the recipient in the
lpMAPIPropData parameter, an interface identifier in the lpInterface parameter that corresponds to the
type of interface implementation passed in lpMAPIPropData, and an optional flag, FILL_ENTRY. Your
provider is expected to return in the lppMAPIPropNew parameter a pointer to a property object
implementation of the type specified in lpInterface. The returned pointer can either be to the wrapped
property object implemented by your provider or to the object supplied by the host provider in
lpMAPIPropData. Your provider should return a wrapped property object pointer when:

· The recipient's display table contains list box controls.
· The e-mail address for the recipient must be assembled from data in multiple display table controls.
· Your provider issues display table notifications.

The FILL_ENTRY flag indicates to your provider that the host provider wants all of the properties of the
recipient to be updated. Your provider is required to fulfill this request.

When a host provider calls your provider's OpenTemplateID method, your provider might:

· Periodically update the data for a copied entry.
· Keep a copied entry in sync with its original, such as when an address book entry is copied to the

PAB.
· Implement functionality that cannot be implemented by the host provider, such as dynamically

populating list boxes in the copied entry's details table from data on a server.
· Control the interaction among properties in a copied entry or instantiated template. For example,

computing PR_EMAIL_ADDRESS from other properties displayed in the details table.

The first two items are examples of tasks that do not require your provider to supply a wrapped
property object ¾ an implementation of IMAPIProp that is based on the host provider's
implementation. Your provider can just update the properties as necessary and return, setting the
lppMAPIPropNew parameter to point to the pointer passed in by the host provider in the
lpMAPIPropData parameter.

The second two tasks require that your provider return to the host provider a property object that wraps

the host provider's object with additional functionality, such as the ability to display a property sheet for
the entry. This property object will either be a messaging user or distribution list, depending on the type
of object passed in by the host provider in the lpMAPIPropData parameter and indicated by the
interface identifier in the lpInterface parameter. If the lpMAPIPropData parameter points to a
messaging user, your provider's wrapped property object must be an IMailUser implementation. If
lpMAPIPropData points to a distribution list, it must be an IDistList implementation.

Your provider's wrapped property object intercepts IMAPIProp method calls to perform context-specific
manipulation of the host provider's recipient, the object it is wrapping. MAPI only has one requirement
for wrapped property objects: all calls to IMAPIProp::OpenProperty requesting the
PR_DETAILS_TABLE property should be passed to the host provider. Your provider's implementation
can use the returned table to intercept display table notifications or to add its own if necessary.

The following list includes tasks that are typically implemented in the wrapped property object
implemented by foreign providers:

· Preprocessing and postprocessing property values for the host recipient in IMAPIProp::GetProps.
· Handling details display table controls such as buttons and listboxes in IMAPIProp::OpenProperty.
· Validating or manipulating property values for the host recipient in IMAPIProp::SetProps.
· Computing required properties such as PR_EMAIL_ADDRESS and verifying that all of the

necessary properties have been set before saving the host recipient in IMAPIProp::SaveChanges.

To implement IABLogon::OpenTemplateID
1. Check if the template identifier passed in with the lpTemplateID parameter is valid and is in a format

that your provider recognizes. If it is not, fail and return MAPI_E_INVALID_ENTRYID.
2. Create an object of the type indicated by the template identifier, either a messaging user, distribution

list, or one-off recipient.
3. Call the IUnknown::AddRef method in the host provider's property object, the object pointed to by

the lpMAPIPropData parameter.
4. If the ulTemplateFlags parameter is set to FILL_ENTRY:

a. If the new object is a messaging user or distribution list:
1. Retrieve all of the properties of the new object, possibly by

calling its IMAPIProp::GetProps method.
2. Call the host provider's IMAPIProp::SetProps method to

copy all of the retrieved properties to the host provider's
property object.

b. If the new object is a one-off recipient, call the host provider's IMAPIProp::SetProps method to
set the following properties:

· PR_ADDRTYPE to the address type handled by your
provider.

· PR_TEMPLATEID to the template identifier from the
lpTemplateID and cbTemplateID parameters.

· PR_DISPLAY_TYPE to DT_MAILUSER or DT_DISTLIST,
as appropriate.

5. Set the contents of the lppMAPIPropNew parameter to point to either your provider's new object or
the property object passed in with the lpMAPIPropData parameter, depending on whether your
provider determines a wrapped object is necessary.

6. If a critical error occurs, such as a network failure or an out of memory condition, return the
appropriate error value. This value should get propagated to the client with the appropriate
MAPIERROR structure, a task performed by the host provider.

 Implementing IABLogon::Logoff

Your provider's IABLogon::Logoff method is called whenever a client calls MAPILogoff or
IMAPISession::Logoff to end a session. Your Logoff method can perform any tasks that relate to
cleaning up resources. Some of those tasks might be:

· To terminate a connection with a remote server.
· To decrement the reference count on the logon object.
· To remove the logon object from the list of logon objects that your provider stores.
· In debug mode, issue traces to locate objects that have leaked memory.

 Implementing Address Book Containers

Most address book providers support at least one container, some of them modifiable. Address book
containers can supply contents and hierarchy tables, searching capabilities, and name resolution.
Modifiable containers allow the deletion of entries such as messaging users, distribution lists, or other
containers and the addition of entries from entries in other containers or from one-off templates.

 Implementing IABContainer::CreateEntry

Your container's IABContainer::CreateEntry method is called to create a new messaging user or
distribution list in the container using a one-off template from a one-off table. A one-off template allows
the client to create a new recipient of a particular type. Most of the fields are editable. The template
pointed to by the lpEntryID parameter might be one that your provider supplies or it might be a
template from a foreign provider, if your provider supports foreign templates. Implementations of
CreateEntry for providers that can create recipients from a foreign template are always more complex
than implementations for providers that cannot.

To implement IABContainer::CreateEntry
1. Determine the type of entry identifier specified by the lpEntryID parameter.
2. If the entry identifier represents a template for a messaging user, distribution list, or address book

container owned by your provider:
a. Create and initialize the appropriate object. Your provider can set some initial properties if

desired. These properties depend on the type of recipient being created.
b. Return a pointer to the object's implementation in the contents of the lppMAPIPropEntry

parameter.
3. If the entry identifier represents a template for a foreign provider:

a. Call IMAPISupport::OpenEntry to open the foreign object.
b. Call the object's IMAPIProp::GetProps method, passing NULL for the property tag array, to

retrieve its properties.
c. Edit the property value array returned from GetProps by changing the property tag to PR_NULL

for all properties that will not apply to the new object and should not be transferred.
d. Create an entry identifier for the new object.
e. Create a new object of the appropriate type, either messaging user or distribution list.
f. Initialize the new object by setting default properties.

g. Check whether or not the foreign object supports the PR_TEMPLATEID property.
h. If the foreign object supports PR_TEMPLATEID, call IMAPISupport::OpenTemplateID to retrieve

a property object interface from the foreign provider and set the contents of the
lppMAPIPropEntry parameter to the foreign property object implementation.

i. If the foreign object does not support PR_TEMPLATEID, set the contents of the
lppMAPIPropEntry parameter to your provider's implementation of the new object.

j. Call the IMAPIProp::SetProps method of the object pointed to by the lppMAPIPropEntry
parameter to set the appropriate properties from the foreign object.

 Implementing IABContainer::CopyEntries

Your container's IABContainer::CopyEntries method is called when one or more recipients from the
same or another container are to be copied into this container. CopyEntries has four input parameters:
an array of entry identifiers representing the recipients to be copied, a window handle for the progress
indicator, a progress object pointer, and a flags value. Your provider should display progress if the
AB_NO_DIALOG flag is not set and use the progress object from the lpProgress parameter if it is not
NULL. If lpProgress is NULL, call IMAPISupport::DoProgressDialog to use MAPI's progress object.
For more information about displaying progress, see Displaying a Progress Indicator.

In addition to AB_NO_DIALOG to suppress a progress indicator, one of two other flags can be set to
request a type of duplicate entry checking: CREATE_CHECK_DUP_LOOSE or
CREATE_CHECK_DUP_STRICT. The CREATE_CHECK_DUP_LOOSE and
CREATE_CHECK_DUP_STRICT flags are only suggestions as to how your provider determines
duplicate entries and can be ignored. MAPI suggests that your provider implement support for these
flags as follows:

Duplicate entry flag Suggested implementation
CREATE_CHECK_DUP_LOO
SE

Check if the display name in the
entry to be created matches the
display name of an entry already
in the container.

CREATE_CHECK_DUP_STRI
CT

Check if both the display name
and the search key in the entry
to be created matches the
display name and search key of
a container entry.

The last flag, CREATE_REPLACE, indicates that if your provider determines that an entry to be
created is a duplicate of an entry already in your container, that the new entry should replace the
existing one.

If your provider is a personal address book, include the PR_DETAILS_TABLE property in every copy
operation. Including the details display table of a copied recipient allows your container to display the
details of the recipient rather than having to call the original container to create the display.

To implement IABContainer::CopyEntries
1. Determine if each entry identifier in the lpEntries parameter is in a format that your provider handles

and if it is not, fail and return MAPI_E_INVALID_ENTRYID.
2. If an entry identifier represents a messaging user, distribution list, or container that your provider

handles:
a. Call your IMAPISupport::OpenEntry to open the corresponding recipient.
b. Copy the recipient to your container.

3. If the entry identifier represents a foreign recipient:
a. Call your container's IABContainer::CreateEntry method to create a new recipient.
b. Set initial properties on the new recipient.

4. Call the new object's IMAPIProp::SaveChanges method to save it.
5. Update the container's contents table to reflect the new recipient.
6. Call IMAPISupport::Notify to send a table notification to registered clients.

 Implementing IABContainer::DeleteEntries

Your container's IABContainer::DeleteEntries method is called to remove one or more recipients.
DeleteEntries has two parameters: an array of entry identifiers representing the recipients to be
deleted and a reserved flags value. Deleting a recipient affects the contents table of your container; in
addition to deleting the recipient, your container must delete the contents table row that represents the
recipient. When the row has been removed from the table, your container must issue a table
notification to each registered client.

To implement IABContainer::DeleteEntries
1. Delete each recipient represented by the entry identifier from your container.
2. If your container's contents table is open:

· Send an fnevTableModified notification with the ulTableEvent member set to
TABLE_ROW_DELETED to registered clients for each deleted contents table row. If your provider
uses the notification utility, call IMAPISupport::Notify to send these notifications.

· If your provider supports object notifications, also send an fnevObjectDeleted notification.

 Implementing Advanced Searching

Some address book containers support an advanced searching capability that allows clients to search
on properties other than PR_DISPLAY_NAME. To support advanced searches, your provider must
implement a special container that is accessible through the PR_SEARCH property of your other
containers. PR_SEARCH contains a container object that provides access to a display table that
describes the dialog box used to enter and edit the advanced search criteria.

To support advanced searching
1. Define a new string property to hold the advanced search criteria.
2. In the section of code in your container's IMAPIProp::OpenProperty method that handles the

PR_SEARCH property:
a. Check that the client is requesting the IMAPIContainer interface. If an inappropriate interface is

being requested, fail and return MAPI_E_INTERFACE_NOT_SUPPORTED.
b. Create a new search object that supports the IMAPIContainer interface.

3. At this point, a call will be made to your search container's IMAPIProp::OpenProperty method to
retrieve its PR_DETAILS_TABLE property. Your provider must supply a display table, typically
through a call to BuildDisplayTable, that describes the container's advanced search dialog box.

4. MAPI displays the search dialog box, allowing the user to enter the appropriate criteria. When the
user has finished, MAPI calls the container's IMAPIProp::SetProps method to store the search
criteria.

5. A call will be made to request your search container's contents table. Populate the contents table
with all of the entries in the container that match the criteria.

 Implementing Name Resolution

Address book providers are responsible for supporting name resolution, the process of associating an
entry identifier with a display name. Clients initiate name resolution when they call
IAddrBook::ResolveName to ensure that each member of an outgoing message's recipient list
corresponds to a valid address.

Your provider can support name resolution in one of two ways:

· Support for the PR_ANR property restriction
· An implementation of IABContainer::ResolveNames

Supporting the PR_ANR property restriction is required. Implementing IABContainer::ResolveNames
is optional and returning MAPI_E_NO_SUPPORT is acceptable.

 Implementing IABContainer::ResolveNames

Your provider's implementation of IABContainer::ResolveNames attempts to locate an exact match
for each unresolved display name in the ADRLIST structure passed in with the lpAdrList parameter. An
unresolved display name is missing the PR_ENTRYID property in the property value array in its
aEntries member of the ADRLIST. Any entries that have zero properties associated with them should
be ignored.

The result of your provider's attempt at resolution is reported in the lpFlagList parameter, an array of
flags that corresponds to the array of display names in lpAdrList. The flags are positional such that the
first flag corresponds to the first aEntries member in the ADRLIST, the second flag corresponds to the
second aEntries member, and so on.

There are three possible results for each unresolved entry:

· No match can be found. No container entries match the entry in the ADRLIST structure. Address
book providers set the corresponding entry in the lpFlagList parameter to MAPI_UNRESOLVED.

· Several matches can be found. There are multiple container entries that match the entry in the
ADRLIST structure. Address book providers set the corresponding entry in the lpFlagList parameter
to MAPI_AMBIGUOUS. They do not change the number of entries in the ADRLIST structure.

· An exact match can be found. There is only one container entry that matches the entry in the
ADRLIST structure. Address book providers set the corresponding member in the lpFlagList
parameter to MAPI_RESOLVED and add the entry identifier to the array of properties associated
with the ADRLIST entry.

 Implementing the PR_ANR Property Restriction

All address book providers are required to support ambiguous name resolution, or the PR_ANR
property restriction, on their container contents tables. To support PR_ANR restrictions, your provider
must supply a table object that supports handling the PR_ANR property restriction in its implementation
of IMAPITable::Restrict. To handle the PR_ANR restriction, perform a "best guess" type of search,
matching against one or more particular properties that make sense for your provider. Your provider
can choose to use the same property or properties every time, such as PR_DISPLAY_NAME or
PR_ACCOUNT, or allow an administrator to choose from a list of acceptable properties.

Although most providers supply their own table object implementation, it is an option to customize the
implementation supplied by MAPI through the CreateTable function. Because the MAPI
implementation does not support restrictions, a provider must create a wrapper object to include a
customized version of Restrict that intercepts the call.

 Implementing a Host Address Book Provider

A host provider is an address book provider that includes recipients from other providers in its
containers and relies on the implementation of the recipients by the other providers to partially control
their maintenance. A host provider uses the template identifiers of these foreign recipients to bind the
data for these recipients to code in the foreign provider. This binding process is initiated when your
provider retrieves the PR_TEMPLATEID property of a recipient and passes it in a call to
IMAPISupport::OpenTemplateID.

When your provider calls IMAPISupport::OpenTemplateID, MAPI matches the MAPIUID within the
template identifier with a MAPIUID registered by a provider and calls the provider's
IABLogon::OpenTemplateID method. The foreign provider might return a pointer to your provider's
property object or its own property object implementation, an implementation that wraps your provider's
object. The returned pointer is placed in the contents of the lppMAPIPropNew parameter.

Your provider can choose whether or not to call IMAPISupport::OpenTemplateID with the
FILL_ENTRY flag set. Set this flag when the recipient is being created or when a long time has passed
since your provider has refreshed the recipient's properties. A common use of the FILL_ENTRY flag is
to keep a recipient in your provider in sync with the original. Implementing this type of synchronization
schedule enhances performance. To keep a foreign recipient in sync:

1. Determine an appropriate interval for periodic updates.
2. Timestamp each call to IMAPISupport::OpenTemplateID.
3. Evaluate whether or not it is necessary to perform a full update based on the amount of time that

has expired since the last call. If a full update is necessary, call IMAPISupport::OpenTemplateID
with the FILL_ENTRY flag. If it is not necessary, do not set the flag on the call.

When a client makes a request for one of the copied recipient's properties, your provider can choose
whether to handle the request itself or use the code supplied by the foreign provider. Your provider can
expect the foreign provider to intercept most, if not all, calls to IMAPIProp except for
IMAPIProp::OpenProperty. A call to OpenProperty requesting the PR_DETAILS_TABLE property is
always forwarded back to your provider.

To access template identifier code
1. Open the recipient and call its IMAPIProp::GetProps method to retrieve the PR_TEMPLATEID

property. If GetProps fails because PR_TEMPLATEID is unavailable, the foreign provider does not
support a template identifier and related code for this recipient. Your provider will need to use its
implementation of the recipient for all maintenance.

2. If the template identifier is returned from GetProps, pass it and a pointer to the recipient's
IMAPIProp implementation in a call to the IMAPISupport::OpenTemplateID method. Set the
FILL_ENTRY flag if most or all of the recipient's properties need to be updated, such as at creation
time or if they have not been updated for a while.

3. If OpenTemplateID returns the foreign provider's IMAPIProp implementation, return to the client a
pointer to this implementation.

4. If OpenTemplateID does not return an implementation, typically because the foreign provider is not
in the profile, return to the client a pointer to your provider's IMAPIProp implementation. The client
should be able to work with the object's properties using either interface.

 Implementing Recipient Details

MAPI provides a common dialog box for showing recipient details. This dialog box is modal; a
modeless version is provided for in the interface, but is unsupported. The details dialog box is created
from a display table and an IMAPIProp implementation. The display table describes the appearance of
the details display and the IMAPIProp implementation controls the data for the recipient. Your provider
is responsible for supplying the display table and the IMAPIProp implementation for each recipient.

The easiest way to create the display table is to define a DTPAGE structure and call
BuildDisplayTable. However, some providers, specifically read-only providers that allow the creation
of one-off recipients, use IPropData. The IMAPIProp implementation can be any type of property
object.

There are two methods for invoking this dialog box: IAddrBook::Details and IMAPISupport::Details.
When your provider calls one of these methods to request details for a recipient, MAPI first opens the
recipient by calling its container's IMAPIContainer::OpenEntry method. Next it calls the recipient's
IMAPIProp::OpenProperty method to request the PR_DETAILS_TABLE property.
PR_DETAILS_TABLE is the property that represents a recipient's details display table.

The IPropData interface can be used to monitor changes on display table controls, as described in the
following procedure:

To monitor changes to a control
1. Before the user gains access to the control, call IPropData::HrSetObjAccess to set the control's

access to IPROP_CLEAN.
2. Allow the user to work with the dialog box.
3. When the user has finished, call IPropData::HrGetPropAccess to retrieve the current access level

of the control.
4. If the access level is IPROP_DIRTY, the user has modified the control. Your provider should:

· Call IPropData::HrSetPropAccess to set the access level back to IPROP_CLEAN.
· Call the property data object's IMAPIProp::GetProps method to retrieve the changed property

and update it by calling IMAPIProp::SetProps.
5. If the access level is still IPROP_CLEAN, the control has not been modified.

For more information about creating display tables, see About Display Tables.

 Implementing Control Objects

Control objects, or objects that support the IMAPIControl interface, are implemented by providers to
add functionality to a button that appears on a MAPI dialog box. Control objects can only be
implemented for buttons.

IMAPIControl has three methods: GetLastError, GetState, and Activate.

MAPI calls IMAPIControl::GetState:

· When the dialog box on which the button appears is first displayed.
· When a display table notification is issued for the button.

Your provider returns one of two values that reflects whether or not a user can interact with the button:
MAPI_DISABLED or MAPI_ENABLED. This value is returned in the contents of the lpulState
parameter. MAPI uses the returned value to determine whether to disable or enable the button.

When the user clicks the button, MAPI calls your provider's Activate method. Activate performs the
task that has been associated with the button. This task can be anything appropriate for your provider,
such as displaying a dialog box or updating a property. If the task is unsuccessful because the user has
canceled it, Activate should return MAPI_E_USER_CANCEL. With other causes of failure, return the
appropriate error value.

If the task is successful, and it is linked to a property change that is reflected in another control on the
dialog box, call ITableData::HrNotify to issue a display table notification with the changed property's
PR_CONTROL_ID in the TABLE_NOTIFICATION structure. Do not place the new property value in the
structure; your provider must return the new value when IMAPIProp::GetProps is called. Although
typically display table notifications cannot be used to disable or enable a control, buttons are the
exception. MAPI will reflesh the changed control to respond to the notification.

MAPI calls your provider's GetLastError method when Activate returns an error other than
MAPI_E_USER_CANCEL. If GetLastError places extended error information in the MAPIERROR
structure that it returns in the contents of the lppMAPIError parameter, MAPI displays it for the user.

 Implementing an Address Book Status Object

Address book providers are required to supply status information to clients and to the status table. To
supply status information, your provider must:

· Call IMAPISupport::ModifyStatusRow.
· Implement IABLogon::OpenStatusEntry.
· Implement the methods of the IMAPIStatus interface.
· Support the properties that are required for status objects and the status table, including

PR_RESOURCE_METHODS.

During logon, call IMAPISupport::ModifyStatusRow to have MAPI create a row in the status table for
your provider. Pass a property value array containing the column information for the row and zero for
the ulFlags parameter. If at some point later in the session your provider's status changes and it
becomes necessary to update the column information, call ModifyStatusRow again with the
STATUSROW_UPDATE flag set. Any information that is included in your provider's status table row
must also be available through its status object.

MAPI will call IABLogon::OpenStatusEntry when a client has asked to open your provider's status
object. Providers can support read-only status objects, read/write status objects, or both, depending on
what is requested. Callers pass the MAPI_MODIFY flag to OpenStatusEntry to request a writeable
status object. If your provider is like most providers and does not allow changes to be made to its
status object, return a status object that is read-only. Do not fail OpenStatusEntry. Clients expecting to
receive read/write status objects should verify that read/write access has been granted before
attempting to make any changes.

All status objects implement the IMAPIStatus interface, but not all status objects fully support all four of
the methods. MAPI requires address book providers to support ValidateState to allow clients to check
provider status and strongly recommends them to support SettingsDialog to display configuration
information in a property sheet. FlushQueues is for transport providers only and ChangePassword is
optional. If your provider is password protected and clients can set the password, implement
ChangePassword.

To inform clients about the methods that your provider's status object supports, set the appropriate
flags in the PR_RESOURCE_METHODS property. PR_RESOURCE_METHODS is a required column
entry in the status table. For example, if your provider supports ValidateState and SettingsDialog
only, set PR_RESOURCE_METHODS to:

STATUS_VALIDATE_STATE | STATUS_SETTINGS_DIALOG

For more information about implementing the methods of IMAPIStatus and supporting status object
properties, see Status Objects.

 Implementing One-Off Tables

Your provider might implement one or more one-off tables. A one-off table is a summary list of one-off
templates used to create recipients, either directly into a container or into the recipient list of an
outgoing message. A one-off template is a form users employ for entering data relevant to a particular
type of address. When the user is finished working with the template, your provider creates the new
recipient and adds it to the message. Typically each template handles a single address type. However,
it is possible for a template to handle multiple types or for multiple templates to handle the same type.

Your provider must support the OpenEntry method for each template that it includes in the one-off
table. The implementation of OpenEntry should retrieve a display table for the template. MAPI uses
the display table to make the template visible to the user.

Although most of the rows in one-off tables represent templates, some of the rows can be used to
categorize, or group, templates. Whether or not a row in a one-off table represents a template is
indicated by the value of its PR_SELECTABLE column. Rows that represent templates have the
PR_SELECTABLE column set to TRUE; rows that do not represent templates have it set to FALSE.

MAPI defines three types of one-off tables:

· A one-off table that reflects the templates that an individual container supports
· A one-off table that reflects all of the templates that your provider supports
· A one-off table that reflects all of the templates that all of the providers in the profile support plus

some that MAPI supports

The first two types are implemented by providers that support the creation recipients, either onto a
message or into a container. Your provider can include the same set or a different set of templates in its
one-off tables. The main difference between the two types is that your provider table should include
templates for creating recipients that can be used on outgoing messages and your container table
should include templates for creating recipients to be added to your container. A container may only
support a restricted set of templates, but the provider one-off table should include every template the
provider supports.

The third type of one-off table is implemented by MAPI; providers gain access to it by calling
IMAPISupport::GetOneOffTable. MAPI's one-off table is the union of all of the provider tables; it
includes every template supported by every provider in the profile. It also includes templates supported
by MAPI. Your provider can use this table in place of the table requested for a container. However, the
templates in this table can also be used for creating recipients for outgoing messages.

 Implementing a Provider One-Off Table

MAPI calls your provider's IABLogon::GetOneOffTable method when the user of a client application
adds a recipient to an outgoing message. Typically the types of addresses requested are unique to
your messaging system. If your provider supports recipient creation, it must supply a one-off table that
exposes templates for every type of supported recipient address. If your provider does not support
recipient creation, return MAPI_E_NO_SUPPORT from the GetOneOffTable call.

MAPI will typically keep your provider's one-off table open for the lifetime of the session, releasing it
only when a client calls either the subsystem's or address book's IMAPIStatus::ValidateState method.
MAPI registers for notifications on this table so that if templates are added or deleted, these changes
can be reflected back to the user.

To implement IABLogon::GetOneOffTable
1. Check the value of the flags parameter, ulFlags. If the MAPI_UNICODE flag is set and your provider

does not support Unicode, fail and return MAPI_E_BAD_CHARWIDTH.
2. Check if your provider's one-off table has already been created. Because one-off tables are typically

static, your provider never has to go through the creation process more than once. If a table already
exists, return a pointer to it.

3. If a one-off table does not yet exist, call CreateTable to create one.
4. Set the following properties for the columns in your table rows:

· PR_DISPLAY_NAME to the name of the type of recipient that the template can create.
· PR_ENTRYID to the entry identifier for the one-off template.
· PR_DEPTH to indicate the hierarchy level in the one-off table display.
· PR_SELECTABLE to TRUE to indicate if the row represents a template and FALSE otherwise.
· PR_ADDRTYPE to the type of address created by the template.
· PR_DISPLAY_TYPE to DT_MAILUSER or another value that indicates the type of display for the

template.
· PR_INSTANCE_KEY to a unique binary value.

5. Call ITableData::HrModifyRow to modify the table directly.
6. Call ITableData::HrGetView to create an IMAPITable interface implementation to return to the

caller.

 Implementing a Container One-Off Table

To access the one-off table belonging to one of your containers, MAPI calls the container's
IMAPIProp::OpenProperty method to open the PR_CREATE_TEMPLATES property with the
IMAPITable interface. Your container is asked to return its one-off table when a client application is
trying to add a recipient to the container. If the container allows any recipients, your provider can either
return its own table implementation or call IMAPISupport::GetOneOffTable to return the MAPI
implelmentation.

The set of templates in the container one-off table should reflect the type of recipients that the
particular container can hold. Typically, this includes one or two templates, templates for creating an
individual messaging user or a distribution list. The entry identifiers for these templates are held in the
PR_DEF_CREATE_MAILUSER and PR_DEF_CREATE_DL properties. However, containers are by no
means limited to these types of entries. They can hold other types of recipients or non-recipient entries
such as directories.

 Developing a Transport Provider

You should be familiar with the MAPI subsystem's architecture, the C++ language, and with writing
dynamic-link libraries (DLLs) for the various Windows platforms before developing a transport provider.

For information about implementation of features necessary for TNEF and remote transport providers,
see Developing a TNEF-Enabled Transport Provider and Developing a Remote Transport Provider.

 What is a Transport Provider

A transport provider is a dynamic-link library (DLL) which acts as an intermediary between the MAPI
subsystem and one or more underlying messaging systems. A messaging system is some specific
mechanism by which messages are sent and received. Some examples of messaging systems are:

· A shared network file system that the transport provider writes messages to directly.
· A TCP/IP network interface that the transport provider uses to connect to a messaging server.
· An online service that users dial into.
· A host-based messaging or office automation system.
· A set of remote procedure calls to a messaging server.
· Anything that can be used to transfer data from one computer to another.

A transport provider DLL must conform to the interface specified by MAPI. As a transport provider
developer, you will implement this interface in terms of the functionality present in the messaging
system.

Types of Transport Providers

All transport providers support a range of standard features, such as:

· Providing proper security for the underlying messaging system.
· Sending and receiving messages from the underlying messaging system.
· Exposing the address types the transport providers support so the MAPI spooler and client

applications can use them appropriately.
· Accepting delivery for specific recipients.

In addition, MAPI supports two specialized types of providers for specific messaging systems.

Transport type Added functionality
Remote
Transport

Enables interoperabilty with
remotely connected clients.

TNEF Transport Allows MAPI properties to be
preserved on messaging
systems that do not support
them.

Remote transports are used by messaging clients that are using low-bandwidth network connections.
The most common example is a client operating over a modem link. Remote transports implement the
IMAPIFolder : IMAPIContainer interface in addition to the basic functionality implemented by all
transports. The IMAPIFolder interface makes it possible for client applications to selectively download
messages from a remote message server based on header information at a user's request. Remote
transports make themselves known to clients as remote transports by registering themselves in the
MAPI status table. For information on implementing remote transports, see Developing a Remote
Transport Provider.

TNEF transports are used for translating messages between messaging systems that support different
sets of MAPI properties. TNEF transports use the MAPI ITnef:IUnknown interface to convert any
properties that the destination system cannot represent directly into a binary data stream that can be
attached to the message. Later, another TNEF transport can use ITnef to decode the data stream and
make the original MAPI properties available to client applications. Additionally, TNEF support is
required if your transport needs to support custom message classes. For information on implementing
TNEF transports, see Developing a TNEF-Enabled Transport Provider.

If your transport provider is not one of these types, you will have to implement it with the basic MAPI
functions and networking functions available on your target platform.

Transport Provider's Role in the MAPI Subsystem

Transport provider dynamic-link libraries (DLLs) provide the interface between the MAPI spooler and
that part of a messaging system responsible for message sending and receiving. The MAPI spooler
and the transport provider work together to handle the responsibilities of sending a message or
receiving a message. The MAPI spooler loads the transport provider DLL when it is first used and
releases it when it is no longer needed. Multiple transports can be installed on the same system, but
MAPI supplies the one spooler required.

Client applications do not typically communicate directly with the transport provider; rather, clients
submit messages through a store provider, and the MAPI spooler sends outgoing messages to the
appropriate transport provider and delivers incoming messages to the appropriate message store. The
MAPI spooler does its work and makes its calls to transport providers when foreground applications are
idle. After optionally displaying dialog boxes when the transport provider is first logged on, transport
providers operate in the background unless called by the client to flush send and receive queues.

Transport providers have the following responsibilities in a MAPI messaging system:

· Register the address types they can accept with the MAPI spooler so that the MAPI spooler can
submit messages to the appropriate transport provider depending on the destination address of the
messages. One transport provider can register more than one address type. Transport providers can
also register specific recipients' addresses with the MAPI spooler. Messages addressed to one of
these addresses will be submitted to the transport provider that registered this address with the
MAPI spooler. For more information, see Transport Provider-MAPI Spooler Operational Model.

· Deliver incoming messages to the MAPI spooler. Depending on the nature of the messaging system,
a transport provider can either directly notify the MAPI spooler when a new message arrives, or can
request that the MAPI spooler poll the transport provider periodically to check for new messages.

· Convert MAPI message properties to and from message properties native to the messaging system.
For example, the transport provider might have to convert the sender's and recipients' addresses in
an outgoing message to a form that is acceptable to the messaging system. Some messaging
systems do not support all of the MAPI message properties. For information on preserving MAPI
message properties when delivering messages to a messaging system, see Developing a TNEF-
Enabled Transport Provider.

· Register message and recipient options specific to the transport provider.
· Perform any verification of credentials required by the messaging system.
· Access outbound messages using the message object passed to it by the MAPI spooler.
· Translate message format as required by the underlying messaging system.
· Notify the MAPI spooler which recipients of an outgoing message the transport provider has

accepted responsibility for handling by setting the PR_RESPONSIBILITY property for those
recipients.

· Inform the MAPI spooler when an incoming message needs to be handled.
· Pass incoming message data to the MAPI spooler by using message objects.
· Assign values to all required MAPI message properties on incoming messages.
· Delete the message from the underlying messaging system after delivery, if necessary.
· Provide status information for the MAPI spooler and client applications.

The following illustration shows a transport provider's role with respect to the other components of the
MAPI architecture.

{ewc msdncd, EWGraphic, groupx837 0 /a "MAPI.WMF"}

Transport Provider-MAPI Spooler Operational Model

Transport provider initialization, startup, processing, shutdown and deinitialization are accomplished by
a series of calls from the MAPI spooler to the transport provider. The calls are sequenced as follows:

1. The MAPI spooler calls the XPProviderInit function, passes a support object, gets the provider
object, and checks that the provider and MAPI spooler support a compatible range of MAPI version
numbers.

2. The MAPI spooler calls the IXPProvider::TransportLogon method of the XPProvider object. A
session is established between the MAPI spooler and the transport with the credentials in the
current section of the profile. The provider returns a logon object.

3. The MAPI spooler calls the IXPLogon::AddressTypes method. The transport returns a list of the
Unique Identifiers (UIDs) and e-mail address types it will accept.

4. The MAPI spooler calls the IXPLogon::RegisterOptions method for recipient options. The transport
returns a list of the available per-recipient options for any of the e-mail address types that it returned
in the IXPLogon::AddressTypes call.

5. The MAPI spooler calls RegisterOptions for message options. The transport returns a list of the
available per-message options for any of the e-mail address types that it returned in the
IXPLogon::AddressTypes call.

6. The transport calls the IMAPISupport::ModifyStatusRow method to create its row in the MAPI
status table.

7. The MAPI spooler calls the IXPLogon::TransportNotify method to enable message transmission
and reception.

8. If requested by the transport provider in its return for the TransportLogon call, the MAPI spooler
periodically calls the IXPLogon::Idle method. Idle processing is useful if the transport provider
needs to poll the underlying messaging system for new messages or perform other low-priority
tasks.

9. The MAPI spooler and transport send and receive messages (see Message Submission Model and
Message Reception Model). The MAPI spooler services transport requests and calls on support,
message, and attachment objects.

10. The MAPI spooler calls the TransportNotify method to disable message transmission and
reception.

11. The MAPI spooler releases the logon and provider objects. See IXPProvider::Shutdown.

Message Submission Model

Message submission is accomplished by a series of calls from the MAPI spooler to the transport
provider. The calls are sequenced as follows:

1. The MAPI spooler calls IXPLogon::SubmitMessage, passing in an IMessage instance, to begin
the process.

2. The transport provider then places a reference value ¾ a transport-defined identifier used in future
references to this message ¾ in the location referenced in SubmitMessage.

3. The transport provider accesses the message data by using the passed IMessage instance. For
each recipient in the passed IMessage for which it accepts responsibility, the transport provider sets
the PR_RESPONSIBILITY property, and then returns.

4. The transport provider can use the IMAPISupport::StatusRecips method to indicate if it recognizes
any recipients that cannot be delivered to, or to create a standard delivery report. StatusRecips is a
convenience for transport providers that have determined that some of the recipients cannot be
delivered to or have received delivery information from their underlying messaging system that the
user or client application might find useful.

5. The MAPI spooler's call to IXPLogon::EndMessage is the final responsibility hand-off for the
message from the MAPI spooler to the transport provider.

6. The MAPI spooler can use IXPLogon::TransportNotify to cancel message processing during the
SubmitMessage or EndMessage calls.

Message Reception Model

The transport provider controls whether whether the MAPI spooler must poll it for incoming mail or
whether it performs a callback to the MAPI spooler when new mail arrives. The transport provider sets
the SP_LOGON_POLL flag when it returns from IXPProvider::TransportLogon to request polling.
Otherwise, the transport uses IMAPISupport::SpoolerNotify when incoming mail is available. After
learning that incoming mail is available, the MAPI spooler opens a new message and asks the
transport provider to store the received message properties into the message.

This process works as follows:

1. Available messages are indicated by either the transport provider calling
IMAPISupport::SpoolerNotify or by the MAPI spooler calling IXPLogon::Poll.

2. The MAPI spooler calls IXPLogon::StartMessage to initiate the process.
3. The transport provider places a reference value in the location referenced in StartMessage. These

reference values allow the transport provider and the MAPI spooler to keep track of which message
is being processed when there are multiple messages to deliver.

4. The transport provider stores the message data into the passed IMessage instance.
5. The transport provider calls the IMAPIProp::SaveChanges method on the IMessage instance and

returns from StartMessage.
6. The MAPI spooler calls IXPLogon::TransportNotify if it must stop message delivery.

Note If a transport provider must deliver a large number of messages and the transport provider is
using IMAPISupport::SpoolerNotify instead of IXPLogon::Poll, care should be taken not to call
SpoolerNotify too frequently in order not to deprive other transport providers of CPU time. The MAPI
spooler does have logic to prevent this from happening, but in general the interval between
SpoolerNotify calls should be longer than the time it takes your transport provider to process one
message.

Also, the MAPI spooler may not process an incoming message immediately. The MAPI spooler may
ask the transport provider to perform other tasks before it receives the incoming message.

Required Functionality for Transport Providers

All MAPI transport providers must implement certain features, the most important of which are as
follows:

· Your transport provider must follow the general guidelines for working with MAPI and other service
providers as described in MAPI Component Basics and Service Provider Basics.

· Your transport provider DLL must expose to MAPI its XPProviderInit initialization function.
· Your transport provider must expose to MAPI its implementation of the IXPProvider and IXPLogon

interfaces.
· Your transport provider must expose to MAPI and client applications its implementation of the

IMAPIStatus interface.
· Your transport provider must have a user interface for configuration, such as a wizard interface or

service entry.

Working with MAPI and Other Providers

MAPI service providers of any kind must follow certain guidelines to work with other MAPI components.
Each service provider must:

· Use the proper Provider and Logon objects to initialize your provider.
· Return a dispatch table of provider entry points to the messaging system upon initialization.
· Register a MAPI status table row for each resource owned by a provider and call the

IMAPISupport::ModifyStatusRow method at appropriate times.
· Use the IMAPISupport::NewUID method to obtain valid Unique Identifiers (UIDs).
· Support the common MAPI interfaces on objects returned by your provider.
· Use the MAPI memory allocation functions to allocate memory returned to client applications and to

release memory allocated by other parts of the MAPI subsystem.
· Maintain a profile section, if necessary, to store credentials to the underlying messaging system.
· Use the IMAPISupport::RegisterPreprocessor method to register any message preprocessing

functions.
· Include the proper header files (including MAPISPI.H) that define common constants, structures,

interfaces, and return values.
· Follow address format conventions for common address types.

Interacting with the MAPI Spooler

The methods in the IXPLogon interface are used by the MAPI spooler when calling the transport
provider. It should be possible for most types of transport providers to implement most of these
methods so that they return quickly. This is desirable because if a method takes a long time to return
then it should be broken up with calls back to the MAPI spooler to release the CPU for other tasks. This
is critical in non-preemptive multitasking environments like 16-bit Windows. Transport providers for 16-
bit Windows platforms should take particular care to break up any operation that takes more than 0.2
seconds. This is also necessary in 32-bit Windows to provide time to handle system-wide messages
such as shutdown notifications or plug-and-play device notifications.

The MAPI spooler does its work and makes its calls to transport providers when foreground
applications are idle. After possibly displaying dialog boxes when the transport provider is first logged
on (governed by flags passed from MAPI to the transport provider), transport providers operate in the
background unless called by the client to flush send and receive queues. When flushing queues is the
only time that a transport provider need not release the CPU, and then only if the user is informed that
a potentially long action is in progress. The MAPI spooler typically requests that a transport provider
flush its queues in response to a user action, so the transport provider typically does not need to do
anything to ensure that the user is informed.

A transport provider can independently decide to flush a queue and use the
STATUS_INBOUND_FLUSH and STATUS_OUTBOUND_FLUSH bits in the PR_STATUS_CODE
property of its status row to inform the MAPI spooler that it wants an inordinate amount of attention so
that it can get the job done. The status row is updated using the IMAPISupport::ModifyStatusRow
method. In this case the transport provider should probably display a progress dialog or other interface
to inform the user that a long action is occuring.

Since network activity often takes more than 0.2 seconds, transport providers should, whenever
possible, use asynchronous network requests. This enables them to initiate a request, release the CPU
by calling back to the MAPI spooler, and when the MAPI spooler again gives them control, to check to
see if their network request has completed. If it has not yet completed, they again release the CPU by
calling back to the MAPI spooler with the IMAPISupport::SpoolerYield method.

During message processing, between IXPLogon::SubmitMessage and IXPLogon::EndMessage and
during IXPLogon::StartMessage the transport provider typically makes many calls on objects exposed
to it by the MAPI spooler. As part of its handling of these objects, the MAPI spooler helps the transport
provider behave appropriately as a background process by yielding on its own when appropriate. A
transport provider requiring time-critical processing can declare a critical section to the MAPI spooler
using the IMAPISupport::SpoolerNotify support object method. In this case, the CPU is released only
on explicit SpoolerYield calls by the transport provider until the transport provider ends critical section
processing with another call to SpoolerNotify. Note that this is not the same as a Win32 critical
section. This should only be done when the transport provider needs real-time control of external
resources such as reading incoming data from a FAX line. Since this raises the priority of the MAPI
spooler process and can cause the workstation to be unresponsive for the duration of the operation, it
is a good idea to notify the user that a potentially long action is underway and provide a progress
indicator if possible.

Initializing the Transport Provider

The transport-spooler interface defines calls the MAPI spooler makes to a transport provider. Transport
providers implement these routines in a DLL. The first direct entry point in the DLL used by the MAPI
spooler must be the transport provider initialization function XPProviderInit.

MAPI uses the operating system routine GetProcAddress to get the address of the provider's
initialization routine and then calls that routine. The name of the initialization routine is XPProviderInit
for transport providers. It is different for other types of MAPI service providers so that one DLL can
contain any combination of provider types, but only one provider of a particular type. However, one
provider of a given type can implement multiple services of its type. For example, one transport
provider can implement message transport functionality to multiple message services.

The MAPISPI.H header file has a type definition for the function prototype of the transport provider
initialization function, and a predefined procedure name for it. By naming the initialization routines in
your C and C++ files with the same names used by GetProcAddress and by using a straightforward
export declaration in your DLL.DEF file, you automatically get type checking of the parameters on your
initialization routine. See the sample transport provider source code for examples.

If a provider's initialization call succeeds but returns a service provider interface version number too
small for MAPI to handle, MAPI immediately calls the Release method of the provider object and
proceeds as if the initialization call had failed with MAPI_E_VERSION. This way MAPI and the provider
jointly define the range of service provider interface version numbers they can handle, and if nothing
matches then provider loading fails with a MAPI_E_VERSION return value.

The last step for the MAPI spooler in getting access to service provider resources is to log onto the
transport provider. The MAPI spooler calls the IXPProvider::TransportLogon method of the
IXPProvider object returned from XPProviderInit. This is the call where credentials ,if used, are
checked and dialog boxes can be allowed.

If a process opens a second transport session on the same transport provider and MAPI session, the
transport provider DLL should not create a second provider object. The first provider object should be
used to log onto the second transport session. A transport provider should be programmed to support
multiple transport sessions in a single provider object. A second provider object should only be created
if different MAPI sessions are used in the same process.

Releasing the Transport Provider
When MAPI or the MAPI spooler finishes using a transport logon object

1. MAPI or the MAPI spooler calls the transport provider's IXPLogon::TransportLogoff method.
2. The transport provider invalidates the status object by calling the IMAPISupport::MakeInvalid

method. Whether the transport provider invalidates message objects that are being sent or received
at the time of the TransportLogoff call depends on the flags that were passed to TransportLogoff.

3. The transport provider calls the support object's Release method to remove the provider's row from
the status table and remove from internal tables any Unique Identifiers (UIDs) that were set with the
IMAPISupport::SetProviderUID method. It decrements the count of known logon objects active on
this provider object. If the count reaches zero, MAPI calls the IXPProvider::Shutdown method and
Release on the provider object. If this was the last known provider object using this DLL on this
process, MAPI calls FreeLibrary on the DLL at some later time. Memory for the MAPI support
object is freed and the support object Release method returns.

4. The TransportLogoff method returns S_OK.
5. MAPI or the MAPI spooler calls Release on the transport provider's logon object. The memory for

the object is discarded.
6. MAPI or the MAPI spooler calls FreeLibrary on the provider DLL.

For robustness, the logon and provider objects should be able to handle final Release calls on
themselves without first having their TransportLogoff or Shutdown methods called. If Release is
called in such cases, transport providers should treat the calls as if TransportLogoff or Shutdown had
been called with a zero argument followed by Release.

Implementing the FlushQueues Method

The MAPI spooler uses the IXPLogon::FlushQueues method to download and upload any pending
messages to and from a transport provider. Typically, the MAPI spooler will flush the queues for all
transport providers that are logged onto the session, starting with the first transport provider as set in
the transport order section of the user's profile. Flushing queues is almost always the result of a direct
request by the user, so the sending and receiving of messages while queues are flushing is
synchronous to the MAPI spooler. Because these calls are synchronous, the transport provider should
process them as quickly as possible.

Transport providers must handle the FlushQueues call as described in the following sequence of steps
to enable proper message processing and to enable external resources such as modems to be used
by other transport providers as part of the MAPI spooler's FlushQueues operation.

St
ep

Component Implementation

1. MAPI spooler Calls the IXPLogon::FlushQueues method for
the first transport provider listed in the transport
order of the user's profile, passing the requested
flags in the ulFlags parameter. FlushQueues is
called once with all flags set for the entire upload
and download operation.

2. Transport
Provider

Needs to do a number of things before returning
from the FlushQueues call.
If previously submitted messages are being
deferred, the IMAPISupport::SpoolerNotify
method should be called with the
NOTIFY_SENT_DEFERRED flag set. Note that it
is possible for the MAPI spooler to cancel a
message that has been deferred before the
transport provider has a chance to finish
processing the message.
If the transport provider uses an external
resource such as a modem, the connection to the
external resource should be established.
The STATUS_OUTBOUND_FLUSH bit in the
PR_STATUS_CODE property of the transport
provider's status row must be set using the
IMAPISupport::ModifyStatusRow method.
The transport provider should then return S_OK
for the FlushQueues call.

3. MAPI spooler Checks the transport provider's status row for the
STATUS_OUTBOUND_FLUSH bit and calls
IXPLogon::SubmitMessage for the first
message in the queue.

4. Transport
provider

Handles the message and returns from the
SubmitMessage call.

5. MAPI spooler If the transport provider returns S_OK from
SubmitMessage, the MAPI spooler calls
IXPLogon::EndMessage for the message as it
does with regular message sending.
If the transport provider returns a value other
than S_OK from SubmitMessage, the MAPI

spooler handles the value appropriately before
calling EndMessage, or before calling
SubmitMessage again.

6. Transport
provider

Returns from EndMessage with its message
processing status in the lpulFlags parameter.

7. MAPI spooler and
transport provider

The SubmitMessage-EndMessage loop
continues until all messages in the queue have
been downloaded.

8. MAPI spooler Notifies the transport provider that it is has
finished downloading messages by calling the
transport provider's IXPLogon::TransportNotify
method with the
NOTIFY_END_OUTBOUND_FLUSH flag set.

9. Transport
provider

Should free any external resources used in
sending outbound messages so they can be
used by other transport providers to flush their
queues.
The STATUS_INBOUND_FLUSH bit in the
PR_STATUS_CODE property of the transport
provider's status row must be set using
ModifyStatusRow.

10. MAPI spooler Checks the transport provider's status row for the
STATUS_INBOUND_FLUSH bit and calls
IXPLogon::StartMessage if it is set.

11. Transport
provider

Processes the message and returns from
StartMessage. If the transport provider has other
messages to upload, it should call SpoolerNotify
with the NOTIFY_NEWMAIL flag set.
If the transport provider has no messages to
upload, it should call IMAPIProp::SaveChanges
on the message the MAPI spooler passed in
StartMessage and return.

12. MAPI spooler Continues calling StartMessage until
SaveChanges is called on a message. After the
transport provider has finished uploading, the
MAPI spooler calls TransportNotify with the
NOTIFY_END_INBOUND_FLUSH flag set.

13. Transport
provider

Clears the STATUS_INBOUND_FLUSH bit in the
PR_STATUS_CODE property of its status row
using ModifyStatusRow and releases all
external resources that have been released so
they are available for use by other transport
providers.

14. MAPI spooler Calls FlushQueues for the next transport
provider listed in the transport order of the user's
profile.

If a client application calls IMAPIStatus::FlushQueues on a transport provider's status object, the
transport provider should set the appropriate bit in its status row with ModifyStatusRow. The MAPI
spooler then calls the provider's IXPLogon::FlushQueues method at the MAPI spooler's convenience.
When the provider's IXPLogon::FlushQueues method is called as a result of a client application's
IMAPIStatus::FlushQueues call, the operation occurs asynchronously to the client application.

Otherwise IXPLogon::FlushQueues works synchronously with the MAPI spooler.

For performance reasons, the MAPI spooler will only call a transport provider's FlushQueues method if
the STATUS_INBOUND_FLUSH and STATUS_OUTBOUND_FLUSH flags are set in the transport
provider's status row. Consequently, a transport provider can stop the FlushQueues operation at any
time by clearing the STATUS_OUTBOUND_FLUSH and STATUS_INBOUND_FLUSH flags in its status
row. If the MAPI spooler is shutting down and needs to end the FlushQueues operation, it calls
TransportNotify with both the NOTIFY_END_INBOUND_FLUSH and
NOTIFY_END_OUTBOUND_FLUSH flags set. The transport provider should release all external
resources and return.

Setting Properties on Incoming Messages

The client applications within the MAPI subsystem expect a number of properties in any received
message. When the transport provider brings a message into MAPI, it should set these properties,
since it is either the only process with the necessary information to do so, or is at least the best source
of the information.

Providers are encouraged to set the values for all of these properties in incoming messages.

Property Name Description
PR_SUBJECT Subject of the message.
PR_BODY Plain text message text.
PR_RTF_COMPRESSED Compressed RTF

message text.
PR_MESSAGE_DELIVERY_TIME Date and time the

message was delivered.
PR_SENDER_NAME Display name of the

message originator.
PR_SENDER_ENTRYID Address book entry of the

message originator.
PR_SENDER_SEARCH_KEY Address book search key

of the message originator.
PR_CLIENT_SUBMIT_TIME The time that the

message was submitted
to its messaging system
by the sender's
messaging client.

PR_SENT_REPRESENTING_NAME Name of the
representative delegate
for sending.

PR_SENT_REPRESENTING_ENTRY
ID

Address book entry of the
sending delegate.

PR_SENT_REPRESENTING_SEARC
H_KEY

Address book search key
of the sending delegate.

PR_RCVD_REPRESENTING_NAME Name of the
representative delegate
for receiving.

PR_RCVD_REPRESENTING_ENTR
YID

Address book entry of the
receiving delegate.

PR_RCVD_REPRESENTING_SEAR
CH_KEY

Address book search key
of the receiving delegate.

PR_REPLY_RECIPIENT_NAMES List of delegated recipient
display names, separated
by a semicolon and
space "; ".

PR_REPLY_RECIPIENT_ENTRIES List of delegated
recipients for a reply.

PR_MESSAGE_TO_ME Indicates that the
recipient was specifically
named as a To recipient
(not in a group).

PR_MESSAGE_CC_ME Indicates that the
recipient was specifically
named as a Cc recipient
(not in a group).

PR_MESSAGE_RECIP_ME Indicates that the
recipient was specifically
named as a To, Cc or Bcc
recipient (not in a group).

Providers which have no apparent mappings can set the PR_SENT_REPRESENTING group of
properties to the same values as the PR_SENDER group, the PR_RCVD_REPRESENTING group to
the same values as the PR_RECEIVED_BY group, and build the PR_REPLY_RECIPIENT group of
properties based on the values of the PR_SENDER group. For example,
PR_SENT_REPRESENTING_NAME can be set to the same value as PR_SENDER_NAME.

The PR_ENTRYID or PR_ENTRYLIST properties can be generated if necessary by calling the
IMAPISupport::CreateOneOff method. The PR_SEARCH_KEY properties can be generated by
concatenating the PR_ADDRTYPE property associated with a user, a colon ':', and the
PR_EMAIL_ADDRESS property associated with the user, then folding the result to uppercase. The
Windows API CharUpperBuff is a convenient function to use for this purpose. What is required of this
process is to make a canonical form of the address that can be compared as a binary quantity. Note
that this is not necessary if the transport provider is case-sensitive with respect to e-mail addresses.

Using the Support Object

MAPI provides an implementation of the IMAPISupport interface which the transport provider receives
during logon. Transport providers can call the following IMAPISupport methods.

IMAPISupport Method Description
CompareEntryIDs Returns TRUE if two entry

identifiers refer to the same
support object.

CreateOneOff Creates a custom recipient
identifier.

DoConfigPropSheet Displays the MAPI property
sheet dialog box.

GetLastError Returns information about the
last error for the support object.

GetMemAllocRoutines Returns the addresses of the
MAPI memory management
routines.

GetSvcConfigSupportObj Creates a new support object.
IStorageFromStream Converts an OLE IStream

object to an IStorage object.
MakeInvalid Invalidates an object derived

from the IUnknown interface.
ModifyStatusRow Sets values in the provider's

row in the status table.
NewUID Returns a new, unique MAPI

identifier.
Notify Notifies interested parties of

changes to an object owned by
the transport provider.

OpenAddressBook Returns a pointer to the
address book.

OpenEntry Opens an object given its entry
identifier.

OpenProfileSection Returns a pointer to a given
section of the profile.

RegisterPreprocessor Registers a preprocessor
callback for the provider.

SpoolerNotify Requests servicing from the
MAPI spooler.

SpoolerYield Enables the MAPI spooler to
give processor time to other
applications or to Windows.

StatusRecips Generates delivery and
nondelivery reports.

Subscribe Informs MAPI that the transport
provider needs to be notified of
changes to an object.

Unsubscribe Cancels a previous
subscription.

WrapStoreEntryID Maps a message store's
private identifier to an identifier
useful to the rest of the
messaging system.

Note that the IMAPISupport interface contains support methods for all types of service providers,
many of which are not applicable to transport providers. The preceding list contains methods that
transport providers can use.

Providing Status

Transport providers expose status and other dynamic information to client applications using the MAPI
status table. When the MAPI spooler creates a session with a transport provider by calling the
IXPProvider::TransportLogon, method, the provider creates a row in this table for each resource it
owns. A transport provider, for instance, should create a row for each message queue it manages when
it is being logged on. MAPI manages the table interface and notifies client applications of status
changes. Transport providers must update rows in this table when changes occur and must support
client calls to obtain information not exposed in the table.

Transport providers must support three operations on status table entries:

· Create a row in the status table by calling the IMAPISupport::ModifyStatusRow method during the
TransportLogon call.

· Update a row in the status table by calling ModifyStatusRow as needed.
· Service requests from client applications for further status information.

The information that a transport provider gives MAPI appears as a single row in an IMAPITable object.
When status changes, the transport provider should call IMAPISupport::ModifyStatusRow to inform
MAPIof the change. MAPI broadcasts the notification to interested clients. Transport providers
implement the IMAPIStatus interface to provide client applications with a way to query for more
information than is contained in the status table.

Status properties

The following properties are used by transport providers to indicate various aspects of their status to
the MAPI spooler and other MAPI components (such as MAPI clients). The transport provider should
maintain accurate values for these properties in the MAPI status table.

Property Meaning
PR_STATUS_CODE A bitmask of values indicating

the status of various aspects of
the transport provider.

PR_STATUS_STRING An ASCII message indicating
the status of the transport
provider.

PR_RESOURCE_TYPE Each status object has a 32-bit
resource type associated with it.
The resource type for transport
providers is
MAPI_TRANSPORT_PROVIDE
R.

PR_RESOURCE_METHODS Indicates which methods of the
IMAPIStatus interface the
transport provider implements.

PR_RESOURCE_FLAGS Each status object has flags
associated with it. The following
flags are particularly important
for transport providers:
STATUS_DEFAULT_OUTBOUN
D
STATUS_PRIMARY_IDENTITY
STATUS_XP_PREFER_LAST
Other flags are available.

Only the PR_STATUS_STRING property needs to be maintained dynamically by the transport provider.
The PR_RESOURCE_TYPE, PR_RESOURCE_METHOD, and PR_RESOURCE_FLAGS properties
are all read from the profile by MAPI and do not need to be supplied with the status row. The transport
provider is only responsible for putting them in the MAPISVC.INF file when it is first installed.

Optional Features Transport Providers Can Implement

Optional features transport providers can implement include the following:

· Registering message and recipient options specific to the transport provider.
· Maintaining a profile, if necessary, to store configuration information and credentials to the

messaging system.
· Performing any verification of credentials required by the messaging system.
· Supporting event notification for interested client applications with the IMAPISupport::Notify

method.
· Displaying configuration property sheets and wizard dialog boxes to enable users to configure the

transport provider's settings.
· Providing message delivery reports to client applications.

Implementing Message and Recipient Options with Transport Providers

When the MAPI spooler logs onto a transport provider, it calls the the transport object's
IXPLogon::RegisterOptions method. This gives the transport provider a chance to inform the MAPI
spooler about any message or recipient options it supports.

MAPI client applications call one or more special callback functions you define in a DLL (probably in the
same DLL as your transport provider) to handle any message or recipient options defined in your
transport provider at the time messages are composed or submitted. The transport provider's
RegisterOptions method defines and returns some arbitrary data to MAPI; this data is passed to the
callback functions later when the client calls the IMAPISession::MessageOptions method. Your
transport provider can use this data to indicate to the callback what sort of option is being processed.

The transport provider's RegisterOptions method should return an array of OPTIONDATA structures
describing the options supported by the transport provider. Each structure should describe one option.

Depending on how your transport provider uses the lpszDLLName and ulOrdinal members of the
OPTIONDATA structure, you can implement your callbacks as one function which handles all options
(and makes use of lpbOptionsData) or as many functions which handle one option each (and
probably do not use lpbOptionsData).

For more information, see IXPLogon::RegisterOptions, OPTIONCALLBACK, and OPTIONDATA.

Implementing Security with Transport Providers

If the messaging system requires it, the transport provider is responsible for implementing an
appropriate level of security for access to the messaging system. Each incoming or outgoing message
sent through a transport provider by the MAPI spooler is handled in the context of a provider logon
session. The transport provider can display a logon dialog box to the user that prompts for a user's
credentials before establishing such a connection. Alternatively, the transport provider can store the
user's previously entered credentials in the secure property range within a profile section and use them
for access without prompting.

When implementing your transport provider's security, consider the following:

· With multiple installed service providers, there can be a multitude of names and passwords
associated with a user.

· MAPI allows multiple sessions with multiple identities. Providers are encouraged to support multiple
sessions but are not required to do so.

· Each session with a transport provider is associated by MAPI with a discrete section in the user's
profile. The transport provider can use the IMAPISupport::OpenProfileSection method to gain
access to this section, which can be used to store any information associated with this session,
including credentials.

· With multiple installed transport providers, it is not necessarily true that the user only has a single e-
mail address. A user can have a separate e-mail address for each installed transport provider, or a
different address for each session on a single provider.

For more information on storing credentials in profile sections, see Message Services and Profiles, and
the IProfSect : IMAPIProp interface.

Displaying Configuration Property Sheets with Transport Providers

Transport providers use the IMAPISupport::DoConfigPropSheet method to implement configuration
property sheets. When calling DoConfigPropSheet, the transport provider passes in a pointer to an
array of properties along with information about how to display them. MAPI then presents the
properties to the user by means of a standard dialog box. You are strongly encouraged to use this
property sheet mechanism when implementing your transport provider due to the benefit to the user of
a consistent interface.

Transport providers can use the BuildDisplayTable function to simplify construction of a display table
for use with DoConfigPropSheet. Transport providers targeted at the Win32 platform only can also
use the property sheet API directly. To buffer changes to the properties, transport providers can use the
CreateIProp function. This simplifies the handling of cancellations by the user while the user modifies
the values stored in the properties. If necessary, a transport provider can also provide a wizard dialog
box to simplify configuration tasks for the user.

Sending Message Delivery Reports with Transport Providers

Some underlying messaging systems support delivery reports and some do not. How the transport
provider determines whether message delivery or nondelivery reports can be sent to client applications
is an implementation detail specific to individual transport providers. If delivery reports can be sent to
client applications, transport providers use the IMAPISupport::StatusRecips method to notify MAPI of
successful or unsuccessful delivery for one or more recipients. MAPI then generates delivery or
nondelivery reports corresponding to those recipients. Transport providers can also translate incoming
delivery and nondelivery reports that are native to the messaging system into MAPI delivery and
nondelivery reports by means of StatusRecips.

 Developing a TNEF-Enabled Transport Provider

To promote interoperability between messaging systems that support different sets of MAPI features,
MAPI provides the Transport Neutral Encapsulation Format (TNEF) as a standard way to transfer data.
This format encapsulates MAPI properties not supported by an underlying messaging system into a
binary stream that can be transferred along with the message when a transport provider sends it. The
transport provider that receives the message can then decode the binary stream to retrieve all the
properties of the original message and make them available to client applications. The operational
model for TNEF is:

· Messaging clients submit and receive messages to a TNEF transport as normal.
· The transport separates the properties on outgoing messages into two categories: those that the

underlying message system supports and those that it doesn't. The values of the properties that are
supported by the underlying messaging system are translated into the required format.

· The transport uses MAPI's TNEF methods to encode any unsupported properties into a single data
stream. The transport then turns that data stream into a special attachment on the outgoing
message, using the underlying messaging system's attachment model, before sending the
message.

· A TNEF enabled transport that receives such a message does two things. First, it translates the
incoming message's properties ¾ the ones supported by the underlying message system ¾ into
MAPI properties. Second, if the special attachment is present, it uses MAPI's TNEF methods to
retrieve additional MAPI properties from the attachment before delivering the message to a client
application.

MAPI supplies an implementation of the ITnef interface for use by MAPI transport providers when
working with TNEF objects. The OpenTnefStreamEx function is used to create TNEF objects and
associate them with a message. TNEF streams are built on top of the OLE IStream interface. For more
information on OLE and the IStream interface, see the OLE Programmer's Reference.

Note You use OpenTnefStreamEx to create TNEF objects. The old OpenTnefStream function still
exists for compatibility with old source code and should not be used in anything new.

The ITnef interface provides the following methods:

AddProps
EncodeRecips
ExtractProps
Finish
FinishComponent
OpenTaggedBody
SetProps

The MAPI TNEF implementation model supports:

· All MAPI properties without affecting other message properties.
In order for MAPI messages to survive transport through a messaging system, all properties that
cannot be encoded as properties of the messaging system must be encapsulated. Because it is
almost never known at the time a message is sent whether or not a MAPI-compliant client will
receive the message, the encapsulation scheme allows a transport provider to encode only those
MAPI message properties that the messaging system does not natively support. This means that
messages which use TNEF are not "opaque" to messaging systems that are not based on MAPI
such as SMTP-based UNIX messaging systems. These systems receive the properties they support
in whatever manner is typical for them, and other properties are received as an encoded TNEF data
stream. The TNEF transport provider is responsible for differentiating between these two sets of

properties and sending the supported set in the proper manner for the messaging system.
TNEF makes no assumptions as to the level of support provided by a messaging system. However,
in the examples of TNEF usage included in this section, the assumption is made that the messaging
system supports at least one single attachment aside from the message. In some cases, the
attachment can only be supported through a uuencoded stream and transmitted as part of the
message text. Only in very rare circumstances will the messaging system have so little support for
message properties that full TNEF encoding of all properties is necessary.

· Workgroup Mail encapsulations.
The Mail Client for Windows for Workgroups Version 3.1 implements a minimal TNEF encapsulation
of some special properties. The MAPI TNEF scheme and underlying formats are backward
compatible with this encapsulation mechanism.

· A mechanism for determining whether a TNEF stream on an incoming message belongs to the
message based on the MAPI property PR_TNEF_CORRELATION_KEY.
This property should be found both in the TNEF stream and in an appropriate message header. If
the property has the same value in both places, or is missing in either place, the TNEF stream is
assumed to belong to the message. Otherwise, the TNEF stream is ignored. TNEF enabled
transports are responsible for choosing a value for this property on outbound messages and
encoding it in an appropriate message header (for example, the Message-ID: header for SMTP
messages) and in the TNEF stream.

TNEF Processing

The following series of actions describe how transports use TNEF methods to process outgoing and
incoming messages.

To send a message that includes a TNEF stream
1. Process the message properties that are supported by the messaging system.
2. Mark the message in an implementation specific way so that the receiving transport provider can

determine that the message requires TNEF processing. For example, a TNEF transport provider
sending to an SMTP messaging system might add a custom header field like "X-CONTAINS-TNEF"
to indicate that the message contains TNEF data.

3. Obtain a TNEF object and uses it to encapsulate the message properties not supported by the
messaging system into a TNEF stream.

4. Encode the TNEF stream using the messaging system's attachment model. For example, if the
underlying attachment model is to uuencode attachments and append them to the message text,
then the transport provider must uuencode the TNEF stream into another attachment.
The transport provider must also implement a method for recognizing which attachment contains the
encoded TNEF stream when it receives a message. The standard way to mark this attachment is to
give it an attachment filename of "WINMAIL.DAT". If your transport provider does this, any other
TNEF-enabled transport providers that follow this convention will be able to interoperate with it.

5. Use ITnef interface methods to insert tags describing the positions of message attachments in the
message text.

6. Access the tagged message text through OLE IStream methods, and send it to the messaging
system.

To retrieve encapsulated properties
1. Write the properties supported by the messaging system into a new message, including the tagged

message text that contains the encapsulated properties.
2. Decode the TNEF stream from the proper attachment.
3. Decode any other attachments and write them to new MAPI attachments on a message.
4. Open the TNEF stream for decoding using the OpenTnefStreamEx function.
5. Use the ITnef::ExtractProps method to decode the TNEF stream and write the encapsulated

properties into the new message. Any encoded properties that are duplicates of nonencoded
properties will overwrite them when the encoded properties are decoded.

6. Use the ITnef::OpenTaggedBody method to parse the message text to recover attachment
positions from the tags in the message text.

Encoding a Message with TNEF

When a message is submitted, the transport provider can create a file that is used to contain the
message during transmission. Next, an OLE IStream interface is wrapped around the file. The
transport provider then uses ITnef methods to write the message properties to the stream in a tagged
format that enables the properties to be easily decoded by the receiving transport providers.

To represent an entire message in a single file
1. Obtain a TNEF object by passing an IStream object and a message into the OpenTnefStreamEx

function.
2. Get a list of all defined properties for the message by calling the IMAPIProp::GetPropList method.
3. Use IMAPIProp methods to exclude all properties supported by the messaging system. At an

appropriate time write those properties to the messaging system in the format required by the
messaging system.

4. Call ITnef::AddProps to encode the remaining properties, including all attachments.
5. Call the ITnef::Finish method to encode the message into the TNEF stream after all the requested

properties are added.
6. Call the ITnef::OpenTaggedBody method to obtain the tagged message text. This tagged text is

written out to the messaging system using methods from the OLE IStream interface.
7. Call the IUnknown::Release method to release the ITnef object.

To process an inbound TNEF message
1. Get a MAPI message object from the MAPI spooler and write message header properties into the

new MAPI message.
2. Create and initialize an IStream object to contain the TNEF data from the inbound message.
3. Passe the MAPI message and the IStream object to the OpenTnefStreamEx function.
4. Decode the information in the TNEF data by calling the ITnef::ExtractProps method. It is important

to note that anything decoded by ExtractProps will overwrite properties decoded from the incoming
message's envelope. That is, extracted TNEF properties will overwrite the existing properties in a
message.

5. Process the tagged message text by calling ITnef::OpenTaggedBody and the text is parsed to
recover attachment positions.

6. Save the message by calling IMAPIProp::SaveChanges.
7. Release the TNEF object by calling the IUnknown::Release method.

Custom Processing with TNEF

Transport providers can use custom processing to process the properties on an attachment itself,
transmit attachments separately, or transmit them through the messaging system's attachment model.
TNEF uses a mechanism that enables the transport provider to send the attachments apart from the
message and reconnect them on the receiving side.

Sending Messages with TNEF Custom Attachment Processing
To customize attachment processing when sending a message

1. Obtain a TNEF object by passing an IStream object and a message into the OpenTnefStreamEx
function.

2. Get a list of all defined properties for the message by calling the IMAPIProp::GetPropList method.
3. Use IMAPIProp methods to exclude all properties supported by the messaging system. At an

appropriate time write those properties to the messaging system in the format required by the
messaging system.

4. Call the ITnef::AddProps method to add only the properties on the message ¾ that is, none of the
properties on the attachments ¾ by setting the TNEF_PROP_MESSAGE_ONLY flag.

5. Call ITnef::AddProps with these items: the TNEF_PROP_EXCLUDE flag, a property tag array that
contains the PR_ATTACH_DATA_BIN or PR_ATTACH_DATA_OBJ property, and an attachment
identifier that specifies the attachment to be processed.

6. Use the ITnef::SetProps method to add the PR_ATTACH_TRANSPORT_NAME property tag with a
unique string that identifies the attachment to the messaging system if the attachment has a
filename that the messaging system cannot support. For example, multiple attachments with the
same original filename, or a filename that is not a valid filename for the messaging system. This
string will be used with a key number when writing the attachment tags in the tagged message text
to associate an attachment with its data. See, TNEF Tagged Message Text.

7. Repeat the AddProps and SetProps calls for each attachment.
8. Call the ITnef::Finish method to encode the message into the TNEF stream after all the requested

properties are added.
9. Obtain the tagged message text by calling the ITnef::OpenTaggedBody method. This tagged text is

read using methods from the IStream interface, encoded using the messaging system's attachment
model, and written out to the messaging system.

10. Call the IUnknown::Release method to release the ITnef object.
11. Write the remaining attachments to the messaging system through the messaging system's

attachment model.

It is highly recommended that your transport provider use the method just described to process
attachments. If that is not possible, a second method for customized attachment processing is
available:

The transport provider ensures that the PR_ATTACH_TRANSPORT_NAME properties of all the
attachments contain unique values that are valid attachment identifiers for the messaging system. The
transport provider then uses a single call to ITnef::AddProps for each attachment, passing in the
TNEF_PROP_CONTAINED flag.

Receiving Messages with TNEF Custom Attachment Processing
To receive a TNEF message with customized attachment processing

1. Import all the transmittable properties ¾ those that the messaging system supports ¾ from the
incoming message into a new MAPI message. This includes the message text, which contains the
TNEF data stream.

2. Identify and decode the special attachment that contains the TNEF stream.
3. Extract all the attachments from the incoming message into MAPI attachments on the new MAPI

message. The recovered filenames, or other identifying markers on the attachments, should be
placed into the PR_ATTACH_TRANSPORT_NAME property of the new attachments so that the
ExtractProps method can later associate the correct attachment with the attachment tags encoded
in the message text.

4. Create an OLE IStream object to wrap around the decoded TNEF stream and use that object along
with the new MAPI message in a call to the OpenTnefStreamEx function.

5. Call the ITnef::ExtractProps method to recover the nontransmittable properties on the message
from the TNEF data stream.

6. Call the ITnef::OpenTaggedBody method with the MAPI_CREATE and MAPI_MODIFY flags set.
This call removes the attachment tags from the message text and converts them into attachment
position information in the MAPI message.

7. Deliver the message through the MAPI spooler.

TNEF Tagged Message Text

Tagged message text is used by TNEF to resolve attachment positions in the parent message. This is
done by adding a place holder into the message text at the position of the attachment. This place
holder, or attachment tag, describes the attachment in such a way that TNEF knows how to resolve the
attachment and its position. The tags are formatted as follows:

[[<Object Title> : <KeyNum> in <Stream Name>]]
[[<File Name> : <KeyNum> in <Transport Name>]]

The <Object Title> and <File Name> are variables containing values that are taken from the
attachment itself. In cases where these values are not available, the title is defaulted by TNEF based
on the attachment type.

The <KeyNum> variable contains the textual representation of the attachment key assigned to the
attachment by TNEF. The base value of the key is passed into the OpenTnefStreamEx call. The base
value must not be zero and should not be the same for every call to OpenTnefStreamEx. It should
suffice to use pseudo random numbers based on the system time from whatever random number
generator your run-time library provides, as long as you guarantee that they are never zero.

The <Transport Name> variable contains either the stream name passed into the OpenTnefStreamEx
call or the value of the PR_ATTACH_TRANSPORT_NAME property.

Note The PR_ATTACH_TRANSPORT_NAME property and the <Transport Name> variable in a
message text tag have nothing to do with the name of the transport provider you are implementing.
These items represent the name of an attachment for the transport provider and messaging system.

The message text is tagged when a transport provider asks for a tagged message text by calling the
ITnef::OpenTaggedBody method. When reading from the tagged text stream, TNEF replaces the
single character that was in the message text at the index provided in the
PR_RENDERING_POSITION property with the appropriate tag. When writing to the tagged text
stream, TNEF checks the incoming data for tags, finds the associated attachment, and replaces the tag
with a single space character.

Note that by using tagged message bodies, a transport provider can preserve the positioning of
attachments regardless of most changes made to the message text by messaging systems.

Encoding Recipient Tables with TNEF

The encoding of a recipient table into the TNEF stream is rarely necessary since most messaging
systems support recipient lists directly. In general, the recipient properties are transmitted in the
message header. When inclusion of the recipient table is necessary, TNEF can encode the recipient
table as a part of its usual processing. This is done during the initial phase of TNEF processing. The
transport provider can include the message's recipient table by calling the ITnef::AddProps method
with the PR_MESSAGE_RECIPIENTS property specified in the inclusion list. TNEF gets the recipient
table from the message, queries the column set, and processes every row of the table into the TNEF
stream.

An alternate method is available if the transport provider needs to modify the recipient table before it is
encoded. The transport provider can construct the necessary table and then call the
ITnef::EncodeRecips method. If NULL is passed in the lpRecipTable parameter, then the recipient
table is taken directly from the message as described for ITnef::AddProps.

 Developing a Remote Transport Provider

Some client applications benefit from having a transport provider with remote capabilities, including:

· Clients whose underlying messaging systems are slow.
· Clients with low bandwidth connections to their messaging servers.
· Clients with intermittant connections to messaging systems or networks.
· Clients that must, for whatever reasons, minimize the time spent connected to their message

servers.

The most common situation where remote transport providers are used is when a client's connection to
the messaging server is over a modem (low bandwidth) or is connected through a long-distance
telephone call.

MAPI provides a definition of a remote interface that transport providers implement in order to satisfy
clients' needs in these circumstances. That interface is the IMAPIFolder interface, which enables a
user to preview the contents of the messaging server without downloading entire messages or folders.
This is the same interface that message store providers implement. By having a transport provider
implement a special MAPI folder, it can provide access to messaging systems with special connection
requirements.

The following topics describe the remote transport architecture and provide information for
implementing a remote transport provider.

Remote Transport Architecture

Your remote transport needs to translate user requests for message data into intelligently managed
connections to the messaging server without requiring the user to manage the individual connections.
This is accomplished through the MAPI remote architecture as shown in the following illustration.

{ewc msdncd, EWGraphic, groupx838 0 /a "MAPI.WMF"}

Client applications which are remote-enabled (remote viewers) communicate with the MAPI spooler
and remote transport providers as usual for non-remote tasks such as logging on or flushing queues. In
addition, the client application uses the remote transport's IMAPIFolder interface to perform remote
tasks such as downloading message headers.

The remote viewer is a client application designed to work with remote transport providers. Remote
viewer applications can check the MAPI status table for remote transport providers, those that have set
the STATUS_REMOTE_ACCESS bit in their status table row, and adjust their user interface
appropriately. Remote viewers are expected to utilize a special folder that contains header information
about messages in the user's Inbox. The header information is stored locally and can be used to
selectively mark messages for download or deletion.

A remote transport provider is similar to a message store because implements the IMAPIFolder
interface; however, the folder so implemented is not identical to the generalized heirarchical folders that
message stores implement. For a remote transport provider, the folder is an intermediary between the
client application and the remotely accessed message store. The message headers and message
identifiers in the folder do not necessarily correspond to messages that are stored locally on the user's
computer or stored in any immediately accessible way.

The folder is expected not to have subfolders, although the presence of subfolders should not cause
client application problems since they should not be displayed. Opening the folder does not cause the
folder's contents to be downloaded. At the user's request, message headers can be downloaded and
looked at off-line or at a later time. Remote transport providers should provide some sort of local cache
or storage facility for downloaded message headers so that the folder can be populated with cached
message headers when it is opened without connecting to the remote message store.

Advertising a Remote Transport

Remote viewer applications need a way to identify which transport providers support remote
functionality. In order to advertize this ability to remote viewers, remote transport providers must set the
STATUS_REMOTE_ACCESS bit in the PR_STATUS_CODE property and the
STATUS_VALIDATE_STATE bit set in the PR_RESOURCE_METHODS property of the transport
provider's row in the status table.

Remote transport providers must also include in the status row the PR_HEADER_FOLDER_ENTRYID
property. This property indicates the entry identifier of the folder that is used for downloading by remote
viewer applications. This entry identifier is registered with MAPI when the transport provider is
initialized. When the user opens the folder, the remote viewer application calls the
IMAPISession::OpenEntry method passing in the folder's entry identifier. MAPI then forwards the call
to the transport provider which registered the folder's entry identifier. The transport should return a view
of the contents of the folder. This folder's contents table should contain the list of messages in the
folder.

Required Status Row Properties for Remote Transports

Remote transport providers must supply the following properties when their initial row in the MAPI
status table is created:

PR_DISPLAY_NAME
PR_HEADER_FOLDER_ENTRYID
PR_REMOTE_PROGRESS
PR_REMOTE_VALIDATE_OK
PR_RESOURCE_METHODS
PR_RESOURCE_PATH
PR_PROVIDER_DISPLAY
PR_STATUS_CODE
PR_STATUS_STRING

Additional Remote Transport Functionality

To support as many remote viewer requests as possible, your remote transport provider should be able
to:

· Defer message delivery.
· Dynamically update the PR_REMOTE_PROGRESS and PR_REMOTE_PROGRESS_TEXT

properties while a remote operation is in progress.
· Support the PR_REMOTE_VALIDATE_OK property.

Implementing the IMAPIFolder Interface for Remote Transports

Since the folder that remote transport providers implement is not a fully functional MAPI folder, remote
transport providers do not have to implement all of the methods in the IMAPIFolder interface. You
should derive a C++ class from the IMAPIFolder interface to implement the folder. Because
IMAPIFolder inherits from the IMAPIContainer, IMAPIProp, and IUnknown interfaces, there are
some methods from those interfaces that need to be implemented as well. This topic describes which
methods remote transports need to implement, as well as any special considerations that are not
described in the MAPI Programmer's Reference documentation for those methods. Methods from
those interfaces that are not described here should be implemented as stubs which return
MAPI_E_NO_SUPPORT.

IMAPIFolder is a pure virtual interface, containing no data members or pre-defined methods, only
method declarations. You must implement basic functionality such as a constructor and destructor,
reference counting, and declaring and defining any needed member variables. Your class's declaration
should include data members for the folder's contents table, a pointer to the logon object and status
object (the parent objects of the folder), and a reference counter.

Since the IMAPIFolder interface itself does not define any mechanism for filling the contents table with
message headers, you will need to define custom methods to do this. The minimum implementation of
this interface has read-only functionality. You will need to implement additional methods to give your
implementation read-write functionality.

Implementing the IMAPIFolder Constructor for Remote Transports

The remote transport provider's IMAPIStatus object will call the folder's constructor with a pointer to
the status object and a pointer to the transport provider's IXPLogon object. The constructor needs to
perform the following MAPI-specific tasks:

· Store the status object pointer and logon object pointer in data members.
· Call the AddRef methods on the status object and logon object.
· Initialize the folder's contents table to NULL.
· Initialize the folder object's reference count mechanism.

As usual, the constructor should take care of initializing any implementation-specific data members.

Implementing the IMAPIFolder Destructor for Remote Transports

The folder's destructor needs to perform the following MAPI-specific tasks:

· If the folder still has a contents table, call the table's Release method and set the pointer to the table
to NULL.

· Call the Release method on the status object and logon object, and set the pointers to those objects
to NULL.

As usual, the destructor must also free any additional memory allocated by the folder.

Implementing IMAPIFolder::SetMessageStatus for Remote Transports

Your implementation of this method must follow the semantics described in the documentation of
IMAPIFolder::SetMessageStatus. There are no special considerations with respect to this method for
remote transport providers. Clients use this method to set the MSGSTATUS_REMOTE_DOWNLOAD
and MSGSTATUS_REMOTE_DELETE bits to indicate that a particular message is to be downloaded
or deleted from the remote message store.

Note You do not have to implement the related GetMessageStatus method. Clients must look in the
folder's contents table to determine the status of a message.

Implementing the IMAPIContainer Interface for Remote Transports

The only method from the IMAPIContainer interface that must be fully implemented is
GetContentsTable. The remaining methods can return MAPI_E_NO_SUPPORT.

Implementing IMAPIContainer::GetContentsTable for Remote Transports

Your implementation must return a pointer to an IMAPITable interface in the ppTable parameter passed
into the GetContentsTable method. If your transport provider has an existing contents table, it suffices
to return a pointer to it. If not, then this method must create a new IMAPITable object, populate the
table with message headers (if any are available), and return a pointer to the new table. The
ITableData method HrGetView is useful for generating a return value and storing the table pointer in
the ppTable parameter. The contents table must support at least the following property columns:

PR_ENTRYID PR_SENDER_NAME
PR_SENT_REPRESENTING
_NAME

PR_DISPLAY_TO

PR_SUBJECT PR_MESSAGE_CLASS
PR_MESSAGE_FLAGS PR_MESSAGE_SIZE
PR_PRIORITY PR_IMPORTANCE
PR_SENSITIVITY PR_MESSAGE_DELIVERY_TI

ME
PR_MSG_STATUS PR_MESSAGE_DOWNLOAD_

TIME
PR_HASATTACH PR_OBJECT_TYPE
PR_INSTANCE_KEY PR_NORMALIZED_SUBJECT

Implementing the IMAPIProp Interface for Folder Objects for Remote Transports

Remote transport providers must implement only four methods from the IMAPIProp interface in
addition to the usual stubs for the other methods in that interface. The required methods are
GetLastError, SaveChanges, GetProps, and GetPropList.

Implementing IMAPIProp::GetLastError for Folder Objects for Remote Transports

As described in the documentation of IMAPIProp::GetLastError, this method takes an HRESULT
representing the last error encountered and returns a MAPIERROR structure which contains
information to display to the user regarding the error. The specifics of this implementation and what
messages this method returns are up to you, since the particular error conditions which lead to various
HRESULT values will be different for different transport providers.

Implementing IMAPIProp::SaveChanges for Folder Objects for Remote Transports

Whether you provide a functional implementation of this method is optional and will probably depend
on other design choices in your implementation. If you wish to implement this method, do so according
to the documentation of IMAPIProp::SaveChanges. Since folder objects are not transacted, at a
minimum your implementation of SaveChanges must return S_OK without actually doing any work.

Implementing IMAPIProp::GetProps for Folder Objects for Remote Transports

The GetProps method must return the folder's property values for properties requested by the caller.
As specified in the documentation of IMAPIProp::GetProps, your implementation needs to:

· Allocate a property value array to return to the caller and store its address in the property value
pointer parameter passed in for that purpose.

· Copy the property tags from the folder's properties into the property tags in the property value array
according to the array of property tags passed to GetProps.

· Ensure that the property type is set for all property tags passed to GetProps. The caller can pass in
a property type of PT_UNSPECIFIED, in which case GetProps must set the correct property type
for that property tag.

· Set the value of each property in the property value array according to its tag. For example, if the
property tag requested by the caller is PR_OBJECT_TYPE, GetProps can set the value to
MAPI_FOLDER.

· If the caller passes in any property tags that your implementation does not handle, you can set the
property tag to PT_ERROR for those properties, and set the property value to
MAPI_E_NOT_FOUND.

· Return S_OK if no errors occurred or MAPI_W_ERRORS_RETURNED if there were errors.

Your implementation of the GetProps method needs to support the following properties at a minimum:

PR_ACCESS PR_ACCESS_LEVEL
PR_CONTENT_COUNT PR_ASSOC_CONTENT_COU

NT
PR_FOLDER_TYPE PR_OBJECT_TYPE
PR_SUBFOLDERS PR_CREATION_VERSION
PR_CREATION_TIME PR_DISPLAY_NAME
PR_DISPLAY_TYPE

Implementing IMAPIProp::GetPropList for Folder Objects for Remote Transports

The GetPropList method can be implemented exactly as specified in the documentation of
IMAPIProp::GetPropList . There are no special concerns for remote transport providers. Your
implementation should, of course, return the same list of properties as supported by the GetProps

method.

Implementing the IUnknown Interface for Folder Objects for Remote Transports

The IUnknown interface is an OLE interface. Because MAPI adheres to the OLE component object
model, your transport provider must implement a few methods from IUnknown.

Implementing IUnknown::QueryInterface for Folder Objects for Remote Transports

The semantics of the QueryInterface method that your implementation should follow are described in
the OLE documentation. If the interface identifier passed into QueryInterface is one of
IID_IMAPIFolder, IID_IMAPIContainer, or IID_IMAPIProp, then a pointer to the folder object should be
passed back to the caller in the parameter provided for that purpose, the reference count of the folder
must be incremented, and the method should return S_OK.

If the interface identifier passed in is IID_IUnknown, then a pointer to the transport provider's status
object should be returned, according to the OLE common object model (COM) rules, and the status
object's AddRef method should be called before QueryInterface returns S_OK.

If the interface identifier is anything else, QueryInterface should return E_NOINTERFACE.

Implementing IUnknown::Release for Folder Objects for Remote Transports

The Release method should do the following things:

· Decrement the reference count for the folder.
· If there are no remaining external references to the object ¾ that is, the folder object contains its

only remaining reference ¾ and the transport provider caches the folder's contents table, this is the
time to save the contents table to whatever external resource is appropriate.

· If the reference count is zero, the folder should delete itself.

Implementing the IMAPIStatus Interface for Remote Transports

You should derive a C++ class from the IMAPIStatus class to implement this interface. Because
IMAPIStatus inherits from the IMAPIProp and IUnknown classes, there are some methods from those
interfaces that need to be impemented as well. This topic describes which methods remote transports
need to implement, as well as any special considerations that are not described in the MAPI
Programmer's Reference documentation for those methods. Methods from those interfaces that are not
described here should be implemented as stubs which return MAPI_E_NO_SUPPORT.

Implementing the IMAPIStatus Constructor for Remote Transports

The constructor for your implementation of the IMAPIStatus interface must do the following:

· Store the pointer to the XPLogon object passed in the first parameter to the constructor.
· Store the pointer to the profile section object passed in the second parameter to the constructor.
· Initialize the status object's reference count mechanism.
· If the profile section pointer is not NULL, call the AddRef method on the profile section object.

Implementing the IMAPIStatus Destructor for Remote Transports

The only thing that the destructor for your implementation of the IMAPIStatus interface must do is call
the Release method on the profile section object if the profile section pointer is not NULL.

Implementing IMAPIStatus::ChangePassword for Status Objects for Remote
Transports

The ChangePassword method is used to support provider specific passwords. It should be
implemented as specified in the documentation for IMAPIStatus::ChangePassword. There are no
special concerns for remote transport providers.

Implementing IMAPIStatus::FlushQueues for Status Objects for Remote
Transports

The FlushQueues method for remote transport providers sets bits in the PR_STATUS_CODE property
in the logon object's status row to control how queues are flushed. If a remote viewer passes in the
FLUSH_UPLOAD flag, the FlushQueues method should set the STATUS_INBOUND_ENABLED and
STATUS_INBOUND_ACTIVE bits. If a remote viewer passes in the FLUSH_DOWNLOAD flag, the
FlushQueues method should set the STATUS_OUTBOUND_ENABLED and
STATUS_OUTBOUND_ACTIVE bits. FlushQueues should then return S_OK. The MAPI spooler will
then initiate the appropriate actions to upload and download messages.

Implementing IMAPIStatus::SettingsDialog for Status Objects for Remote
Transports

If your transport provider has any settings, it should do the following:

· Open the transport provider's profile section.
· Get the transport provider's property settings from the profile.
· Display the property settings in a dialog box.
· If the dialog box allows editing of the property settings, check that the new settings are valid and

store them back in the transport provider's profile section.
· Return S_OK, or any error values returned during the preceeding steps.

Implementing IMAPIStatus::ValidateState for Status Objects for Remote
Transports

The ValidateState method is called by remote client applications to start remote processing for various
actions. This method exists primarily to set status bits to communicate with the MAPI spooler rather
than to actually do any work. Typically, the transport provider sets flags in its status row which indicate
to the MAPI spooler what actions need to be initiated to complete the client's request. In this model of
client-transport-spooler interaction, the actions requested by the client are asynchronous, in that
ValidateState returns before the requested actions are complete. However, actions which do not
necessarily involve the underlying messaging system, or which involve a transport-specific interface,
can be synchronous. The client application passes in a bitmask of flags to specify which actions the
remote transport provider should take. The flags are:

ABORT_XP_HEADER_OPERATION
If possible, the remote transport provider should cancel any operations involving downloading
headers. To do this, the transport provider must set the following property values in the logon
object's status row:
· Clear the STATUS_INBOUND_ENABLED and STATUS_INBOUND_ACTIVE bits in the

PR_STATUS_CODE property to tell the MAPI spooler to cease the inbound flush process for this
transport provider.

· Set the STATUS_OFFLINE bit in the PR_STATUS_CODE property.
· Set the PR_REMOTE_VALIDATE_OK property to TRUE.
· Set the PR_STATUS_STRING property to some string indicating the transport provider's status to

the user.
· Return S_OK
However, if the operation in progress cannot be canceled, ValidateState should return
MAPI_E_BUSY.

FORCE_XP_CONNECT
A remote transport provider should never establish a connection to a shared resource, for example,
a modem or COM port, outside the context of the MAPI spooler-transport interaction involved in the
IXPLogon::FlushQueues method. If ValidateState is called with this flag, your transport provider
should do the following:
· Set some internal status flag to indicate that the remote connection needs to be established when

the FlushQueues method is called.
· Set the proper values in the status table to cause the MAPI spooler to initiate the queue flushing

process.
· When flushing of queues has completed, release the shared resource.
· Clear the STATUS_OFFLINE bit in the PR_STATUS_CODE property.
· Return S_OK.

FORCE_XP_DISCONNECT
The remote transport provider should release its connection to the messaging system resources.
After doing so, it should:
· Set the STATUS_OFFLINE bit in the PR_STATUS_CODE property.
· Return S_OK.

PROCESS_XP_HEADER_CACHE
The remote transport provider should process remote messages and upload any messages that
have been deferred. To do this the transport provider must set the following property values in the
logon object's status row:
· Set the PR_STATUS_STRING property to a string indicating the transport provider's status to the

user.

· Set the STATUS_OUTBOUND_ENABLED and STATUS_OUTBOUND_ACTIVE bits in the
PR_STATUS_CODE property.

· Set the PR_REMOTE_VALIDATE_OK property in the transport provider's status row to FALSE.
· If another operation is in progress (such as downloading headers) when ValidateState is called,

ValidateState should return MAPI_E_BUSY.
· Execute the code for processing the REFRESH_XP_HEADER_CACHE flag as well to satisfy

requirements of the Microsoft Exchange client.
REFRESH_XP_HEADER_CACHE

The remote transport provider should retrieve any new message headers from the messaging
system. To do this, the transport provider must:
· Set the PR_STATUS_STRING property to a string indicating the transport provider's status to the

user.
· Set the STATUS_INBOUND_ENABLED and STATUS_INBOUND_ACTIVE bits in the

PR_STATUS_CODE property.
· Clear the STATUS_OFFLINE bit in the PR_STATUS_CODE property.
· Set the STATUS_ONLINE bit in the PR_STATUS_CODE property.
· Set the PR_REMOTE_VALIDATE_OK property in the transport provider's status row to FALSE.
· Return MAPI_E_BUSY.

SHOW_XP_SESSION_UI
If your transport provider has any pieces of user interface for processing the message headers ¾
such as a dialog box confirming downloading of messages ¾ then that dialog box should be
displayed. Otherwise, ValidateState can return MAPI_E_NO_SUPPORT.

If any flags other than these are passed in, ValidateState should return MAPI_E_UNKNOWN_FLAGS.

The client's call to the transport provider will often be to the IMAPIStatus::ValidateState method. It is
important during the processing of ValidateState that the transport provider not perform any actions
which allocate scarce system resources, such as a modem or COM port. The reason for this is
because the MAPI spooler will, at times, need to flush queues on more than one transport provider.
However, the client is allowed to call any transport provider's ValidateState method at any time. If your
transport provider attempts to allocate a scarce resource during the processing of ValidateState, an
error can result due to conflict with another transport provider that the MAPI spooler has instructed to
flush its queues. If you allow all scarce resource allocations to happen under the direction of the MAPI
spooler, such conflicts will be avoided. Your transport provider should support the
PR_REMOTE_VALIDATE_STATE_OK property so that client applications can detect when your
transport provider is busy or waiting for the MAPI spooler to initiate an action.

Implementing the IMAPIProp Interface for Status Objects for Remote Transports

Since remote transport providers, like other MAPI service providers, use the MAPI status table, they
must implement some methods from the IMAPIProp interface to support client requests for property
information.

Implementing IMAPIProp::GetLastError for Status Objects for Remote Transports

As described in the documentation of IMAPIProp::GetLastError, this method takes an HRESULT
representing the last error encountered and returns a MAPIERROR structure which contains
information to display to the user regarding the error. The specifics of this implementation and what
messages this method returns are up to you, since the particular error conditions which lead to various
HRESULT values will be different for different transport providers.

Implementing IMAPIProp::SaveChanges for Status Objects for Remote Transports

Because status objects ¾ like folder objects ¾ are not transacted, the SaveChanges method is
essentially a no-op, and your implementation need do no real work. However, because some MAPI-
compliant clients might have code to use the SaveChanges method on their status objects, your
implementation should return S_OK instead of MAPI_E_NOT_SUPPORTED, in order to avoid
returning an error where none is warranted.

Implementing IMAPIProp::GetProps for Status Objects for Remote Transports

The GetProps method must return the transport provider's property values for any property tags
requested by the caller. As specified in the documentation of IMAPIProp::GetProps, your
implementation needs to:

· Allocate a property value array to return to the caller and store its address in the property value
pointer parameter passed in for that purpose.

· Copy the property tags from the status object's properties into the property tags in the property value
array according to the array of property tags passed to GetProps.

· Ensure that the property type is set for all property tags passed to GetProps. The caller can pass in
a property type of PT_UNSPECIFIED, in which case GetProps must set the correct property type
for that property tag.

· Set the value of each property in the property value array according to its tag. For example, if the
property tag requested by the caller is PR_OBJECT_TYPE, GetProps should set the value to
MAPI_TRANSPORT_PROVIDER.

· If the caller passes in any property tags that your implementation does not handle, you can set the
property tag to PT_ERROR for those properties, and set the property value to
MAPI_E_NOT_FOUND.

· Return S_OK if no errors occurred or MAPI_W_ERRORS_RETURNED if there were errors.

Implementing IMAPIProp::GetPropList for Status Objects for Remote Transports

The GetPropList method can be implemented exactly as specified in the documentation of
IMAPIProp::GetPropList. There are no special concerns for remote transport providers.

Implementing the IUnknown Interface for Status Objects for Remote Transports

The only method from the IUnknown interface that is special for MAPI is the QueryInterface method.

Implementing IUnknown::QueryInterface for Status Objects for Remote Transports

The semantics of the QueryInterface method that your implementation should follow are described in
the OLE Programmer's Reference. If the interface identifier passed in is one of IID_IMAPIStatus,
IID_IMAPIProp, or IID_IUnknown, then a pointer to the status object should be passed back to the
caller in the parameter provided for that purpose, and your status object's reference count must be
incremented.

If the interface identifier passed in is IID_IMAPIFolder, then your implementation should return a pointer
to the folder that contains the available message headers and increment the reference count for that
folder. If no folder is present, one should be created and then returned.

If the interface identifier is anything else, QueryInterface should return E_NOINTERFACE.

Background Processing and Allocating Scarce Resources

Transport providers operate largely at the direction of the MAPI spooler. This places remote transport
providers under some obligations in order to interact with other MAPI service providers. Remote
transport providers should strive to operate in the background in order not to cause client applications
to appear inactive. Remote transport providers should also strive to minimize their use of scarce
resources, such as modems and COM ports, in order to permit other MAPI service providers and other
user applications to use those resources if necessary.

About Background Processing

Whenever possible, your transport provider should operate in the background. The transport provider's
actions should be initiated by the MAPI spooler rather than directly by client calls to methods in the
transport provider to avoid conflicts with other service providers (especially other transports) that might
need to use resources that your transport provider also needs. The sequence of actions is typically like
this:

· The client calls a method in the transport provider which requires some action.
· The transport provider sets some internal status flags which note the action requested by the client.
· The transport provider sets one or more special values in the MAPI status table which signal the

MAPI spooler that the transport provider needs to perform the requested action.
· The MAPI spooler calls one or more methods in the transport provider to initiate the requested

actions.

Guidelines for Allocating Scarce Resources

Transport providers that use scarce resources ¾ such as a modem or COM port ¾ to send and receive
messages or message headers need to adhere to the following conventions in order to avoid resource
conflicts with other transport providers:

· Transport providers can allocate scarce resources when the TransportLogon method is called and
retain them until the RegisterOptions method returns, at which time the resources must be
released.

· Transport providers can allocate scarce resources when the SubmitMessage method is called and
retain them before returning from the subsequent call to the EndMessage method.

· Transport providers can allocate scarce resources for the duration of a call to the StartMessage
method. The transport provider must release the resources before returning.

· Transport providers that need to keep a resource open across multiple method calls, such as while
flushing queues, should signal the MAPI spooler of this need by setting the
STATUS_INBOUND_ENABLED or STATUS_OUTBOUND_ENABLED bits in the transport provider's
PR_STATUS_CODE property in the MAPI status table.
When the MAPI spooler next makes a call to a method in the transport provider's logon object the
transport provider can allocate the resource. The transport provider can keep the resource until the
time that the action, such as flushing queues, is completed. In some cases, the transport provider
will already hold the resource before calling the IMAPISupport::ModifyStatusRow method to
update the transport provider's PR_STATUS_CODE property. This will cause some multi-transport
operations to fail, but is sometimes unavoidable. The MAPI spooler will handle errors in such cases.

 Developing a Message Store Provider

Like other MAPI service providers, message stores are dynamic-link libraries (DLLs) that present the
services of some underlying storage mechanism to MAPI client applications and the MAPI spooler. The
message store provider presents the underlying storage mechanism as a hierarchical set of folders and
messages that MAPI clients and the MAPI spooler can use.

This diagram shows the basic MAPI message store architecture.

{ewc msdncd, EWGraphic, groupx839 0 /a "MAPI.WMF"}

You can implement a message store provider using any sort of underlying storage mechanism you like.
However, performance concerns and the requirement that the underlying storage mechanism must be
presented as a hierarchical collection of MAPI objects means that message stores are typically
implemented using an existing database product which supports hierarchical storage of objects in the
database and which has a programming interface or well defined file structure. For example, Access,
SQL, and Oracle databases can be used as the underlying storage mechanism. Some database
products have feature sets that make it easier to implement MAPI's features, so your choice of
database product may be affected by the features that your message store provider needs to support.

Using an existing database as the underlying storage mechanism saves you work because it is usually
easier to present database objects to MAPI clients as MAPI objects than to implement your own
hierarchical storage mechanism. Doing this allows you to treat MAPI operations at a higher level than if
you implement your own hierarchical storage mechanism. For example, searching for a message with
a particular subject line becomes a fairly simple matter of constructing and submitting an appropriate
database query rather than a matter of implementing complex routines to search your hierarchical
storage mechanism.

Message store providers communicate with MAPI clients and the MAPI spooler to perform operations
on folders and objects. The message store provider translates those operations into lower level
operations on the underlying storage mechanism. The MAPI spooler typically communicates with the
message store provider while sending and receiving messages. MAPI clients typically communicate
with message store providers in order to manipulate the folder hierarchy and to read, edit, delete, and
send messages.

Both the MAPI spooler and MAPI clients communicate with the message store provider to create new
messages. Client applications do this when users compose a message. The MAPI spooler does this
when it receives an incoming message. In either case, the new message is usually created in the Inbox
folder of the message store, if there is one.

Message store providers make heavy use of MAPI tables, folders, messages, and properties. The
implementation details for those objects are documented in Tables, Folders, Messages, and Properties.
You should familiarize yourself with that material before attempting to implement a message store
provider.

There are two important types of message store providers: those that can act as a user's default
message store and those that cannot. A default message store is one in which client applications and
the MAPI spooler can perform any messaging task, such as receiving messages or creating folders. A
default message store provider must support several more features than the minimum number required
for all message store providers.

 About the Structure of Message Store Providers

A message store provider, when it is running in memory, is an IMSProvider : IUnknown object. The
IMSProvider interface allows client applications and the MAPI spooler to log on to and off of the
message store. The objects that client applications and the MAPI spooler use to access folders and
messages in the message store are an IMSLogon object and an IMsgStore object. These objects are
typically created when the message store is first logged on to, although the message store DLL's
MSProviderInit entry point could also create them.

Because the IMSLogon and IMsgStore interfaces share some methods, it may be easier to create
one class object that inherits from both of these interfaces. You can also implement these interfaces in
separate objects, and write helper functions internal to your DLL that implement the shared methods
which can then be called from the methods in the IMSLogon and IMsgStore interfaces.

The following illustration shows a high-level outline of the object hierarchy within a running message
store.

{ewc msdncd, EWGraphic, groupx839 1 /a "MAPI.WMF"}

 About Required and Optional Interfaces for Message Store Providers

MAPI defines a set of interfaces that relate to message store providers. Because of the wide range of
features that a message store can choose to implement, some of these interfaces are required and
some are not. The following table lists the MAPI interfaces related to message store providers, whether
the interfaces are required or optional, and why they are used.

Interface Status Use
IMSProvider Required Methods for logging on and off

a message store.
IMSLogon Required Methods for opening folders or

messages, verifying the
message store's identity, and
handling notifications.

IMsgStore Required Methods for opening folders or
messages, finding special
folders, handling message
submissions.

IMAPIFolder Required Methods for finding and
manipulating messages and
sub-folders.

IMessage Required Methods for manipulating
attachments and setting some
of a message's properties.

IMAPITable Required Used by other objects to
present collections of data to
various MAPI components.

IMAPIStatus Required Allows clients to validate the
state of a message store, and
perform some configuration
tasks.

IAttach Optional Used by message objects if the
store provider supports file
attachments.

IStorage Optional OLE interface used by
attachment objects if the store
provider supports OLE object
attachments.

IStream Optional OLE interface used by
message and attachment
objects.

IStreamDocfile Optional OLE interface used by some
OLE 2.0 attachment objects.

The basic information you need to implement IMAPIFolder, IMessage, IMAPIStatus, and IMAPITable
is documented elsewhere in the MAPI Programmer's Reference. This section contains supplementary
information that is more directly related to message store providers. The rest of the MAPI interfaces
should be implemented according to the information in this section and in the MAPI Programmer's
Reference. See the OLE documentation in the Win32 Software Development Kit for details about
implementing IStorage, IStream, and IStreamDocFile.

 About Message Store Features

Message store providers are more complex than other MAPI service providers in that message store
providers have a wider range of optional features they can implement. The list of required features for a
message store provider is fairly short. However, a typical message store provider will support a number
of optional features, since many of the optional features are very useful or required by most MAPI
clients. The following table lists the major features that message store providers can implement,
whether the feature is required or optional for all message store providers and for default message
store providers.

Feature: All Default
Providing status with the MAPI status
table

Required Required

Implementing folder objects Required Required
Implementing message objects Required Required
Read and nonread reports Required Required
Progress Interface Required Required
Configuration Interface Required Required
Supporting associated contents tables
for form and view support

Optional Optional

Sending messages with the message
store provider

Optional Required

Receiving messages with the message
store provider

Optional Required

Supporting message attachments Optional Optional
Supporting Rich Text Format for
messages

Optional Optional

Providing notifications Optional Optional
Supporting searches Optional Optional
Tightly coupled message
store/transport providers

Optional Optional

Non-reuse of entry identifiers Optional Optional

Many of the optional features can be advertized to MAPI and client applications by setting various flags
in the message store object's PR_STORE_SUPPORT_MASK property. The required features do not
have flags associated with them. PR_STORE_SUPPORT_MASK is required on message store, folder,
and message objects.

 About Providing Status for Message Store Providers

Like all MAPI service providers, message store providers must support the IMAPIStatus interface. The
methods in that interface are optional, however. Set the PR_RESOURCE_METHODS property in your
message store provider's status table to indicate which methods are supported. At a minimum, your
message store provider should implement the IMAPIStatus::ValidateState and
IMAPIStatus::FlushQueues methods. For more information, see Status Objects.

Additionally, the message store provider must have a row in the MAPI status table. Whether the
message store's identity properties are listed in that row is optional. For more information, see Identity
Properties.

 About Implementing Folders in Message Stores

A great deal of the information relating to message store providers' support for folders is covered in
Folders. You should be familiar with that information before attempting to implement a message store
provider. The Folders section is heavily oriented to the MAPI client's perspective; this topic covers
additional information that is important from the message store provider's point of view.

 About Exposing Folders in Message Stores

Every message store provider must present a top-level IMAPIFolder object to client applications. The
top-level folder corresponds to the entire message store; it provides access to the folders that users
see as the contents of the message store. In addition, the top-level folder is often used as the default
receive folder for IPC messages and as the folder from which read reports are sent. Message store
providers must also present an IPM subtree, a set of folders used to contain IPM messages, to client
applications.

Client applications can open the top-level folder by calling IMsgStore::OpenEntry with 0 and NULL for
the cbEntryId and lpEntryId parameters. In most cases, however, client applications open the set of
folders containing IPM messages.

To get a list of folders in the message store's IPM folder tree
1. Use your MAPI session to call the IMAPISession::OpenMsgStore method.
2. Use the resulting message database pointer to call the IMAPIProp::GetProps method for the

PR_IPM_SUBTREE_ENTRYID property.
3. Call the IMsgStore::OpenEntry method with the entry identifier to get an IMAPIFolder pointer.
4. Call the IMAPIContainer::GetHierarchyTable method to get a table of the contents of the folder.
5. Call the IMAPITable::QueryRows method to list the folders in the top-level folder.

MAPI clients use these folders to access other folder objects and message objects in the message
store. IMAPIFolder, and its parent interface IMAPIContainer, contain the methods your message
store provider must implement to populate folders with message objects and respond to clients'
requests to operate on messages.

 About Inbox and Outbox Folders in Message Stores

In order to be the default message store, a message store provider must implement an Inbox and an
Outbox folder. They are typically stored within the IPM subtree of a message store. These folders are
special in that they are designated as the folders that messages are delivered to and sent from, but no
special functionality is required of them. Sending and receiving messages happens by way of defined
call sequences between client applications, the MAPI spooler, and the message store provider. The
Inbox and Outbox folders are simply folders that are used to hold messages during those call
sequences. The important point is not that the folders are special, or even that they are named Inbox
and Outbox; the important point is that the message store provider uses them as part of its support for
sending and receiving messages.

To support receiving messages, the message store provider must implement the
IMsgStore::GetReceiveFolderTable and IMsgStore::GetReceiveFolder methods. See About
Receiving Messages with Message Store Providers for details.

To support sending messages, the message store provider must support the
IMsgStore::GetOutgoingQueue method in addition to the other methods used by the MAPI spooler
during the message sending process. A message store's outgoing queue does not have to correspond
to an actual folder anywhere in the message store's folder tree. However, it is customary for a message
store provider to show the contents of the outgoing message queue in the Outbox folder, if there is one.
Doing so gives client applications a convenient way to indicate the status of messages that the user
has sent, since an Outbox folder can be displayed along with all the other folders in a message store.
See About Sending Messages with Message Store Providers for details.

 About Special Folders in Message Stores

Special folders such as the Inbox, Outbox, and search-results folder, may be pre-created and protected
by the message store provider. If the folders don't exist, MAPI will attempt to create them in the
message store by calling the HrValidateIPMSubtree function. For more information, see About Special
Folders.

 About Implementing Messages in Message Stores

The IMessage interface is similar to the IMAPIFolder interface in that both interfaces derive from the
IMAPIProp interface. Clients use the IMAPIProp methods to access the contents of a message. The
IMessage interface supplies additional methods for manipulating messages, such as for adding
attachments or modifying the recipients of a message. The methods in the IMessage interface serve to
modify attributes of messages that are not stored directly in the message's properties.

 About Creating and Storing Messages in Message Stores

How your message store provider creates and stores messages in the underlying storage mechanism
depends heavily on the underlying storage mechanism itself. In general, you need only to write code to
preserve the properties of a message and their values.

When creating a new message, the message store provider needs to create it with the required
properties for messages. A list of these properties can be found in About Creating Messages. After that,
client applications add any additional properties with IMAPIProp methods.

When saving a message to the underlying storage mechanism, the message store provider needs to
iterate over the message's properties, and save them to the underlying storage mechanism such that
they can be fully recovered if the message is later opened.

MAPI requires that the properties on IMessage objects are transacted, meaning that changes made to
them do not become permanent until the IMAPIProp::SaveChanges method is called on the message
object. The message store provider is responsible for implementing this behavior. Usually this is not
difficult; it simply means holding properties in memory while they are being modified and committing
them to the underlying storage mechanism when SaveChanges is called.

Some properties on message objects have special semantics for client applications with respect to the
SaveChanges method:

· Some properties should be read/write before SaveChanges is called, but read-only afterwards. For
example, PR_MESSAGE_FLAGS is set initially by the client application that creates the message
(and thus is read/write) but can't be changed after the first call to SaveChanges.

· Some properties have special relations to properties on the folder they are in or to IMAPIFolder
methods. For example, the PR_MESSAGE_FLAGS property is related to the flags used on the
IMAPIFolder::CreateMessage call.

· Some properties may not be available until SaveChanges is called for the first time. For example,
the PR_ENTRYID property may not be available until SaveChanges is called.

· Some properties can have special relationships to other properties on the message object. For
example, the PR_BODY property is usually derived from the PR_RTF_COMPRESSED property in
message store providers that support Rich Text Format messages.

· Some properties are used by more than one object type related to message stores. For example,
the PR_STORE_SUPPORT_MASK property is required on folder and message objects as well as
message store objects.

It is the responsibility of the message store provider to implement the correct semantics for such
properties.

 About Supporting Named Properties in Message Stores

Message objects can have properties in them that are not in the set of properties defined by MAPI.
Such properties can be unnamed or named. Unnamed properties must reside in a range of property
identifiers defined by MAPI. Named custom properties reside in a different range of property identifiers
defined by MAPI. They are typically used by custom message types. Your message store provider
must support named properties if it is to be used as the default message store. Supporting named
properties means implementing the IMAPIProp::GetNamesFromIDs and
IMAPIProp::GetIDsFromNames methods, and implementing one or more mapping signatures that
identify what names go with what property identifiers. For more information, see About Defining New
Properties and About Support for Named Properties.

Most message store providers that support named properties use a single mapping signature for all
objects in the message store. This has two benefits. One is that it is simpler to implement mapping
signatures if there is only one to keep track of. The second benefit is that if all objects in the message
store use the same mapping signature, then client applications are assured that all property identifiers
on messages in the message store actually refer to the same named property. This allows client
applications to display columns for named properties in their folder view interface.

 About Supporting Multi-Valued Properties in Message Stores

The requirements for supporting multivalued properties are documented in Properties. Multivalued
property support is not required for message store providers but it is recommended, particularly for
default message store providers. Some other features, such as folder form libraries, do require
multivalued property support.

 About Supporting Multiple Client Access to Messages in Message Stores

It is possible for multiple client applications to open a given message simultaneously. Message store
providers do not have to follow any particular rules for governing such access. However, if the client
applications modify the message and save their changes, the store provider should follow certain rules:

· Allow the first call to the IMAPIProp::SaveChanges method to proceed as if it were the only client
that has the message open.

· On the subsequent SaveChanges calls by other clients, the message store provider should ignore
the changes and return MAPI_E_OBJECT_CHANGED.

· Allow client applications to respond to a MAPI_E_OBJECT_CHANGED return code by calling
SaveChanges again with the FORCE_SAVE flag. If a client application does this, the message
store provider should replace the previous changes with the new ones.

Alternatively, the message store provider can detect the conflict and present an interface which allows
the user to choose whether to keep the original message, overwrite the original message with the new
changes, or save the new changes to another location.

 About Displaying Progress for Message Store Providers

Message store providers, like all MAPI service providers, are required to display progress dialog boxes
during long operations. This simply means making use of the IMAPIProgress:IUnknown objects that
are supplied by MAPI and by client applications at the appropriate times. For more information, see
IMAPIProgress:IUnknown.

 About Providing Read and Nonread Reports for Message Store Providers

If a message store provider can receive messages, it is required to support read reports and nonread
reports of messages received by the message store provider. If a received message contains the
PR_READ_RECEIPT_REQUESTED property and that property's value is TRUE, then the message
store should send a notification message to the sender when the user opens the message indicating
that the message has been read. Similarly, if the user deletes the message before opening it, the
message store should issue a reply to the sender indicating that the message was not read.

Issuing these reports is a matter of creating an IMessage:IMAPIProp object, filling out the relevant
properties on the message, and submitting it to the MAPI spooler as if the message had originated with
the user. The IMAPISupport::ReadReceipt method can be useful for this.

 About Implementing a Configuration Interface for Message Store Providers

Message store providers are required to implement an interface that allows the user to configure the
message store provider to run on that user's computer. Typically, the message store provider is
configured when the message store provider is added to a user's profile. The message store provider's
configuration interface generally handles tasks such as setting user names and passwords for
protected message stores, choosing pathnames to necessary files, creating the underlying storage
mechanism it will use, if necessary, etc.

The configuration interface you implement is accessed through additional entry points in your message
service provider's DLL. For more information, see Configuring a Message Service. The message store
provider's configuration interface is the only user interface that a message store provider must
implement.

 About Folder Associated Information Tables

MAPI defines the MAPI_ASSOCIATED flag for various MAPI components to use when dealing with
folder-associated information tables. Each folder in a message store should have an associated
contents table table along with its standard contents table. Client applications store special messages
in a folder's associated contents table to hold forms and views. In fact, to support forms and views,
your message store provider must implement associated contents tables.

To implement associated contents tables, your store provider must:

· Support the MAPI_ASSOCIATED flag in the IMAPIContainer::GetContentsTable method so client
applications can get the folder's associated contents table instead of the standard contents table.

· Support the MAPI_ASSOCIATED flag in the IMAPIFolder::CreateMessage method so client
applications can add messages to a folder's associated contents table.

· Set the MAPI_ACCESS_CREATE_ASSOCIATED bit in the PR_ACCESS property on folder objects.
· Support the DEL_ASSOCIATED flag in the IMAPIFolder::EmptyFolder method.
· Set the MSGFLAG_ASSOCIATED bit in the PR_MESSAGE_FLAGS property for messages in the

associated contents table.
· Expose and respond to the PR_FOLDER_ASSOCIATED_CONTENTS property on folders.
· Maintain the PR_ASSOC_CONTENT_COUNT property on folders.

There is no bit in the PR_STORE_SUPPORT_MASK property to indicate whether your message store
provider supports associated contents tables. If your message store provider does not support them, it
should return MAPI_E_NO_SUPPORT when client applications call any of the above methods with the
MAPI_ASSOCIATED flag.

 About Sending Messages with Message Store Providers

Message store providers are not required to support outgoing message submissions, that is, the ability
for client applications to use the message store provider to send messages. Client applications need to
use a message store while sending messages because the message's data must be stored
somewhere between the time that the user is finished composing it and the time that the MAPI spooler
gives the message to a transport provider for submission to the underlying message system. If your
message store provider does not support outgoing message submissions, it cannot be used as the
default message store.

To support sending messages, your message store provider must:

· Implement an outgoing message queue.
· Support the IMessage::SubmitMessage method on message objects created within the message

store.
· Support the IMsgStore methods that are specific to the MAPI spooler: IMsgStore:FinishedMsg,

IMsgStore:GetOutgoingQueue, IMsgStore:NotifyNewMail, and IMsgStore:SetLockState.

The SetLockState method is important for proper interoperation between the MAPI spooler and client
applications. When the MAPI spooler calls SetLockState on an outgoing message, the message store
provider must not let client applications open the message. If a client application does try to open a
message that is locked by the MAPI spooler, the message store provider should return
MAPI_E_NO_ACCESS. The locked state of a message does not have to be persistent in case the
store is shut down while the message is locked by the MAPI spooler.

Regardless of whether the MAPI spooler has locked an outgoing message, the message store provider
should not allow a message in the outgoing message queue to be opened for writing. If a client
application calls the IMSgStore::OpenEntry method on an outgoing message with the MAPI_MODIFY
flag, the call should fail and return MAPI_E_SUBMITTED. If a client application calls OpenEntry on an
outgoing message with the MAPI_BEST_ACCESS flag, the message store provider should allow read-
only access to the message.

When a message is to be handled by the MAPI spooler, the message store provider sets the
message's PR_SUBMIT_FLAGS property to SUBMITFLAG_LOCKED. The SUBMITFLAG_LOCKED
value indicates that the MAPI spooler has locked the message for its exclusive use. The other value for
PR_SUBMIT_FLAGS, SUBMITFLAG_PREPROCESS, is set when the message requires
preprocessing by one or more preprocessor functions registered by a transport provider.

The following three procedures describe how the message store, transport, and MAPI spooler interact
to send a message from a client application to one or more recipients.

The client application calls the IMessage::SubmitMessage method.

In SubmitMessage, the message store provider
1. Calls IMAPISupport::PrepareSubmit. If MAPI returns an error, the message store provider returns

that error to the client.
2. Sets the MSGFLAG_SUBMIT bit in the PR_MESSAGE_FLAGS property of the message.
3. Makes sure that there is a column for PR_RESPONSIBILITY in the recipient table and sets it to

FALSE to indicate that no transport has yet assumed responsibility for transmitting the message.
4. Sets the date-time of origination in the PR_CLIENT_SUBMIT_TIME property.
5. Calls IMAPISupport::ExpandRecips to:

· Expand all personal distribution lists and custom recipients and replace all changed display names
with their original names.

· Remove duplicate names.
· Check for any required preprocessing, and if preprocessing is required, set the

NEEDS_PREPROCESSING flag and the PR_PREPROCESS property, a property reserved for

MAPI.
· Set the NEEDS_SPOOLER flag if the message store is tightly coupled with a transport and it

cannot handle all of the recipients.
6. Performs the following tasks if the NEEDS_PREPROCESSING message flag is set:

· Puts the message in the outgoing queue with the SUBMITFLAG_PREPROCESS bit set in the
PR_SUBMIT_FLAGS property.

· Notifies the MAPI spooler that the queue has changed.
· Returns control to the client, and message flow continues in the MAPI spooler. The MAPI spooler

performs the following tasks:
1. Locks the message by calling IMsgStore::SetLockState.
2. Performs the needed preprocessing by calling all of the

preprocessing functions in the order of registration.
Transport providers call
IMAPISupport::RegisterPreprocessor to register
preprocessing functions.

3. Calls IMessage::SubmitMessage on the open message to
indicate to the message store that preprocessing is
complete.

Note The following two steps will occur in the client process if there was no preprocessing, and will
occur when the MAPI spooler calls SubmitMessage if there was preprocessing.

7. Performs the following tasks if the message store is tightly coupled to a transport and the
NEEDS_SPOOLER flag was returned from IMAPISupport::ExpandRecips:
· Handles any recipients that it can handle.
· Sets the PR_RESPONSIBILITY property to TRUE for any recipients that it handles.
· Performs the following tasks if all recipients are known to this tightly-coupled store and transport:

1. Calls IMAPISupport::CompleteMsg if the message was
preprocessed or the message store provider wants the
MAPI spooler to complete message processing which is
recommended so that messaging hooks can be invoked.
Message flow continues with the MAPI spooler as
described in the following procedure.

2. Performs the following tasks if the message was not
preprocessed or the message store provider does not want
the MAPI spooler to complete message processing:
· Copies the message to the folder identified by the entry

identifier in the PR_SENTMAIL_ENTRYID property, if set
· Deletes the message if the

PR_DELETE_AFTER_SUBMIT property has been set to
TRUE.

· Unlocks the message if it is locked
· Returns to the client. Message flow is complete.

· If the message was preprocessed or the provider wants the MAPI spooler to complete message
processing (recommended so that messaging hooks can be invoked):

1. The message store provider should call
IMAPISupport::CompleteMsg.

2. Message flow continues with the MAPI spooler. See About
Sending Messages: MAPI Spooler Tasks.

· If the message was not preprocessed or the provider does not want the spooler to complete

message processing:
1. Copy the message to the folder identified by the entry

identifier in the PR_SENTMAIL_ENTRYID property, if set.
2. Delete the message if the PR_DELETE_AFTER_SUBMIT

property has been set to TRUE.
3. If the message is locked, unlock it.
4. Return to the caller. Message flow is complete.

8. Performs the following tasks if the message store is not tightly coupled to a transport, not all of the
recipients were known to the message store, or the NEEDS_SPOOLER flag is set:
· Puts the message in the outgoing queue without setting the SUBMITFLAG_PREPROCESS bit in

the PR_SUBMIT_FLAGS property.
· Notifies the MAPI spooler that the outgoing queue has changed by generating a table notification.
· Returns to the client, and message flow continues with a set of tasks performed by the MAPI

spooler.

 About Receiving Messages with Message Store Providers

Message store providers do not have to support incoming message submissions; that is, the ability for
transport providers and the MAPI spooler to use the message store provider as a delivery point for
messages. However, if your message store provider does not support incoming message submissions,
it cannot be used as the default message store.

To support incoming message submissions, your message store provider must:

· Support the IMsgStore::GetReceiveFolderTable and IMsgStore::GetReceiveFolder methods so
client applications can find incoming messages.

· Support the IMsgStore::NotifyNewMail method so that the MAPI spooler can inform the message
store provider that a new message has arrived.

· Implement notifications so that client applications can register for new message notification. Strictly
speaking, notifications are optional, but they are strongly recommended.

The sequence of method calls that occurs when an incoming message is delivered to a message store
is:

1. The MAPI spooler calls IMsgStore::OpenEntry with the Inbox's EntryID to get an IMAPIFolder
interface.

2. The MAPI spooler calls IMAPIFolder::CreateMessage to get a new message object.
3. The MAPI spooler passes the message object to the transport provider.
4. The transport provider fills in the message's properties with data from the underlying message

system and calls the message object's IMAPIProp::SaveChanges method.
5. The spooler calls any registered hook providers. The message may be modified, moved to a

different folder, deleted, etc.
6. The message store provider uses its notification method to inform registered client applications that

a new message has arrived.
7. The MAPI spooler calls the message store's IMsgStore::NotifyNewMail method.

 About Supporting Message Attachments for Message Store Providers

It is not required that your message store provider support message attachments. However, many
client applications expect to be able to add attachments to messages. If your message store will be
used to create or store IPM.Note messages, then your message store provider should support
message attachments. Default message store providers are strongly encouraged to support message
attachments. For more information, see About Message Classes, and About Default Message Stores.

There are five types of attachments that MAPI supports: file attachments, data attachments, message
attachments, OLE object attachments, and links. The requirements for supporting each type are
different. Client applications differentiate between the two types of attachments by means of the
PR_ATTACH_METHOD property on attachment objects.

Supporting attachments means implementing the IAttach:IMAPIProp interface. The IAttach interface
has no methods of its own; it only has methods inherited from the IMAPIProp interface. Since your
message store provider must already implement properties for message objects, this greatly simplifies
the task of supporting attachments. Implementing IAttach basically means providing a way for clients
to access a table of properties for particular attachments on messages.

Data attachments are simply attachments where the contents of the attachment are stored directly in
attachment's PR_ATTACH_DATA_BIN property. Data attachments exist primarily to allow client
applications to attach files to a message when the sender and the recipient of the message do not
have access to a common file server. See PR_ATTACH_METHOD for details.

Message attachments are attachments where the attachment sub-object is another
IMessage:IMAPIProp object. Since message store providers already support the IMessage interface,
supporting message attachments is not difficult.

Supporting OLE object attachments means implementing the OLE IStorage, IStream, and
IStreamDocfile interfaces. Your message store provider must be able to convert OLE object data
stored in the message into an active OLE object when a client application opens the object. For more
information, see Attachment Properties.

Links come in two types: links to files and links to other messages. Links to files use the
ATTACH_BY_REF_ONLY value for the PR_ATTACH_METHOD property along with
PR_ATTACH_PATHNAME or PR_ATTACH_LONG_PATHNAME to specify the location of a file.

How one implements links to messages may be dependent on aspects of the local messaging system,
and as such cannot be fully documented here. For example, sending a link to a message that is stored
on a server-based message store is typically just a matter of sending the entry identifier of the linked
message, providing that both the sender and recipient have access to that server. Other messaging
system configurations present other requirements and challenges for implementing links to messages.

 About Supporting RTF Text for Message Store Providers

Some client applications allow users to use Rich Text Format (RTF) text in their messages. If your
message store provider needs to support RTF text in messages, it needs to handle the
PR_RTF_COMPRESSED property in addition to the normal PR_BODY property. Primarily this means
storing both properties, and making sure that the PR_BODY property contains a plain text version of
the text in the PR_RTF_COMPRESSED property. The RTFSync function is useful for this.

There are two flags that can be set in the message store object's PR_STORE_SUPPORT_MASK
property which tell client applications what they can expect from the message store provider with
respect to the PR_BODY and PR_RTF_COMPRESSED properties on messages within the message
store. The STORE_RTF_OK flag indicates that the store can generate the value of the PR_BODY
property from the PR_RTF_COMPRESSED property dynamically, which relieves client applications
from the burden of synchronizing them explicitly. The STORE_UNCOMPRESSED_RTF flag indicates
that the message store provider can support uncompressed data in the PR_RTF_COMPRESSED
property.

Message store providers that do not support RTF text need to delete the PR_RTF_IN_SYNC property
when the PR_BODY property changes in order to inter-operate properly with client applications that do
support RTF text.

 About Providing Notifications for Message Store Providers

While notifications are optional, they are a very important part of a good message store provider. Client
applications and the MAPI spooler rely on notifications from the message store provider to get good
performance when submitting outgoing messages or receiving incoming messages. Client applications
and the MAPI spooler can function without receiving notifications from the message store provider, but
will not be able to inform users of changes in the message store without them. Typically, this means
that users will be unable to see that a new message has arrived until their client application next opens
the message store's receive folder.

Clients register for notifications by calling the IMsgStore::Advise method. The client passes in an
IMAPIAdviseSink object, a bitmask indicating what type of notifications the client is interested in
receiving, and an EntryID indicating which object in the message store the Advise request applies to.
When relevant events occur within the object (for example, when a new message arrives in the receive
folder within the message store), the message store provider or the object itself should call the
IMAPIAdviseSink::OnNotify method for all of the IMAPIAdviseSink objects that have registered for
that event type.

Even if your message store provider never notifies other MAPI components of changes in the message
store, it should still implement IMsgStore::Advise to return MAPI_E_NO_SUPPORT. This informs
other components not to expect notifications from the message store provider.

 About Grouping and Restricting Tables in Message Store Providers

Client applications frequently allow users some control over how the contents of a folder are displayed.
Typically, a user can choose to have messages grouped according to the value of one or more
properties on the messages, or can choose to exclude messages matching some criteria from the list.
This is done within the IMAPITable interface. Client applications can restrict the rows returned from the
table to whatever criteria the user specifies. Therefore, a message store provider needs to implement
the following IMAPITable methods.

IMAPITable
method

Purpose

FindRow Returns rows from a table that match the
specified criteria.

QueryColumns Returns the set of columns in a table or the
set of currently used columns.

QueryRows Returns one or more rows from a table
starting from a given position.

Restrict Applies a restriction to a table so that
subsequent calls to FindRow only return
rows that match the restriction.

SetColumns Specifies which columns should be returned
when rows are retrieved from the table.

Restrictions can be complex to implement; see About Restrictions for details. For more information on
implementing tables, see Tables.

 About Supporting Searches in Message Store Providers

Client applications frequently have some user interface components devoted to searching for
messages within a message store. Search criteria are specified within the IMAPIContainer interface,
by means of the IMAPIContainer::SetSearchCriteria and IMAPIContainer::GetSearchCriteria
methods.

Client applications use the message store object's PR_FINDER_ENTRYID property to identify the root
folder in the message store that contains folders for search results. The search-results folder is often a
folder at the top-level of the message store that is not part of the IPM folder tree and is therefore
hidden.

Whether your message store provider uses a permanent search-results folder or creates one when a
client opens the entry identifier stored in the PR_FINDER_ENTRYID property is an implementation
detail. It is somewhat easier for your message store provider to use a permanent folder that is created
when the message store is created, because doing so avoids the complication of checking the entry
identifier whenever any folder is opened to see whether to create a search-results folder. However, not
all message store providers can do that; notably, read-only message stores or stores that provide a
MAPI interface to a legacy database often are not allowed or are unable to create a permanent search-
results folder in the underlying storage mechanism.

 About Generating and Using Entry Identifiers in Message Store Providers

When a new folder or message is created in a message store, the message store provider has to
assign that object an entry identifier so that client applications can refer to it. This brings up the option
of re-using the defunct long-term entry identifiers of deleted objects or not. There is no requirement one
way or the other for message store providers, although if it is feasable, it is better if a message store
provider always generates new long-term entry identifiers for new objects rather than re-using old
ones. It is fine to re-use short-term entry identifiers when the objects they refer to are deleted.

The reason for this is that client applications can cache entry identifiers, sometimes for long periods of
time. If that happens and the message store provider does re-use entry identifiers, then it is possible
for the entry identifier to refer to a different object when the client application opens the entry identifier
than when it first obtained the entry identifier. If the message store provider does not re-use entry
identifiers (or at least uses an entry identifier generation scheme that does not repeat for a very long
time), then this problem cannot occur.

Similarly, it is good for message store providers to attempt to preserve entry identifiers for folders and
messages and folders when they are moved within the message store. If the message store provider
can do that, then references to objects in the store will not become invalid when the object is moved to
a different location within the store.

 About Default Message Stores

A default message store is one that client applications can use for general purpose messaging tasks.
There are a number of optional features for message store providers that become required if the
message store provider is to be used as the default message store. They are:

· Implementing the special folders: Inbox, Outbox, and search-results folder.
· Providing read and nonread reports.
· Allow incoming and outgoing message submissions.
· Allow creation of messages with an arbitrary message class.
· Support named and multivalued properties.
· Support the IMSProvider::SpoolerLogon method, even if the message store provider is tightly

coupled with a transport provider.
· Support associated contents tables.
· Support notification of the MAPI spooler when there are messages in the outgoing message queue.

 About Read-Only Message Stores

A read-only message store is one in which neither the MAPI client nor the MAPI spooler can create,
modify or delete the objects in the message store. There are many reasons why you might want to
implement a read-only message store. For example, a credit reporting firm could use a read-only store
to allow its customers or employees to see but not change individual credit reports. Choosing to make
a read-only message store has implications for the structure of the store provider, and for the store
itself. For example, a read-only message store can't have an Outbox folder because then MAPI clients
would request that new outgoing messages be created in that folder. Similarly, it is the store provider's
responsibility to ensure the integrity of the underlying storage mechanism.

There are three flags that can be set in the message store's PR_STORE_SUPPORT_MASK property
which support different levels of read-only access. the STORE_READONLY flag indicates that all
IMAPIProp interfaces on objects within the message store are read-only. The STORE_MODIFY_OK
flag indicates that existing messages in the message store may be modified, but new folders and
messages may not be created. The STORE_CREATE_OK flag indicates that new messages and
folders may be created, but indicates nothing about whether existing objects may be modified.

The fact that MAPI clients and the MAPI spooler may not be able to create, modify or delete objects in
the message store does not mean that the contents of the underlying storage mechanism never
change. Nor does it mean that your store provider never needs write access to the underlying storage
mechanism. In some circumstances those two conditions may apply, but not in the general case of a
read-only message store. What level of access your store provider requires and whether or not your
store provider ever changes data in the underlying storage mechanism depends mainly on the specific
nature of your store provider.

For example, if you are writing a store provider to give MAPI clients access to a database stored on a
CD-ROM device, then the underlying storage mechanism cannot change and your store provider can
only have read access to it. If, however, you are writing a store provider to give MAPI clients read-only
access to a public folder database but the store provider needs to keep track of the read/unread status
of messages for each user, then the store provider will need to write new data to the underlying storage
mechanism. However, in neither example does the store provider ever have to create, modify, or delete
folders or messages at the request of MAPI clients or the MAPI spooler.

The list of reasons that a store provider would need to write data to an underlying storage mechanism
that is otherwise read-only is fairly short:

· To store the read/unread status of messages.
· To implement read/non-read notifications.
· To store views.
· To cache persistent indexes for user defined folder sort orders.
· To store what order a folder's contents are sorted in (supporting IMAPIFolder::SaveContentsSort).
· To store search criteria, search state, and results, if the message store provider support searches

(supporting IMAPIContainer::SetSearchCriteria).

If your message store provider can never write data to the underlying storage mechanism, it will need
to implement these features using a separate storage mechanism outside of the underlying storage
mechanism. For example, a read-only message store provider could store the read/unread status of
messages in the store in a file on the user's computer. This strategy presents additional difficulties, but
may be the only feasable way for read-only message store providers to implement some features. For
example, keeping the contents of the separate storage mechanism synchronized with the objects in the
message store is more difficult than storing the read/unread status directly in the message store itself.

Searching presents an additional complication for read-only message store providers. Client
applications use the folder specified in the message store object's PR_FINDER_ENTRYID property to
locate the folder used for search results. Read-only message store providers often cannot install a

permanent search-results folder into the message store. In that situation, the message store provider
should store an entry identifier in the PR_FINDER_ENTRYID property that it can recognize when client
applications open folders so that it can dynamically create a search-results folder instead of reading
one from the underlying storage mechanism. However, since many read-only message store providers
create all their folders dynamically, this is usually not too much of a burden.

The fact that your message store provider is read-only is advertized in the store provider object's
PR_SUPPORT_MASK property. However, do not count on client applications to respect that property;
your store provider's code should enforce the read-only status of the underlying storage mechanism.

 About Supporting Forms and Views in Read-Only Message Stores

If your message store provider allows read-only access to the underlying storage mechanism, then
client applications and the MAPI form manager will be unable to do certain things. Specifically, clients
will be unable to add or modify custom views, and the MAPI form manager will be unable to install
forms in the associated contents tables of the store's folders.

For many read-only message stores, that may not be a problem. If that is the case, then the message
store provider does not need to support associated contents tables at all. However, if your message
store provider must be read-only and it must also support a pre-defined set of views or forms, then it
will need to support associated contents tables.

The most common strategy for doing this, since clients and the MAPI form manager cannot install the
views or forms into the message store themselves, is for the message store provider to hard-code
them into the message store. This means that the associated contents table or tables containing the
views or forms will exist in the message store when it is created, before any client applications or the
MAPI form manager ever access it. Then, when a client requests an associated contents table to get
custom views from a form or the MAPI form manager requests an associated contents table in order to
launch a form, the message store provider can provide one.

This requirement that the associated contents tables be created and populated when the message
store itself is created implies that your message store provider will need to obtain information about the
format of the special messages that client applications and the MAPI form manager use in order to
store views and forms. What those formats are will depend on the client application and MAPI form
manager being used, and so a description of them cannot be provided here. If you do not have access
to that information, it is very likely that you will have to reverse engineer those formats from existing
message stores that have views and forms installed into them. The MAPI SDK includes a utility called
MDBVIEW.EXE which you can use to view the properties and their values of objects in message stores
to help with this reverse engineering.

The danger in implementing forms and views by reverse engineering the form and view descriptor
format of a MAPI client application is that if the application changes that format when it is upgraded, the
forms and views in your message store will no longer function. This problem will persist until a
universal format for form and view descriptors, defined by MAPI, is available. For this reason, reverse
engineering form and view descriptors should only be done as a last resort.

 About Tightly Coupled Message Store Providers

Message store providers can be "tightly coupled" with a transport provider. Tightly coupling MAPI
service providers means implementing the two providers such that the store provider and transport
provider can communicate to make the process of sending and receiving messages more efficient. The
benefit of doing this is that performance improvements can result when two service providers can
interact with each other directly rather than by means of the MAPI spooler. To tightly couple a message
store provider to a transport provider, the transport must place the message store provider's entry
identifier in the PR_OWN_STORE_ENTRYID property in the transport provider's row in the MAPI
status table. This enables the MAPI spooler to connect the store provider to the transport provider.

There is no requirement that a message store provider ever be tightly coupled with any other service
provider. The most common service provider to tightly couple with a message store provider is a
transport provider. This is usually done so that sending and receiving messages can be accomplished
without involving the MAPI spooler. For example, when the user submits an outgoing message, the
combined message store provider and transport provider can send it directly. The combined service
providers don't have to first notify the MAPI spooler that there is a new message to process, and then
wait for the MAPI spooler to initiate the process of transferring the message from the message store
provider to the transport provider. This has particular benefits when a server-based message store is
being used by minimizing network traffic between the user's computer and the server.

In general, there are no well-specified procedures for tightly coupling service providers. However, there
are some guidelines:

· Keep in mind that if the reason for tightly coupling service providers is performance, then they are
taking other parts of the MAPI subsystem out of the processes that those parts would normally be
involved in. This implies that the individual parts within the combined service provider should interact
with each other in a way that simulates the interaction they would normally have with the parts of the
MAPI subsystem that are not being used.

· When tightly coupled service providers do interact with other MAPI components, they must still
interact with them in exactly the way they would if they were not tightly coupled. For example, if a
user is using a combined message store provider/transport provider as their default message store
but are using a separate transport provider to send messages, as can happen when a user takes his
or her computer on the road and switches to a remote transport provider, the message store portion
of the tightly coupled service provider must still interact with the MAPI spooler just as if it were a
standalone message store provider.

 About Loading Message Store Providers

When a client application opens a message store, MAPI loads the message store provider's DLL into
memory. After loading the DLL, a very specific sequence of method calls occurs between the message
store provider and MAPI. This method call sequence enables MAPI to get top level
IMSProvider:IUnknown IMSLogon:IUnknown, and IMsgStore:IMAPIProp objects, and allows the
message store provider to get a MAPI support object. After the call sequence, the message store
provider should be ready to accept logons from client applications.

The call sequence when a message provider DLL is loaded is:

1. Client calls IMAPISession::OpenMsgStore.
2. If the message store is not already open, MAPI loads the store provider's DLL and calls the DLL's

MSProviderInit entry point. If the message store is already open, MAPI skips steps 2 and 3, then
uses the existing IMSProvider object to complete step 4.

3. MSProviderInit creates and returns an IMSProvider object.
4. MAPI calls IMSProvider::Logon, passing the client application's message store entry identifier.
5. IMSProvider::Logon creates and returns an IMSLogon object and an IMsgStore object, then calls

the IUnknown::AddRef method on its IMAPISupport:IUnknown object. If the client application's
message store entry identifier refers to a message store that is already open, the message store
provider can return existing IMSLogon and IMsgStore objects, and does not need to call AddRef
on its support object.

6. If the client application did not set the MAPI_NO_MAIL flag when it logged on and it did not set the
MDB_NO_MAIL in step 1, then MAPI gives the message store's entry identifier to the MAPI spooler
so that the MAPI spooler can log on to the message store.

7. MAPI returns the IMsgStore object to the client application.
8. The MAPI spooler calls IMSProvider::SpoolerLogon.
9. IMSProvider::SpoolerLogon returns the same IMSLogon object and IMsgStore object from step

5.

Note If the logon call to the message store provider fails because an incorrect password was supplied
and the message store provider cannot display an interface to ask for the correct password, it should
return MAPI_E_FAILONEPROVIDER from the IMSProvider::Logon method. This will allow client
applications to ask the user for a password to try logging onto the message store provider again
instead of causing MAPI to fail the provider for the entire session.

 Developing MAPI Form Servers

This section details the process of creating form server executable and configuration files for creating
custom MAPI forms. Before reading this section, you should familiarize yourself with the information in
MAPI Form Architecture.

Developing a form server includes the following steps:

1. Deciding what information the form will carry and choosing a set of properties to hold that
information.

2. Designing a user interface to allow users to interact with the form's properties.
3. Choose a message class and generate a unique message class identifier (CLSID) for the class.
4. Implement the required MAPI form interfaces, as well as any optional interfaces that your particular

form server needs.
5. Write user interface code to handle the user's interaction with the form object and the properties the

form uses.
6. Create a configuration file for the form.
7. Install the form on users' computers.

You will most likely perform steps 1-5 simultaneously rather than completing them in sequence. The
process of developing a form server, like many programming projects, is not one in which there is a
particularly well-defined starting point and ending point. For example, creating a configuration file is
listed as the last step in this process, but your configuration file will probably be created incrementally
and will become more complete as you add features to your form server.

 Choosing a Form's Property Set

When you implement your form server, you need to have a property for each piece of information that
your message class needs. These properties can be pre-defined MAPI properties, or they can be
custom properties that you define. For details about working with properties, see Properties.

Your form's configuration file will contain a list of properties that your form server exposes for client
applications to use, but this does not have to be the entire list of properties used by your form server.
Client applications typically use the exposed properties to allow users to sort messages in a folder, or
customize their interfaces in some way.

MAPI has a large set of pre-defined properties that suffice for most applications. However, there will be
times when a custom message class needs a property that MAPI does not define. You can use custom
properties to extend MAPI's pre-defined set of properties for whatever special information your form
server needs to support.

Custom properties can be defined by:

· Choosing a name for the property and using the IMAPIProp::GetIdsFromNames function to obtain
a property tag for it. The IMAPIProp interface through which you call this method comes from the
IMessage pointer that is passed to the form server when the message is created. Note that the
property name must be a wide-character string.

· Defining a custom property tag yourself. Custom property tags must be in the range 0x6800-0x7BFF.
Properties in this range are message class specific.

For details about defining custom properties, see Properties.

Note Form servers that have a message text often use the PR_RTF_COMPRESSED property to
store it. If your form server uses PR_RTF_COMPRESSED, it should also ensure that the PR_BODY
property contains a text only version of the message text, in case the resulting message is read by a
client that does not support RTF message text.

 Choosing a Message Class

As described in About MAPI Message Classes, message classes are an important concept for
establishing the relationship between types of custom messages, and by extension, between form
servers themselves. Fortunately, choosing a message class string is fairly simple. The message class
string of a message class is an arbitrary string, but should follow these conventions:

· The string should satisfy all the conventions described in the documentation for
PR_MESSAGE_CLASS. Importantly, the string should be composed entirely of ANSI characters and
be less than 256 characters long.

· If your form server is derived from an existing form server or is an extension of an existing form
server, your message class string should be formed by adding a period and another word to the
message class string of the form server your form is based on. For example, imagine that your are
implementing a form for rescheduling a meeting, and your form is based on an existing form for
scheduling meetings. If the meeting scheduling form's message class string is "IPM.Meeting", your
message class string could be "IPM.Meeting.Reschedule".

· If your form is not based on any existing form, your message class string should still begin with
either the IPM. or IPC. prefix, depending on whether the form is intended to be received by a person
or by another piece of software. IPM. designates an interpersonal message that usually ends up in a
user's Inbox, and IPC. designates an interprocess communication message that is not typically
delivered to a user's Inbox.

· If your message class is intended to be human-readable, the message class string should start with
IPM. A message class is generally considered human-readable if it uses any properties that contain
plain text or RTF data. If your form uses the PR_BODY property, it should almost certainly use an
IPM.-derived message class string. For example, if you are implementing a form for purchase
orders, and your organization requires that purchase orders be approved by a manager, your
message class string could be IPM.Purchase_Order. Forms that are designed for use with public
folders or public folder applications are typically considered to be interpersonal because they are
read by people even though they are not actually addressed to any person's e-mail address. The
typical prefix for public folder message classes is IPM.post.

· If your message class is intended to be received by some other piece of software instead of by a
person, the message class string should start with IPC. For example, if you are implementing a form
for allowing people to automatically subscribe to mailing lists, your message class string could be
IPC.Subscribe.

· Your message class string should never end with a period.

The message class string should be put in the [Description] section of the form's configuration file, in
the MessageClass entry, like this:

MessageClass=IPM.Meeting.Reschedule

Once you have chosen an appropriate message class string, you should generate a class identifier for
it. Class identifiers are generated with the UUIDGEN.EXE utility that is included with the Win32 SDK.
The class identifier must be put in the configuration file's CLSID entry, along with the MessageClass
entry, like this:

CLSID={88FFF551-B8C5-11ce-8DE0-00AA0060D242}

Your class identifier will almost certainly be different, of course. For details, see Creating a
Configuration File.

When the form is installed on a user's computer, your installation process ¾ whether it is a setup
program or something else ¾ must make a registry entry in the HKEY_CLASSES_ROOT\CLSID\
section of the registry for the class identifier. This entry must be set to the message class string. For
example, you would create a registry entry like this for the example class identifier above:

HKEY_CLASSES_ROOT\CLSID\{88FFF551-B8C5-11ce-8DE0-
00AA0060D242}="IPM.Meeting.Reschedule"

For details, see Installing a Form into a Library.

 About Form States

Form objects can be in one of five distinct states, depending on what methods have been called in
them and whether any errors have occurred in performing those methods. The states are Uninitialized,
Normal, No Scribble, Hands Off After Save, and Hands Off From Normal.

The states primarily relate to the status of the data in the form object. The different states reflect
whether the data needs to be saved, whether the form object should allow modifications to the data,
and what point in the process of saving the data the form is in. As such, the form states and transitions
between them have more to do with your form server's implementation of IPersistMessage interface
methods than any other. Knowledge of these states is very useful for proper implementation of the
MAPI form interfaces that your form server must implement.

Each state is described in the following sections, along with the legal actions that cause transitions to
other states. Any transitions not listed in the following sections are illegal. If your form objects make
illegal transitions between states, they will not behave in the ways that messaging clients expect and
could cause unpredictable client or form object behavior.

Note Some state transitions depend on information from previous states. Your form server will most
likely have to implement a "dirty" flag in its form objects to indicate whether the values of the message's
properties have been changed in order to facilitate later state changes.

 About the Uninitialized State

The Uninitialized state is the initial state form objects should be in when they are first created. Form
objects become initialized with message data when a client application calls the
IPersistMessage::InitNew or IPersistMessage::Load method on the form object. Legal state
transitions from the Unitialized state are described in the following table.

IPersistMessage
method

Action New State

InitNew Load the form object with
default data.

Normal

Load Load the form object with data
from the target message.

Normal

GetClassId Return success, or else set
the last error to and return
E_UNEXPECTED.

Uninitialized

GetLastError Return the last error. Uninitialized

Other
IPersistMessage
methods or
methods from
other interfaces

Set the last error to and return
E_UNEXPECTED.

Uninitialized

 About the Normal State

The Normal state is where the form object spends most of its time, waiting for client applications to
initiate an action such as saving changes or closing the form. Legal transitions from the Normal state
are described in the following table.

IPersistMessage
method

Action New State

Save(pMessage
== NULL,
fSameAsLoad ==
TRUE) or Save(
pMessage !=
NULL,
fSameAsLoad ==
FALSE)

Recursively save any
embedded OLE objects that
are dirty. Save message data
back to the message object.
Store the fSameAsLoad flag
for later use in the No Scribble
state.

No Scribble

Save(pMessage !
= NULL,
fSameAsLoad ==
TRUE)

This is the same as the
previous case, except that this
Save call is used in low
memory situations and must
not fail for lack of memory.

No Scribble

HandsOffMessag
e

Recursively invoke the
HandsOffMessage method on
embedded messages or the
OLE
IPersistStorage::HandsOffSt
orage method on embedded
OLE objects. Release the
message object and any
embedded messages or
objects.

Hands Off From Normal

SaveCompleted,
InitNew or Load

Set last error to and return
E_UNEXPECTED

Normal

GetLastError Return the last error.

Normal

Other
IPersistMessage
methods or
methods from
other interfaces

Implement as described in the
documentation for the
IPersistMessage interface.

Normal

 About the No Scribble State

The No Scribble state indicates that changes to a message are being saved. The actual saving of
values stored in the form object's user interface happens when the form object's
IPersistMessage::Save method is called by the client application. Legal transitions from the No
Scribble state are described in the following table.

IPersistMessage
method

Action New State

SaveCompleted(
pMessage ==
NULL)

If fSameAsLoad flag was
TRUE on the Save call that
caused the form to enter the
No Scribble State and the
message has been modified,
then internally mark the
changes as saved and call
IMAPIViewAdviseSink::OnSa
ved.

Normal

SaveCompleted(
pMessage !=
NULL)

Call the
IPersistMessage::HandsOffM
essage method (similar to the
OLE
IPersistStorage::HandsOffSt
orage method) followed by the
normal SaveCompleted
actions. If SaveCompleted
was successful, enter the
Normal state. Otherwise, enter
the Hands Off After Save state.

Normal or Hands Off After
Save

HandsOffMessag
e

Recursively invoke the
HandsOffMessage method on
embedded messages or the
OLE
IPersistStorage::HandsOffSt
orage method on embedded
OLE objects. Release the
message object and any
embedded messages or
objects.

Hands Off After Save

Save, InitNew or
Load

Set the last error to and return
E_UNEXPECTED.

No Scribble

GetLastError Return the last error. No Scribble

Other
IPersistMessage
methods or
methods from
other interfaces

Set the last error to and return
E_UNEXPECTED.

No Scribble

 About the Hands Off After Save State

The Hands Off After Save state is part of the process of saving the contents of a form to permanent
storage. When in this state, the form object should refrain from making changes to the in-memory
copies of values of the message's properties, since there may not be another opportunity to save those
changes. Legal transitions from the Hands Off After Save state are described in the following table.

IPersistMessage
method

Action New State

SaveCompleted(
pMessage !=
NULL)

Open any embedded objects.
The data in the message
stored in pMessage is
guaranteed to be the same as
the message in the previous
Save call. If the
SaveCompleted call succeeds,
enter the Normal state.
Otherwise, set the last error to
E_OUTOFMEMORY and stay
in the Hands Off After Save
state.

Normal or Hands Off After
Save.

SaveCompleted(
pMessage ==
NULL)

Set the last error to
E_INVALIDARG or
E_UNEXPECTED

Hands Off After Save

HandsOffMessag
e, Save, or
InitNew

Set the last error to and return
E_UNEXPECTED

Hands Off After Save

Load Load the form object with data
from the target message. This
call can occur when the form
object is going to the next or
previous message in a folder.

Normal

GetLastError Return the last error. Hands Off After Save

Other
IPersistMessage
methods or
methods from
other interfaces

Set the last error to and return
E_UNEXPECTED

Hands Off After Save

 About the Hands Off From Normal State

The Hands Off From Normal state is very similar to the Hands Off After Save state. It is part of the
process of saving the contents of a form to permanent storage. When in this state, the form object
should refrain from making changes to the in-memory copies of values of the message's properties,
since there may not be another opportunity to save those changes. Legal transitions from the Hands
Off From Normal state are described in the following table.

IPersistMessage
method

Action New State

SaveCompleted(
pMessage !=
NULL)

Replace the message object's
message with pMessage,
which is the replacement for
the message revoked by the
previous call to
HandsOffMessage. The data
in the new message is
guaranteed to be the same as
in the revoked message. The
message should not be marked
as clean, nor should the
IMAPIViewAdviseSink::OnSa
ved be called after this call. If
the SaveCompleted call
succeeds, enter the Normal
state. Otherwise, stay in the
Hands Off From Normal state.

Normal or Hands Off From Normal.

SaveCompleted(
pMessage ==
NULL)

Set the last error to
E_UNEXPECTED.

Hands Off From Normal

HandsOffMessag
e, Save, InitNew,
or Load

Set the last error to
E_UNEXPECTED

Hands Off From Normal

GetLastError Return the last error. Hands Off From Normal

Other
IPersistMessage
methods or
methods from
other interfaces

Set the last error to
E_UNEXPECTED

Hands Off From Normal

 Writing Form Server Code

A form server can be thought of as three things: a Win16 or Win32 program that displays an interface
and handles windows messages via the standard Windows message pump mechanisms, an object
that registers its class factory with OLE and is activated by OLE automation methods, and a MAPI
object that follows MAPI's rules for interactions with other MAPI components. Your code has to handle
all three of those broad requirements simultaneously.

See the OLE Programmer's Reference for details about registering your form server's class factory.
Handling windows messages and displaying an interface are standard Windows programming
techniques that don't have any special requirements with respect to MAPI forms. Again, the Win32
Software Development Kit has details about Windows programming. This document contains what you
need to know to implement the required and optional MAPI form interfaces so that they follow MAPI's
rules for interactions with other MAPI components ¾ primarily the MAPI Form Manager and messaging
client applications.

All of the interfaces that you can use when implementing form servers are derived ¾ either directly or
indirectly ¾ from the OLE base class IUnknown. This means that all your implementations of these
interfaces will need to have QueryInterface, AddRef, and Release methods. You can save yourself a
lot of work if you use multiple inheritance to implement all of the required interfaces in one new class of
your own, so that all the interfaces you are using can share a single implementation of the required
IUnknown methods. See the OLE documentation for the IUnknown class methods for details on the
QueryInterface, AddRef, and Release methods. There are no special considerations with respect to
MAPI form servers for these methods.

While not all of the MAPI form interfaces are mandatory for all form servers, the methods in any given
interface are. That is, if you choose to implement a particular interface, you must implement all of the
methods in the interface. This is different from the situation with some other MAPI components, such
as message transports. Fortunately, the methods in the MAPI form interfaces are relatively
straightforward so implementing all of them does not put a great burden on developers.

The MAPI form interfaces are independent of the type of development tool used to create a form
server. This allows forms created using different development tools such as Microsoft Visual C++,
Microsoft AppStudio and tools from other vendors. The only requirement is that all form servers must
support the required MAPI form interfaces.

Note It is possible to implement form servers using a mix of languages. For example, you could use
Visual Basic for the form's user interface and C++ for the underlying MAPI code. However, this
document relates only to C++ development of form servers.

Not all of the MAPI interfaces relating to forms are required by all form servers. The optional interfaces
allow you to implement some advanced form functions that are not needed by most form servers. The
following table lists the interfaces, what they are for, and whether you must implement them.

Interface Usage Status
IMAPIForm The primary interface that

clients use when loading form
servers, executing form verbs,
and shutting down form
servers. Also the OLE
IUnknown- derived interface
used to inform other OLE
components what interfaces a
form object implements.

Required

IPersistMessage Used when loading messages
into and saving messages

Required

from form objects
IMAPIFormAdvis
eSink

Used by form objects to keep
track of messaging client
status and to find out whether
the form object is capable of
displaying the next or previous
message in a folder.

Optional

IClassFactory OLE class factory interface
used by form objects for
compliance with the OLE class
factory mechanism.

Required

IMAPIFormFactor
y

Used if your form server
supports more than one type
of form. In this case, the
IMAPIFormFactory interface
allows client applications to
access the multiple
IClassFactory interfaces (one
per type of form that your form
server supports) that your form
server must also implement.

Optional

 Declaring Form Interfaces

You can simplify the declarations of your implementations of MAPI form interfaces by using the
MAPI_interface_METHOD macros, where interface is a form interface defined in the MAPIFORM.H
header file. You are not required to use these macros, but if you do not you should take particular care
that your declarations conform to the declarations in the MAPIFORM.H header file. For example, you
could declare your form server's form object class like this:

class CMyForm : public IPersistMessage, public IMAPIForm,
public IMAPIFormAdviseSink

{
public:

CMyForm(CClassFactory *); // ctor takes a class factory object
~CMyForm(void);

// MAPI methods that need to be implemented.

MAPI_IUNKNOWN_METHODS(IMPL);
MAPI_GETLASTERROR_METHOD(IMPL);
MAPI_IPERSISTMESSAGE_METHODS(IMPL);
MAPI_IMAPIFORM_METHODS(IMPL);
MAPI_IMAPIFORMADVISESINK_METHODS(IMPL);

// other implementation specific stuff:

};

 Integrating MAPI Form Server Code with Windows Code

Recall that your form server is a Win32 or Win16 program. As such, there are some tasks related to
loading your form server into memory and exiting cleanly. Like all Windows programs, the entry point
for your form server is the WinMain function. This function is the appropriate place to perform the
following tasks:

· Creating and registering a window class so that your form server can interact with other OLE
components.

· Creating and registering a window class or classes for your form objects' user interfaces.
· Calling the MAPIInitialize function. MAPIInitialize handles the required OLE initialization for you as

well. This must be done once per instance of your form server.
· Registering a global atom with a string representation of the form server's class identifier (CLSID).

This atom should exist for the lifetime of the form server.
· Calling the OLE function CoRegisterClassObject to register your form server's class factory with

OLE.
· Creating a main window to receive messages. This window probably does not need to be visible

since the user will be interacting with the specific windows associated with individual form objects.
However, during development, the main window can be a convenient place for debugging output or
control of your form server.

· Creating a message loop which runs for the lifetime of the form server, translating and dispatching
windows messages to active form objects.

When your form server exits, it should perform the following tasks:

· Call the OLE function CoRevokeClassObject to revoke your message class' OLE registration
· Call MAPIUninitialize to properly close the form server's connection to MAPI
· Delete the global atom containing the string representation of the class ID.

 Implementing the IMAPIForm Interface for Form Servers

IMAPIForm is the primary interface for form objects. The following table lists the IMAPIForm methods
that are required.

Method Use
SetViewCont
ext

Sets a form view context as the current view
context for a form.

GetViewCont
ext

Returns the current view context for a form.

ShutdownFo
rm

Closes a form.

DoVerb Requests a form object perform one of its verbs.
Advise Registers a form viewer for notifications about

changes to a form.
Unadvise Removes a form viewer's registration for

notification of form object changes.

 Implementing IMAPIForm::SetViewContext for Form Servers

When the SetViewContext method is called, it must do the following:

· If the form object already has a view context, call the existing view context's SetAdviseSink method
with a parameter of NULL, and release it.

· Store the new view context passed in by the caller.
· If the new view context is not NULL, call its AddRef method, call its SetAdviseSink method with a

pointer to the form server's implementation of the IMAPIFormAdviseSink interface, and call its
GetViewStatus method in order to get the view context's current set of status flags.

· Update any user interface elements that depend on the view context.

 Implementing IMAPIForm::GetViewContext for Form Servers

The GetViewContext method needs to copy the form object's view context pointer into the view
context pointer passed in by the caller, or NULL if there is no view context yet. It should return
hrSuccess if there is a valid a view context pointer, or ResultFromScode(S_FALSE) otherwise.

 Implementing IMAPIForm::ShutdownForm for Form Servers

The ShutdownForm method needs to perform the following tasks:

· Check that this method has not already been called. This is an unlikely event, but should be checked
for anyway. If it has, return a status code based on E_UNEXPECTED.

· Check the form object's user interface to see if there are any changes to save. If there are, and if the
ulSaveOptions parameter to this method indicates that changes should be saved, call the
SaveMessage method in the form object's view context object.

· Call the form object's AddRef method. This is done to protect the form object because its internal
data structures are referenced in some of the following actions.

· Call the SetAdviseSink method in the form object's view context object with a NULL parameter, and
call the view context object's Release method.

· Call the OnShutdown method in any IMAPIViewAdviseSink that have registered for notification
with the form object.

· Release any IMessage and IMAPIMessageSite objects held by the form object.
· Destroy the form object's user interface window, if one exists.
· Call the form object's Release method. This matches the earlier AddRef call.

Note After these actions have been completed, the only valid methods on the form object that may be
called are those from the IUnknown interface.

 Implementing IMAPIForm::DoVerb for Form Servers

The DoVerb method handles execution of the different verbs that the form object supports. This
method is called with a verb number and a view context pointer. This method needs to perform the
following tasks:

· If the view context pointer is not NULL, this indicates that the form object should use the specified
view context while executing the verb rather than the one it already has. Make whatever changes to
the form object's internal data structures are necessary for this.

· Execute whatever code is necessary for the verb indicated by the verb number.
· If necessary, restore the original view context.
· If an unknown verb number was passed in, return a result based on MAPI_E_NO_SUPPORT.

Otherwise, return a result based on the success or failure of whatever verb was executed.
· Shut the form object down. It is the form object's responsibility to shut down after completing the

DoVerb method.

 Implementing IMAPIForm::Advise for Form Servers

The Advise method simply needs to store the IMAPIViewAdviseSink pointer parameter, call the
advise sink object's AddRef method, and return a connection number in the ULONG pointer
parameter. This method should return S_OK on success or E_OUTOFMEMORY on failure.

Typically, one implements a helper class to handle the advise sink and notification mechanisms, in
which case this method is simply a wrapper around a call to some method in that support class for
registering objects for notification.

 Implementing IMAPIForm::Unadvise for Form Servers

The Unadvise method is called with a connection number as obtained by an earlier call to the Advise
method. This method needs to call the Release method for the IMAPIViewAdviseSink object that was
registered for that connection number in the earlier call to the Advise method. This method should
return S_OK on success, or E_INVALIDARG if the connection number passed in does not correspond
to a registered advise sink.

 Implementing the IPersistMessage Interface for Form Servers

IPersistMessage is the interface that is used for loading and saving message data to and from form
objects. The following table lists the IPersistMessage methods that are required.

Method Use
GetClassID Returns a form's message class identifier.
IsDirty Checks a form for changes made since the form

was last saved.
InitNew Provides a form with a base message on which

to build a new message.
Load Loads a form from a specified message.
Save Saves a revised form back to the message from

which it was loaded or created.
SaveComplet
ed

Returns a message to a form after a save,
submission, or other operation.

HandsOffMes
sage

Causes a message to release its message
object.

 Implementing IPersistMessage::GetClassID for Form Servers

The GetClassID method simply needs to copy the form server's class identifier (CLSID) in the class
identifier pointer parameter, and return hrSuccess.

 Implementing IPersistMessage::IsDirty for Form Servers

Callers use the IsDirty method to determine whether the message object has unsaved data. If it does,
this method should return S_OK. If it does not, this method should return S_FALSE.

 Implementing IPersistMessage::InitNew for Form Servers

The InitNew method is called when the user composes a new message of your form server's message
class. This method should only be called when the form object is in the Uninitialized, Hands Off After
Save, or Hands Off From Normal state. If this method is called while the form object is in any other
state, it should return a result based on E_UNEXPECTED.

The clean or dirty status of a message typically controls whether messaging clients display a dialog
asking the user whether to save changes. Therefore, new messages should always start out clean
since the user has had no opportunity to make changes. However, if the constructor for your form
object sets the value of any computed properties, and it is important for that computed value to be
saved, then the form object starts out effectively neither clean nor dirty. It is not clean because it has
useful data in it, but it is not dirty because you don't want users to see a Save Changes dialog box in
the case where they create a new message of your form server's message class and then immediately
close it. In this situation, you should implement the form's interface to detect this condition and respond
appropriately. One option is to show the user a more appropriate dialog box to prompt if the message
should be saved. If the user indicates that the message should be saved then the form object can then
save its data, mark itself as clean, and exit normally.

If the form object has a message site object other than the one passed into this method, it should be
released since it will not be used. After that, the pointers to the message site and message object
passed to this method should be stored, and the AddRef method on those objects should be called.

The message flags and status should be set to something appropriate for your message class. Many
message classes, for example, set the message's flags to MSGFLAG_UNSENT for new message
objects.

If the form object has a valid user interface pointer, the user interface for the message object should be
displayed.

If nothing has gone wrong with the above actions, the message object should move to the Normal
state. At this point the message object should use its notification method to inform any interested
parties that a new message has been created. Finally, InitNew should return S_OK.

 Implementing IPersistMessage::Load for Form Servers

The Load method is called when an existing message is loaded into a form object so that the user can
interact with it. This method should only be called when the form object is in the Uninitialized, Hands
Off After Save, or Hands Off From Normal states. If this method is called while the form object is in any
other state, it should return a result based on E_UNEXPECTED.

As with the the InitNew method, the Load method should release an existing message site and
message object if the form object already has them since the ones passed into this method will be
used instead. After releasing the existing objects, the Load method should store the message site
pointer and message pointer passed in, and call the AddRef method on those objects.

At this point, the properties on the message object passed into this method can be copied to the form
object.

Having loaded the properties, the form object should move into the Normal state and display its user
interface. Finally, the Load method should use the form object's notification mechanism to inform any
interested parties that the message has been loaded. The same notification can be used for loading a
message as for creating a new message.

If no errors occur during this process, the Load method should return S_OK. If any errors occurred
while reading the properties from the message object passed in, the error from the failed action should
be returned instead.

 Implementing IPersistMessage::Save for Form Servers

The Save method is called by client applications to instruct the form object to save changes to a form
object's property values back to a message object ¾ often the message object from which the form
object was loaded or initialized. The Save method should only be called when the form object is in the
Normal state. If this method is called while the form object is in any other state, it should return a result
based on E_UNEXPECTED.

The caller passes a flag to the Save method to indicate whether the form object should save its data to
the same message object that the form object was originally loaded from. If so, then either the
message pointer passed into the Save method is NULL or is the same as the one that the form object
already has. In either case, it is safe for the Save method to use its existing message object pointer as
the one to save changes into.

If that flag indicates that the message object is a different one, then the Save method needs to copy
everything in the original message object into the new message object before saving changes. The
IMAPIProp::CopyTo method is useful for this.

At this point the Save method should copy the data from the form object ¾ or its user interface ¾ to the
properties in the target message object and enter the No Scribble state.

If no errors occur during this process, the Load method should return S_OK. If any errors occurred
while saving the properties to the target message object, the error from the failed action should be
returned instead.

Note The form object should never make changes to the underlying message object's property values
except during the Save method.

 Implementing IPersistMessage::SaveCompleted for Form Servers

The SaveCompleted method is called by the client to inform the form object that the process of saving
changes to a message object has been completed. The SaveCompleted method should only be called
when the form object is in the Hands Off From Normal, Hands Off After Save, or the No Scribble state.
If this method is called while the form object is in any other state, it should return a result based on
E_UNEXPECTED.

If the form object is in the Hands Off From Normal or Hands Off From Save state and the message
pointer parameter is NULL, SaveCompleted should return a result based on E_INVALIDARG.

At this point, the message should save its current state in a variable and enter the Normal state.

There are several possible actions that the SaveCompleted method can perform, depending on what
the message pointer parameter contains, and what state the message is in:

· If the message pointer parameter is NULL and the form object saved its data to the same message
object as it was originally loaded with, the form object should mark itself as clean, use its notification
mechanism to inform interested parties that the form object's data has been saved, and return
S_OK. If the message pointer parameter is NULL but the form object saved its data to a different
message object, then this method should return S_OK and take no other action.

· If the form object was in the Hands Off From Normal state when this method was called, then it
should release its current message object, replace it with the object in the message pointer
parameter, call the AddRef method on the new message object, and return S_OK.

· If the form object was in the Hands Off After Save state when this method was called, the
SaveCompleted method should use its notification mechanism to inform interested parties that the
form object's data has been saved, should mark itself as clean, and return S_OK.

· If the form object was in the No Scribble state when this method was called, the SaveCompleted
method should release its current message object, replace it with the message pointer parameter,
call the AddRef method on the new message object, and then perform the same actions as in the
previous case.

 Implementing IPersistMessage::HandsOffMessage for Form Servers

The HandsOffMessage method is used to cause a form object to release the message object it is
using. This method should only be called when the form object is in the Normal or No Scribble state. If
this method is called while the form object is in any other state, it should return a result based on
E_UNEXPECTED.

If the form object is in the Normal state it should enter the Hands Off From Normal state, otherwise it
should enter the Hands Off After Save state. This method should then call the Release method on its
message object, and return S_OK.

 Implementing the IMAPIFormAdviseSink Interface for Form Servers

IMAPIFormAdviseSink is the interface that client applications ¾ and other interested parties, if any ¾
use to get notifications when certain events happen within a form object. The following table lists the
IMAPIFormAdviseSink methods that are required.

Method Use
OnChange Notifies a form object about a change in a form

viewer's status.
OnActivate
Next

Identifies whether the message class of the next
message to display can be handled by the current
form object.

 Implementing IMAPIFormAdviseSink::OnChange for Form Servers

The OnChange method is called to notify the form object about changes in a form viewer's status. The
specific implementation of this method is entirely dependant on the specifics of your form. Most form
objects use this method to alter their user interface ¾ for example, enable or disable menu commands
or buttons ¾ to match the viewer status flags parameter.

 Implementing IMAPIFormAdviseSink::OnActivateNext for Form Servers

The OnActivateNext method is called by client applications to determine whether a form object is
capable of displaying the next message in a folder. Strictly speaking, it could be any other message,
but this method is designed to make the process of reading multiple messages of the same message
class more efficient by allowing client applications to re-use form objects whenever possible.

The OnActivateNext method receives a message class string, a message status code, message flags,
as its parameters, and an LPPERSISTMESSAGE pointer to store its return value in. It can decide,
based on the values of any of those parameters, how to respond.

Most form objects will use the message class string as the deciding factor; if it is the same as the form
object's message class then the form object is able to handle the next message. The other common
case is when the message class string is a substring of the form object's message class string (that is,
the form object is a subclass of the next message, and thus may be able to handle the next message),
although this case is not one that your form object is required to support. The OnActivateNext method
can further restrict the decision based on the sent/unsent status of the next message, etc.

If your form object cannot or will not handle the next message, this method should return S_FALSE.

If your form object can handle the next message, this method should store NULL in the
LPPERSISTMESSAGE pointer parameter and return S_OK.

If your form object can't handle the next message but can create a new form object that can handle the
next message, it should:

· Call its class factory to create a new form object instance.
· Store that instance in the LPPERSISTMESSAGE pointer parameter
· Return S_OK.

A minimal implementation of this method would simply return S_FALSE in all cases, although this is
highly discouraged because it results in degraded client application performance.

 Implementing the IClassFactory Interface for Form Servers

IClassFactory is the OLE interface that client applications use to create new form objects of your form
server's message class. The following table lists the IClassFactory methods that are required.

Method Use
CreateInsta
nce

Creates a new form object.

LockServer Locks the form server in memory so that startup
overhead can be avoided when multiple form
objects are created.

The OLE Programmer's Reference has all the information necessary to implement these methods.

 Implementing the IMAPIFormFactory Interface for Form Servers

IMAPIFormFactory is the interface that client applications use to create new form objects when your
form server supports more than one message class ¾ that is, more than one type of form object. The
following table lists the IMAPIFormFactory methods that are required.

Method Use
CreateClassF
actory

Creates a new class factory for a form server.

LockServer Locks the form server in memory so that startup
overhead can be avoided when multiple form
objects are created.

 Implementing IMAPIFormFactory::CreateClassFactory for Form Servers

The CreateClassFactory method is called by form viewers to obtain a class factory object for form
servers that implement multiple message classes. This method receives a class identifier (CLSID) as a
parameter. Based on that parameter, this method can determine the specific kind of class factory object
to return. You can have a single class factory implementation that creates appropriate class factory
instances on demand, or one multiple class factory implementations, one for each message class.

 Implementing IMAPIFormFactory::LockServer for Form Servers

The LockServer method is very similar to the IClassFactory::LockServer method. Essentially this
method maintains a count of how many times it has been called and as long as that count is greater
than 0, prevents the form server from being unloaded from memory. You can use the OLE function
CoLockObjectExternal to implement this. See the OLE Programmer's Reference for details.

 Creating A Configuration File

Configuration files exist to provide information about a form both to the form manager being used and
to client applications. A configuration file is a file with a .CFG extension, and has a format similar to a
Windows initialization file. It is a plain text file with a number of sections. Each section begins with a
section name, enclosed in square brackets. Each section contains one or more lines which define
values and settings relelvant to that section. Values have one of the following types: string, displayed
string, platform string, pathname, integer, guid. The sections of a .CFG file are described below.

A configuration file contains an extensive specification for a form, including the properties published by
the form for use by messaging clients, the verbs implemented by the form, and the platforms supported
by the form.

 Configuration File Format

A configuration file is formatted file created by form developers to define a form. Because configuration
files are used by form managers to load forms, each form must be defined using a configuration file.
Configuration files must have the .CFG filename extension. The file follows the general syntax of a
Windows initialization file (.INI file). It is divided into named sections, and each section contains a
series of entries and values. Values have one of the following types: string, displayed string, platform
string, path, integer, or globally unique identifier (GUID). The sections of a configuration file are
described in following topics. You can create a configuration file with any text editor or word processor
that is capable of saving plain text files.

 The [Description] Section in a Form Server Configuration File

The [Description] section lists all properties of the form that are associated with controls in the form's
user interface,plus attributes that are used in locating the form. The MessageClass, Clsid, and
DisplayName entries, which identify the name of the form's message class, its GUID, and the
message class's display name, respectively, are required entries used to locate the form within the
form library. The remaining entries are optional. The format of the [Description] section is:

[Description]
MessageClass = string
Clsid = guid
DisplayName = displayed string
SmallIcon = path
LargeIcon = path

;optional entries

Category = displayed string
Subcategory = displayed string
Comment = displayed string
Owner = displayed string
Number = displayed string
Version = integer
Locale = string
Hidden = integer
DesignerToolName = string
DesignerToolGuid = clsid
DesignerRuntimeGuid = clsid
ComposeInFolder = 0|1
ComposeCommand = string

The Category and Subcategory entries are used by form installers to set up the default categorization
of forms within client application's user interface. For example a hierarchy could be set up where "Help
Desk" is the category and "Software" and "Hardware" were the subcategories. This categorization can
then be used by viewer applications to display messages in a more organized way. The Comment,
Owner, and Number entries are all comment strings that appear in client application's user interface.
These are form specific properties that can be used at the discretion of the form developer. For
example, the Comment entry can be used to indicate the purpose of the form, the Owner entry used to
indicate the person or organization responsible for maintaining the form, and the number used to track
different version of the form. For the Comment entry, up to ten lines of comments can be included. The
first line of comments uses the word "Comment" as the key, the second line of comments uses
"Comment1" as the key, and so on through "Comment9."

The LargeIcon and SmallIcon entries are used to specify the path for the icon resources used to
display icons in the client application's user interface, typically this is for table rows that include the
PR_ICON or PR_MINI_ICON property columns. Icon file names can be specified as pathnames
relative to the directory where the configuration file is installed. The Version entry is used to indicate the
version number of the form. Locale is the three-letter language identifier of the destination form library.
A list of these identifiers may be found in the Win32 Programmer's Reference.

The Hidden entry indicates whether the form should be displayed in a form library provider's user
interface: 1 indicates that the file is hidden and 0 indicates that the form is visible. An example
configuration file is shown following.

The ComposeInFolder entry controls whether the form is designed to be placed in the current folder or
in the user's Inbox when the user saves the message while composing it: 1 indicates that the form
should go in the current folder and 0 indicates that it should go in the Inbox.

The ComposeCommand entry is the string to be placed in the client application's compose menu. If this
is not specified, the DisplayName entry will be used.

[Description]
MessageClass = IPM.Help
Clsid = {00020D31-0000-0000-C000-000000000046}
DisplayName = Help Desk Request Form

;optional entries

Category = Help Desk Requests
Subcategory = New Requests
Comment = Use this form to request network assistance
Owner = Help Desk
Number = 1
SmallIcon = C:\WINDOWS|EFORMS\HELPDESK\HDSMALL.ICO
LargeIcon = C:\WINDOWS|EFORMS\HELPDESK\HDLARGE.ICO
Version = 1.00
Locale = enu
Hidden = 0
ComposeInFolder = 0
ComposeCommand = &Help Desk Request

 The [Extensions] Section in a Form Server Configuration File

The [Extensions] section lists the extended attributes of the form, typically a named property set, which
are any attributes beyond the basic ones listed in the [Description] section of the configuration file.
Extended attributes are properties returned from calls to the GetProps method of the IMAPIFormInfo
object with the high bit set in the property tag. Client applications can determine a form's extended
attributes, if any, by retrieving these tags. To do so, clients call the IMAPIProp::GetIDsFromNames
method, passing in the names of the form's properties and call the IMAPIProp::GetProps method to
get the properties.

Each entry in the [Extensions] section references a subsequent section that has a name with the
syntax [Extension.string2].

[Extensions]
Extension.string1 = string2

Each extension property section defines one extension attribute using the MAPI named property
syntax. The property type must be either PT_LONG or PT_STRING8. Property sets containing named
strings are not supported. The format of the [Extension] section is:

[Extension.string2]
Type = integer
NmidPropset = guid
NmidInteger = integer
Value = string | integer

An example of an [Extensions] section and a subsequent related section is shown following.

[Extensions]
Extension.A = 1

[Extension.1]
Type = 30
NmidPropset = {00020D0C-0000-0000-C000-000000000046}
NmidInteger = 1
Value = 11220000

 The [Platforms] Section in a Form Server Configuration File

The [Platforms] section lists the complete set of platforms supported by this form. Each platform entry
consists of the prefix Platform.string, where string is an arbitrary string code for the platform. Each
string corresponds to the CPU entry of an individual [Platforms] sections. Each entry in a [Platforms]
section defines a platform string that references a subsequent [Platform.platform string] section as
shown here.

[Platforms]

Platform.string = platform string

Following is an example of a [Platforms] section.

[Platforms]
Platform.1 = NTx86
Platform.2 = Win95

Each [Platform.platform string] section contains the two required entries, CPU and OSVersion. The
CPU entry specifies the processor, and the OSVersion entry specifies the operating system. Valid CPU
entries are described in the following table.

CPU Entry Processor
Ix86 Intel 80x86 and Pentium series

processors, as well as
equivalent processors from
AMD, Cyrix, NextGen and other
manufacturers.

MIPS MIPS R4000 series processors.
AXP Digital Equipment Corporation

Alpha AXP processor.
PPC Motorola Power PC series

processors.
M68 Mororola 68x00 series

processors.

Valid OSVersion entries are described in the following table.

OSVersion Entry Operating System
Win3.1 Windows 3.1 and Windows for

Workgroups 3.11.
WinNT3.5 Windows NT 3.5 or lower.
Win95 Windows 95.
WinNT4.0 Windows NT 4.0.
Mac7 Macintosh System 7.

Additionally, the [Platform.platform string] section must contain either a File or LinkTo entry. The File
entry lists the form server application executable file that the form library maintains and loads into a
new subdirectory in the disk cache when the form is launched. If a LinkTo entry is used instead, it
contains the name of a different platform string from which the File information is taken. This is useful if
one version of a form supports multiple platforms.

The Registry entry is used whenever the File entry is used, it identifies the registry key for the form
library where the executable file for the form server application is stored. Strings preceded by a
backslash (\) are placed at the root of the registry. Strings not preceded by a backslash are placed in
the HKEY_CLASSES_ROOT\CLSID\GUID\ registry key, where GUID is the GUID of the form. The

characters "%d" can be used to indicate the pathname of the directory from which the configuration file
has been read. This is useful for specifying other files with pathnames relative to the configuration file.
Multiple File or Registry entries can be specified by using File or Registry as a prefix followed by any
other text. The format for the [Platform.platform string] section is:

[Platform.platform string]
CPU = string
OSVersion = string
File = path
LinkTo = string
Registry = string

The following are two example [Platform.platform string] sections, one using the File entry and one
using the LinkTo entry.

[Platform.NTx86]
CPU = ix86
OSVersion = WinNT3.5
File = \helpdesk.exe
Registry = Local Server = %d\helpdesk.exe

[Platform.Win95]
CPU = ix86
OSVersion = Win95
LinkTo = NTx86

The [Platform.platform string] section is ignored when adding a form to the local form library, when it is
assumed that the installer has placed the files constituting the message class handler into accessible
local storage as named in the handler's section in the OLE registry, and has done the OLE registration
in the system's registry.

 The [Properties] Section in a Form Server Configuration File

The [Properties] section lists the complete set of properties that the form uses and publishes; that is,
the properties it creates in its custom messages that MAPI client applications can use when displaying
columns, filtering contents tables, setting up search-results folders, and so on. Each entry in this
property list references a subsequent [Property.string] section as shown following.

[Properties]
Property.string = string

The format of a [Property.string] section is:

[Property.string]
Type = integer
NmidPropset = guid
NmidString = string
NmidInteger = integer
DisplayName = string
Flags = integer
SpecialType = 0|1
Enum1 = string

Each [Property.string] section describes a single property. The Type entry specifies the MAPI property
type, for example 3 (PT_I4), of the property. The NmidPropset entry is optional; together with either the
NmidString entry or the NmidInteger entry, the NmidPropset entry gives the name of the property.
NmidString gives the name of the property, while NmidInteger gives the ID of the property. NmidString
and NmidInteger are mutually exclusive.

If set, NmidPropset should contain the name of the property set; if absent, NmidPropset is set to a
default based on the following rule: If NmidInteger is present and its value is less than 0x8000,
NmidPropset is set to PS_MAPI. If the value of NmidInteger is set to an integer greater than 0x8000, or
if it is absent, NmidPropset is set to PS_PUBLIC_STRINGS.

The DisplayName entry contains the label for the property. The SpecialType entry, if present and
nonzero indicates that this property is a special property. At present, the only special property type
defined is SpecialType = 1, which indicates string enumerated properties. If SpecialType is set to 1, the
Enum1 entry references the [Enum1.string] section.

Following is an example of a [Properties] section and a [Properties.string] section.

[Properties]
Property.1 = Fire Hazard
Property.2 = Safe

[Property.Fire Hazard]
Type = 1
NmidPropSet = {E47F4480-8400-101B-934D-04021C007002]
NmidString = FireHazard
DisplayName = Fire Hazard
SpecialType = 1
Enum1 = HazardEnum

The Enum1 section in the preceeding example references to a subsequent [Enum1.string] section
describing an enumeration of a particular type. Such an enumeration associates the first property in the
[Property.string] section with an integer property, called the index. Such an enumeration also contains
a list of the possible values that the display-index pair can assume. Specifying a property type for the
enumeration is unnecessary because by definition an Enum1 entry always has the PT_I4 type. The
format for the [Enum1.string] section is:

[Enum1.string]
NmidPropset = guid
NmidString = string
NmidInteger = integer
EnumCount = integer
Val.integer.Display = string
Val.integer.Index = integer

The following is an example property definition for an enumerated property named Fire Hazard with
possible values of Low, Medium, and High.

[Properties]
Property1 = Fire Hazard

[Enum1.HazardEnum]
IdxNmidPropset={E47F4480-8400-101B-934D-04021C007002]
IdxNmidString=FireHazardEnum
EnumCount = 3
Val.1.Display = Low
Val.1.Index = 1
Val.2.Display = Medium
Val.2.Index = 2
Val.3.Display = High
Val.3.Index = 3

[Enum1.string] sections can be used by applications for two purposes: to speed up the filtering of
properties by using the index rather than the string and to sort by a different order than the
alphanumeric order of the string values. For example, sorting could be done based on Low-Medium-
High order rather than High-Medium-Low order.

 The [Verbs] Section in a Form Server Configuration File

The [Verbs] section lists the complete set of verbs supported by the form. The format of the [Verbs]
section is:

[Verbs]
Verb1 = string

Following is an example of a Verbs section.

[Verbs]
Verb1=1
Verb2=2

Each verb is defined in a separate [Verb.string] section. A [Verb.string] section describes a single verb
offered by the form. The DisplayName entry in a [Verb.string] section specifies the command name
displayed in the user interface. The Code entry corresponds to the verb number passed in the
IMAPIForm::DoVerb method . The syntax for the [Verb.string] section is:

[Verb.string]
DisplayName = displayed string
Code = integer
Flags = integer
Attribs = integer
Following is an example of a [Verb.string] section.

[Verb.1]
DisplayName=Reply
code=1
Flags=0
Attribs=2

[Verb.2]
DisplayName=Delete
Code=2
Flags=0
Attribs=2

Verbs listed in this section are retrieved by a client using the IMAPIFormInfo::CalcVerbSet method .
Verbs are activated by calling the form's IMAPIForm::DoVerb method and passing it the code number
of the verb to be performed.

 Form Server Interactions

This section describes interactions between client applications, the MAPI form manager, form servers,
and form objects for a variety of common actions such as opening a message and composing a new
message.

 Retrieving Form Properties

To issue a query meaningful to a custom message type, an application needs to know the properties
expected on that message. To get a list of properties used by a custom message class, a client
application queries the MAPI form manager. The form manager gets this information from the
appropriate form server's configuration file so that this information can be used by client applications
without the overhead of activating the form server itself. To do this, the client application calls
IMAPIFormMgr::ResolveMessageClass, like this:

IMAPIFormInfo *pfrminf = NULL;
hr = pfrmmgr->ResolveMessageClass("IPM.Demo", 0L, NULL, &pfrminf);

Note that the third argument to ResolveMessageClass is the folder containing the associated contents
table that the query will search for form servers. "NULL" indicates that the form manager should search
all available form containers. If the query is to run against a particular folder it is better to include the
appropriate IMAPIFolder pointer instead.

 Launching a Form to Read a Message

Form server implementors should expect the following sequence of method calls to their form server
and form objects when a client application loads a message:

1. The client application opens the form manager with a call to MAPIOpenFormMgr.
2. The client application calls IMAPIFormMgr::LoadForm, which returns an object with IMAPIForm.

The form manager may be released now if it won't be used for further form activations. Note that a
call to LoadForm may take some time, since the form manager may have to install the form server's
executable files before proceeding.

3. Optionally, the client application can prepare an IMAPIViewContext to control operations which may
cause the form object to load the previous or next message in the folder. The client application can
use IMAPIForm::SetViewContext to change the default view context that was set in the LoadForm
call.

4. The client application calls IPersistMessage::Load to load message data into the form object.
5. The client application calls IMAPIForm::DoVerb to invoke the "open" verb, passing the the optional

ViewContext interface pointer.

 Launching a New Compose Form

Form server implementors should expect the following sequence of method calls to their form server
and form objects when a client application opens a new message for composing:

1. The client application calls IMAPIFormMgr::ResolveMessageClass to get class information about
the form server's message class.

2. The client application calls IMAPIFormMgr::CreateForm to get a new form object.
3. The MAPI form manager loads the form server, if it is not already in memory and gets an

IMAPIForm object from the form server.
4. The client application takes the resulting IMAPIForm object and calls the QueryInterface method to

get the object's IPersistMessage interface.
5. The client application calls IPersistMessage::InitNew to associate the form object with an

IMessage, view context, and advise sink objects.
6. The client application calls IMAPIForm::DoVerb to invoke the "open" verb.

 Launching a Form Server

The series of interactions that occurs when a form is loaded from persistant storage ¾ that is, from a
form library ¾ to display a message is as follows:

1. The messaging client gets the message's message class, message flags and message status. This
step is optional; if these pieces of data are not provided in step 2, the form manager will retrieve
them.

2. The messaging client calls IMAPIFormMgr::LoadForm with the target message.
3. The form manager loads the form server from the appropriate form library. If the form server for the

target message is not installed, the form manager installs the form's executable files as well.
4. The form manager calls IUnknown::QueryInterface on the form object to obtain the form object's

IMAPIForm and IPersistMessage interfaces.
5. The form manager calls IPersistMessage::Load with the message site and message interfaces

from the viewer object.
6. The form object calls back to the messaging client's IMAPIMessageSite::GetSiteStatus method.
7. The form manager calls the form object's IMAPIForm::SetViewContext with the view context

interface from the messaging client.
8. The form object call back to the messaging client's IMAPIViewContext::SetAdviseSink method.
9. The form object calls back to the messaging client's IMAPIViewContext::GetViewStatus method.

10. The messaging client calls the form object's IMAPIForm::Advise method with the view context
interfaces from the viewer object and the message site object.

11. The messaging client calls the form object's IMAPIForm::DoVerb method.
12. The form object creates its user interface, if necessary, and interacts with the user.

 Installing a Form into a Library

The default MAPI form manager ¾ the one supplied with the MAPI SDK ¾ does not provide a user
interface for installing forms in the various form libraries. Because of this, you will have to create a
small application ¾ or detailed set of instructions ¾ that users can use to install the form.

If you implement an install application, the series of actions it must do to install a form into a folder's
associated contents table are as follows:

1. Call the MAPIOpenFormMgr function to open the form manager.
2. Use IMAPIFormMgr::OpenFormContainer or IMAPIFormMgr::SelectFormContainer to select

and open the target container for the form.
3. Use the IMAPIFormContainer::InstallForm function to install the form.

Steps 4-6 are for installation into a local form library:

4. Copy all files to the appropriate place on the local disk, if installation is to the local form library on the
user's workstation. If necessary, modify the configuration file to reflect current pathnames of
components. The configuration file can contain relative pathnames in which case this step may not
be necessary.

5. Do the appropriate OLE registration to associate the message type with the form server being
installed.

6. If the form was installed into the local form library, copy the form's icon (.ico) and configuration (.cfg)
files into the %WINDOWS%\FORMS\CONFIGS directory for auto-restore in the event that the form
library is corrupted or deleted. This step is recommended but not mandatory.

Note Installation to a local form library can be simplified by replacing steps 1 and 2 with a call to
MAPIOpenLocalFormContainer.

 Developing a Hook Provider or Preprocessor

MAPI defines two types of extensions that it uses to allow custom code to be inserted into the message
transmission and reception processes¾hook providers and preprocessors. A hook provider, also called
a spooler hook, can be called after an outbound message reaches the transport providers and before
an inbound message is delivered to the default folder for its message class. Preprocessors operate on
outbound messages only and are called before and after transport providers handle the message.

Since hook providers and preprocessors act during the message sending and receiving processes, you
should familiarize yourself with the roles that other MAPI components play in these processes.
Specifically, you should read About Sending Messages, Service Provider Basics, Developing a
Transport Provider, and Developing a Message Store Provider. You do not need to learn the material in
these sections in any great detail in order to implement a hook provider or preprocessor, but you
should have a basic understanding of the way those components interact to send and receive
messages.

There are several things to consider when choosing whether to use a hook provider or a preprocessor
to implement your custom code:

· Whether your component needs to be able to operate on inbound messages. If it needs to act on
inbound messages, you must use a hook provider, since preprocessors are not called for inbound
messages.

· Whether your component needs to operate before or after transport providers for outbound
messages. Preprocessors are called before transport providers, hook providers are called after.

· What your component needs to do. Preprocessors are typically used to modify a message's
contents or recipient list before sending. For example, a preprocessor can be used to automatically
add a signature to outgoing messages. Hook providers are typically used to archive messages or
automatically file them in different folders; that is, to manipulate the relationship between the
message and its message store although they can also modify a message's content. Hook providers
cannot, however, modify a message's recipients. Only preprocessors can cause a message to be
sent to different recipients than those entered by the user sending the message.

· Ease of implementation. Hook providers are actual MAPI service providers, albeit simple ones, and
must follow the guidelines for service providers. However, preprocessors have to be registered by
means of a transport provider. If you happen to also have a transport provider that you can modify to
register the preprocessor, then creating a preprocessor is probably easier than creating a hook
provider. If not, however, you will have to create a minimal transport provider whose sole job is to
register the preprocessor.

For an overview of the process of creating hook providers and preprocessors, see Using Message
Filtering to Manage Messages.

 Sending Messages using Hook Providers and Preprocessors

The following diagram illustrates the interaction between MAPI components involved in the message
sending process.

{ewc msdncd, EWGraphic, groupx836 0 /a "MAPI.WMF"}

The steps in this process are:

1. The message store provider, on behalf of a client application, notifies the MAPI spooler that there is
a new message to send.

2. The MAPI spooler calls each registered preprocessor to act on the message.
3. The MAPI spooler delivers the message to any transport providers required.
4. Transport providers transmit the message to the underlying messaging systems.
5. The MAPI spooler calls each preprocessor's RemovePreprocessInfo function.
6. The MAPI spooler calls hook providers after all transport providers have completed their work.

 Receiving Messages using Hook Providers

The following diagram illustrates the interaction between MAPI components involved in the message
receiving process.

{ewc msdncd, EWGraphic, groupx836 1 /a "MAPI.WMF"}

The steps in this process are:

1. The underlying messaging system delivers a message to a transport provider.
2. The transport provider communicates with the MAPI spooler to get a pointer to a new message

object created by the message store provider.
3. The transport provider writes the inbound message's data to the new message object in the

message store.
4. The MAPI spooler calls all hook providers to operate on the message.
5. The hook providers communicate with the message store provider to move the message to a

different folder, delete it, and so on.

 About Hook Providers

Hook providers are MAPI service providers, like message store providers, transport providers, and
address book providers. However, hook providers are by far the simplest type of provider to implement.
Hook providers are intended to perform sorting and archiving types of tasks with messages. Some
typical hook provider tasks are:

· Sorting incoming messages into folders.
· Filtering out unwanted incoming messages.
· Saving copies of outgoing messages in special folders.

Hook providers generally change the relationship between a message and its message store, although
they can also change the content of a message.

Hook providers control whether they are called for inbound messages, outbound messages, or both by
setting the HOOK_INBOUND and HOOK_OUTBOUND flags in the PR_RESOURCE_FLAGS property
of the hook provider's profile section in the MAPISVC.INF file. For more details, see About the
MAPISVC.INF File. In the event that multiple hook providers are being used, the hook providers are
called in the order that they are installed into a user's profile.

 About Hook Provider Entry Points

Hook providers can expose the following entry points in their DLL.

Entry Point Purpose
HPProviderInit Called when the provider's DLL

is loaded. See HPProviderInit.
ServiceEntry Entry point called by MAPI from

the system's Control Panel
application. See
MSGSERVICEENTRY.

WizardEntry Entry point for MAPI
configuration wizard. See
WIZARDENTRY.

As with all DLLs, the entry points must be called by these names but can map to functions with
arbitrary names in your DLL. The HPProviderInit and WizardEntry entry points are required, while the
ServiceEntry entry point is optional.

 About Implementing HPProviderInit for Hook Providers

The HPProviderInit entry point should create a message hook provider object, initialize it, and return a
pointer to it in the lppSpoolerHook pointer parameter. Initializing the spooler hook object is usually
accomplished by:

· Storing the MAPI session pointer, instance handle, and memory allocation routine pointers that are
passed in by MAPI.

· Getting the hook provider's configuration information out of its profile section.
· Verifying that its configuration information is complete and correctly formatted.
· Connecting to any other MAPI service providers needed ¾ such as store providers ¾ by getting

pointers to them from MAPI through the session pointer.
· Initializing any rules or filters that should be started when the hook provider is loaded.

For more details, see ISpoolerHook:IUnknown.

 About Implementing ServiceEntry for Hook Providers

The ServiceEntry entry point is called by MAPI when the user configures the provider by means of the
system's control panel applet. The ServiceEntry entry point is called after MAPI has gotten new
configuration information from the user. The ServiceEntry entry point needs to incorporate that
information into the hook provider's profile section.

The ServiceEntry entry point is passed a window handle it can use as the parent window for any user
interface it needs to display. Usually the ServiceEntry entry point only needs to display a user interface
to confirm or correct any bad configuration information entered by the user. In addition, the
ServiceEntry entry point is passed pointers to memory allocation routines and a MAPI support object
that can be used to access the hook provider's profile section.

For more details, see MSGSERVICEENTRY, and Using Support Objects for Configuration.

 About Implementing WizardEntry for Hook Providers

The WizardEntry entry point is called by the MAPI profile wizard. The WizardEntry entry point is
responsible for giving the configuration wizard a pointer to the function to be called to handle window
events, and a pointer to the full resource name for the wizard dialog box implemented by the hook
provider. The WizardEntry entry point must also support programmatic configuration, that is, it should
be possible to call this entry point to configure the hook provider without causing any user interface to
be displayed.

Note One of the window events you should expect is WIZ_QUERYNUMPAGES. Your event handling
procedure should return the number of pages used to configure your hook provider.

For more information, see Supporting the Profile Wizard.

 About Hook Provider Interfaces

Hook providers implement the ISpoolerHook:IUnknown interface. Aside from the QueryInterface,
AddRef, and Release methods inherited from the IUnknown interface, ISpoolerHook has only two
additional methods to implement: InboundMsgHook and OutboundMsgHook.

The MAPI spooler calls InboundMsgHook after a transport provider receives an inbound message,
but before the message is delivered to the default receive folder for the message's message class. The
MAPI spooler calls OutboundMsgHook after transport providers have delivered the message to any
underlying messaging systems.

 Implementing the InboundMsgHook and OutboundMsgHook Methods for Hook
Providers

You have considerable latitude in how you implement the specifics of the InboundMsgHook and
OutboundMsgHook methods. In general, these methods compare one or more properties of the input
message against the rules the hook provider implements. Based on these comparisons, the message
can be modified, moved to a different message store, moved to a different folder by returning a
different folder entry identifier, or marked for deletion by the MAPI spooler by returning a null folder
entry identifier.

In addition, these methods return one or both of the flags HOOK_CANCEL and HOOK_DELETE to
indicate how the MAPI spooler should react to the InboundMsgHook method's actions. The
HOOK_CANCEL flag indicates that no other hook providers should be called for the message. The
HOOK_DELETE flag indicates that the MAPI spooler should delete the message; the hook provider
should never use calls to the message store provider to delete the message directly but should set the
HOOK_DELETE flag and allow the MAPI spooler to delete the message.

Hook providers can create additional messages based on the input message if desired. However, if the
hook provider intends for an additional message to be submitted for sending, the message must be
created using the default message store provider object provided by the MAPI spooler.

The InboundMsgHook and OutboundMsgHook methods are nearly identical as far as interaction
with message objects and message stores. The only architectural difference is that the MAPI spooler
calls them at different times. Many hook provider implementations can share substantial portions of
code between these methods because they are so similar in function.

See InboundMsgHook and OutboundMsgHook for details on how to treat the flags and folder entry
identifier parameters.

 Interactions Between Hook Providers and the MAPI Spooler

The interactions between hook providers and the MAPI spooler are fairly simple:

1. The MAPI spooler receives an inbound or outbound message from a message store or transport
provider.

2. The MAPI spooler calls the hook provider's InboundMsgHook or OutboundMsgHook method,
whichever is appropriate.

3. The hook provider processes the message, optionally returning a different destination folder for the
message or returning values that cause the MAPI spooler to delete the message.

4. The MAPI spooler calls any other hook providers ¾ assuming that HOOK_CANCEL was not
returned in step 3 ¾ then delivers the message to its final destination or deletes it as appropriate.

 About Preprocessors

Preprocessors are generally implemented along with a transport provider, usually in the same DLL.

 Registering a Preprocessor

All preprocessors must be registered by transport providers. The transport provider for a preprocessor
registers it along with its other logon processing at the time that the MAPI spooler logs on to the
transport provider. To register a preprocessor, the transport provider calls its support object's
IMAPISupport::RegisterPreprocessor function. It passes in the name of the DLL in which the
preprocessor is implemented and the names of the functions in that DLL that implement the
preprocessor.

The transport provider can also control what specific addresses or address types the preprocessor
applies to. The preprocessor can apply to specific addresses by giving a specific MAPIUID structure to
the RegisterPreprocessor method. The preprocessor can apply to specific address types by giving
the string representation of the address type, for example SMTP. A preprocessor can apply to all
address types by giving a null or empty string as the address type. The RegisterPreprocessor method
must be called once for each MAPIUID or address type.

For more information, see IMAPISupport::RegisterPreprocessor.

 Creating a Minimal Transport Provider

Since every preprocessor must be registered by a transport provider, you may need to create a
minimal transport provider whose sole task is to register your preprocessor. A minimal transport
provider does not advertise any address types to the MAPI spooler, so that the MAPI spooler will never
call the transport provider to send or receive messages.

To create a minimal transport provider
1. Create a transport provider with the minimum required interfaces for transport providers. Many of the

methods and interfaces used by transport providers can be implemented as stubs that do nothing or
return MAPI_E_NO_SUPPORT. The minimal transport provider should initialize as recommended in
the topic Required Functionality for Transport Providers. In response to the
IXPLogon::AddressTypes call, the transport provider should return a single zero-length string in
lpppszAdrTypeArray and NULL in lpppUIDArray.

2. Create a MAPISVC.INF fragment for the transport provider and the message service that contains it.
See Implementing a Message Service.

3. Optionally, but strongly recommended, create a message service entry point for configuration. See
About Message Service Entry Point Functions.

4. Optionally, create an online Help file linked to your configuration property pages, wizard pages, or
both, providing full details about all configuration options.

5. Optionally, create a header file for custom programmatic configuration by MAPI clients.
6. Optionally, create a WizardEntry entry point for interactive configuration by users. See Supporting

the Profile Wizard.
7. Optionally, create a .PRF file detailing configuration properties for the message service.

For more details about transport providers, see Developing a Transport Provider and the quick start
topic Creating and Configuring a Profile.

 Implementing the PreprocessMessage Function for Preprocessors

The MAPI spooler calls the PreprocessMessage function for messages that meet the preprocessor's
criteria for MAPIUID or address type. PreprocessMessage can do several things with the input
message:

· Modify the input message. To modify the input message, the PreprocessMessage function calls the
IMAPIProp::OpenProperty method with the MAPI_MODIFY flag for one or more properties of the
input message. It then modifies the values of those properties, and calls IMAPIProp::SaveChanges
to make the changes permanent.

· Generate new messages to be sent as well. To generate new messages, the PreprocessMessage
function must use its MAPI session pointer to access a message store provider through which it can
create new message objects. New messages should be created using the default message store.
These new message objects should be passed back to the MAPI spooler in the lpppMessage
pointer, which is a pointer to an array of message object pointers. The original input message,
however, should never be placed in this array.

· Prevent the input message from being sent. To prevent the input message from being sent, the
PreprocessMessage function must remove all the recipients from the message's recipient list and
set the PR_DELETE_AFTER_SUBMIT property on the message. This will prevent the MAPI spooler
from submitting the message to any transport providers.

· Modify the recipient list of a message.

If multiple message preprocessors are being used, the individual PreprocessMessage functions are
called in the same order as the transports. This order can be modified programmatically if your
preprocessor needs to be called at some specific point in the transport order. See
IMAPISession::AdminServices, IMsgServiceAdmin::MsgServiceTransportOrder and
IXPLogon::AddressTypes for details.

 Implementing the RemovePreprocessInfo Function for Preprocessors

After messages are sent by any transport providers, the MAPI spooler calls each preprocessor's
RemovePreprocessInfo function. This gives the preprocessor a chance to undo any changes it made
to the input message before the message is passed to any hook providers. For example, a
preprocessor for a FAX-based transport can generate a bitmap representation of the input message for
sending to receiving fax machines; there will be little reason for that bitmap to be archived by any hook
providers, so the RemovePreprocessInfo function can take the bitmap out of the input message
before any hook providers process the message.

If multiple message preprocessors are being used, the individual RemovePreprocessInfo functions
are called in the opposite order as the PreprocessMessage functions. This is so that
RemovePreprocessInfo implementations that depend on positions within the message can locate the
information they should remove without interference by the actions of other preprocessors. For
example, a preprocessor that adds an automatic closing or signature to a message's PR_BODY or
PR_RTF_COMPRESSED properties will probably use a position or offset from the end of the property
to locate the information it should remove. If another preprocessor modifies these properties later, then
that preprocessor's RemovePreprocessInfo function should undo its actions before the first
preprocessor undoes its actions.

Note There is no requirement that the RemovePreprocessInfo function actually undoes the effects
of the associated PreprocessMessage function. However, if the RemovePreprocessorInfo does not
undo the effects of the PreprocessMessage, then the PreprocessMessage function should take care
to make its changes in such a way as to minimize interference with RemovePreprocessInfo
implementations that do, or make an effort to inform the user that the transport provider which registers
the preprocessor should be installed into the user's profile ahead of other transports.

 Testing and Debugging

Testing strategies differ depending on whether you are developing a client or service provider. Because
a client application requires one or more service providers to operate, clients should be tested in an
environment with different sets of service providers.

Service providers, however, should be testing in isolation before integrating it with other providers.
MAPI provides sample applications that are meant to test the features of a service provider of a
particular type. ABVIEW.EXE, for example, exercises the features of an address book provider
whereas MDBVIEW.EXE works with a message store provider. To test any service provider in isolation,
use one of these sample applications and limit the entries in the profile the provider to be tested.
Include any other service providers that are absolutely necessary. For example, to test a transport
provider, your profile would contain that provider, the PAB, and a message store.

All clients and service providers can benefit from using a set of debugging macros provided by MAPI in
the MAPIDBG utility. This utility is controlled by the entries in its initialization file, MAPIDBG.INI.
MAPIDBG.INI is constructed in a similar way to other initialization files and the profile. It is divided into
sections with each section containing several entries that affect the utility's behavior.

About MAPIDBG.INI

MAPIDBG.INI is a file that is used by MAPI's debugging utility to control various features of the MAPI
subsystem. The file resides in the Windows directory and is organized in sections, similar to other
Windows initialization files and MAPISVC.INF. Sections are labeled in the following format:

[SectionName] Section

There are several different sections as described in the following table.

Section name Description
[General] Controls debugging features

common to all
MAPI components.

[LocalHeapFailures] Generates artificial allocation
failures.

[Memory Management] Controls debugging features inthe
MAPI
memory allocator.

[MAPIX] Controls debugging features in the
MAPI subsystem.

[Remoting] Controls debugging features in the
interface marshalling and remoting
processes.

[Simple MAPI] Controls debugging features in
Simple MAPI.

[Spooler] Controls debugging features in the
MAPI
spooler.

[TNEF] Controls debugging features in the
MAPI
TNEF facility.

Every section has one or more entries, formatted as follows:

EntryName = <value>

Most entries have no effect on retail versions of MAPI; they add features only in the debug versions.
However, there are a few entries that affect both versions; the detailed descriptions of each section
explicitly point out these exceptions.

The [General] Section in MAPIDBG.INI

The entries in this section control debugging features common to all MAPI components.

Entry Description
AssertBadBlocks = <0/1> If this entry is set to 1, the

MAPIAllocateMore and
MAPIFreeBuffer functions
assert when passed an invalid
memory address. If it is set to 0,
they fail without asserting. This
is useful for detecting bugs such
as freeing uninitialized pointers
and freeing blocks more than
once. The default value is 1 ¾
asserts are generated.

AssertLeaks = <0/1> If this entry is set to 1, MAPI
asserts if any service provider
DLL, IMAPISession interface,
or IProfAdmin interface is not
released before MAPI is shut
down. The default value is 0 ¾
asserts are not generated.

DebugTrace = <0/1> This entry controls trace output
from several of the macros
defined in MAPIDBG.H,
including DebugTrace and the
TraceSz and Assert group of
macros. If this entry is set to 1,
traces are written to the debug
port using the Win32 function
OutputDebugString, and can
be captured using a debugger or
a monitoring utility such as
DBWIN.EXE (for Win16) or
DEB.EXE (for Win32). If this
entry is set to 0, no traces are
written. The default value is 1 ¾
traces are enabled.

EventLog = <0/1> On Windows NT only , if this
entry is set to 1, all debug traces
are written to the application
event log instead of to the debug
port. This is useful when
debugging an NT service that
uses MAPI. The default value is
0 ¾ traces are written to the
debug port, not the event log.

MemoryFillRandom = <0/1> This entry is obsolete. Use the
FillMemory entry in the
[Memory Management] section.

RetainDLLs = <0/1> If this entry is set to 1, MAPI
does not call the Win32 function

FreeLibrary to release provider
DLLs although it does remove
them from its internal data
structures. This can occasionally
be useful when pursuing bugs in
provider startup and shutdown
behavior. The default value is 0
¾ provider DLLs are freed.

TrapOnSameThread = <0/1> On Win32, if this entry is set to
1, the message dialog boxes
generated by the Trap and
Assert group of macros are
created on the calling thread. If it
is set to 0, the message box is
generated on a separate thread
to prevent reentering the
message loop on the calling
thread. The default value is 0 ¾
message dialog boxes are
generated on a separate thread.

VerboseTNEF = <0/1> If this entry is set to 1, the MAPI
TNEF facility generates debug
trace output for routine
operations. If it is set to 0, TNEF
generates traces only when
errors occur. The default value is
1 ¾ TNEF traces are verbose.

VirtualMemory = <0/1/4> This entry is obsolete. Use the
VirtualMemory entry in the
[Memory Management] section.

The [Local Heap Failures] Section in MAPIDBG.INI

The entries in this section control features in the MAPI memory allocator that generate artificial
allocation failures to test how other components handle out of memory conditions.

Entry Description
AllocsToFirstFailure =
<number of allocations>

This entry forces a memory
allocation failure on the
indicated attempt. Use it to test
how well your client or provider
handles memory allocation
failures. The count includes
blocks allocated by MAPI and by
other components, not just by
your own component.

FailureInterval = <number of
allocations>

This entry forces repeated
memory allocation failures at the
specified interval after the count
indicated by the
AllocsToFirstFailure entry is
reached. The count includes
blocks allocated by MAPI and by
other components, not just by
your own component.

FailureSize = <number of
bytes>

If this entry is nonzero, this entry
forces every memory allocation
request for the specified number
of bytes or more to fail. This
includes blocks allocated by
MAPI and by other components,
not just by your own component.

The [Memory Management] Section in MAPIDBG.INI

The entries in this section control debugging features in the MAPI memory allocator.

Entry Description
VirtualMemory = <0/1/4> If this entry is nonzero, memory

allocations made through MAPI
are surrounded by
unaddressable memory on
either side. This causes code
that accesses memory outside
the allocated block to fail
immediately instead of
corrupting memory and can be
very helpful in isolating memory
corruption bugs. If this entry is
set to 4, the returned address is
guaranteed to be aligned on a 4-
byte boundary; if it is 1, the
address of the returned memory
block is unaligned. The default
value is 0 ¾ a normal heap is
allocated.

AssertLeaks = <0/1> If this entry is set to 1, MAPI
asserts if any memory allocated
using the MAPI allocators has
not been freed at the time MAPI
is shut down. This is usually at
the last MAPIUninitialize call; if
the application fails to
uninitialize MAPI, it occurs when
the MAPI DLL is unloaded. The
default value is 1 ¾ generates
asserts.

DumpLeaks = <0/1> If this entry is set to 1, MAPI
outputs debug trace information
regarding memory allocated
using the MAPI allocators that
were not freed by the time MAPI
was shut down. The information
includes a stack traceback (for
Win32 only), size and location of
the memory block, order in
which the block was allocated,
and the block's name (for
internal MAPI allocations only).
The default value is 1 ¾ writes
traces.

FillByte = <0xNN> This entry specifies the
hexadecimal value to use for
filling memory in the FillMemory
entry. The default value is 0xFE.

FillMemory = <0/1> If this entry is set to 1, all
memory blocks allocated by

MAPI are filled with a fill byte
after they're allocated and after
they're freed. The default value
is 1 ¾ fills blocks.

SharedMemMaxSize =
<number of bytes>

This entry limits the size of the
MAPI shared memory area. It
can be used to force allocation
failures. The default value is 0 ¾
the area is as big as necessary.

Anyone using the Microsoft RPC libraries who needs to use virtual allocation flags should set the
VirtualMemory entry to 4 in both the [General] and [Memory Management] sections of MAPIDBG.INI.
This includes anyone using EMSMDB.DLL or EMSABP.DLL. Microsoft RPC requires memory
allocators to align memory at least as well as the operating system's allocator. The MAPI Virtual
Memory allocator aligns on 4-byte boundaries when set to 4. Setting VirtualMemory to 1 does not do
this in order to catch even single-byte overwrites immediately.

Enabling virtual allocation increases the MAPI subsystem's demand for system resources. On Win32,
MAPI uses 64K of virtual address space for each allocation. On Win16, MAPI uses the GlobalAlloc
function for each allocation, so it is possible to run out of selectors. Depending on the overall load your
test scenario places on the system, you may need to narrow down the scenario enough to reproduce
the problem without running out of system resources.

The [MAPIX] Section in MAPIDBG.INI

The entries in this section control debugging features in the MAPI core and profile provider.

Entry Description
CheckNotifKeysOften =
<0/1>

If this entry is set to 1, the MAPI
notification support methods
validate their lists of entries and
registrations before and after
making any changes to them.
The default value is 0 ¾ no
checks are performed.

CheckNotifTasksOften =
<0/1>

If this entry is set to 1, the MAPI
notification support methods
validate their list of active tasks
before and after making any
changes to it. The default value
is 0 ¾ no checks are performed.

DebugSpooler = <path> If this entry is present, MAPI
attempts to execute its value
when it is time to launch the
MAPI spooler instead of simply
launching the executable. It can
be used to launch a debugger,
for instance. The default value is
MAPISP32.EXE for Win32 or
MAPISP.EXE for Win16.

DelaySpooler = <seconds> This entry controls how long the
MAPI spooler waits. The MAPI
spooler process waits for a
period of time immediately after
being launched. This entry
speeds up client startup by
reducing contention between the
client and MAPI spooler for CPU
time and other resources. The
default value is 15 seconds.

FlushRegistry = <0/1> If this entry is set to 1, the MAPI
profile provider flushes the
registry whenever a writeable
profile section is released and at
certain other times. If it is 0,
MAPI never flushes the registry.
Unlike most entries, this works
for retail MAPI as well as the
debug builds. The default value
is 0 ¾ the registry is not flushed.

SkipSystem = <0/1> If this entry is set to 0, MAPI
tries the system directory first
when loading the MAPI spooler
or any service provider. If it is 1,
MAPI loads those components
in typical path order. Since most

such components are installed
in the system directory, it is
faster to check there first. Unlike
most entries, this works for retail
MAPI as well as the debug
builds. The default value is 0 ¾
try the system directory first.

SpoolerAutoStartTimeout =
<seconds>

This entry controls the length of
time the client will wait for the
MAPI spooler to start when it
has been started automatically
as the result of a client logon.
The default value is 60 seconds.

The [Simple MAPI] Section in MAPIDBG.INI

The entries in this section control debugging features in Simple MAPI, including the long message
identifier cache and the thunking layer.

Entry Description
DumpCacheContents = <0/1> If this entry is set to 1, the entire

contents of the message identifier
cache are dumped to debug trace
each time the cache is accessed or
modified. If it is 0, the cache is not
dumped. The default value is 0
¾the cache is not dumped.

MessageIDCacheGrow =
<number of entries>

This entry controls the number of
entries by which the cache grows
when it is in runaway mode. When
it is in circular buffer mode, its size
does not change. The default value
is 50 entries. This entry is found in
EXCHNG.INI (for Win16) or
EXCHNG32.INI (for Win32).

MessageIDCacheSize =
<number of entries>

This entry controls the initial size of
the cache and the size to which it is
reset when returning to circular
buffer mode. The default value is
10 entries. This entry is found in
EXCHNG.INI (for Win16) or
EXCHNG32.INI (for Win32).

TraceEntry = <0/1> If this entry is set to 1, the
arguments to each Simple MAPI
call are dumped to debug trace.
The default value is 0 ¾ calls are
not traced.

TraceMessageIDCache =
<0/1>

If this entry is set to 1, normal
operations in the message identifier
cache generate debug trace output.
If it is 0, only errors generate trace
output. The default value is 0 ¾ no
traces are generated on normal
operations.

TracePacket = <0/1> If this entry is set to 1, debug traces
are generated for errors
encountered on the send side of
the Simple MAPI thunk layer. The
default value is 0 ¾ no traces are
generated for thunk errors.

TraceServer = <0/1> If this entry is set to 1, debug traces
are generated for errors and certain
operations on the receive side of
the Simple MAPI thunk layer. The
default value is 0 ¾ no traces are
generated for thunk server errors.

TraceVerbose = <0/1> If this entry is set to 1, debug traces

are generated for routine
operations in the Simple MAPI
thunk layer. The default value is 0
¾ no traces are generated for
routine thunk operations.

The [Spooler] Section in MAPIDBG.INI

The entries in this section control debugging features in the MAPI spooler.

Entry Description
AlwaysRebuild = <0/1> If this entry is set to 1, the MAPI

spooler rebuilds its merged
outgoing queue on every
outgoing queue notification. If it
is 0, the queue is only rebuilt
when opening a message store
for the first time. The default
value is 0 ¾ rebuild the outgoing
queue rarely.

AssertSessionLeaks = <0/1> If this entry is set to 1, the MAPI
spooler asserts if it finds a
reference count of greater than
1 when freeing memory for one
of its IMAPISession objects.
The default value is 0 ¾ no
assert for leaked spooler-side
sessions.

LowPrioritySpooling = <0/1> If this entry is set to 1, the MAPI
spooler gives its main thread
below-normal base priority by
calling the Win32 function
SetThreadPriority and setting
the
THREAD_PRIORITY_BELOW_
NORMAL value. If it is 0, the
MAPI spooler runs at normal
priority. The MAPI spooler
continues to adjust its priority
when flushing and performing
other foreground operations
regardless of this entry's value.
The default value is 1 ¾ the
MAPI spooler runs at below-
normal priority.

NonPersistanceTimeout =
<seconds>

This entry controls the length of
time the MAPI spooler waits
before exiting. The MAPI
spooler exits after the last client
session has logged off, but not
immediately. The default value is
20 seconds.

SafeMode = <0/1> If this entry is set to 1, then
during its startup the MAPI
spooler aborts submission on all
messages in the outgoing queue
and restarts the submission
process from scratch.
Submission is not aborted
during subsequent rebuilds of

the outgoing queue. If it is 0, the
submission state is left intact.
The default value is 0 ¾ do not
abort submission when the
outgoing queue changes.

TraceHeartbeat = <0/1> If this entry or TraceEverything
is set to 1, the MAPI spooler
generates debug trace output
during its normal idle time
processing. The default value is
0 ¾ no traces are generated for
normal idle processing.

TraceHooks = <0/1> If this entry or TraceEverything
is set to 1, the MAPI spooler
generates debug trace output
for normal operations involving
MAPI spooler hook providers.
The default value is 0 ¾ no trace
output is generated for normal
hook operation.

TraceUploads = <0/1> If this entry or TraceEverything
is set to 1, the MAPI spooler
generates debug trace output
for normal message
transmission steps through
message transports. The default
value is 0 ¾ no trace output is
generated for normal message
transmission.

TraceDownloads = <0/1> If this entry or TraceEverything
is set to 1, the MAPI spooler
generates debug trace output
for normal message download
steps from transport providers.
The default value is 0 ¾ no trace
output is generated for normal
downloading of messages.

TraceOutgoingQueues =
<0/1>

If this entry or TraceEverything
is set to 1, the MAPI spooler
generates debug trace output
for normal notifications and
other operations on the merged
outgoing queue. The MAPI
spooler maintains a merged
outgoing queue that combines
messages from outgoing
queues of all open message
stores that support message
submission. The default value is
0 ¾ no trace output is generated
for normal outgoing queue
processing.

TracePreprocessors = <0/1> If this entry or TraceEverything

is set to 1, the MAPI spooler
generates debug trace output
when calling preprocessors. The
default value is 0 ¾ no trace
output is generated for normal
preprocessing operations.

TraceService = <0/1> If this entry or TraceEverything
is set to 1, the MAPI spooler
generates debug trace output
when queuing, dequeueing, and
processing service requests on
behalf of MAPI and transport
providers. The default value is 0
¾ no trace output is generated
for normal service queue
processing.

TraceVerbose = <0/1> If this entry or TraceEverything
is set to 1, the MAPI spooler
generates debug trace output in
all categories for events that
would otherwise be considered
too frequent or insignificant to
warrant trace output. The default
value is 0 ¾ the MAPI spooler
does not generate trace output..

TraceYields = <0/1> If this entry or TraceEverything
is set to 1, the MAPI spooler
generates debug trace output
when explicitly yielding the CPU
to other processes, either on its
own behalf or on behalf of a
transport provider. The default
value is 0 ¾ no trace output is
generated when yielding.

TraceEverything = <0/1> If this entry is set to 1, all the
trace output requested by
TraceHeartbeat, TraceHooks,
TraceUploads,
TraceDownloads,
TraceOutgoingQueues,
TracePreprocessors,
TraceService, TraceVerbose,
and TraceYields is generated,
and the values of those entries
are ignored. You cannot
selectively turn off trace
categories when
TraceEverything is 1. The
default value is 0 ¾ entries for
the individual categories control
trace output.

The [TNEF] Section in MAPIDBG.INI

The entry in this section controls debugging features in the MAPI TNEF facility.

Entry Description
ForceUncompressedRTF =
<0/1>

If this entry is set to 1, TNEF
assumes that all RTF text is
uncompressed and checks the
stream explicitly. If it is 0, TNEF
assumes the text is
compressed. The default value
is 0.

Tracing Memory Leaks

When leak tracing is enabled by setting the DumpLeaks entry in the [Memory Management] section to
1, MAPI produces debug trace output for each leaked block of memory. For each leaked block, MAPI
lists:

· The name of the block and the heap it was allocated in, if available.
· The address of the block.
· The order in which the block was allocated, starting with 1 for the first block.
· The size of the block.
· The stack trace of the routine that allocated it (up to 20 frames, Win32 only).

One technique for turning the stack traceback into a usable symbolic trace is to save the debug output
to a text file, get your application back into the WINDBG debugger in a steady state, and convert the
hexadecimal numbers to symbols using the 'list near' command. This command prints the nearest
symbols before and after a given address. It is helpful to use a macro in your preferred editor to convert
the MAPI trace, which looks like this:

Memory leak 'Proxy/Stub Object' in MAPIX Internal Heap @ 004E0770,
 Allocation #18, Size: 48
[0] 6C4C3B2F
[1] 6C4C401D
[2] 77CF7AB7
[3] 77D30E30
[4] 77CC9076

into a string of "list near" commands that looks like this (it gives you the closest symbol before and after
the address):

> ln 6C4C3B2F; ln 6C4C401D; ln 77CF7AB7; ln 77D30E30; ln 77CC9076

When run in the WINDBG command window, this string produces a list of symbols like the following
(there are two symbols for each address, the first is almost always the one you want):

MAPI32!operator new(unsigned int)+0x2f
MAPI32!operator delete(void *)-0x31
MAPI32!StdPSFactory::CreateProxy(IUnknown *, const _GUID &,
 IRpcProxyBuffer * *, void * *)+0xbd
MAPI32!StdPSFactory::CreateStub(const _GUID &, IUnknown *, IRpcStubBuffer *
*)-0xe3
OLE32!?
CreateInterfaceProxy@CRemoteHdlr@@AAEPAVCPSIX@@ABU_GUID@@PAPAXPAJ@Z+0x7d
OLE32!?CreateInterfaceStub@CRemoteHdlr@@AAEPAVCPSIX@@ABU_GUID@@PAJ@Z-0xc1
OLE32!_IEnumUnknown_RemoteNext_Proxy@16+0xf
OLE32!_IEnumUnknown_RemoteNext_Thunk@4-0x6
OLE32!?AddRef@CRemoteHdlr@@UAGKXZ+0
OLE32!?GetRH@CStdIdentity@@AAEPAUIRemoteHdlr@@XZ-0x11

MAPI does not expose an API to trigger an allocation dump.

It is most efficient to address memory leaks as they occur instead of waiting until there is a large
number.

 MAPI Interfaces

The documentation for each interface consists of an introductory section that includes a brief
description of the interface's purpose followed by an "At a Glance" table, which contains the following
information:

Specified in header file: The header file where the
interface is defined and that
must be included when you
compile your source code.

Object that supplies this
interface:

The object implementing the
interface.

Corresponding pointer type: The pointer type for the object
implementing the interface.

Implemented by: A list of the components that
must provide an implementation
of the interface.

Transaction model: If non-transacted, changes take
effect immediately; if transacted,
changes do not take effect until
SaveChanges is called.

Called by: A list of the components that
typically call the methods of the
interface.

Following the "At a Glance" table is another table that lists all the methods of this interface in vtable
order. A vtable is an array of function pointers created by the compiler containing one function pointer
for each method of a MAPI object. The methods are listed in the same order that they are declared.
Methods inherited from other interfaces are not shown in the "Vtable Order" table but can be used in
the same way as documented in the interface that defines them.

Following the "Vtable Order" table, the interface's methods are then covered in alphabetical order. For
each method, the documentation includes a brief purpose statement for the method and its syntax
followed by this information:

Heading Content
Parameters A description of each parameter

in the method.
Return Values A description of the unique

values that the method can
return. These are the values
that callers should check for in
their code.

Remarks A description of why and how
the method is used.

See Also Cross-references to other topics
in the MAPI Programmer's
Reference.

 IABContainer : IMAPIContainer

The IABContainer interface provides access to address book containers. MAPI and client applications
call the methods of the IABContainer interface to perform name resolution and to create, copy, and
delete recipients. Although address book providers must supply an implementation for all methods of
this interface, this implementation can return MAPI_E_NO_SUPPORT to indicate a lack of support for
a particular operation. For example, an address book container that does not perform name resolution
returns MAPI_E_NO_SUPPORT from its IABContainer::ResolveNames.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Address book container

Corresponding pointer type: LPABCONT
Implemented by: Address book providers
Transaction model: Non-transacted
Called by: MAPI and client applications

Vtable Order

CreateEntry Creates a new recipient in the address book container;
the container must support modification.

CopyEntries Copies one or more recipients into the address book
container; the container must support modification.

DeleteEntries Removes one or more entries from the address book
container; the container must support modification.

ResolveNames Matches recipients in a list with entries in the address
book container.

Required Properties

PR_CONTAINER_FLAGS Read/write
PR_DISPLAY_NAME Read/write
PR_ENTRYID Read-only
PR_OBJECT_TYPE Read-only
PR_RECORD_KEY Read-only

 IABContainer::CopyEntries

The IABContainer::CopyEntries method copies one or more recipients, typically messaging users or
distribution lists, into the address book container.

HRESULT CopyEntries(
 LPENTRYLIST lpEntries,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 ULONG ulFlags
)

Parameters

lpEntries
Input parameter pointing to an array of ENTRYLIST structures containing the entry identifiers of the
entries to copy.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays. The ulUIParam parameter must be zero if the AB_NO_DIALOG flag is set in the
ulFlags parameter.

lpProgress
Input parameter pointing to a progress object or NULL. If lpProgress is NULL, progress should be
displayed using the progress object supplied by MAPI through the
IMAPISupport::DoProgressDialog method. The lpProgress parameter is ignored if
AB_NO_DIALOG is set in ulFlags.

ulFlags
Input parameter containing a bitmask of flags that controls how the copy operation is performed. If
no flags are set, the entries are copied. The following flags can be set:
AB_NO_DIALOG

Suppresses display of progress information. If this flag is not set, progress information is
displayed.

CREATE_CHECK_DUP_LOOSE
Indicates a loose level should be used for duplicate entry checking, which returns more matches
than setting a strict level with the flag CREATE_CHECK_DUP_STRICT. For example, a provider
can define a loose match as any two entries having the same display name, while defining a strict
match as any two entries having the same display name and messaging address.

CREATE_CHECK_DUP_STRICT
Indicates a strict level should be used for duplicate entry checking, which returns fewer matches
than setting a loose level with the flag CREATE_CHECK_DUP_LOOSE.

CREATE_REPLACE
Indicates that if the entry to be created is a duplicate of one already in this container, the new
entry should replace the existing one.

Return Values

S_OK
The copy operation succeeded.

MAPI_W_PARTIAL_COMPLETION
The copy operation succeeded, but one or more of the recipients could not be copied. To test for this
warning, use the HR_FAILED macro. When this warning is returned, the call should be handled as
successful.

Remarks

Address book containers that support the IABContainer::CopyEntries method must also support
modification. Modifiable containers set the AB_MODIFIABLE flag in their PR_CONTAINER_FLAGS
property.

The IABContainer::CopyEntries method copies recipients into this container. A call to
IABContainer::CopyEntries is functionally equivalent to making the following three calls for each
recipient to be copied:

1. IABContainer::CreateEntry to create the new recipient.
2. The new messaging user or distribution list's IMAPIProp::SaveChanges method to perform a save.
3. The new messaging user or distribution list's IUnknown::Release method to release the container's

reference.
Address book providers must support all the ulFlags flags; however, a provider is free to determine
what the semantics of CREATE_CHECK_DUP_LOOSE and CREATE_CHECK_DUP_STRICT mean
within its implementation's context. Providers that cannot determine whether an entry is a duplicate
should allow the entry to be copied.

If either the CREATE_CHECK_DUP_LOOSE or CREATE_CHECK_DUP_STRICT flag is set, and the
implementation does not copy the entry because it is a duplicate, the
MAPI_W_PARTIAL_COMPLETION warning is not returned. MAPI_W_PARTIAL_COMPLETION is only
returned when a nonduplicate entry cannot be copied.

If either the CREATE_CHECK_DUP_LOOSE or the CREATE_CHECK_DUP_STRICT flag, along with
the CREATE_REPLACE flag, is not set, then the entry is copied even if it is a duplicate.

The CREATE_REPLACE flag checks for CREATE_CHECK_DUP_LOOSE or
CREATE_CHECK_DUP_STRICT. The personal address book does not implement
CREATE_REPLACE. Providers are not required to support the flag, which means they can ignore it. If
CREATE_REPLACE is set without other flags it has no meaning. To consider another combination, if
CREATE_CHECK_DUP_STRICT is used without CREATE_REPLACE, the check for duplicates is
carried out and if there is a duplicate there is no replacement. This is what happens when a user
makes an addition to the personal address book through the standard user interface.

No support for the flags means the provider can ignore the flags, that is, simply not check for
duplicates. The flags are intended as a suggestion from the client to avoid unnecessary duplications. If
the client requires addition of an entry, it will pass no flags to check for duplicates, and the entry will be
added.

Personal address book rules for duplicate checking define "loose" to mean that original display names
are equal; and "strict" to mean that original display names and search keys are equal. In the personal
address book, the original display name is defined as the transmittable display name, if available.
Otherwise, it is simply the display name. Combined with the PR_SEARCH_KEY property, these criteria
usually eliminate duplicates in most applications whether automated or user driven.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

See Also

ENTRYLIST structure , IABContainer::CreateEntry method , IMAPIProgress : IUnknown interface ,
IMAPIProp::SaveChanges method

 IABContainer::CreateEntry

The IABContainer::CreateEntry method creates a new entry in the address book container. The new
entry can be a messaging user, a distribution list, or another container.

HRESULT CreateEntry(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 ULONG ulCreateFlags,
 LPMAPIPROP FAR * lppMAPIPropEntry
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of a template for creating new entries of a particular
type.

ulCreateFlags
Input parameter containing a bitmask of flags that controls how entry creation is performed. The
following flags can be set:
CREATE_CHECK_DUP_LOOSE

Indicates a loose level should be used for duplicate entry checking, which returns more matches
than setting a strict level with the flag CREATE_CHECK_DUP_STRICT. For example, a provider
can define a loose match as any two entries having the same display name, while defining a strict
match as any two entries having the same display name and messaging address.

CREATE_CHECK_DUP_STRICT
Indicates a strict level should be used for duplicate entry checking, which returns fewer matches
than setting a loose level with the flag CREATE_CHECK_DUP_LOOSE.

CREATE_REPLACE
Indicates that if the entry to be created is a duplicate of one already in this container, the new
entry should replace the existing one.

lppMAPIPropEntry
Output parameter pointing to a pointer to the newly created entry.

Return Values

S_OK
The new entry was successfully created.

Remarks

The IABContainer::CreateEntry method creates a new entry in the container and returns a pointer to
the newly created object. The entry identifier in the lpEntryID parameter represents a template,
published in the container's one-off table.

Implementations of IABContainer::CreateEntry which allow creation of arbitrary entries from other
providers' templates are necessarily more complicated than those that do not allow it. Such an must
provide storage for some or of the properties associated with the entries. For example, CreateEntry
can provide storage for the PR_DETAILS_TABLE property so that details can be made available
without requiring the foreign provider to translate.

If CreateEntries supports the creation of entries with template identifiers, meaning that the entries
support the PR_TEMPLATEID property, it must perform the following tasks:

1. Call IMAPISupport::OpenTemplateID. IMAPISupport::OpenTemplateID allows the foreign
provider's code for the entry to bind to the new entry being created. Foreign providers support this
binding process to maintain control over entries created from their templates into the containers of
host providers.

2. Perform any necessary initialization and populate the new object with all of the properties from the
entry in the foreign provider, the object returned in the lppMAPIPropNew parameter from
OpenTemplateID.

If IMAPISupport::OpenTemplateID succeeds, the calling provider should initialize the new entry for
offline use as it would for any other entry from a foreign provider, but it should copy the properties to
the bound interface returned by OpenTemplateID rather than directly to the property object.

If IMAPISupport::OpenTemplateID returns an error, the calling provider should fail the CreateEntry
call and not allow the entry to be created. Allowing an entry with a template identifier to be created
without successfully binding the related code in the foreign provider to the new entry's data could
invalidate assumptions made about the data content by the foreign provider's code.

Address book containers that support the IABContainer::CreateEntry method must be modifiable.
Modifiable containers set the AB_MODIFIABLE flag in their PR_CONTAINER_FLAGS property.

Although MAPI's Personal Address Book does not support the CREATE_REPLACE flag, address book
providers are encouraged to support all of the the ulFlags flags. The flags are intended as a suggestion
from the client to avoid unnecessary duplications. Providers have the option to avoid checking for
duplicates and choose to either always create a new entry. Providers that cannot determine whether or
not an entry is a duplicate should allow the creation to proceed.

Providers are free to determine the semantics of the CREATE_CHECK_DUP_LOOSE and
CREATE_CHECK_DUP_STRICT flags. Personal address book rules for duplicate checking define
"loose" to mean that original display names are equal; and "strict" to mean original display names and
search keys are equal. In MAPI's Personal Address Book, the original display name is defined as the
transmittable display name, if available. Otherwise, it is simply the display name. Combined with the
PR_SEARCH_KEY property, these criteria usually eliminate duplicates in most applications whether
automated or user driven.

The CREATE_REPLACE flag checks for the setting of either the CREATE_CHECK_DUP_LOOSE or
CREATE_CHECK_DUP_STRICT flag. When CREATE_REPLACE is set without one of the other flags
being set, it has no meaning. For example, if CREATE_CHECK_DUP_STRICT is set by itself, the
provider for duplicates is carried out and if there is a duplicate there is no replacement. When
CREATE_REPLACE is either not supported or not set, a duplicate entry prohibits the creation from
occurring.

When CreateEntry returns, an entry identifier for the new entry will not necessarily be accessible until
after the new entry's IMAPIProp::SaveChanges method has been called. Whether or not the entry
identifier is available depends on the provider's implementation.

Although duplicate checking flags are passed in CreateEntry, the duplicate checking operation does
not occur until SaveChanges is called.

Error values such as MAPI_E_COLLISION, which can occur when an entry is created, are returned for
the subsequent SaveChanges call, not for CreateEntry.

See Also

IABContainer::CopyEntries method , IMAPIProp::OpenProperty method ,
IMAPIProp :: SaveChanges method , PR_CREATE_TEMPLATES property

 IABContainer::DeleteEntries

The IABContainer::DeleteEntries method removes one or more entries from an address book or
other container that enables the user to delete entries. The removed entries are typically messaging
users, distribution lists, or containers.

HRESULT DeleteEntries(
 LPENTRYLIST lpEntries,
 ULONG ulFlags
)

Parameters

lpEntries
Input parameter pointing to an array of ENTRYLIST structures containing entry identifiers for the
entries being deleted.

ulFlags
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_W_PARTIAL_COMPLETION
The call succeeded, but one or more of the entries could not be deleted. To test for this warning, use
the HR_FAILED macro. When this warning is returned, the call should be handled as successful.
For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

 IABContainer::ResolveNames

The IABContainer::ResolveNames method resolves entries in the address book container.

HRESULT ResolveNames(
 LPSPropTagArray lpPropTagArray,
 ULONG ulFlags,
 LPADRLIST lpAdrList,
 LPFlagList lpFlagList
)

Parameters

lpPropTagArray
Input parameter pointing to an SPropTagArray structure containing an array of property tags
indicating the properties required for each name being resolved. To request the default set of
property columns for the container's contents table be returned in the address list, pass NULL in the
lpPropTagArray parameter.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the text in returned strings.
The following flag can be set:
MAPI_UNICODE

Indicates the returned strings of the default column set are in Unicode format. If the
MAPI_UNICODE flag is not set, the strings are in ANSI format.

lpAdrList
Input-output parameter that on input points to an ADRLIST structure containing the list of entries
whose names need to be resolved. On output, the lpAdrList parameter returns the list of resolved
names.

lpFlagList
Input-output parameter containing an array of flags; each flag corresponds to an entry in the
lpAdrList parameter and provides the name-resolution status for that particular entry. The flags in the
lpFlagList parameter are in the same order as the entries in lpAdrList. The following flags can be set:
MAPI_AMBIGUOUS

Indicates that the corresponding entry is resolved, but that it did not resolve to a unique entry
identifier. If this flag is returned, other containers should ignore this entry in further resolution.

MAPI_RESOLVED
Indicates that the corresponding entry has been resolved to a unique entry identifier. If this flag is
returned, other containers should ignore this entry in further resolution.

MAPI_UNRESOLVED
Indicates that the corresponding entry is unresolved. Another container can attempt to resolve this
entry.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_NO_SUPPORT
The address book provider does not support bulk name resolution using this method.

Remarks

The IABContainer::ResolveNames method attempts to match unresolved names from the array of
entries in the lpAdrList parameter to recipients in the address book container and assign entry
identifiers. An unresolved name is a recipient that does not have an entry identifier associated with it
and has its corresponding flag in the lpFlagList parameter set to MAPI_UNRESOLVED.

Address book providers are not required to support name resolution with the
IABContainer::ResolveNames method. Instead, they can support it with the PR_ANR property
restriction. Address book providers that choose to rely on the PR_ANR restriction for name resolution
can return MAPI_E_SUPPORT from their IABContainer::ResolveNames implementation. For more
information, see Implementing the PR_ANR Property Restriction.

An address book container's ResolveNames method is called as a result of a client calling
IAddrBook::ResolveName. MAPI calls the IABContainer::ResolveNames method for each address
book container in the address book. The container attempts to uniquely match each entry in the
recipient list passed in the lpAdrList parameter. Entries that resolve to unique recipients in the container
have their corresponding flag in the lpFlagList parameter set to MAPI_RESOLVED and the
PR_ENTRYID property added to their corresponding ADRENTRY structure in the lpAdrList parameter.
The entry identifier stored in the PR_ENTRYID property can be short-term or long-term.

Entries that do not match any of the container's recipients have their corresponding flag set to
MAPI_UNRESOLVED and are passed onto the next container by the IAddrBook::ResolveName
method. Entries that match multiple recipients have their flag set to MAPI_AMBIGUOUS and their
ADRENTRY structure untouched. MAPI displays these ambiguous names in a dialog box that prompts
the user to resolve the ambiguity.

If it is not possible to return all of the properties requested for an unresolved entry in the
lpPropTagArray parameter, and these properties don't exist in the ADRENTRY structure passed in, the
address book provider should set the property type of each unavailable property to PT_ERROR. Any
property columns that are already included for an entry should be retained if that entry is resolved.

If a provider is replacing an ADRENTRY, it should first free the ADRENTRY using the MAPIFreeBuffer
function and then allocate the replacement ADRENTRY using the MAPIAllocateBuffer function.

MAPI requires certain properties to submit a message and will call providers to get those properties as
part of its implementations of the IAddrBook::PrepareRecips and IMAPISupport::ExpandRecips
methods. Providers implementing ResolveNames can eliminate the MAPI callbacks for
PrepareRecips and ExpandRecips, and thus improve performance for message submission, by
returning the following property columns when they resolve entry names:

PR_ADDRTYPE
PR_DISPLAY_NAME
PR_EMAIL_ADDRESS
PR_ENTRYID
PR_OBJECT_TYPE
PR_SEARCH_KEY
PR_TRANSMITTABLE_DISPLAY_NAME

Clients can also use the returned property columns in their calls to the IMessage::ModifyRecipients
method.

See Also

ADRENTRY structure , ADRLIST structure , IAddrBook::PrepareRecips method ,
IAddrBook::ResolveName method , IMAPISupport::ExpandRecips method ,
IMessage::ModifyRecipients method , PR_ANR property, SPropertyRestriction structure

 IABLogon : IUnknown

The IABLogon interface is used to access resources in an address book provider.

At a Glance

Specified in header file: MAPISPI.H
Object that supplies this
interface:

Address book logon object

Corresponding pointer type: LPABLOGON
Implemented by: Address book providers
Called by: MAPI

Vtable Order

GetLastError Returns information about the last error that occurred
for an address book object.

Logoff Logs a client application off an address book provider.
OpenEntry Opens a container or recipient object and returns a

pointer to the object to provide further access.
CompareEntryID
s

Compares two entry identifiers to determine if they
refer to the same object.

Advise Registers an object for notifications about changes
within an address book.

Unadvise Removes an object's registration for notification of
address book changes previously established with a
call to the IABLogon::Advise method.

OpenStatusEntr
y

Opens a status object.

OpenTemplateID Allows run-time binding of one address book provider's
code to data for an entry in another address book
provider, so the entry's properties can later be
updated.

GetOneOffTable Returns a table of templates for custom recipient
addresses that can be used to create recipients for a
message.

PrepareRecips Prepares a recipient list for later use by the messaging
system.

 IABLogon::Advise

The IABLogon::Advise method registers an advise sink object for notifications about changes within
containers supported by this address book provider.

HRESULT Advise(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 ULONG ulEventMask,
 LPMAPIADVISESINK lpAdviseSink,
 ULONG FAR * lpulConnection
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the object about which notifications should be
generated.

ulEventMask
Input parameter containing an event mask of the types of notification events occurring for the object
about which MAPI will generate notifications. The mask filters specific cases. Each event type has a
structure associated with it that holds additional information about the event. The following table lists
the possible event types along with their corresponding structures.

Notification event
type

Corresponding structure

fnevCriticalErro
r

ERROR_NOTIFICATION

fnevObjectCreate
d

OBJECT_NOTIFICATION

fnevObjectDelete
d

OBJECT_NOTIFICATION

fnevObjectModifi
ed

OBJECT_NOTIFICATION

fnevObjectCopied OBJECT_NOTIFICATION
fnevObjectMoved OBJECT_NOTIFICATION

lpAdviseSink
Input parameter pointing to the advise sink object to be called when an event occurs for the object
about which notification has been requested.

lpulConnection
Output parameter pointing to a variable that upon a successful return holds the connection number
for the notification registration. The connection number must be nonzero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INVALID_ENTRYID
The service provider is not able to use the entry identifier passed in lpEntryID.

MAPI_E_NO_SUPPORT
The service provider either does not support changes to its objects or does not support notification

of changes.
MAPI_E_UNKNOWN_ENTRYID

A service provider that could handle the lpEntryID entry identifier could not be found.

Remarks

Address book providers implement the IABLogon::Advise method to register an advise sink object to
receive notifications relating to changes in one or more of their containers. Advise sinks typically call
IAddrBook::Advise and MAPI forwards this call to the address book provider active for the session
that is responsible for the object indicated by the entry identifier in lpEntryID. Whenever a change
occurs to the indicated object, the provider checks to see what event mask bit was set in the
ulEventMask parameter and thus what type of change occurred. If a bit is set, then the provider calls
the IMAPIAdviseSink::OnNotify method for the advise sink object indicated by the lpAdviseSink
parameter to report the event. Data passed in the notification structure to the OnNotify routine
describes the event.

The call to OnNotify can occur during the call that changes the object, or at any following time. On
systems that support multiple threads of execution, the call to OnNotify can occur on any thread. For a
way to turn a call to OnNotify that might happen at an inopportune time into one that is safer to handle,
a client application should use the HrThisThreadAdviseSink function.

To provide notifications, the address book provider implementing Advise needs to keep a copy of the
pointer to the lpAdviseSink advise sink object; to do so, it calls the IUnknown::AddRef method for the
advise sink to maintain its object pointer until notification registration is canceled with a call to the
IABLogon::Unadvise method. The Advise implementation should assign a connection number to the
notification registration and call AddRef on this connection number before returning it in the
lpulConnection parameter. Service providers can release the advise sink object before the registration
is canceled, but they must not release the connection number until Unadvise has been called.

After a call to Advise has succeeded and before Unadvise has been called, clients must be prepared
for the advise sink object to be released. A client should therefore release its advise sink object after
Advise returns, unless it has a specific long-term use for it.

For more information on the notification process, see About Notification.

See Also

HrThisThreadAdviseSink function , IABLogon::Unadvise method , IMAPIAdviseSink::OnNotify
method, NOTIFICATION structure

 IABLogon::CompareEntryIDs

The IABLogon::CompareEntryIDs method compares two entry identifiers belonging to this address
book provider to determine if they refer to the same object.

HRESULT CompareEntryIDs(
 ULONG cbEntryID1,
 LPENTRYID lpEntryID1,
 ULONG cbEntryID2,
 LPENTRYID lpEntryID2,
 ULONG ulFlags,
 ULONG FAR * lpulResult
)

Parameters

cbEntryID1
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID1
parameter.

lpEntryID1
Input parameter pointing to the first entry identifier to be compared.

cbEntryID2
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID2
parameter.

lpEntryID2
Input parameter pointing to the second entry identifier to be compared.

ulFlags
Reserved; must be zero.

lpulResult
Output parameter pointing to a variable where the returned result of the comparison is stored; this
variable is TRUE if the two entry identifiers refer to the same object, and FALSE otherwise.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Address book providers implement the IABLogon::CompareEntryIDs method to compare two entry
identifiers for a given entry within one or more of their address book containers to determine whether
they refer to the same object. If the two entry identifiers refer to the same object, then
CompareEntryIDs sets the lpulResult parameter to TRUE; if they refer to different objects,
CompareEntryIDs sets lpulResult to FALSE.

CompareEntryIDs is useful because an object can have more than one valid entry identifier; such a
situation can occur, for example, when trying to compare a short-term entry identifier with a long-term
entry identifier.

 IABLogon::GetLastError

The IABLogon::GetLastError method returns a MAPIERROR structure containing information about
the previous error that occurred in an address book object.

HRESULT GetLastError(
 HRESULT hResult,
 ULONG ulFlags,
 LPMAPIERROR FAR * lppMAPIError
)

Parameters

hResult
Input parameter containing the result returned for the last call for the address book object that
returned an error.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the strings in the MAPIERROR structure returned in the lppMAPIError parameter are in
Unicode format. If the MAPI_UNICODE flag is not set, the strings are in ANSI format.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure containing version,
component, and context information for the error. The lppMAPIError parameter can be set to NULL if
there is no MAPIERROR structure to return.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Address book providers implement the IABLogon::GetLastError method to retrieve information to
display in a message to the user regarding the last error returned from a method call for the address
book object.

To release all the memory allocated by MAPI, client applications need only call the MAPIFreeBuffer
function for the returned MAPIERROR structure.

The return value from GetLastError must be S_OK for an application to make use of the MAPIERROR
structure. Even if the return value is S_OK, a MAPIERROR structure might not be returned. If the
implementation cannot determine what the last error was, or if a MAPIERROR structure is not available
for that error, GetLastError returns a pointer to NULL in lppMAPIError instead.

See Also

MAPIERROR structure , MAPIFreeBuffer function

 IABLogon::GetOneOffTable

The IABLogon::GetOneOffTable method returns a table of one-off templates for creating recipients to
be added to the recipient list of an outgoing message.

HRESULT GetOneOffTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Output parameter pointing to a pointer to the returned table.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_NO_SUPPORT
The address book provider doesn't have any custom recipient lists.

Remarks

MAPI calls the IABLogon::GetOneOffTable method to make available one-off templates for creating
recipients. The following properties must be available as columns in the one-off table returned by
GetOneOffTable:

PR_ADDRTYPE
PR_DEPTH
PR_DISPLAY_NAME
PR_DISPLAY_TYPE
PR_ENTRYID
PR_INSTANCE_KEY
PR_SELECTABLE

MAPI keeps the one-off table open, and changes to this table should be handled through table
notifications. If the address book provider changes the table, it should call the
IMAPIAdviseSink::OnNotify method with the appropriate event mask for any clients that have
registered for changes on that table.

Setting the MAPI_UNICODE flag in the ulFlags parameter does the following:

· Sets the string type to Unicode for data returned for the initial active columns of the one-off table by
the IMAPITable::QueryColumns method. The initial active columns for the table are those columns
QueryColumns returns before the provider that contains the table calls the
IMAPITable::SetColumns method.

· Sets the string type to Unicode for data returned for the initial active rows of the one-off table by the
IMAPITable::QueryRows method. The initial active rows are those rows QueryRows returns before
the provider that contains the table calls SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the provider that contains the one-off table calls the IMAPITable::SortTable method.

See Also

BuildDisplayTable function , IABContainer::CreateEntry method , IAddrBook::NewEntry method ,
IMAPISupport::GetOneOffTable method

 IABLogon::Logoff

The IABLogon::Logoff method logs off an address book provider.

HRESULT Logoff(
 ULONG ulFlags
)

Parameters

ulFlags
Reserved; must be zero.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Address book providers implement the IABLogon::Logoff method to support the logoff process.
IABLogon::Logoff is called by MAPI after a client has called IMAPISession::Logoff to end a session.
IABLogon::Logoff performs the following tasks:

· Releases all open objects, such as any subobjects or the status object.
· Releases the provider's support object.

For more information about the logoff process of address book providers, see Shutting Down Service
Providers.

See Also

IABProvider::Logon method

 IABLogon::OpenEntry

The IABLogon::OpenEntry method opens a container or recipient object and returns a pointer to the
object to provide further access. A recipient can be either a messaging user or a distribution list.

HRESULT OpenEntry(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 LPCIID lpInterface,
 ULONG ulFlags,
 ULONG FAR * lpulObjType,
 LPUNKNOWN FAR * lppUnk
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier for the container or recipient object to open.

lpInterface
Input parameter pointing to the interface identifier (IID) representing the interface to be used for
further access to the opened object. Passing NULL indicates the provider should return the standard
interface for the object, such as IMailUser for messaging users and IDistList for distribution lists.

ulFlags
Input parameter containing a bitmask of flags that controls how the object is opened. The following
flags can be set:
MAPI_BEST_ACCESS

Indicates the object should be opened with the maximum network permissions allowed for the
user and the maximum client application access. For example, if the client has read/write access,
the object is opened with read/write access; if the client has read-only access, the object is
opened with read-only access. The client can retrieve the access level by getting the property
PR_ACCESS_LEVEL.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling process. If the object is not accessible, some subsequent call to the object might return an
error.

MAPI_MODIFY
Requests read/write access. By default, objects are created with read-only access, and clients
should not work on the assumption that read/write access has been granted.

lpulObjType
Output parameter pointing to a variable where the type of the opened object is stored.

lppUnk
Output parameter pointing to a variable where the pointer to the opened object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt was made to access an object for
which the user has insufficient permissions.

MAPI_E_NOT_FOUND

There is not an object associated with the entry identifier passed in lpEntryID.
MAPI_E_UNKNOWN_ENTRYID

The entry identifier passed in the lpEntryID parameter is in an unrecognizable format. This value is
typically returned if the address book provider that contains the object is not open.

Remarks

MAPI calls the IABLogon::OpenEntry method to open a container or recipient. An address book
provider only receives an OpenEntry call for an object with an entry identifier that MAPI has
determined belongs to that provider. The provider returns a pointer that provides further access to the
opened object. The default behavior is to open the object as read-only, unless the call sets the
MAPI_MODIFY or MAPI_BEST_ACCESS flag in the ulFlags parameter. If an address book provider
does not allow modification for the object requested, then it should return the value
MAPI_E_NO_ACCESS.

The lpInterface parameter indicates which interface should be used for the opened object. Passing
NULL in lpInterface indicates the standard MAPI interface for that type of object should be used. An
address book provider can implement another interface for the object by passing the interface identifier
for the interface that should be returned.

If MAPI passes NULL for lpEntryID, it indicates the provider should open the root container in its
container hierarchy.

When the entry to be opened supports a template identifier through its PR_TEMPLATEID property, the
provider calls IMAPISupport::OpenTemplateID, passing the template identifier for the lpTemplateID
parameter and a zero value for the ulTemplateFlags parameter. IMAPISupport::OpenTemplateID
passes this information to the foreign provider in a call to the foreign provider's
IABLogon::OpenTemplateID method. This set of calls binds code in the foreign provider to data in the
host provider. If IMAPISupport::OpenTemplateID returns an error, usually because the foreign
provider is unavailable or not included in the profile, the provider should try to continue by treating the
unbound entry as read-only.

For more information about opening foreign address book entries, see Implementing a Foreign Address
Book Provider or Implementing a Host Address Book Provider.

 IABLogon::OpenStatusEntry

The IABLogon::OpenStatusEntry method opens the provider's status object.

HRESULT OpenStatusEntry(
 LPCIID lpInterface,
 ULONG ulFlags,
 ULONG FAR * lpulObjType,
 LPMAPISTATUS FAR * lppMAPIStatus
)

Parameters

lpInterface
Input parameter pointing to the interface identifier (IID) representing the interface to be used for
further access to the opened status object. Passing NULL indicates that the provider should return
the standard interface, or IMAPIStatus.

ulFlags
Input parameter containing a bitmask of flags that controls how the status object is opened. The
following flag can be set:
MAPI_MODIFY

Requests read/write access. By default, objects are created with read-only access, and client
applications should not work on the assumption that read/write access has been granted.

lpulObjType
Output parameter pointing to the type of the opened object.

lppEntry
Output parameter pointing to a pointer to the opened object.

Return Value

S_OK
The call succeeded and the status object has been opened.

Remarks

Address book providers implement the IABLogon::OpenStatusEntry method to open their status
object. Clients can use this status object to, for example, reconfigure options for the provider or validate
the provider's state.

See Also

IMAPIStatus : IMAPIProp interface , IMAPIStatus::SettingsDialog method ,
IMAPIStatus::ValidateState method

 IABLogon::OpenTemplateID

The IABLogon::OpenTemplateID method allows the implementing address book provider to bind
code code within its implementation to data for one of its entries within a host provider's address book
container. This binding occurs at run time.

HRESULT OpenTemplateID(
 ULONG cbTemplateID,
 LPENTRYID lpTemplateID,
 ULONG ulTemplateFlags,
 LPMAPIPROP lpMAPIPropData,
 LPCIID lpInterface,
 LPMAPIPROP FAR * lppMAPIPropNew,
 LPMAPIPROP lpMAPIPropSibling
)

Parameters

cbTemplateID
Input parameter containing the size, in bytes, of the template identifier pointed to by the
lpTemplateID parameter.

lpTemplateID
Input parameter pointing to the template identifier. This value is stored in the PR_TEMPLATEID
property of an entry in the implementing provider's container.

ulTemplateFlags
Input parameter containing a bitmask of flags used to indicate how to open the entry represented by
the template identifier. The following flag can be set:
FILL_ENTRY

Indicates that the host provider is creating a new entry in its container based on the entry
represented by the template identifier. The implementing provider should either perform specific
initialization of the host provider's entry, pointed to by the lpMAPIPropData parameter, or bind its
own IMAPIProp implementation by returning it through the lppMAPIPropNew parameter.

lpMAPIPropData
Input parameter pointing to a property object, an IMAPIProp implementation, in the host provider's
container for an entry that is based on the entry in the implementing provider's container that is
represented by the lpTemplateID parameter.

lpInterface
Input parameter pointing to the interface identifier (IID) specifying the interface to be returned for the
bound property object. If this parameter is NULL, the standard messaging user interface, IMailUser,
should be returned.

lppMAPIPropNew
Output parameter pointing to the bound property object, the IMAPIProp implementation supplied by
the implementing provider.

lpMAPIPropSibling
Reserved; must be NULL.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_UNKNOWN_ENTRYID
The template identifier passed is not recognized by the address book provider.

Remarks

An address book provider implements the IABLogon::OpenTemplateID method to bind code to data
supported by a host address book provider. This binding occurs at run time in response to the host
provider retrieving its entry's PR_TEMPLATEID property and passing it in a call to
IMAPISupport::OpenTemplateID.

An address book provider only needs to implement OpenTemplateID and related code to maintain
control over copies of its entries that exist in the containers of host providers. OpenTemplateID is
called with the value of an entry's PR_TEMPLATEID property when the entry is created or when it is
opened by MAPI.

An address book provider should implement OpenTemplateID and the related property object to
handle the following situations:

· To periodically update the data for a copied entry so that it stays in sync with the original.
· To implement functionality that the host provider cannot implement, such as dynamically populating

a list box that appears in the entry's details table from data on a server.
· To control interaction between properties in the host provider's entry and the original entry, such as

computing PR_EMAIL_ADDRESS from edit controls in the details display that hold various
components of the adddress.

In general, a property object implemented for a host provider should intercept all of the methods to
perform context-specific manipulation of the relevant properties. If the FILL_ENTRY flag is passed in
the ulFlags parameter, the address book provider must set all properties for the entry.

Address book providers that return a new property object in the lppMAPIPropNew parameter must call
the IUnknown::AddRef method of the host provider's property object to maintain a reference. All calls
through the bound object, the IMAPIProp implementation returned in lppMAPIPropNew, should be
routed to their corresponding method on the host property object after they are dealt with by the bound
object.

The property identifiers of any named properties passed through the bound object are in the host
provider's identifier name space. The implementing provider GetNamesFromIDs method should
determine the names of the properties so that it can perform any tasks specific to the implementation.
Similarly, properties that the implementing provider passes to the property object must also be in the
foreign provider's identifier name space. For example, if IABLogon::OpenTemplateID sets a named
property, the property should use a property identifier belonging to the host provider. If necessary, the
implementing provider should use GetIDsFromNames to create an appropriate identifier.

If an address book provider doesn't recognize the entry identifier passed in lpTemplateID, it should
return MAPI_E_UNKNOWN_ENTRYID.

For more information on working with address book template identifiers, see Implementing a Foreign
Address Book Provider.

See Also

IMAPISupport::OpenTemplateID method , IPropData : IMAPIProp interface , PR_TEMPLATEID
property.

 IABLogon::PrepareRecips

The IABLogon::PrepareRecips method prepares a recipient list for later use by the messaging
system.

HRESULT PrepareRecips(
 ULONG ulFlags,
 LPSPropTagArray lpPropTagArray,
 LPADRLIST lpRecipList
)

Parameters

ulFlags
Reserved; must be zero.

lpPropTagArray
Input parameter pointing to an SPropTagArray structure containing an array of property tags
indicating the properties that require updating, if any. The lpPropTagArray parameter can be NULL.

lpRecipList
Input parameter pointing to an ADRLIST structure holding the list of recipients.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The requested object does not exist.

Remarks

MAPI calls the IABLogon::PrepareRecips method to ensure that each recipient in the address list
pointed to by lpRecipList has a long-term entry identifier and that all of the properties requested in the
lpPropTagArray parameter exist in the property value array included in the address list's ADRENTRY
structure member for the recipient. To do so, PrepareRecips converts recipients' short-term entry
identifiers to long-term entry identifiers and updates the recipients from the list that belong to this
address book provider. If necessary, PrepareRecips also retrieves a recipient's long-term entry
identifier along with any additional properties requested.

Within the property value array associated with a recipient's ADRENTRY structure in the address list,
the requested properties are ordered first, followed by any additional properties that were already
present for the entry. If one or more of the requested properties are not recognized by an address book
provider, the provider should set their property types to PT_ERROR and their property values either to
MAPI_E_NOT_FOUND or to another value giving a more specific reason why the properties are not
available.

Like the ADRLIST structure as a whole , each SPropValue property value structure passed in
lpPropTagArray must be separately allocated using the MAPIAllocateBuffer and MAPIAllocateMore
functions such that it can be freed individually. If the provider must allocate additional space for any
SPropValue structure, for example to store the data for a string property, it can use
MAPIAllocateBuffer to allocate additional space for the full property-tag array, use the
MAPIFreeBuffer function to free the original property-tag array, and then use MAPIAllocateMore to
allocate any additional memory required.

See Also

ADRLIST structure , IMAPIProp::GetProps method , IMessage::ModifyRecipients method ,
PR_ENTRYID property, PT_ERROR property type, SPropValue structure , SRowSet structure

 IABLogon::Unadvise

The IABLogon::Unadvise method cancels a notification registration represented by a specified
connection number.

HRESULT Unadvise(
 ULONG ulConnection
)

Parameters

ulConnection
Input parameter containing the connection number associated with an active notification registration.
The value of ulConnection must have been returned by a previous call to IABLogon::Advise.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

MAPI calls the IABLogon::Unadvise method to cancel a registration to be notified of changes to one
or more address book provider objects. Unadvise cancels the registration by releasing the pointer to
the advise sink object passed in the lpAdviseSink parameter in the previous call to IABLogon::Advise.
Generally, the provider calls the advise sink's IUnknown::Release method during the Unadvise call,
but if another thread is in the process of calling the advise sink's IMAPIAdviseSink::OnNotify method,
the Release call is delayed until OnNotify returns.

See Also

IABLogon::Advise method , IMAPIAdviseSink::OnNotify method

 IABProvider : IUnknown

The IABProvider interface provides a method to log on to an address book provider object and a
method to invalidate an address book provider object.

At a Glance

Specified in header file: MAPISPI.H
Object that supplies this
interface:

Address book provider object

Corresponding pointer type: LPABPROVIDER
Implemented by: Address book providers
Called by: MAPI

Vtable Order

Shutdown Closes an address book provider object in an orderly
fashion.

Logon Logs MAPI read/write one instance of an address book
provider.

 IABProvider::Logon

The IABProvider::Logon method logs MAPI on to one instance of the address book provider.

HRESULT Logon(
 LPMAPISUP lpMAPISup,
 ULONG ulUIParam,
 LPTSTR lpszProfileName,
 ULONG ulFlags,
 ULONG FAR * lpulcbSecurity,
 LPBYTE FAR * lppbSecurity,
 LPMAPIERROR FAR * lppMAPIError,
 LPABLOGON FAR * lppABLogon
)

Parameters

lpMAPISup
Input parameter pointing to the current MAPI support object for the address book provider.

ulUIParam
Input parameter containing the handle of the parent window for the logon dialog box that Logon
displays if permitted. The ulUIParam parameter contains the value of the parameter of the same
name passed to MAPI in the preceding call to the MAPILogonEx function.

lpszProfileName
Input parameter pointing to a string containing the name of the session profile.

ulFlags
Input parameter containing a bitmask of flags that controls how the logon is performed. The following
flags can be set:
AB_NO_DIALOG

Indicates the provider should not display a dialog box during logon. If this flag is not set, the
provider can display a dialog box to prompt the user for missing configuration information.

MAPI_DEFERRED_ERRORS
Indicates the provider does not have to complete the logon process before returning.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lpulcbSecurity
Input-output parameter pointing to the size, in bytes, of the security credentials structure pointed to
by the lppbSecurity parameter. On input, the value must be nonzero; on output, the value must be
zero. In both cases the pointers must be valid.

lppbSecurity
Input-output parameter pointing to a pointer to the buffer containing security credentials. On input,
the value must be nonzero; on output, the value must be zero. In both cases the pointers must be
valid.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure. The lppMAPIError
parameter can be set to NULL if there is no MAPIERROR structure to return.

lppABLogon
Output parameter pointing to a pointer to the provider's logon object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_FAILONEPROVIDER
Indicates that the provider cannot logon, but that MAPI can continue to log on the other providers in
the message service to which the provider belongs.

MAPI_E_UNCONFIGURED
Indicates that the provider does not have enough information to complete the logon. MAPI calls the
provider's message-service entry function.

MAPI_E_UNKNOWN_CPID
Indicates the server is not configured to support the client's code page.

MAPI_E_UNKNOWN_LCID
Indicates the server is not configured to support the client's locale information.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by clicking the Cancel button in the logon dialog box.

Remarks

When a client calls the IMAPISession::OpenAddressBook method, MAPI loads all of the address
book providers in the profile into memory by calling each provider's IABProvider::Logon method.

IABProvider::Logon calls IMAPISupport::SetProviderUID to register the provider's unique identifier,
or MAPIUID. A provider's MAPIUID represents the provider in every entry identifier for every one of its
objects. MAPI uses the MAPIUID to match an object with its provider. For example, when a client calls
IMAPISession::OpenEntry to open a messaging user, OpenEntry examines the MAPIUID portion of
the entry identifier passed in and matches it with a MAPIUID registered by an address book provider.

If a client logs read/write an address book provider more than once, the provider can register one or
more MAPIUIDs. If the provider registers a single MAPIUID every time MAPI calls its
IABProvider::Logon method, the provider must be able to perform the routing rather than leaving it up
to MAPI. For more information on using multiple logon objects, see Loading Service Providers.

MAPI passes IABProvider::Logon a support object in the lpMAPISup parameter to provide access to
methods needed by the provider. Each provider instance receives a difference support object instance.
A provider must call the IUnknown::AddRef method for the support object if the IABProvider::Logon
call is successful; otherwise, the provider is unloaded.

The local name of the user's profile in lpszProfileName is provided as a convenience for address book
providers. It can be used in error dialog boxes, logon screens, or other user interfaces to show the user
the name of the profile. For a provider to keep and use this profile name, it must copy the name to
storage that it has allocated. The profile name is displayed in the character set of the user's client as
indicated by the presence or absence of the MAPI_UNICODE flag in the ulFlags parameter.

The address book provider should create a logon object and return a pointer to it in the lppABLogon
parameter. MAPI uses this logon object on several subsequent calls, for example when it calls the
provider's IABLogon::OpenEntry and IABLogon::Logoff methods.

An address book provider that needs to logon to an underlying messaging system or directory service
can use the MAPI support method IMAPISupport::OpenProfileSection for saving and retrieving
security credential sets for this particular logon session. If a provider finds that all required information
is not in the current profile, it should return MAPI_E_UNCONFIGURED so that MAPI calls the
provider's message service entry function.

If a provider requires a password during logon, a logon dialog box is displayed, unless the
AB_NO_DIALOG flag is set in ulFlags. If the user cancels the logon process, typically by clicking the
Cancel button in a dialog box, a provider should return MAPI_E_USER_CANCEL.

When MAPI logs read/write a provider, the MAPI spooler also logs read/write the provider. The values
in the lpulcbSecurity and lppbSecurity parameters are copied from the MAPI spooler's logon. These
values are used to allow multiple logons to share the same security context. On output, the values for
the lpulcbSecurity and lppbSecurity parameters must be allocated with the MAPIAllocateBuffer

function. The address book provider can ignore lpulcbSecurity and lppbSecurity.

Typically when an address book provider cannot logon, MAPI disables the message service to which
the failing provider belongs. That is, MAPI will not try to logon any of the other providers belonging to
the service for the rest of the session's lifetime. However, two errors cause MAPI to continue the logon
with other providers: MAPI_E_FAILONEPROVIDER and MAPI_E_UNCONFIGURED. With the
MAPI_E_FAILONEPROVIDER and MAPI_E_UNCONFIGURED, MAPI does not disable the message
service to which the provider belongs. Logon should return MAPI_E_FAILONEPROVIDER if it
encounters an error that does not warrant disabling the entire service for the life of the session.

If a provider returns MAPI_E_UNCONFIGURED from its logon, MAPI will call the provider's message
service entry point function and then retry the logon. MAPI passes MSG_SERVICE_CONFIGURE as
the ulContext parameter, to give the service a chance to configure itself. If the client has chosen to
allow a user interface on the logon, the service can present its configuration property sheet.

See Also

IABLogon::Logoff method , IABLogon::OpenEntry method , IMAPISupport::OpenProfileSection
method, IMAPISupport::SetProviderUID method , MSGSERVICEENTRY function prototype

 IABProvider::Shutdown

The IABProvider::Shutdown method logs off an instance of the address book provider.

HRESULT Shutdown (
 ULONG FAR * lpulFlags
)

Parameters

lpulFlags
Reserved; must be a pointer to zero.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

When MAPI calls an address book provider's IABLogon::Shutdown method, the provider does
whatever it needs to do to shut down. Shutdown is only called after all of the provider's logon objects
have been released.

 IAddrBook : IUnknown

The IAddrBook interface supports access to the MAPI address book and includes operations such as
displaying common dialog boxes, opening containers within the address book, and performing name
resolution.

At a Glance

Specified in header file: MAPIX.H
Object that supplies this
interface:

Address book object

Corresponding pointer type: LPADRBOOK
Implemented by: MAPI
Called by: Client applications, service providers

Vtable Order

OpenEntry Opens a container or recipient object and
returns a pointer to the object to provide further
access.

CompareEntryIDs Compares two entry identifiers to determine if
they refer to the same object.

Advise Registers an object for notifications about
changes within the address book.

Unadvise Removes a registration for notification of
address book changes previously established
with a call to the IAddrBook::Advise method.

CreateOneOff Creates an entry identifier in the special format
reserved for one-off recipients.

NewEntry Displays a dialog box for creating new entries
within a container or the recipient list of a
message.

ResolveName Initiates the name resolution process to assign
entry identifiers to recipients.

Address Displays the common address dialog used to
browse and modify the address book.

Details Displays a dialog box showing details for a
particular entry in the address book.

RecipOptions Displays a dialog box enabling a user to change
options for a particular recipient.

QueryDefaultRecipOpt Returns the available recipient options for a
particular messaging address type and sets
them to their defaults.

GetPAB Returns the entry identifier for the container
designated as the Personal Address Book
(PAB).

SetPAB Designates a particular container to be the
Personal Address Book.

GetDefaultDir Returns the entry identifier for the address book
container designated to provide the initial data
for the address dialog box display.

SetDefaultDir Designates a particular container to provide the
initial data for the address dialog box display.

GetSearchPath Returns a list of ordered entry identifiers
representing containers that
IAddrBook::ResolveName uses in the name
resolution process.

SetSearchPath Establishes an order for one or more containers
to be used by IAddrBook::ResolveName..

PrepareRecips Prepares a recipient list for later use by the
messaging system.

 IAddrBook::Address

The IAddrBook::Address method displays the common address dialog box.

HRESULT Address(
 ULONG FAR * lpulUIParam,
 LPADRPARM lpAdrParms,
 LPADRLIST FAR * lppAdrList
)

Parameters

lpulUIParam
Input-output parameter containing the handle of the parent window of the dialog box. On input, a
window handle must always be passed. On output, if the ulFlags member of the lpAdrParms
parameter is set to DIALOG_SDI, then the window handle of the modeless dialog box is returned.

lpAdrParms
Input-output parameter pointing to an ADRPARM structure that controls the presentation and
behavior of the address dialog box.

lppAdrList
Input-output parameter that is the address of an array of ADRLIST structures containing recipient
information. On input, this parameter can be NULL or point to a valid array. On output, this
parameter points to a valid array of recipient information.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

When a client application or service provider calls the IAddrBook::Address method, it passes a list of
recipients, possibly empty, in the lppAdrList parameter, and Address returns in lppAdrList an ADRLIST
structure holding an updated list of recipients. Clients can use the updated list for an outgoing message
by calling the message's IMessage::ModifyRecipients method.

Each recipient in the ADRLIST structure is represented by an ADRENTRY structure. The ADRENTRY
structures are organized in the ADRLIST by the type of recipient they hold, as indicated by the
recipient's PR_RECIPIENT_TYPE property. The possible types are MAPI_TO for direct recipients,
MAPI_CC for carbon copy recipients, and MAPI_BCC for blind carbon copy recipients.

ADRLIST structures can hold resolved and unresolved recipients. The difference between a resolved
and unresolved recipient is that a resolved recipient always has an entry identifier. The rgPropVals
member of its ADRENTRY structure contains as one of its property values a value for the
PR_ENTRYID property. Resolved recipients include at least the following properties:

PR_ENTRYID
PR_RECIPIENT_TYPE
PR_DISPLAY_NAME
PR_ADDRTYPE
PR_DISPLAY_TYPE

When a user creates a recipient list for an outgoing message by directly entering recipients, the
recipients that are created are unresolved. The client fills the rgPropVals member of the ADRENTRY
structure for each recipient with only the PR_DISPLAY_NAME and PR_RECIPIENT_TYPE properties.
Recipient lists that are created by selecting from address book container entries contain resolved
recipients.

In addition to resolved and unresolved recipient entries, ADRENTRY structures can be NULL, that is,
the cValues member is zero. This is the case, for example, when the dialog box presented by
IAddrBook::Address is used to remove a recipient from the list.

The ADRLIST structure holding the address list must be separately allocated using the
MAPIAllocateBuffer function. If the Address method needs to pass a larger ADRLIST structure on
output than was passed in on input, or if NULL is passed in lppAdrList on input, then Address allocates
a larger buffer for the ADRLIST structure it returns using MAPIAllocateBuffer and returns this buffer's
address in lppAdrList. Address frees the old buffer by using the MAPIFreeBuffer function.

Each SPropValue property value structure is separately allocated by using MAPIAllocateBuffer. The
Address method allocates additional property value structures and frees old ones as appropriate.

Address returns immediately if the DIALOG_SDI flag is set in the ADRPARM structure in the
lpAdrParms parameter.

See Also

ADRENTRY structure , ADRLIST structure , ADRPARM structure , FreePadrlist function , FreeProws
function, IMAPITable::QueryRows method , IMessage::ModifyRecipients method ,
MAPIAllocateBuffer function , MAPIAllocateMore function , MAPIFreeBuffer function , SPropValue
structure, SRowSet structure

 IAddrBook::Advise

The IAddrBook::Advise method registers a client or service provider to receive notifications about
changes to one or more entries in the address book.

HRESULT Advise(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 ULONG ulEventMask,
 LPMAPIADVISESINK lpAdviseSink,
 ULONG FAR * lpulConnection
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the address book container, messaging user, or
distribution list that will generate a notification when a change occurs of the type or types described
in the ulEventMask parameter.

ulEventMask
Input parameter containing one or more notification events that the caller is registering to receive.
Each event is associated with a particular notification structure containing information about the
change that occurred. The following table lists the valid values for ulEventMask and their
corresponding structures.

Notification event Corresponding structure
fnevCriticalError ERROR_NOTIFICATION
fnevObjectCreated OBJECT_NOTIFICATION
fnevObjectDeleted OBJECT_NOTIFICATION
fnevObjectModified OBJECT_NOTIFICATION
fnevObjectCopied OBJECT_NOTIFICATION
fnevObjectMoved OBJECT_NOTIFICATION
fnevTableModified TABLE_NOTIFICATION

lpAdviseSink
Input parameter pointing to the advise sink object to be called when an event occurs for the object
about which notification has been requested.

lpulConnection
Output parameter pointing to a nonzero connection number that represents the notification
registration.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INVALID_ENTRYID
The address book provider responsible for the entry identifier passed in lpEntryID could not register
a notification for the entry.

MAPI_E_NO_SUPPORT
Notification is not supported by the address book provider responsible for the object identified by the
entry identifier passed in the lpEntryID parameter.

MAPI_E_UNKNOWN_ENTRYID
The entry identifier passed in lpEntryID can not be handled by any of the address book providers in
the profile.

Remarks

Client applications and service providers call the IAddrBook::Advise method to register for
notifications with one or more address book entries. MAPI forwards this call to the address book
provider that is responsible for the object indicated by the entry identifier in the lpEntryID parameter.
Whenever a change of the type requested in the ulEventMask parameter occurs to the indicated
object, the provider calls the IMAPIAdviseSink::OnNotify method for the advise sink object indicated
by the lpAdviseSink parameter to report the event. The NOTIFICATION structure passed in the
lpNotifications parameter to OnNotify contains data that describes the event.

Depending on the address book provider, the call to OnNotify can occur immediately following the
change to the registered object or at some later time. On systems that support multiple threads of
execution, the call to OnNotify can occur on any thread. Clients can request that these notifications
occur on a particular thread by calling the HrThisThreadAdviseSink function to create the advise sink
object that is passed to Advise.

Because an address book provider can release the advise sink object passed in by clients at any time
after the successful completion of the Advise call and before an Unadvise call to cancel the
notification, clients should release their advise sink objects when Advise returns.

For more information on the notification process, see About Notification.

See Also

HrThisThreadAdviseSink function , IAddrBook::Unadvise method , IMAPIAdviseSink::OnNotify
method, NOTIFICATION structure

 IAddrBook::CompareEntryIDs

The IAddrBook::CompareEntryIDs method compares two entry identifiers belonging to a particular
address book provider to determine if they refer to the same address book object.

HRESULT CompareEntryIDs(
 ULONG cbEntryID1,
 LPENTRYID lpEntryID1,
 ULONG cbEntryID2,
 LPENTRYID lpEntryID2,
 ULONG ulFlags,
 ULONG FAR * lpulResult
)

Parameters

cbEntryID1
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID1
parameter.

lpEntryID1
Input parameter pointing to the first entry identifier to be compared.

cbEntryID2
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID2
parameter.

lpEntryID2
Input parameter pointing to the second entry identifier to be compared.

ulFlags
Reserved; must be zero.

lpulResult
Output parameter pointing to the result of the comparison. The contents of lpulResult is set to TRUE
if the two entry identifiers refer to the same object, and FALSE otherwise.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_UNKNOWN_ENTRYID
One or both of the entry identifiers passed in with the lpEntryID1 or lpEntryID2 parameters are not
recognized by any address book provider.

Remarks

Client applications and service providers call the IAddrBook::CompareEntryIDs method to compare
two entry identifiers to determine whether they refer to the same object. CompareEntryIDs is useful
because an object can have more than one valid entry identifier; such a situation can occur, for
example, after a new version of an address book provider is installed.

MAPI passes this call onto to the address book provider responsible for the entry identifiers,
determining the appropriate provider by matching the MAPIUID in the entry identifiers with the
MAPIUID registered by the provider.

If the two entry identifiers refer to the same object, then CompareEntryIDs sets the contents of the
lpulResult parameter to TRUE; if they refer to different objects, CompareEntryIDs sets it to FALSE. In
either case, CompareEntryIDs returns S_OK. If CompareEntryIDs returns an error, which can occur
if no address book provider has registered a MAPIUID that matches the one in the entry identifiers,
clients and providers should not take any action based on the result of the comparison. They should

instead take the most conservative approach to the action being performed.

 IAddrBook::CreateOneOff

The IAddrBook::CreateOneOff method associates a one-off entry identifier with a recipient.

HRESULT CreateOneOff(
 LPTSTR lpszName,
 LPTSTR lpszAdrType,
 LPTSTR lpszAddress,
 ULONG ulFlags,
 ULONG FAR * lpcbEntryID,
 LPENTRYID FAR * lppEntryID
)

Parameters

lpszName
Input parameter pointing to a string containing the display name of the recipient. The lpszName
parameter can be NULL.

lpszAdrType
Input parameter pointing to a string containing the address type of the recipient, such as FAX,
SMTP, or X500. The lpszAdrType parameter cannot be NULL.

lpszAddress
Input parameter pointing to a string containing the messaging address of the recipient. The
lpszAddress parameter cannot be NULL.

ulFlags
Input parameter containing a bitmask of flags that provides information about the creation. The
following flags can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

MAPI_SEND_NO_RICH_INFO
If a client sets this flag, MAPI sets the recipient's PR_SEND_RICH_INFO property to FALSE. If
this flag is not set, in most cases MAPI sets PR_SEND_RICH_INFO to TRUE. The one exception
is when the recipient's address is interpreted to be an Internet address. In this case, MAPI sets
PR_SEND_RICH_INFO to FALSE.

lpcbEntryID
Output parameter pointing to the size, in bytes, of the entry identifier pointed to by the lppEntryID
parameter.

lppEntryID
Output parameter pointing to a pointer to the newly created entry identifier.

Return Values

S_OK
The one-off entry identifier was created successfully.

Remarks

Clients call the IAddrBook::CreateOneOff method to create an entry identifier for a special type of
recipient known as a one-off. One-offs are recipients that do not as of yet belong to a specific address
book provider. They are created typically with a template that allows the user of a client application to
enter the particular information that is associated with this type of address book provider.

The PR_SEND_RICH_INFO flag controls whether or not formatted text in the RTF format is sent along
with each message. Although most transport providers by default send messages with TNEF

(Transport Neutral Encapsulation Format), some do not regardless of how the recipient sets its
PR_SEND_RICH_INFO property. This is not an issue for messaging clients that work with IPM
messages, but because TNEF is typically used to send custom properties for custom message
classes, not supporting it can be a problem for form-based clients or clients that require custom MAPI
properties.

See Also

IMAPISupport::CreateOneOff

 IAddrBook::Details

The IAddrBook::Details method displays a modal dialog box showing details about a particular
address book entry.

HRESULT Details(
 ULONG FAR * lpulUIParam,
 LPFNDISMISS lpfnDismiss,
 LPVOID lpvDismissContext,
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 LPFNBUTTON lpfButtonCallback,
 LPVOID lpvButtonContext,
 LPTSTR lpszButtonText,
 ULONG ulFlags
)

Parameters

lpulUIParam
Output parameter containing the handle of the parent window for the dialog box.

lpfnDismiss
Input parameter pointing to the address of a function based on the DISMISSMODELESS function
prototype. This function is called when the modeless variety of the details dialog box is dismissed.
However, because MAPI does not support a modeless details dialog box, this parameter is ignored.

lpvDismissContext
Input parameter containing data that is passed to the function specified by the lpfnDismiss
parameter. However, because MAPI does not support a modeless details dialog box, this parameter
is ignored.

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier for the object for which details are displayed.

lpfButtonCallback
Input parameter pointing to a pointer to a button callback function that adds a button to the dialog
box. The callback function is based on the LPFNBUTTON function prototype.

lpvButtonContext
Input parameter pointing to data used as a parameter for the button callback function.

lpszButtonText
Input parameter pointing to a string containing text to be applied to the added button if that button is
extensible. The lpszButtonText parameter should be NULL if an extensible button is not needed.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the text for lpszButtonText.
The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IAddrBook::Details method to display a modal dialog box giving details on
a particular entry in an address book. The lpfButtonCallback, lpvButtonContext, and lpButtonText
parameters can be used to add a button the client has defined to the dialog box. When the button is
chosen, MAPI calls the callback function pointed to by lpfButtonCallback, passing both the entry
identifier of the button and the data in lpvButtonContext. If an extensible button is not needed,
lpszButtonText should be NULL. The callback function pointed to by lpfButtonCallback is based on the
LPFNBUTTON function prototype.

See Also

IAddrBook::Address method , IAddrBook::Details method , LPFNBUTTON function prototype

 IAddrBook::GetDefaultDir

The IAddrBook::GetDefaultDir method returns the entry identifier for the address book container that
is displayed initially to the user.

HRESULT GetDefaultDir(
 ULONG FAR * lpcbEntryID,
 LPENTRYID FAR * lppEntryID
)

Parameters

lpcbEntryID
Output parameter pointing to the size, in bytes, of the entry identifier pointed to by the lppEntryID
parameter.

lppEntryID
Output parameter containing the address of a pointer to the entry identifier of the default directory.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications and service providers call the IAddrBook::GetDefaultDir method to retrieve the
default directory of the address book. The default directory is the directory the user sees displayed in
the address book when the address book is first opened. If a default directory has not been set by a
call to the IAddrBook::SetDefaultDir method, MAPI determines the default directory. MAPI does so by
locating the first address book that contains names and that is not the Personal Address Book. If there
is no such other address book, then the Personal Address Book is set as the default directory.

Calls made to GetDefaultDir return in lppEntryID a pointer to the entry identifier of the default directory.
MAPI allocates memory for this entry identifier with the MAPIAllocateBuffer function, and the calling
client or provider must release it with the MAPIFreeBuffer function when done.

To set the default directory, a client or provider calls the IAddrBook::SetDefaultDir method. Clients
and providers need not call the IMAPIProp::SaveChanges method to make directory changes
permanent.

See Also

IAddrBook::SetDefaultDir method , MAPIAllocateBuffer function , MAPIFreeBuffer function ,
PR_CONTAINER_FLAGS property

 IAddrBook::GetPAB

The IAddrBook::GetPAB method returns the entry identifier of the container designated as the
Personal Address Book (PAB).

HRESULT GetPAB(
 ULONG FAR * lpcbEntryID,
 LPENTRYID FAR * lppEntryID
)

Parameters

lpcbEntryID
Output parameter pointing to the size, in bytes, of the entry identifier pointed to by the lppEntryID
parameter.

lppEntryID
Output parameter containing the address of a pointer to the entry identifier of the Personal Address
Book. The lppEntryID parameter contains zero if no container has been designated as the Personal
Address Book.

Return Values

S_OK
The call succeeded and has returned the expected value.

Remarks

Client applications call the IAddrBook::GetPAB method to retrieve the entry identifier of the container
designated as the Personal Address Book. If a Personal Address Book has not been established in the
profile, MAPI selects the first container in the address book hierarchy that allows modifications to
assume the role.

See Also

MAPIAllocateBuffer function , MAPIFreeBuffer function , PR_CONTAINER_FLAGS property

 IAddrBook::GetSearchPath

The IAddrBook::GetSearchPath method returns an ordered list of entry identifiers of containers to be
included in the name resolution process initiated by IAddrBook::ResolveName.

HRESULT GetSearchPath(
 ULONG ulFlags,
 LPSRowSet FAR * lppSearchPath
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the strings returned in the
search path. The following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppSearchPath
Output parameter containing the address of a pointer to an ordered list of container entry identifiers.
GetSearchPath stores the ordered list in an SRowSet structure. If there are no containers in the
address book hierarchy, zero is returned in the SRowSet.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications and service providers call the IAddrBook::GetSearchPath method to get the
search path that is used to resolve names with IAddrBook::ResolveName. Typically clients call the
IAddrBook::SetSearchPath method to establish a container search path in the profile before they call
GetSearchPath to retrieve it. However, calling SetSearchPath is optional.

If IAddrBook::SetSearchPath has never been called, GetSearchPath builds a path by working
through the address book's hierarchy tables. The order of the default search path established by
GetSearchPath is as follows:

1. First container with read/write access, usually the Personal Address Book.
2. Every container that has a PR_DISPLAY_TYPE property set to the DT_GLOBAL flag. Such a setting

indicates PR_DISPLAY_TYPE contains a global address list that holds recipients.
3. If there is no container with the DT_GLOBAL flag set for its PR_DISPLAY_TYPE property, the

default container is added to the path if the default container is not the same as the first container
with read/write access.

If IAddrBook::SetSearchPath has been called, GetSearchPath builds a path using the address book
containers that have been stored in the profile. GetSearchPath validates this path before returning it to
the caller.

After the first call to SetSearchPath, subsequent calls to SetSearchPath must be used to modify the
search path returned by GetSearchPath. In other words, the calling client or provider does not receive
the default search path after the first call to SetSearchPath.

See Also

IAddrBook::SetSearchPath method , SRowSet structure

 IAddrBook::NewEntry

The IAddrBook::NewEntry method displays a dialog box for creating new recipients, either within a
container or a message.

HRESULT NewEntry(
 ULONG ulUIParam,
 ULONG ulFlags,
 ULONG cbEIDContainer,
 LPENTRYID lpEIDContainer,
 ULONG cbEIDNewEntryTpl,
 LPENTRYID lpEIDNewEntryTpl,
 ULONG FAR * lpcbEIDNewEntry,
 LPENTRYID FAR * lppEIDNewEntry
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the dialog box.

ulFlags
Reserved; must be zero.

cbEIDContainer
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEIDContainer
parameter.

lpEIDContainer
Input parameter pointing to the entry identifier of the container where the new recipient is to be
added. If the cbEIDContainer parameter is zero, the IAddrBook::NewEntry method returns a
recipient entry identifier and a list of templates as if the IAddrBook::CreateOneOff method was
called.

cbEIDNewEntryTpl
Input parameter containing the size, in bytes, of the entry identifier pointed to by the
lpEIDNewEntryTpl parameter.

lpEIDNewEntryTpl
Input parameter pointing to a one-off template to be used to create the new recipient. If the
cbEIDNewEntryTpl parameter is zero, passing NULL in the lpEIDNewEntryTpl parameter displays a
dialog box enabling the user to select from a list of one-off templates.

lpcbEIDNewEntry
Output parameter pointing to a variable where is returned the size, in bytes, of the entry identifier
pointed to by the lppEIDNewEntry parameter.

lppEIDNewEntry
Output parameter pointing to a pointer to the new recipient's entry identifier.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications and service providers call the IAddrBook::NewEntry method to display a dialog box
to create a new recipient to be inserted directly into a container or added to the recipient list of an
outgoing message.

To create a recipient to be inserted into a modifiable container, a client or provider passes:

The container's entry identifier in the contents of the lpEIDContainer parameter

Zero in the cbEIDContainer, and NULL for the rest of the parameters.n a modifiable address book and
not get its entry identifier back,

To add a custom recipient address directly to the open message and not to a modifiable container, a
client or provider passes zero in cbEIDContainer and NULL in lpEIDContainer. To display a dialog box
enabling the user to select a template for adding custom recipients to a modifiable container, the client
or provider passes zero in cbEIDNewEntryTpl and NULL in lpEIDNewEntryTpl.

To open a specific custom-recipient dialog box directly, so that users enter custom recipients in their
Personal Address Books using a predetermined template, a client or provider uses the following series
of calls. First, it calls the IAddrBook::OpenEntry method and passes in either the entry identifier of a
modifiable container or zero; passing zero opens the root folder of the address book container. Next, the
client or provider calls the IMAPIProp::OpenProperty method and passes the
PR_CREATE_TEMPLATES property in the ulPropTag parameter so it can open
PR_CREATE_TEMPLATES. Doing so returns a table object that lists the types of objects that can be
created in the address book container. The client or provider finds in this table the entry identifier for the
template with which new entries should be created. Then, the client or provider calls NewEntry and
passes NULL in lpEIDContainer and the entry identifier for the entry-creation template to use in the
lpEIDNewEntryTpl parameter.

Calls made to NewEntry return the entry identifier of the new custom recipient address in the
lppEIDNewEntry parameter, unless NULL was passed in lppEIDNewEntry. The calling client or provider
is responsible for freeing the returned entry identifier by calling the MAPIFreeBuffer function.

See Also

IAddrBook::OpenEntry method , IMAPIProp::OpenProperty method , PR_CREATE_TEMPLATES
property

 IAddrBook::OpenEntry

The IAddrBook::OpenEntry method opens a container or recipient and returns a pointer to the object
to provide further access. A recipient can be either a messaging user or a distribution list.

HRESULT OpenEntry(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 LPCIID lpInterface,
 ULONG ulFlags,
 ULONG FAR * lpulObjType,
 LPUNKNOWN FAR * lppUnk
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier for the object to be opened.

lpInterface
Input parameter pointing to the interface identifier (IID) identifying the interface to be used to access
the open object. Passing NULL indicates that the standard interface should be used, such as
IMailUser for a messaging user and IDistList for a distribution list. The lpInterface parameter can
also be set to an identifier for an appropriate interface for the object.

ulFlags
Input parameter containing a bitmask of flags that controls how the object is opened. The following
flags can be set:
MAPI_BEST_ACCESS

Indicates the object should be opened with the maximum network permissions allowed for the
user and the maximum client application access. For example, if the client has read/write access,
the object is opened with read/write access; if the client has read-only access, the object is
opened with read-only access. The client can retrieve the access level by getting the property
PR_ACCESS_LEVEL.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling implementation. If the object is not accessible, some subsequent call to the object might
return an error.

MAPI_MODIFY
Requests read/write access. By default, objects are created with read-only access, and clients
should not work on the assumption that read/write access has been granted.

lpulObjType
Output parameter pointing to a variable where the type of the opened object is stored.

lppUnk
Output parameter pointing to a variable where the pointer to the opened object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt was made to access an object for
which the user has insufficient permissions.

MAPI_E_NOT_FOUND
The object indicated by lpEntryID does not exist.

MAPI_E_UNKNOWN_ENTRYID
The object indicated by the lpEntryID parameter is not recognized. This value is typically returned if
the address book provider that contains the object is not open.

Remarks

Client applications and service providers call the IAddrBook::OpenEntry method to open an address
book object. MAPI forwards the call to the appropriate address book provider, based on the MAPIUID
included in the entry identifier passed in the lpEntryID parameter. The address book provider opens the
object as read-only unless the MAPI_MODIFY or MAPI_BEST_ACCESS flag in the ulFlags parameter
is set. However, these flags are suggestions. If the address book provider does not allow modification
for the object requested, then it returns MAPI_E_NO_ACCESS.

The lpInterface parameter indicates which interface should be used for the opened object. Passing
NULL in lpInterface indicates the standard MAPI interface for that type of object should be used.
Because the address book provider might return a different interface that the one suggested by the
lpInterface parameter, the caller should check the value returned in the lpulObjType parameter to
determine that the object type returned is what was expected. Commonly, after the client or provider
checks the type of the object, it then casts the pointer in the lppUnk parameter into a more appropriate
object pointer.

 IAddrBook::PrepareRecips

The IAddrBook::PrepareRecips method prepares a recipient list for later use by the messaging
system.

HRESULT PrepareRecips(
 ULONG ulFlags,
 LPSPropTagArray lpSPropTagArray,
 LPADRLIST lpRecipList
)

Parameters

ulFlags
Reserved; must be zero.

lpSPropTagArray
Input parameter pointing to an SPropTagArray structure containing an array of property tags
indicating the properties that require updating, if any. The lpSPropTagArray parameter can be NULL.

lpRecipList
Input parameter pointing to an ADRLIST structure holding the list of recipients.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications and service providers call the IAddrBook::PrepareRecips method to ensure that
all recipients in the lpRecipList parameter have long-term entry identifiers and that they have all the
properties requested in the lpSPropTagArray parameter. Recipients' short-term entry identifiers are
converted to long-term entry identifiers. If necessary, recipients' long-term entry identifiers are retrieved
from the appropriate address book provider along with any additional properties requested.

Within an individual recipient entry, the requested properties are ordered first, followed by any
additional properties that were already present for the entry. If one or more of the requested properties
are not handled by the appropriate address book provider, their property types will be set to
PT_ERROR and their property values either to MAPI_E_NOT_FOUND or to another value giving a
more specific reason why the properties are not available.

Like the ADRLIST structure as a whole, each SPropValue property value structure passed in
lpSPropTagArray must be separately allocated using the MAPIAllocateBuffer and MAPIAllocateMore
functions such that it can be freed individually.

See Also

ADRLIST structure , IMAPIProp::GetProps method , IMessage::ModifyRecipients method ,
PR_ENTRYID property, PT_ERROR property type, SPropValue structure , SRowSet structure

 IAddrBook::QueryDefaultRecipOpt

The IAddrBook::QueryDefaultRecipOpt method returns the available recipient options for a particular
address type.

HRESULT QueryDefaultRecipOpt(
 LPTSTR lpszAdrType,
 ULONG ulFlags,
 ULONG FAR * lpcValues,
 LPSPropValue FAR * lppOptions
)

Parameters

lpszAdrType
Input parameter pointing to a string containing the address type for which the options dialog box
should be displayed, such as FAX, SMTP, or X500. The lpszAdrType parameter must not be NULL.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in strings. The
following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lpcValues
Output parameter pointing to a variable containing the number of returned property values in the
lppOptions parameter.

lppOptions
Output parameter pointing to a pointer to SPropValue structures containing available recipient
options and their defaults.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications and service providers call the IAddrBook::QueryDefaultRecipOpt method to
return the recipient options available for a particular messaging address type. Recipient options are the
properties of a recipient that govern its behavior after a client submits a message including that
recipient. Recipient options are usually, but not always, specific to a particular address type.

Clients call the IAddrBook::QueryDefaultRecipOpt method to get the set of default recipient options
for a particular recipient type. These options are registered by transport providers using the
IXPLogon::RegisterOptions method. If a client must display a dialog box to enable the user to select
recipient options, it should call the IAddrBook::RecipOptions method. In addition to being applied to
recipients, such options can be applied to an entire message as a default for all the message's
recipients; for more information on this functionality, see IMAPISession::MessageOptions.

See Also

IAddrBook::RecipOptions method , IMAPISession::MessageOptions method ,
IMAPISession::QueryDefaultMessageOpt method

 IAddrBook::RecipOptions

The IAddrBook::RecipOptions method displays a dialog box enabling a user to change options for a
particular recipient.

HRESULT RecipOptions(
 ULONG ulUIParam,
 ULONG ulFlags,
 LPADRENTRY lpRecip
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the dialog box.

ulFlags
Reserved; must be zero.

lpRecip
Input parameter pointing to the ADRENTRY structure for the recipient whose options are to be
displayed or set.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_W_ERRORS_RETURNED
The call succeeded overall, but there are no recipient options for this type of recipient. To test for this
warning, use the HR_FAILED macro. When this warning is returned, the call should be handled as
successful.

Remarks

Client applications and service providers call the IAddrBook::RecipOptions method to display a
dialog box to get settings for recipient options from the user. Recipient options are the properties of a
recipient governing its behavior after a client submits a message including that recipient. Recipient
options are usually, but not always, specific to a particular address type. The
IAddrBook::RecipOptions method returns a new ADRENTRY structure containing the recipient
options selected by the user.

To retrieve the set of default recipient options without presenting a dialog box to the user, call the
IAddrBook::QueryDefaultRecipOpt method instead. If any recipient options are changed on a
RecipOptions call, MAPI frees the old SPropValue property value structures for those options within
the recipient's ADRENTRY structure and allocates new ones.

The PR_DISPLAY_NAME, PR_ADDRTYPE and PR_ENTRYID properties must be present for any
recipient entry. Other useful properties for recipient-option ADRENTRY structures are
PR_SEARCH_KEY and PR_EMAIL_ADDRESS.

If there are no recipient options available for the address type indicated in the lpRecip parameter, the
warning MAPI_W_ERRORS_RETURNED is returned, indicating there was an error returned for the
RecipOptions call. Calling the IMAPIProp::GetLastError method returns a text string describing the
warning.

In addition to being applied to specific recipients, recipient options can be applied to an entire
message, as a default for all the message's recipients; for more information on this functionality, see
IMAPISession::MessageOptions.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

See Also

ADRENTRY structure , IAddrBook::QueryDefaultRecipOpt method ,
IMAPISession::MessageOptions method , IMAPISession::QueryDefaultMessageOpt method ,
SPropValue structure

 IAddrBook::ResolveName

The IAddrBook::ResolveName method perform name resolution, assigning entry identifiers to
recipients in a recipient list.

HRESULT ResolveName(
 ULONG ulUIParam,
 ULONG ulFlags,
 LPTSTR lpszNewEntryTitle,
 LPADRLIST lpAdrList
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for a dialog box that is shown if
necessary and allowed to prompt the user to resolve ambiguity.

ulFlags
Input parameter containing a bitmask of flags that controls whether a name-resolution dialog box
can be displayed. The following flag can be set:
MAPI_DIALOG

Displays a dialog box to prompt the user for additional name-resolution information. If this flag is
not set, no dialog box is displayed.

lpszNewEntryTitle
Input parameter pointing to a string containing control title text; the title is for the control in the name-
resolution dialog box that prompts the user to enter a recipient entry. The title string contents vary
depending on the entry type. The lpszNewEntryTitle parameter can be NULL.

lpAdrList
Input parameter pointing to an ADRLIST structure containing a list of recipient names and
associated properties. This ADRLIST structure can be the one created by IAddrBook::Address.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_AMBIGUOUS_RECIP
The recipient matched more than one entry identifier. Usually, this value is returned when a name-
resolution dialog box could not be displayed because the MAPI_DIALOG flag was not set in the
ulFlags parameter.

MAPI_E_NOT_FOUND
The name doesn't match any recipients.

Remarks

Client applications and service providers call the IAddrBook::ResolveName method to initiate the
name resolution process. An unresolved entry is an entry that does not yet have an entry identifier, or
PR_ENTRYID property.

ResolveName goes through the following process for each unresolved entry in the address list passed
in the lpAdrList parameter:

1. If the address type of the recipient adheres to the format of an SMTP address (i.e.
displayname@address.addresslist), IAddrBook::ResolveName assigns it a one-off entry identifier.

2. For each container in the PR_AB_SEARCH_PATH property, IAddrBook::ResolveName calls
IABContainer::ResolveNames. IABContainer::ResolveNames tries to match the display name of
each unresolved recipient with a display name belonging to one of its entries.

3. If a container does not support IABContainer::ResolveNames, IAddrBook::ResolveName
restricts the container's contents table using a PR_ANR property restriction. This restriction causes
the container to perform a "best guess" type of search to locate a matching recipient. All containers
must support the PR_ANR property restriction.

4. When a container returns a recipient that matches multiple names, IAddrBook::ResolveName
displays a dialog box, if the MAPI_DIALOG flag is set, allowing the user to select the correct name.

5. If all of the containers in the PR_AB_SEARCH_PATH property have been called and no match has
been found, the recipient remains unresolved.

If one or more recipients are unresolved, IAddrBook::ResolveName returns MAPI_E_NOT_FOUND.
If one or more recipients had ambiguous resolution that could not be resolved with a dialog box
because the MAPI_DIALOG flag was not set, IAddrBook::ResolveName returns
MAPI_E_AMBIGUOUS_RECIP. When some of the recipients are ambiguous and some cannot be
resolved, IAddrBook::ResolveName can return either error value.

If a name cannot be resolved, the client can create a one-off recipient with a specially formatted
address and entry identifier. For more information about the format of one-off entry identifiers, see
About One-Off Entry Identifiers. For more information about the format of one-off addresses, see About
One-Off Addresses.

See Also

ADRLIST structure , IABContainer::ResolveNames method , IAddrBook::Address method

 IAddrBook::SetDefaultDir

The IAddrBook::SetDefaultDir method establishes a container as the default address book container,
the container that the user initially sees.

HRESULT SetDefaultDir(
 ULONG cbEntryID,
 LPENTRYID lpEntryID
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the default address book container.

Return Values

S_OK
The call succeeded and has returned the expected value.

Remarks

Client applications and service providers call the IAddrBook::SetDefaultDir method to set a new
default address book container. The default container is the container that the user sees displayed in
the address book when the address book is first opened. SetDefaultDir sets the default container in
the profile, where it is saved. The container remains as the default either until another call to
SetDefaultDir is made, in the same session or in another session, or the container is removed.

See Also

IAddrBook::GetDefaultDir method , IAddrBook::GetSearchPath method , IMAPISession::Logoff
method, MAPILogonEx function

 IAddrBook::SetPAB

The IAddrBook::SetPAB method designates a particular container to be the Personal Address Book
(PAB).

HRESULT SetPAB(
 ULONG cbEntryID,
 LPENTRYID lpEntryID
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the Personal Address Book. If NULL is passed, the
IAddrBook::SetPAB method returns MAPI_E_INVALID_ENTRYID.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications and service providers call the IAddrBook::SetPAB method to designate a particular
container to be the Personal Address Book. The Personal Address Book is the container where new
entries are added. Information on which container is the Personal Address Book is saved between
instances of a session. This functionality means that, after a call to the IMAPISession::Logoff method,
subsequent calls to the MAPILogonEx function during the same session return the same Personal
Address Book as previously set, as long as that container still exists.

Clients and providers need not call the IMAPIProp::SaveChanges method to make the Personal
Address Book change permanent.

See Also

IAddrBook::GetPAB method , IAddrBook::GetSearchPath method , PR_CONTAINER_FLAGS
property

 IAddrBook::SetSearchPath

The IAddrBook::SetSearchPath method sets the search path that is used to resolve names with
ResolveNames methods.

HRESULT SetSearchPath(
 ULONG ulFlags,
 LPSRowSet lpSearchPath
)

Parameters

ulFlags
Reserved; must be zero.

lpSearchPath
Input parameter pointing to the SRowSet structure used to hold information about the search path.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_MISSING_REQUIRED_COLUMN
The SRowSet structure did not contain the PR_ENTRYID property as the first column in the row set,
which it must.

Remarks

Client applications and service providers call the IAddrBook::SetSearchPath method to save changes
made to the container search order that is used to resolve names with ResolveNames methods. This
search path is saved between instances of a session. This functionality means that, after a call to the
IMAPISession::Logoff method, subsequent calls to the MAPILogonEx function during the same
session return the same search path as previously set, as long as that search path still exists.

Clients and providers need not call the IMAPIProp::SaveChanges method to make the search path
changes permanent.

See Also

IAddrBook::GetDefaultDir method , IAddrBook::GetPAB method , IAddrBook::GetSearchPath
method, PR_CONTAINER_FLAGS property

 IAddrBook::Unadvise

The IAddrBook::Unadvise method removes an object's registration for notification of address book
changes previously established with a call to the IAddrBook::Advise method.

HRESULT Unadvise(
 ULONG ulConnection
)

Parameters

ulConnection
Input parameter containing the number of the registration connection returned by a call to
IAddrBook::Advise.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IAddrBook::Unadvise method to release the pointer to the advise sink
object passed in the lpAdviseSink parameter in the previous call to IAddrBook::Advise, thereby
canceling a notification registration. As part of discarding the pointer to the advise sink object, the
object's IUnknown::Release method is called. Generally, Release is called during the Unadvise call,
but if another thread is in the process of calling the IMAPIAdviseSink::OnNotify method for the advise
sink object, the Release call is delayed until the OnNotify method returns.

See Also

IAddrBook::Advise method , IMAPIAdviseSink::OnNotify method

 IAttach : IMAPIProp

The IAttach interface has no unique methods of its own; methods inherited from the IMAPIProp
interface can be called through IAttach for use with attachment objects. For more information about
using attachment objects, see About Message Attachments.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Attachment object

Corresponding pointer type: LPATTACH
Implemented by: Message store providers
Transaction model: Transacted
Called by: Client applications

Vtable Order

No unique methods

Required Properties

PR_OBJECT_TYPE Read-only
PR_ATTACH_METHOD Read/write
PR_RENDERING_POSITION Read/write

 IDistList : IMAPIContainer

The IDistList interface is used to provide access to distribution lists in modifiable address book
containers. IDistList can create, copy, and delete distribution lists, in addition to performing name
resolution. The methods of the IDistList interface are identical to those of the IABContainer interface
and are not redocumented here. For further information on using the methods shown in the IDistList
vtable section, following, see the reference entries for the parallel methods of IABContainer. For more
information on working with distribution list objects, see Objects and Interfaces.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Distribution list object

Corresponding pointer type: LPDISTLIST
Implemented by: Address book providers
Called by: Client applications

Vtable Order

CreateEntry Creates a new distribution list in an address book
container that supports modification.

CopyEntries Copies one or more distribution lists into an address
book container that supports modification.

DeleteEntries Removes one or more distribution lists from an address
book container that supports modification.

ResolveNames Resolves entries in an address book container.

Required Properties

PR_ADDRTYPE Read/write
PR_DISPLAY_NAME Read/write
PR_ENTRYID Read-only
PR_OBJECT_TYPE Read-only
PR_RECORD_KEY Read-only

 IMailUser : IMAPIProp

The IMailUser interface has no unique methods of its own; methods inherited from the IMAPIProp
interface can be called through IMailUser for use with messaging user objects.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Messaging user object

Corresponding pointer type: LPMAILUSER
Implemented by: Address book providers
Called by: Client applications

Vtable Order

No unique methods

Required Properties

PR_ADDRTYPE Read/write
PR_DISPLAY_NAME Read/write
PR_DISPLAY_TYPE Read-only
PR_EMAIL_ADDRESS Read/write
PR_ENTRYID Read-only
PR_OBJECT_TYPE Read-only
PR_RECORD_KEY Read-only
PR_SEARCH_KEY Read-only

 IMAPIAdviseSink : IUnknown

The IMAPIAdviseSink interface is used to implement an advise sink object for handling notification.
Typically, a client application has a different advise sink object for each notification registration ¾ that
is, for each call to an Advise method. For more information, see IMAPIAdviseSink::OnNotify.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Advise sink object

Corresponding pointer type: LPMAPIADVISESINK
Implemented by: Client applications
Called by: Service providers and MAPI

Vtable Order

OnNotif
y

Supplies information about a change of a particular type.

 IMAPIAdviseSink::OnNotify

The IMAPIAdviseSink::OnNotify method supplies information about one or more events for which the
client has registered. Clients register for notification events by calling an Advise method. When the
event occurs, the IMAPIAdviseSink::OnNotify method is called.

ULONG OnNotify(
 ULONG cNotif,
 LPNOTIFICATION lpNotifications
)

Parameters

cNotif
Input parameter containing the number of NOTIFICATION structures pointed to by the
lpNotifications parameter.

lpNotifications
Input parameter pointing to the NOTIFICATION structures that describe the events that have
occurred.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Service providers call Notify to request that MAPI call the IMAPIAdviseSink::OnNotify method of a
client's advise sink object when changes occur to an object for which the client has requested
notifications.

Each notification describes a separate event. The lpNotifications parameter points to one or more
NOTIFICATION structures. There is a different type of NOTIFICATION structure for each type of event.
The following table lists the constants that MAPI defines to represent event types and the
corresponding notification structures.

Notification event type Corresponding structure
fnevCriticalError ERROR_NOTIFICATION
fnevNewMail NEWMAIL_NOTIFICATION
fnevObjectCreated OBJECT_NOTIFICATION
fnevObjectDeleted OBJECT_NOTIFICATION
fnevObjectModified OBJECT_NOTIFICATION
fnevObjectCopied OBJECT_NOTIFICATION
fnevSearchComplete OBJECT_NOTIFICATION
fnevTableModified TABLE_NOTIFICATION
fnevStatusObjectModifi
ed

STATUS_OBJECT_NOTIFICATI
ON

fnevExtended EXTENDED_NOTIFICATION

The client should not modify or free the NOTIFICATION structure passed to OnNotify. The data in the
structure is valid only until OnNotify returns.

The notifications generated by a single MAPI call, such as a call to the IMAPIFolder::CopyMessages
method, can be delivered in one or multiple calls to OnNotify depending upon the provider
implementation and on memory constraints. The notifications generated by multiple MAPI calls can
also be combined and delivered in one call to OnNotify, depending upon the provider implementation.

As an example of advise sink usage, consider an advise sink associated with a dialog box with which a
user browses the contents of a folder in a message store. Commonly, such an advise sink object has
internal data structures that reference the dialog box on the screen and that describe the contents of
the dialog box. The OnNotify method of the advise sink object typically sends a Windows message to
the dialog box indicating how it should update itself.

During an Advise call, the IUnknown::AddRef method is called to update the reference count for the
advise sink object. The client retains the notification connection number returned in the ulConnection
parameter by Advise. When the client no longer requires this particular type of notification, it calls the
Unadvise method, which then calls the IUnknown::Release method of the advise sink object.
Generally, Release is called during the Unadvise call, but if another thread is in the process of calling
OnNotify on the advise sink object, the Release call is delayed until the OnNotify method returns.

The timing of a call to OnNotify depends on a provider's implementation. It can occur during the MAPI
call that caused the event, or it can occur at some later time. On systems that support multiple threads
of execution, calls to OnNotify can occur in a different execution thread than the Advise call that
registered the notification. For a way to turn a call to OnNotify that might happen at an inopportune
time into one that is safer to handle, a client should call the HrThisThreadAdviseSink function.

For more information about setting up and stopping notifications, see the reference entries for the
Advise and Unadvise methods for any of the following interfaces: IABLogon, IAddrBook,
IMAPIForm, IMAPISession, IMAPITable, IMsgStore, and IMSLogon. For more general information
about the notification process, see About Notification.

See Also

HrAllocAdviseSink function , HrThisThreadAdviseSink function , IMAPISupport::Notify method ,
NOTIFICATION structure

 IMAPIContainer : IMAPIProp

The IMAPIContainer interface manages high-level operations on container objects such as address
books, distribution lists, and folders. The IMAPIFolder, IABContainer, and IDistList interfaces are
derived from IMAPIContainer.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Folder, address book container, or
distribution list

Corresponding pointer type: LPMAPICONTAINER
Implemented by: Message store, address book, and

remote transport providers
Transaction model: Not specified, abstract class
Called by: Client applications

Vtable Order

GetContentsTable Returns a pointer to the container's contents
table.

GetHierarchyTable Returns a pointer to the container's hierarchy
table.

OpenEntry Opens an object in the container and returns a
pointer to an interface for further access.

SetSearchCriteria Sets the search criteria for a particular search-
results folder within the container.

GetSearchCriteria Obtains the search criteria for a particular
search-results folder within the container.

Required Properties

PR_CONTAINER_HIERARCH
Y

Read-only

PR_CONTAINER_CONTENTS Read-only
PR_CONTAINER_FLAGS Read/write

 IMAPIContainer::GetContentsTable

The IMAPIContainer::GetContentsTable method returns a pointer to the container's contents table.

HRESULT GetContentsTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how the contents table is returned. The
following flags can be set:
MAPI_ASSOCIATED

Indicates the service provider should return the associated contents table rather than the
standard contents table. This flag is used only with folders. The messages that are included in the
associated contents table are created with the MAPI_ASSOCIATED flag set. Client applications
can use the associated contents table to retrieve forms and views.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

MAPI_UNICODE
Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Output parameter pointing to a pointer to the contents table.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_NO_SUPPORT
The container has no contents and cannot provide a contents table.

Remarks

Use the IMAPIContainer::GetContentsTable method to get a pointer to the IMAPITable
implementation for the contents table of a container. A contents table contains summary information
about objects within the container. The set of columns included in the table are always the default set
of columns for a contents table.

Address book container contents tables typically contain the following columns:

PR_ADDRTYPE
PR_DISPLAY_NAME
PR_DISPLAY_TYPE
PR_ENTRYID
PR_INSTANCE_KEY
PR_OBJECT_TYPE
PR_RECORD_KEY

Folder contents tables typically contain the following columns:

PR_CLIENT_SUBMIT_TIME PR_DISPLAY_TO
PR_ENTRYID PR_HASATTACH
PR_INSTANCE_KEY PR_LAST_MODIFICATION_TIM

E
PR_MAPPING_SIGNATURE PR_MESSAGE_CLASS
PR_MESSAGE_DELIVERY_TI
ME

PR_MESSAGE_FLAGS

PR_MESSAGE_SIZE PR_MSG_STATUS
PR_NORMALIZED_SUBJECT PR_OBJECT_TYPE
PR_PARENT_ENTRYID PR_PRIORITY
PR_RECORD_KEY PR_SENDER_NAME
PR_SENSITIVITY PR_STORE_ENTRYID
PR_STORE_RECORD_KEY PR_SUBJECT

Providers that implement GetContentsTable for their containers must also:

· Support calls to the containers' IMAPIProp::OpenProperty method for the
PR_CONTAINER_CONTENTS property.

· Return PR_CONTAINER_CONTENTS from calls to the containers' IMAPIProp::GetProps or
IMAPIProp::GetPropList method.

The string and binary columns of contents tables can be truncated. Typically providers return 255
characters. Because clients cannot know ahead of time whether or not a table they are using includes
truncated columns, they should assume that a column is truncated if the length of the column is either
255 or 510 bytes. Clients can retrieve the full value of a truncated column if necessary from the object
directly by callings the object's IMAPIProp::GetProps method.

Depending on the provider's implementation, restrictions and sorting operations can apply to an entire
string or to the truncated version of that string.

Setting the MAPI_UNICODE flag in the ulFlags parameter does the following:

· Sets the string type to Unicode for data returned for the initial active columns of the contents table by
the IMAPITable::QueryColumns method. The initial active columns for a contents table are those
columns QueryColumns returns before the provider that contains the table calls the
IMAPITable::SetColumns method.

· Sets the string type to Unicode for data returned for the initial active rows of the contents table by
the IMAPITable::QueryRows method. The initial active rows for a contents table are those rows
QueryRows returns before the provider that contains the table calls SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the provider that contains the contents table calls the IMAPITable::SortTable method.

See Also

IMAPIProp::GetPropList method , IMAPIProp::GetProps method , IMAPIProp::OpenProperty
method, IMAPITable : IUnknown interface , PR_CONTAINER_CONTENTS property

 IMAPIContainer::GetHierarchyTable

The IMAPIContainer::GetHierarchyTable method returns a pointer to the container's hierarchy table.

HRESULT GetHierarchyTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how information is returned from the
table. The following flags can be set:
CONVENIENT_DEPTH

Fills the hierarchy table with containers from one or more levels. The PR_DEPTH property in
each table row indicates the depth, relative to the container, of the given child container. The
container's immediate child containers are at depth zero. Child containers within the zero depth
child containers are at depth one and so on. If the flag CONVENIENT_DEPTH is not set, the
hierarchy table contains only the container's immediate child containers.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client application. If the object is not accessible, some subsequent call to the object might
return an error.

MAPI_UNICODE
Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Output parameter pointing to a pointer to the hierarchy table.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_NO_SUPPORT
The container has no child containers and does not support a hierarchy table.

Remarks

Use the IMAPIContainer::GetHierarchyTable method to get a pointer to the IMAPITable interface
implementation of a container's hierarchy table. A hierarchy table holds summary information about the
child containers within the container. Folder hierarchy tables hold information about child folders;
address book hierarchy tables hold information about child address book containers and distribution
lists.

Address book hierarchy tables include the following columns:

PR_CONTAINER_FLAGS PR_DEPTH
PR_DISPLAY_NAME PR_DISPLAY_TYPE
PR_ENTRYID PR_INSTANCE_KEY
PR_OBJECT_TYPE PR_AB_PROVIDER_ID

Folder hierarchy tables include the following columns:

PR_DEPTH PR_DISPLAY_NAME
PR_COMMENT PR_ENTRYID
PR_INSTANCE_KEY PR_STATUS
PR_SUBFOLDERS PR_FOLDER_TYPE
PR_SUBJECT

Providers that implement GetHierarchyTable for their containers must also:

· Support calls to the containers' IMAPIProp::OpenProperty method for the
PR_CONTAINER_HIERARCHY property.

· Return PR_CONTAINER_HIERARCHY from calls to the containers' IMAPIProp::GetProps or
IMAPIProp::GetPropList method.

The string and binary columns of hierarchy tables can be truncated. Typically providers return 255
characters. Because clients cannot know ahead of time whether or not a table they are using includes
truncated columns, they should assume that a column is truncated if the length of the column is either
255 or 510 bytes. Clients can retrieve the full value of a truncated column if necessary from the object
directly by callings the object's IMAPIProp::GetProps method.

Depending on a provider's implementation, restrictions and sorting operations can apply to an entire
string or to the truncated version of that string.

Setting the MAPI_UNICODE flag in the ulFlags parameter does the following:

· Sets the string type to Unicode for data returned for the initial active columns of the hierarchy table
by IMAPITable::QueryColumns.

· Sets the string type to Unicode for data returned for the initial active rows of the hierarchy table by
the IMAPITable::QueryRows method. The initial active rows for a hierarchy table are those rows
QueryRows returns before the provider that contains the table calls IMAPITable::SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the provider that contains the hierarchy table calls IMAPITable::SortTable.

See Also

IMAPIProp::GetPropList method , IMAPIProp::GetProps method , IMAPITable : IUnknown interface ,
PR_CONTAINER_HIERARCHY property

 IMAPIContainer::GetSearchCriteria

The IMAPIContainer::GetSearchCriteria method obtains the search criteria for the container.

HRESULT GetSearchCriteria(
 ULONG ulFlags,
 LPSRestriction FAR * lppRestriction,
 LPENTRYLIST FAR * lppContainerList,
 ULONG FAR * lpulSearchState
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in strings. The
following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppRestriction
Output parameter pointing to a pointer to an SRestriction structure defining the search criteria. If a
client application passes NULL in the lppRestriction parameter,
IMAPIContainer::GetSearchCriteria does not return an SRestriction structure.

lppContainerList
Output parameter pointing to a pointer to an array of entry identifiers representing containers to be
included in the search. If a client passes NULL in the lppContainerList parameter,
GetSearchCriteria does not return an array of entry identifiers.

lpulSearchState
Output parameter containing a pointer to a bitmask of flags used to indicate the current state of the
search. If a client passes NULL in the lpulSearchState parameter, GetSearchCriteria does not
return any flags. The following flags can be set for lpulSearchState:
SEARCH_FOREGROUND

Indicates the search runs at high priority relative to other searches. If this flag is not set, the
search runs at normal priority relative to other searches.

SEARCH_REBUILD
Indicates the search is in the CPU-intensive mode of its operation, attempting to bring in all
current messages that match the criteria. If this flag is not set, the CPU-intensive part of the
search's operation is over. This flag only has meaning if the search is active (that is, if the
SEARCH_RUNNING flag is set).

SEARCH_RECURSIVE
Indicates the search looks in specified containers and all of their child containers for matching
entries. If this flag is not set, only the containers explicitly included in the last call to the
IMAPIContainer::SetSearchCriteria method are searched.

SEARCH_RUNNING
Indicates that the search is active and that the container's contents table is being updated to
reflect changes in the message store. If this flag is not set, the search is inactive and the contents
table is static.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or

MAPI_UNICODE was not set and the implementation only supports Unicode.
MAPI_E_NOT_INITIALIZED

The client did not set any search criteria before GetSearchCriteria was called.

Remarks

Use the IMAPIContainer::GetSearchCriteria method to obtain the search criteria for a particular
container that supports searches. Search criteria is created using by calling a container's
IMAPIContainer::SetSearchCriteria method. GetSearchCriteria is primarily used with search-results
folders, created when clients set the FOLDER_SEARCH flag on a call to IMAPIFolder::CreateFolder
call. Address book providers only need to implement GetSearchCriteria if they provide the advanced
search capabilities associated with the PR_SEARCH property. For more information on implementing
the advanced search feature for address book containers, see Implementing Advanced Searching.

When a client is done with the data structures returned by GetSearchCriteria in lppRestriction and
lppContainerList, it should call the MAPIFreeBuffer function to release the structures ¾ one call to
release each structure.

See Also

IMAPIContainer::SetSearchCriteria method , IMAPIFolder::CreateFolder method , MAPIFreeBuffer
function, PR_SEARCH property

 IMAPIContainer::OpenEntry

The IMAPIContainer::OpenEntry method opens an object within the container, returning an interface
pointer for further access.

HRESULT OpenEntry(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 LPCIID lpInterface,
 ULONG ulFlags,
 ULONG FAR * lpulObjType,
 LPUNKNOWN FAR * lppUnk
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the object to open.

lpInterface
Input parameter pointing to the interface identifier (IID) representing the interface to be used for
further access to the object. Passing NULL results in the container returning the standard interface
for the object, such as IMessage for a message or IMAPIFolder for a folder.

ulFlags
Input parameter containing a bitmask of flags that controls how the object is opened. The following
flags can be used:
MAPI_BEST_ACCESS

Indicates the object should be opened with the maximum network permissions allowed for the
user and the maximum client application access. For example, if the client has read/write access,
the object is opened with read/write access; if the client has read-only access, the object is
opened with read-only access. The client can retrieve the access level by getting the property
PR_ACCESS_LEVEL.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

MAPI_MODIFY
Requests read/write access. By default, objects are created with read-only access, and clients
should not work on the assumption that read/write access has been granted.

lpulObjType
Output parameter pointing to the opened object's type.

lppUnk
Output parameter pointing to a pointer to the opened object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt was made to access an object for
which the user has insufficient permissions.

MAPI_E_NOT_FOUND

The object indicated by lpEntryID does not exist.
MAPI_E_UNKNOWN_ENTRYID

The entry identifier in the lpEntryID parameter is not of a format recognized by the container.

Remarks

Use the IMAPIContainer::OpenEntry method to open one of the objects within a container and obtain
a pointer to an interface implementation to use for further.

Service providers by default open objects with read-only access unless the either the MAPI_MODIFY
or MAPI_BEST_ACCESS flag is set in the ulFlags parameter. When one of these flags is set, service
providers attempt to return a modifiable object. If the provider does not allow modification for the object
requested, then it returns the value MAPI_E_NO_ACCESS.

If a client passes NULL for lpEntryID, the provider opens the top-level container in the container's
hierarchy. Clients should check the value in the lpulObjType parameter to verify the returned object has
the expected object type. If necessary, the client should cast the pointer returned in the lppUnk
parameter to a pointer of the appropriate type.

 IMAPIContainer::SetSearchCriteria

The IMAPIContainer::SetSearchCriteria method sets the search criteria for the container.

HRESULT SetSearchCriteria(
 LPSRestriction lpRestriction,
 LPENTRYLIST lpContainerList,
 ULONG ulSearchFlags
)

Parameters

lpRestriction
Input parameter pointing to an SRestriction structure defining the search criteria. If a client
application passes NULL in the lpRestriction parameter, then the search criteria used most recently
for this container are used again. A client should not pass NULL in lpRestriction for the first search
within the container.

lpContainerList
Input parameter pointing to an array of entry identifiers representing containers to be included in the
search. If a client passes NULL in the lpContainerList parameter, then the entry identifiers used most
recently for this container are included in the new search. A client should not pass NULL in
lpContainerList for the first search within a container.

ulSearchFlags
Input parameter containing a bitmask of flags that controls how the search is performed. The
following flags can be set:
BACKGROUND_SEARCH

Indicates the search runs at normal priority relative to other searches. This flag cannot be set at
the same time as the FOREGROUND_SEARCH flag.

FOREGROUND_SEARCH
Indicates the search runs at high priority relative to other searches. This flag cannot be set at the
same time as the BACKGROUND_SEARCH flag.

RECURSIVE_SEARCH
Searches specified containers and all of their their child containers. This flag cannot be set at the
same time as the SHALLOW_SEARCH flag.

RESTART_SEARCH
Indicates a search that is inactive should be restarted. In addition to being set to restart a search,
this flag must be passed on the first call to the IMAPIContainer::SetSearchCriteria method in
order to initiate a search. This flag cannot be set at the same time as the STOP_SEARCH flag.

SHALLOW_SEARCH
Indicates the search only looks in the specified containers for matching entries. This flag cannot
be set at the same time as the RECURSIVE_SEARCH flag.

STOP_SEARCH
Stops an ongoing search, if any. This flag cannot be set at the same time as the
RESTART_SEARCH flag.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Use the IMAPIContainer::SetSearchCriteria method to set the search criteria for a particular
container that supports searches. SetSearchCriteria can only be used with search-results folders,

created when clients set the FOLDER_SEARCH flag on a call to IMAPIFolder::CreateFolder call.
Address book providers establish search critieria by applying restrictions to the container's contents
table. See Implementing Advanced Searching for more information about setting search criteria on
address book containers.

A client accomplishes a search by making the following calls:

1. IMAPIFolder::CreateFolder to create the search-results folder. The FOLDER_SEARCH flag must
be set.

2. IMAPIContainer::SetSearchCriteria to define search criteria for the created search-results folder.
3. IMAPIContainer::GetContentsTable to browse the results of the search.
A search-results folder only contains links to the messages that meet the search criteria; the actual
messages are still stored in their original locations. The only unique data contained in the search-
results folder is a contents table view consisting of the merged contents of the message store after the
search restriction has been applied. A search operation only works on this merged contents table; it
does not search through other search-results folders. The search results only return the messages that
match the search criteria; the folder hierarchy is not returned.

To include message attachments or recipients in a search, clients use a subobject restriction that
includes a property restriction for either the PR_MESSAGE_RECIPIENTS or
PR_MESSAGE_ATTACHMENTS property. Clients can use subobject restrictions to locate, for
example, messages containing file attachments with the extension .MSS. The appropriate
SSubRestriction structure would include PR_MESSAGE_ATTACHMENTS for the ulSubObject
member and an SPropertyRestriction structure for the lpRes member that specifies the following
property restriction PR_ATTACH_EXTENSION = MSS. Service providers that do not support subobject
restrictions return MAPI_E_TOO_COMPLEX.

If a client sets the FOREGROUND_SEARCH flag in the ulSearchFlags parameter, the provider
performs the indicated search at high priority, possibly degrading the client's performance. If the client
does not set FOREGROUND_SEARCH, the provider performs the search in the background. In either
case, MAPI immediately returns control to the calling client after finishing the search.

A client can use SetSearchCriteria to change the search criteria of a search already in progress ¾ it
can specify new restrictions, new lists of folders to search, and a new search priority (for example, a
background search can be made high priority). Changes in search priority do not cause an existing
search to restart, but other changes to search criteria can.

When a client is through using a search-results folder, it can delete the folder or leave it for later use. If
a client does delete the search-results folder, the provider only deletes the message links contained in
the folder; it does not delete any messages from their parent folders.

Providers should support open, copy, move, and delete operations on the items within their search-
results folders. For more information on supporting these operations, see the
IMAPIContainer::OpenEntry method, the IMAPIFolder: IMAPIContainer interface, and About
Search-Results Folders. These operations apply to items within the search-results folder, not the
search-results folder itself. Items cannot be created within, or copied into, search-results folders.

See Also

IMAPIContainer:: GetContentsTable method , IMAPIContainer::OpenEntry method ,
IMAPIFolder::CreateFolder method , IMAPIFolder : IMAPIContainer interface ,
SPropertyRestriction structure , SRestriction structure , SSubRestriction structure

 IMAPIControl : IUnknown

The IMAPIControl interface is used to enable and disable a button and perform tasks when a button is
enabled and selected. The IMAPIControl interface is used to control custom buttons on dialog boxes
that are defined with display tables, such as configuration property sheets.

For more information on working with display tables and control objects, see About Display Tables.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Control object

Corresponding pointer type: LPMAPICONTROL
Implemented by: Service providers
Called by: MAPI

Vtable Order

GetLastErr
or

Returns a MAPIERROR structure containing information
about the last error that occurred for a control object.

Activate Performs a task in response to the button being pressed.
GetState Retrieves a value that indicates whether a button is enabled

or disabled.

 IMAPIControl::Activate

The IMAPIControl::Activate method performs a task, such as displaying a dialog box or starting a
programmatic operation, when an enabled button is selected by a user of a client application.

HRESULT Activate(
 ULONG ulFlags,
 ULONG ulUIParam
)

Parameters

ulFlags
Reserved; must be zero.

ulUIParam
Input parameter containing the handle of the parent window for the dialog box.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Service providers implement IMAPIControl::Activate to handle the processing involved when a user
selects an enabled button. MAPI calls Activate only when the button is enabled after it has been
selected. In the ulUIParam parameter, MAPI passes the handle for the parent window for the dialog
box or property sheet. MAPI calls IMAPIControl::GetState to determine if the button is enabled before
making the call to Activate.

See Also

IMAPIControl::GetState method

 IMAPIControl::GetLastError

The IMAPIControl::GetLastError method returns a MAPIERROR structure containing information
about the last error that occurred for a control object.

HRESULT GetLastError(
 HRESULT hResult,
 ULONG ulFlags,
 LPMAPIERROR FAR * lppMAPIError
)

Parameters

hResult
Input parameter containing the result returned for the last call for the control object that returned an
error.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the strings in the MAPIERROR structure returned in the lppMAPIError parameter are in
Unicode format. If the MAPI_UNICODE flag is not set, the strings are in ANSI format.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure containing version,
component, and context information for the error. The lppMAPIError parameter can be set to NULL if
there is no MAPIERROR structure to return.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Use the IMAPIControl::GetLastError method to retrieve information to display in a message to the
user regarding the last error returned from a method call for the control object.

To release all the memory allocated by MAPI, clients need only call the MAPIFreeBuffer function for
the returned MAPIERROR structure.

The return value from GetLastError must be S_OK for an implementation to make use of the
MAPIERROR structure. Even if the return value is S_OK, a MAPIERROR structure might not be
returned. If the implementation cannot determine what the last error was, or if a MAPIERROR structure
is not available for that error, GetLastError returns a pointer to NULL in lppMAPIError instead.

See Also

MAPIERROR structure , MAPIFreeBuffer function

 IMAPIControl::GetState

The IMAPIControl::GetState method retrieves a value indicating whether the button is disabled or
enabled.

HRESULT GetState(
 ULONG ulFlags,
 ULONG FAR * lpulState
)

Parameters

ulFlags
Reserved; must be zero.

lpulState
Output parameter containing a value that indicates the state of the button control. One of the
following values can be set:
MAPI_DISABLED

Indicates the button is disabled and cannot be clicked.
MAPI_ENABLED

Indicates the button is enabled and can be clicked.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

MAPI calls the IMAPIControl::GetState method to retrieve the state of a button. If enabled, the button
can respond to a mouse click or key press. If disabled, the button is displayed as grayed and is
incapable of responding to a mouse click or key press.

See Also

IMAPIControl::Activate method

 IMAPIFolder : IMAPIContainer

The IMAPIFolder interface is used to perform operations on the contents of a folder such as creating,
copying, and deleting its messages and subfolders.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Folder object

Corresponding pointer type: LPMAPIFOLDER
Implemented by: Message store providers
Transaction model: Non-transacted
Called by: Client applications

Vtable Order

CreateMessage Creates a new message within the folder.
CopyMessages Copies or moves one or more of the folder's

messages.
DeleteMessages Deletes one or more of the folder's messages.
CreateFolder Creates a new subfolder within the folder.
CopyFolder Copies or moves one of the folder's subfolders.
DeleteFolder Deletes one of the folder's subfolders.
SetReadFlags Sets or clears the read flags for the messages in the

folder.
GetMessageStatu
s

Obtains the status associated with a message in the
folder.

SetMessageStatu
s

Sets the status associated with a message in the
folder.

SaveContentsSor
t

Sets the default sort order for the folder's contents
table.

EmptyFolder Deletes all items from the folder without deleting the
folder itself.

Required Properties

PR_DISPLAY_NAME Read/write
PR_ENTRYID Read-only
PR_FOLDER_TYPE Read/write
PR_OBJECT_TYPE Read-only
PR_PARENT_ENTRYID Read-only
PR_RECORD_KEY Read-only
PR_STORE_ENTRYID Read-only
PR_STORE_RECORD_KEY Read-only

 IMAPIFolder::CopyFolder

The IMAPIFolder::CopyFolder method copies or moves one of the folder's subfolders.

HRESULT CopyFolder(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 LPCIID lpInterface,
 LPVOID lpDestFolder,
 LPTSTR lpszNewFolderName,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 ULONG ulFlags
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the subfolder to copy or move.

lpInterface
Input parameter pointing to the interface identifier (IID) representing the interface to be used to
access the destination folder indicated by the lpDestFolder parameter. Passing NULL results in the
service provider returning the standard folder interface, IMAPIFolder. Clients must pass NULL.
Service providers and MAPI can set the lpInterface parameter IID_IUnknown, IID_IMAPIProp,
IID_IMAPIContainer, or IID_IMAPIFolder.

lpDestFolder
Input parameter pointing to the open destination folder where the folder identified in the lpEntryID
parameter is to be copied or moved.

lpszNewFolderName
Input parameter pointing to the name of the newly created or moved folder. If the client passes NULL
in the lpszNewFolderName parameter, the name of the newly created or moved folder is the same
as that of the original.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows that
this method displays. The ulUIParam parameter is ignored unless the client sets the
FOLDER_DIALOG flag in the ulFlags parameter and passes NULL in the lpProgress parameter.

lpProgress
Input parameter pointing to a progress object for displaying a progress indicator. If NULL is passed
in lpProgress, the service provider displays a progress indicator using MAPI's progress object
implementation. The lpProgress parameter is ignored unless the FOLDER_DIALOG flag is set in
ulFlags.

ulFlags
Input parameter containing a bitmask of flags that controls how the copy or move operation is
accomplished. The following flags can be set:
COPY_SUBFOLDERS

Indicates all subfolders are included in the copy operation. This functionality is optional for copy
operations and is implied for move operations.

FOLDER_DIALOG
Displays a progress indicator while the operation proceeds.

FOLDER_MOVE

Indicates that the folder is to be moved rather than copied. If this flag is not set, the folder is
copied.

MAPI_DECLINE_OK
Informs the message store provider that if it implements IMAPIFolder::CopyFolder by calling its
support object's IMAPISupport::DoCopyTo or IMAPISupport::DoCopyProps method, it should
immediately return MAPI_E_DECLINE_COPY.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_COLLISION
The name of the folder being moved or copied is the same as that of a subfolder in the destination
folder. Folder names must be unique.

MAPI_E_DECLINE_COPY
The provider implements this method by calling a support object method and the caller has passed
the MAPI_DECLINE_OK flag.

MAPI_E_FOLDER_CYCLE
The source object directly or indirectly contains the destination object. Significant work might have
been performed before this condition was discovered so the source and destination object might be
partially modified.

MAPI_W_PARTIAL_COMPLETION
The call succeeded, but not all entries were successfully copied. To test for this warning, use the
HR_FAILED macro. When this warning is returned, the call should be handled as successful.

Remarks

Message store providers implement the IMAPIFolder::CopyFolder method to copy or move folders
from one location to another. The folder being copied or moved is added to the destination folder as a
subfolder. Only one folder can be copied or moved at a time.

CopyFolder allows simultaneous renaming and moving of folders and the copying or moving of
subfolders of the affected folder. To copy or move all subfolders nested within the copied or moved
folder, a client passes the COPY_SUBFOLDERS flag in ulFlags.

In copy or move operations involving more than one folder, even if one or more folders specified do not
exist or have already been moved elsewhere, a message store provider should complete the operation
as best it can for each folder specified. The provider should stop the operation without completing it
only in the case of failures it cannot control, such as running out of memory or disk space, message
store corruption, and so on.

If CopyFolder successfully completes the copy or move operation for every folder requested by the
client, it returns S_OK. If one or more folders cannot be copied or moved, CopyFolder returns
MAPI_W_PARTIAL_COMPLETION. If CopyFolder returns a different value, such as
MAPI_E_NOT_ENOUGH_MEMORY, that indicates the call did not complete, it might already have
copied or moved one or more folders without being able to continue. The calling client cannot proceed
on the assumption that an error return implies no work was done.

If an entry identifier for a folder that doesn't exist is passed in lpEntryID, CopyFolder returns
MAPI_W_PARTIAL_COMPLETION or MAPI_E_NOT_FOUND, depending on the message store's

implementation.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

 IMAPIFolder::CopyMessages

The IMAPIFolder::CopyMessages method copies or moves one or more of the folder's messages.

HRESULT CopyMessages(
 LPENTRYLIST lpMsgList,
 LPCIID lpInterface,
 LPVOID lpDestFolder,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 ULONG ulFlags
)

Parameters

lpMsgList
Input parameter pointing to an array of ENTRYLIST structures that identify the message or
messages to copy or move.

lpInterface
Input parameter pointing to the interface identifier (IID) for the destination folder object indicated in
the lpDestFolder parameter. Passing NULL indicates the destination folder object is cast to the
standard interface for a folder object. A client application must pass NULL. A message store provider
can also set the lpInterface parameter to an identifier for an appropriate interface for the destination
folder object. For example, a message can be copied with lpInterface set to IID_IUnknown or
IID_IMAPIProp.

lpDestFolder
Input parameter pointing to the open destination folder where the message or messages identified in
the lpMsgList parameter are copied or moved.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays. The ulUIParam parameter is ignored unless the client sets the
MESSAGE_DIALOG flag in the ulFlags parameter and passes NULL in the lpProgress parameter.

lpProgress
Input parameter pointing to a progress object that contains client-supplied progress information. If
NULL is passed in lpProgress, MAPI provides the progress information. The lpProgress parameter is
ignored unless MESSAGE_DIALOG is set in ulFlags.

ulFlags
Input parameter containing a bitmask of flags that controls how the copy or move operation is
accomplished. The following flags can be set:
MAPI_DECLINE_OK

Informs the provider that if it does not implement the IMAPIFolder::CopyMessage method, it can
immediately return MAPI_E_DECLINE_COPY.

MESSAGE_DIALOG
Displays a progress indicator as the operation proceeds.

MESSAGE_MOVE
Moves messages. If this flag is not set, CopyMessage copies messages.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_DECLINE_COPY
The provider has not implemented this operation.

MAPI_W_PARTIAL_COMPLETION

The call succeeded, but not all entries were successfully copied. To test for this warning, use the
HR_FAILED macro. When this warning is returned, the call should be handled as successful.

Remarks

Message store providers implement the IMAPIFolder::CopyMessages method to copy or move
messages from one folder to another. A provider can move or copy the messages in any order. This
functionality is especially useful in the case of search-results folders, for which the provider can group
messages by parent folder.

Messages that do not exist, that have already been moved elsewhere, or that are currently submitted
cannot be copied or moved. However, in copy or move operations involving more than one message,
even if one or more messages specified cannot be copied or moved, a message store provider should
complete the operation as best it can for each message specified. The provider should stop the
operation without completing it only in the case of failures it cannot control, such as running out of
memory or disk space, message store corruption, and so on.

Messages that are open with read/write access can be moved or copied. Store providers should, if
possible, maintain entry identifiers across move or copy operations so as not to invalidate handles to
those messages that may be held by client applications. If it is not possible to satisfy a client
application's request to save changes on an object because the object has moved or changed since
the client application opened it, the message store provider should return
MAPI_E_OBJECT_CHANGED. Message store providers should also send notifications when moving
or copying messages so that client applications are forewarned that their IMAPIProp::SaveChanges
calls may fail.

If CopyMessages successfully completes the copy or move operation for every message requested by
the client, it returns S_OK. If one or more messages cannot be copied or moved, CopyMessages
returns MAPI_W_PARTIAL_COMPLETION. If CopyMessages returns a different value, such as
MAPI_E_NOT_ENOUGH_MEMORY, that indicates the call did not complete, it might already have
copied or moved one or more messages without being able to continue. The calling client cannot
proceed on the assumption that an error return implies no work was done.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

 IMAPIFolder::CreateFolder

The IMAPIFolder::CreateFolder method creates a new folder as a subfolder within the message
store.

HRESULT CreateFolder(
 ULONG ulFolderType,
 LPTSTR lpszFolderName,
 LPTSTR lpszFolderComment,
 LPCIID lpInterface,
 ULONG ulFlags,
 LPMAPIFOLDER FAR * lppFolder
)

Parameters

ulFolderType
Input parameter containing a value indicating the type of folder to create. One of the following values
can be passed:
FOLDER_GENERIC

Indicates a generic folder should be created.
FOLDER_SEARCH

Indicates a search-results folder should be created.
lpszFolderName

Input parameter pointing to a string containing the name for the new folder.
lpszFolderComment

Input parameter pointing to a string containing a comment associated with the new folder. This string
becomes the value of the folder's PR_COMMENT property. If NULL is passed, the folder has no
initial comment.

lpInterface
Input parameter indicating the interface identifier (IID) for the folder returned in the lppFolder
parameter. Passing NULL indicates the folder object is cast to the standard interface for a folder
object. A client application must pass NULL. A message store provider can also set the lpInterface
parameter to an identifier for an appropriate interface for the folder object, for example
IID_IUnknown, IID_IMAPIProp, or IID_IMAPIContainer.

ulFlags
Input parameter containing a bitmask of flags that controls how the folder is created. The following
flags can be set:
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

OPEN_IF_EXISTS
Allows the method to succeed, even if the folder named in the lpszFolderName parameter already
exists, by opening the existing folder with that name. Note that message store providers that allow
sibling folders to have the same name might fail to open an existing folder if more than one exists
with the supplied name.

lppFolder
Output parameter pointing to a variable where a pointer to the newly created folder object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_COLLISION
A folder with the name given in lpszFolderName already exists. Folder names must be unique.

Remarks

Message store providers implement the IMAPIFolder::CreateFolder method to create new generic
and search-results folders in a message store. Root folders cannot be created. Most message store
providers require the name of the new folder to be unique with respect to the names of its sibling
folders. Clients should be able to handle MAPI_E_COLLISION, which is returned if this rule is not
followed.

To determine the entry identifier of the newly created folder, the implementation calls the
IMAPIProp::GetProps method to read the new folder's PR_ENTRYID property while the folder is still
open.

See Also

IMAPIProp::GetProps method

 IMAPIFolder::CreateMessage

The IMAPIFolder::CreateMessage method creates a new message or new associated information
within a folder.

HRESULT CreateMessage(
 LPCIID lpInterface,
 ULONG ulFlags,
 LPMESSAGE FAR * lppMessage
)

Parameters

lpInterface
Input parameter pointing to the interface identifier (IID) for the message returned in the lppMessage
parameter. Passing NULL indicates the message object is cast to the standard interface for a
message object. A client application must pass NULL. A message store provider can also set the
lpInterface parameter to an identifier for an appropriate interface for the message object, for
example IID_IUnknown or IID_IMAPIProp.

ulFlags
Input parameter containing a bitmask of flags that controls how the message is created. The
following flags can be set:
MAPI_ASSOCIATED

Indicates that an associated item, such as a view, should be created.
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

lppMessage
Output parameter pointing to a variable where a pointer to the newly created message object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMAPIFolder::CreateMessage method to create a new
message or new associated information in a folder.

To create objects associated with a folder that are listed in its associated contents table, set the
MAPI_ASSOCIATED flag in the ulFlags parameter. Associated information entries connect invisible
data, such as views, with a folder. For more information on working with associated information, see
About Contents Tables.

Although a new message has a unique PR_RECORD_KEY property, its PR_ENTRYID property might
not be available until a client saves the message by using the IMAPIProp::SaveChanges method.
This potential unavailability stems from the fact that some message store providers generate the entry
identifier when the message is created and others wait to do so until the message has been saved.
The latter functionality is typical; that is, a new message usually does not appear in a folder contents
table until a client calls SaveChanges.

If a folder is deleted before a new message within it is saved, the results of a call to CreateMessage
are undefined.

See Also

IMAPIProp::SaveChanges method

 IMAPIFolder::DeleteFolder

The IMAPIFolder::DeleteFolder method deletes a subfolder from a folder.

HRESULT DeleteFolder(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 ULONG ulFlags
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the subfolder to delete.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays. The ulUIParam parameter is ignored unless the FOLDER_DIALOG flag is set in
the ulFlags parameter and NULL is passed in the lpProgress parameter.

lpProgress
Input parameter pointing to a progress object that contains client-supplied progress information. If
NULL is passed in the lpProgress parameter, MAPI provides the progress information. The
lpProgress parameter is ignored unless the FOLDER_DIALOG flag is set in the ulFlags parameter.

ulFlags
Input parameter containing a bitmask of flags that controls the deletion of the subfolder. The
following flags can be set:
DEL_FOLDERS

Deletes all subfolders of the subfolder indicated in lpEntryID.
DEL_MESSAGES

Deletes all messages in the subfolder indicated in lpEntryID.
FOLDER_DIALOG

Displays a progress indicator while the operation proceeds.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_HAS_FOLDERS
The subfolder being deleted contains subfolders, and the DEL_FOLDERS flag was not set. The
subfolder was not deleted.

MAPI_E_HAS_MESSAGES
The subfolder being deleted contains messages, and the DEL_MESSAGES flag was not set. The
subfolder was not deleted.

MAPI_W_PARTIAL_COMPLETION
The call succeeded, but not all of the entries were successfully deleted. To test for this warning, use
the HR_FAILED macro. When this warning is returned, the call should be handled as successful.

Remarks

Message store providers implement the IMAPIFolder::DeleteFolder method to delete a subfolder of a

folder. If the message store provider so indicates, DeleteFolder can also delete all messages or all
subfolders in a subfolder, or both. To delete all messages in a subfolder, the client sets
DEL_MESSAGES in ulFlags; to delete all subfolders in a subfolder, the client application sets
DEL_FOLDERS in ulFlags. However, no flag need be set to delete any associated items, such as
views or form definitions, from a folder.

In deletions of more than one subfolder, even if one or more subfolders marked for deletion do not exist
or have been moved elsewhere, a message store provider should complete the deletion as best it can
for each subfolder marked. The provider should stop the deletion without completing it only in the case
of failures it cannot control, such as running out of memory or disk space, message store corruption,
and so on.

If DeleteFolder successfully deletes every subfolder marked for deletion, it returns S_OK. If one or
more subfolders cannot be deleted, DeleteFolder returns MAPI_W_PARTIAL_COMPLETION or
MAPI_E_NOT_FOUND, depending on the message store's implementation. If DeleteFolder returns a
different value, such as MAPI_E_NOT_ENOUGH_MEMORY, that indicates the call did not complete, it
might have already deleted one or more subfolders or messages without being able to continue. The
calling client cannot proceed on the assumption that an error return implies no work was done.

During a DeleteFolder call, messages being processed by the MAPI spooler are not deleted, nor
should the message store provider call the IMsgStore::AbortSubmit method for such messages. A
message being processed by the MAPI spooler is left in the folder in which it resides. This functionality
might prevent one or more subfolders from being deleted because they still have contents.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

 IMAPIFolder::DeleteMessages

The IMAPIFolder::DeleteMessages method deletes one or more messages from a folder.

HRESULT DeleteMessages(
 LPENTRYLIST lpMsgList,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 ULONG ulFlags
)

Parameters

lpMsgList
Input parameter pointing to an array of ENTRYLIST structures that identify the message or
messages to delete.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays. The ulUIParam parameter is ignored unless the MESSAGE_DIALOG flag is set in
the ulFlags parameter and NULL is passed in the lpProgress parameter.

lpProgress
Input parameter pointing to a progress object that contains client-supplied progress information. If
NULL is passed in the lpProgress parameter, MAPI provides the progress information. The
lpProgress parameter is ignored unless the MESSAGE_DIALOG flag is set in the ulFlags parameter.

ulFlags
Input parameter containing a bitmask of flags that controls how the messages are deleted. The
following flag can be set:
MESSAGE_DIALOG

Displays a progress indicator as the operation proceeds.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_W_PARTIAL_COMPLETION
The call succeeded, but not all of the entries were successfully deleted. To test for this warning, use
the HR_FAILED macro. When this warning is returned, the call should be handled as successful.

Remarks

Message store providers implement the IMAPIFolder::DeleteMessages method to delete messages
from a folder.

Messages that do not exist, that have been moved elsewhere, that are open with read/write access, or
that are currently submitted cannot be deleted. However, in deletions of more than one message, even
if one or more messages marked for deletion cannot be deleted, a message store provider should
complete the deletion as best it can for each message marked. The provider should stop the deletion
without completing it only in the case of failures it cannot control, such as running out of memory or
disk space, message store corruption, and so on.

If DeleteMessages successfully deletes every message marked for deletion, it returns S_OK. If one or
more messages cannot be deleted, DeleteMessages returns MAPI_W_PARTIAL_COMPLETION or
MAPI_E_NOT_FOUND, depending on the message store's implementation. If DeleteMessages
returns a different value, such as MAPI_E_NOT_ENOUGH_MEMORY, that indicates that call did not
complete, it might already have deleted one or more messages without being able to continue. The
calling client cannot proceed on the assumption that an error return implies no work was done.

During a DeleteMessages call, messages being processed by the MAPI spooler are not deleted, nor
should the message store provider call the IMsgStore::AbortSubmit method for such messages. A
message being processed by the MAPI spooler is left in the folder in which it resides.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

 IMAPIFolder::EmptyFolder

The IMAPIFolder::EmptyFolder method deletes all items from a folder without deleting the folder
itself.

HRESULT EmptyFolder(
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 ULONG ulFlags
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays. The ulUIParam parameter is ignored unless the FOLDER_DIALOG flag is set in
the ulFlags parameter and NULL is passed in the lpProgress parameter.

lpProgress
Input parameter pointing to a progress object that contains client-supplied progress information. If
NULL is passed in lpProgress, MAPI provides the progress information. The lpProgress parameter is
ignored unless the FOLDER_DIALOG flag is set in the ulFlags parameter.

ulFlags
Input parameter containing a bitmask of flags that controls how deletion is performed for the
messages and subfolders of a folder. The following flags can be set:
DEL_ASSOCIATED

Deletes subfolders in their entirety, including all their subfolders and associated items. The
DEL_ASSOCIATED flag only has meaning for the top-level folder the call acts on.

FOLDER_DIALOG
Displays a progress indicator while the operation proceeds.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_W_PARTIAL_COMPLETION
The call succeeded, but some entries were not successfully deleted. To test for this warning, use the
HR_FAILED macro. When this warning is returned, the call should be handled as successful.

Remarks

Message store providers implement the IMAPIFolder::EmptyFolder method to delete all of a folder's
contents without deleting the folder itself.

When the calling client sets DEL_ASSOCIATED in ulFlags, EmptyFolder deletes all messages,
subfolders, and associated information of a folder. A folder's associated information includes such items
as views and form definitions. When the calling client does not set DEL_ASSOCIATED, EmptyFolder
does not delete associated information. DEL_ASSOCIATED only has meaning for the top-level folder
the call acts on.

If EmptyFolder successfully deletes all subfolders and messages, it returns S_OK. If one or more
items cannot be deleted, EmptyFolder returns MAPI_W_PARTIAL_COMPLETION. If EmptyFolder
returns a different value, such as MAPI_E_NOT_ENOUGH_MEMORY, that indicates the call did not
complete, it might already have deleted one or more messages or subfolders without being able to
continue. The calling client cannot proceed on the assumption that an error return implies no work was
done.

During an EmptyFolder call, submitted messages are not deleted, nor should the message store

provider call the IMsgStore::AbortSubmit method for such messages. A submitted message is left in
the folder in which it resides.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

 IMAPIFolder::GetMessageStatus

The IMAPIFolder::GetMessageStatus method obtains the status associated with a message in a
particular folder ¾ for example, whether that message is marked for deletion.

HRESULT GetMessageStatus(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 ULONG ulFlags,
 ULONG FAR * lpulMessageStatus
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier for the message whose status is obtained.

ulFlags
Reserved; must be zero.

lpulMessageStatus
Output parameter pointing to a variable where a bitmask of flags indicating the message's status is
stored. Bits 5 through 15 are reserved and must be zero; bits 16 through 31 are available for
implementation-specific use.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMAPIFolder::GetMessageStatus method to find out the status of a
message. GetMessageStatus returns status information in the lpulMessageStatus parameter.

How a message store provider sets, clears, and uses the message status bits in lpulMessageStatus
depends entirely on its implementation, except that bits 5 through 15 are reserved and must be zero. In
the interpersonal message (IPM) subtree, MAPI reserves bits 16 through 31 for use by the IPM client.
Users can choose which IPM client they use. Message store providers that store their messages in
other subtrees can use bits 16 through 31 for their own purposes.

See Also

IMAPIFolder::SetMessageStatus method

 IMAPIFolder::SaveContentsSort

The IMAPIFolder::SaveContentsSort method sets the default sort order for a folder's contents table.

HRESULT SaveContentsSort(
 LPSSortOrderSet lpSortCriteria,
 ULONG ulFlags
)

Parameters

lpSortCriteria
Input parameter pointing to an SSortOrderSet structure containing the sort criteria for the default
sort order.

ulFlags
Input parameter containing a bitmask of flags that controls how the default sort order is set. The
following flag can be set:
RECURSIVE_SORT

Indicates the default sort order set applies to the indicated folder and all its subfolders.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT
The operation is not supported by one or more service providers.

Remarks

Message store providers implement the IMAPIFolder::SaveContentsSort method to set the default
sort order for a folder's contents table. The IMAPIContainer::GetContentsTable method uses this
default sort order; before returning a folder's contents table, GetContentsTable sorts it by using the
default sort order. Not all message store providers support SaveContentsSort; providers that don't
return MAPI_E_NO_SUPPORT.

See Also

IMAPIContainer::GetContentsTable method , SSortOrderSet structure

 IMAPIFolder::SetMessageStatus

The IMAPIFolder::SetMessageStatus method sets the status associated with a message in a
particular folder ¾ for example, whether that message is marked for deletion.

HRESULT SetMessageStatus(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 ULONG ulNewStatus,
 ULONG ulNewStatusMask,
 ULONG FAR * lpulOldStatus
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier for the message whose status is set.

ulNewStatus
Input parameter containing a bitmask of flags used to set the status of the message. These flags are
set by the bitmask in the ulNewStatusMask parameter.

ulNewStatusMask
Input parameter containing a bitmask of flags used to set the bitmask in the ulNewStatus parameter.
For each bit set in ulNewStatusMask, the corresponding bit in ulNewStatus is set or cleared for the
message.

lpulOldStatus
Output parameter pointing to a variable where the previous value of the message status flags is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMAPIFolder::SetMessageStatus method to set the status
associated with a message within a folder in a message store.

Some message store providers use SetMessageStatus to enable clients to negotiate a message
lockout operation among themselves. To do so, clients designate a bit for the lockout bit. The provider
sets the lockout bit using SetMessageStatus and examines the previous value in the lpulOldStatus
parameter to determine if a client caused the designated bit to be set. By using the bitmask,
applications can use other bits in the ulNewStatus parameter to track message status without
interfering with the lockout bit.

See Also

IMAPIFolder::GetMessageStatus method

 IMAPIFolder::SetReadFlags

The IMAPIFolder::SetReadFlags method sets or clears the read flags for the messages in a folder
and manages the sending of read reports.

HRESULT SetReadFlags(
 LPENTRYLIST lpMsgList,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 ULONG ulFlags
)

Parameters

lpMsgList
Input parameter pointing to an array of ENTRYLIST structures that identify the message or
messages for which to set or clear read flags. If a client application passes NULL in the lpMsgList
parameter, all messages are processed.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays. The ulUIParam parameter is ignored unless the client sets the
MESSAGE_DIALOG flag in the ulFlags parameter and passes NULL in the lpProgress parameter.

lpProgress
Input parameter pointing to a progress object that contains client-supplied progress information. If
NULL is passed in lpProgress, MAPI provides the progress information. The lpProgress parameter is
ignored unless the FOLDER_DIALOG flag is set in ulFlags.

ulFlags
Input parameter containing a bitmask of flags that controls the setting of a message's read flag (that
is, a message's MSGFLAG_READ flag in its PR_MESSAGE_FLAGS property) and the processing
of read reports. The following flags can be set:
CLEAR_READ_FLAG

Clears MSGFLAG_READ. No read report is sent.
GENERATE_RECEIPT_ONLY

Generates a read report if it is pending but does not change the state of MSGFLAG_READ.
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

MESSAGE_DIALOG
Displays a progress indicator while the operation proceeds.

SUPPRESS_RECEIPT
Directs the message store provider to cancel the generation of a read report if this call changes
the state of the message from unread to read and a read report has been requested. If this call
does not change the state of the message, the message store provider can ignore this flag.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPRESS
The message store provider does not support the suppression of read reports.

MAPI_W_PARTIAL_COMPLETION
The call succeeded, but not all the entries were successfully processed. To test for this warning, use
the HR_FAILED macro. When this warning is returned, the call should be handled as successful.

Remarks

Message store providers implement the IMAPIFolder::SetReadFlags method when messages are
being moved or copied from one message store to another to set or clear the read flags for the
messages in a folder. SetReadFlags also manages the sending of read reports in such situations.
SetReadFlags sets or clears the MSGFLAG_READ flag in the PR_MESSAGE_FLAGS property. If
MSGFLAG_READ is set for a message, the message is marked as having been read, which does not
necessarily indicate the intended recipient has read the message.

Messages that do not exist, that have been moved elsewhere, that are open with read/write access, or
that are currently submitted cannot have their read flags set. However, in read-flag setting operations
involving more than one message, even if one or more messages specified cannot have their read
flags set, a message store provider should complete the operation as best it can for a message
specified. The provider should stop the operation without completing it only in the case of failures it
cannot control, such as running out of memory or disk space, message store corruption, and so on.

If none of the flags are set in the ulFlags parameter, the following rules apply:

· If MSGFLAG_READ is already set, no change should be made.
· If the PR_READ_RECEIPT_REQUESTED property is set, the client should send the read report and

set MSGFLAG_READ.

SetReadFlags returns MAPI_E_INVALID_PARAMETER if any of the following combinations are set in
ulFlags:

· SUPPRESS_RECEIPT | CLEAR_READ_FLAG
· SUPPRESS_RECEIPT | CLEAR_READ_FLAG | GENERATE_RECEIPT_ONLY
· CLEAR_READ_FLAG | GENERATE_RECEIPT_ONLY

If both the SUPPRESS_RECEIPT and GENERATE_RECEIPT_ONLY flags are set,
PR_READ_RECEIPT_REQUESTED, if set, should be cleared, and a read report should not be sent.

Note Providers can optimize report behavior so that a client's setting a message attribute to get a
read or delivery report is only a request and so that the provider can support not sending read or
delivery reports. However, some message store providers do not support the suppression of read
reports for some messages. If a client calls SetReadFlags on such a message with
SUPPRESS_RECEIPT set in ulFlags, SetReadFlags returns MAPI_E_NO_SUPPRESS; in this case,
MAPI does not set the read flag and does not generate a report.

If SetReadFlags successfully completes processing for every message specified, it returns S_OK. If
one or more messages cannot be processed, SetReadFlags returns
MAPI_W_PARTIAL_COMPLETION. If SetReadFlags returns a different value, such as
MAPI_E_NOT_ENOUGH_MEMORY, that indicates the call did not compete, it might already have
processed one or more messages without being able to continue. The calling client cannot proceed on
the assumption that an error return implies no work was done.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

See Also

IMessage::SetReadFlag method , PR_MESSAGE_FLAGS property

 IMAPIForm : IUnknown

The IMAPIForm interface is implemented by form servers for the benefit of form viewers. Its methods
are used to work with form view contexts and form notification, to perform form verbs, and to shut down
forms.

At a Glance

Specified in header file: MAPIFORM.H
Object that supplies this
interface:

Form object

Corresponding pointer type: LPMAPIFORM
Implemented by: Form object
Called by: Form viewers

Vtable Order

SetViewContext Sets a form view context as the current view context
for a form.

GetViewContext Returns the current view context for a form.
ShutdownForm Closes a form.
DoVerb Requests a form object perform one of its verbs.
Advise Registers a form viewer for notifications about

changes to a form.
Unadvise Removes a form viewer's registration for notification

of form object changes previously established with a
call to the IMAPIForm::Advise method.

 IMAPIForm::Advise

The IMAPIForm::Advise method registers a form viewer for notifications about changes to a form.

HRESULT Advise(
 LPMAPIVIEWADVISESINK pAdvise,
 ULONG FAR * pulConnection
)

Parameters

pAdvise
Input parameter pointing to the view advise sink object to be called when an event occurs for the
form object about which notification has been requested.

pulConnection
Output parameter pointing to a variable that upon a successful return holds the connection number
for the notification registration. The connection number must be nonzero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IMAPIForm::Advise method to register for notification callbacks when changes
occur to a form. A form server's implementation of Advise keeps a copy of the pointer to the view
advise sink object passed in the pAdvise parameter and uses this pointer in its notification callbacks.
The Advise implementation should call the IUnknown::AddRef method on the view advise sink object
to retain this pointer to the advise sink until notification registration is canceled. The Advise
implementation should also assign a nonzero connection number to the notification registration and call
AddRef on this number before returning it in the pulConnection parameter.

To cancel a notification registration, a form viewer calls the IMAPIForm::Unadvise method. During the
call to Unadvise, or shortly thereafter, the saved pointer to the view advise sink object is released.

For more information on the notification process, see About Notification.

See Also

IMAPIForm::Unadvise method , IMAPIViewAdviseSink : IUnknown interface

 IMAPIForm::DoVerb

The IMAPIForm::DoVerb method requests a form object perform one of its verbs.

HRESULT DoVerb(
 LONG iVerb,
 LPMAPIVIEWCONTEXT lpViewContext,
 ULONG hwndParent,
 LPCRECT lprcPosRect
)

Parameters

iVerb
Input parameter containing the number of the verb to be performed.

lpViewContext
Input parameter pointing to a view context object. The lpViewContext parameter can be NULL.

hwndParent
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays. The hwndParent parameter should be NULL if the dialog box or window is not
modal.

lprcPosRect
Input parameter pointing to a Win32 RECT structure containing the current form's window size and
position.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

OLEOBJ_S_CANNOT_DOVERB_NOW
The verb is valid, but the object cannot perform the operation now.

Remarks

Form viewers call the IMAPIForm::DoVerb method to request an object to perform one of its verbs.
Typical form server implementations of DoVerb contain a switch statement that tests the valid values
for the iVerb parameter.

The lpViewContext parameter can be NULL. If a view context is passed in lpViewContext, the form
must use this view context for the duration of the verb processing rather than the view context passed
in an earlier call to the IMAPIForm::SetViewContext method . The view context should not be saved.

Some verbs, such as Print, should be modal with respect to the DoVerb call ¾ that is, the indicated
operation must be finished before the DoVerb call returns. Nonmodal verbs can be made to act as
modal verbs by passing in a view context object in lpViewContext for which a call to the
IMAPIViewContext::GetViewStatus method returns the VCSTATUS_MODAL flag.

The handle in hwndParent usually remains valid throughout the DoVerb call, but because it can be
destroyed immediately upon the call's return, forms should not save the handle.

To obtain the RECT structure used by a form's window, call the Windows GetWindowRect function.

See Also

IMAPIForm::SetViewContext method , IMAPIViewContext::GetViewStatus method

 IMAPIForm::GetViewContext

The IMAPIForm::GetViewContext method returns the current view context for a form.

HRESULT GetViewContext(
 LPMAPIVIEWCONTEXT FAR * ppViewContext
)

Parameters

ppViewContext
Output parameter pointing to a variable where the pointer to the view context object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

S_FALSE
The form object doesn't have a view context.

See Also

IMAPIForm::SetViewContext method , IMAPIViewContext : IUnknown interface

 IMAPIForm::SetViewContext

The IMAPIForm::SetViewContext method sets a form view context as the current view context for a
form.

HRESULT SetViewContext(
 LPMAPIVIEWCONTEXT pViewContext
)

Parameters

pViewContext
Input parameter pointing to the view context object to set as current.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IMAPIForm::SetViewContext method to set a particular form view context as
current. A typical implementation of SetViewContext sets up a view advise sink object by calling the
IMAPIViewContext::SetAdviseSink method, so that notifications can be received for the view context,
and calls the IMAPIViewContext::GetViewStatus method for the view context to set as current to
determine which status flags have been set.

A form can have only one view context at a time. If a previous view context exists, the implementation
must call IMAPIViewContext::SetAdviseSink, passing in NULL in the pmnvs parameter, before
returning from the SetViewContext call.

The SetViewContext implementation can also perform other actions based on the GetViewStatus
flags returned. For example, if the VCSTATUS_NEXT and VCSTATUS_PREV flags are set, the
implementation can enable Next and Previous buttons for the view context that it sets as current.

See Also

IMAPIViewContext::GetViewStatus method , IMAPIViewContext::SetAdviseSink method

 IMAPIForm::ShutdownForm

The IMAPIForm::ShutdownForm method closes a form.

HRESULT Close(
 ULONG ulSaveOptions
)

Parameters

ulSaveOptions
Input parameter containing a value that controls how or whether a form's contents are saved when
the form is closed. The following mutually exclusive values can be set:
SAVEOPTS_NOSAVE

Indicates form data should not be saved.
SAVEOPTS_PROMPTSAVE

Prompts the user to save data related to the form if the form has changed.
SAVEOPTS_SAVEIFDIRTY

Indicates data related to the form should be saved if the form has changed. Forms can implement
the SAVEOPTS_SAVEIFDIRTY value with its own or the SAVEOPTS_NOSAVE value's
functionality if no user interface is currently being displayed.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IMAPIForm::ShutdownForm method to close a form object. A typical form
server's implementation of ShutdownForm does the following:

1. Calls the IUnknown::AddRef method for the form's IPersistMessage object so it isn't released
before processing is finished.

2. Handles saving form data as indicated by the flag set in the ulSaveOptions parameter.
3. Destroys the form's window.
4. Releases the form's subobjects.
5. Calls the IMAPIViewAdviseSink::OnShutdown method to update notifications.
6. Calls the IMAPIViewContext::SetAdviseSink method, setting the advise sink pointer to NULL.
7. Calls the MAPIFreeBuffer function to release the form's properties.
8. Releases the IPersistMessage object for which it added a reference in Step 1.
9. Releases all form viewer and message site interfaces.

10. Returns S_OK.

Form viewers can ignore errors returned by ShutdownForm and release the form interface after
making the call.

See Also

IMAPIViewAdviseSink::OnShutdown method

 IMAPIForm::Unadvise

The IMAPIForm::Unadvise method removes a form viewer's registration for notification of form object
changes previously established with a call to the IMAPIForm::Advise method.

HRESULT Unadvise(
 ULONG ulConnection
)

Parameters

ulConnection
Input parameter containing the number of the registration connection returned by a call to
IMAPIForm::Advise.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IMAPIForm::Unadvise method to release the pointer to the view advise sink
object passed in the pAdvise parameter in the previous call to IMAPIForm::Advise, thereby canceling
a notification registration. As part of discarding the pointer to the view advise sink, the view advise
sink's IUnknown::Release method is called. Generally, Release is called during the Unadvise call, but
if another thread is in the process of calling one of the IMAPIViewAdviseSink methods for the view
advise sink object, the Release call is delayed until the method call returns.

See Also

IMAPIForm::Advise method , IMAPIViewAdviseSink : IUnknown interface

 IMAPIFormAdviseSink : IUnknown

The IMAPIFormAdviseSink interface is implemented by form objects, which receive notifications from
form viewers, for notification purposes. Although part of the form object, IMAPIFormAdviseSink is not
an interface for a form object. Hence, client applications should not attempt to use the QueryInterface
method for a form object to query for this interface.

At a Glance

Specified in header file: MAPIFORM.H
Object that supplies this
interface:

Form advise sink object

Corresponding pointer type: LPMAPIFORMADVISESINK
Implemented by: Form objects
Called by: Form viewers

Vtable Order

OnChange Notifies a form about a change in a form viewer's status.
OnActivateNe
xt

Identifies whether the message class of the next message
to display can be handled by the current form.

 IMAPIFormAdviseSink::OnActivateNext

The IMAPIFormAdviseSink::OnActivateNext method identifies whether the message class of the
next message to display can be handled by the current form.

HRESULT OnActivateNext(
 LPCSTR lpszMessageClass,
 ULONG ulMessageStatus,
 ULONG ulMessageFlags,
 LPPERSISTMESSAGE FAR * ppPersistMessage
)

Parameters

lpszMessageClass
Input parameter pointing to a string naming the message class of the current form.

ulMessageStatus
Input parameter containing a bitmask of client- or provider-defined flags, copied from the
PR_MSG_STATUS property of the next message to display, that provides information on the state of
the message.

ulMessageFlags
Input parameter pointing to a bitmask of flags, copied from the PR_MESSAGE_FLAGS property of
the next message to display, that indicates the current state of the message.

ppPersistMessage
Output parameter pointing to a variable where the pointer to the form object used for the new form is
stored, if a new form is required. A pointer to NULL can be returned if the current form object can be
used to display the next message.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

S_FALSE
The form does not handle the message class.

Remarks

Form viewers call the IMAPIFormAdviseSink::OnActivateNext method to find out if the message
class of a message can be handled by the current form object. The form object should return S_OK
and NULL in the ppPersistMessage parameter if it can handle the message class. If it cannot, it should
return S_FALSE.

If the form object can activate message classes other than the base class or the currently loaded class,
it should return S_OK and a pointer to the IPersistMessage object of the appropriate form object for
the message class in the ppPersistMessage parameter. The message in question is then loaded by the
form viewer using the IPersistMessage::Load method of that object.

See Also

IPersistMessage::Load method

 IMAPIFormAdviseSink::OnChange

The IMAPIFormAdviseSink::OnChange method notifies a form object about a change in a form
viewer's status.

HRESULT OnChange(
 ULONG ulDir
)

Parameters

ulDir
Input parameter containing a bitmask of flags that controls handling changes to the form viewer's
status. The following flags can be set:
VCSTATUS_INTERACTIVE

Indicates the form should display a user interface. If this flag is not set, the form should suppress
displaying a user interface even in response to a verb that usually causes a user interface to be
displayed.

VCSTATUS_MODAL
Indicates the form is to be modal to the form viewer.

VCSTATUS_NEXT
Indicates there is a next message in the form viewer.

VCSTATUS_PREV
Indicates there is a previous message in the form viewer.

VCSTATUS_READONLY
Indicates the deletion, submission, and moving operations should be disabled.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IMAPIFormAdviseSink::OnChange method to notify the form object about a
change in a viewer's status. Usually, the only change is setting or clearing the VCSTATUS_NEXT or
VCSTATUS_PREVIOUS flag based on the presence or absence of a next or previous message in the
viewer. The form object then enables or disables any next or previous actions it supports accordingly.

The settings of VCSTATUS_MODAL and VCSTATUS_INTERACTIVE cannot change in a view context
once it has been created.

See Also

IMAPIViewContext::ActivateNext method

 IMAPIFormContainer : IUnknown

The IMAPIFormContainer interface creates and manages form libraries within folders. This interface
is used to create application-specific form libraries.

At a Glance

Specified in header file: MAPIFORM.H
Object that supplies this
interface:

Form container object

Corresponding pointer type: LPMAPIFORMCONTAINER
Implemented by: Form library providers
Called by: Client applications

Vtable Order

InstallForm Installs a form into a form container.
RemoveForm Removes a particular form from a form

container.
ResolveMessageClass Resolves a message class to its form within

a form container and returns a form
information object for that form.

ResolveMultipleMessageCla
sses

Resolves a group of message classes to
their forms within a form container and
returns an array of form information objects
for those forms.

CalcFormPropSet Returns an array of the properties used by
all forms installed within a form container.

GetDisplay Returns the display name of a form
container.

 IMAPIFormContainer::CalcFormPropSet

The IMAPIFormContainer::CalcFormPropSet method returns an array of the properties used by all
forms installed within a form container.

HRESULT CalcFormPropSet(
 ULONG ulFlags,
 LPMAPIFORMPROPARRAY FAR * ppResults
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how the property array in the ppResults
parameter is returned. The following flags can be set:
FORMPROPSET_INTERSECTION

Indicates the returned array contains the intersection of the forms' properties.
FORMPROPSET_UNION

Indicates the returned array contains the union of the forms' properties.
MAPI_UNICODE

Indicates the strings returned in the array are in Unicode format. If the MAPI_UNICODE flag is not
set, the strings are in ANSI format.

ppResults
Output parameter pointing to a variable where the pointer to the returned SMAPIFormPropArray
structure is stored. This structure contains all properties used by the installed forms.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Client applications call the IMAPIFormContainer::CalcFormPropSet method to obtain an array of
properties used by all forms installed within a form container. CalcFormPropSet either takes an
intersection or a union of these forms' property sets, depending on the flag set in the ulFlags
parameter, and it returns an SMAPIFormPropArray structure containing the resulting group of
properties. Passing the PROPSET_UNION flag in ulFlags obtains the results from a union; passing the
PROPSET_INTERSECTION flag obtains the results from an intersection.

If a client passes the MAPI_UNICODE flag in ulFlags, all strings returned are Unicode. Form library
providers that do not support Unicode strings should return MAPI_E_BAD_CHARWIDTH if
MAPI_UNICODE is passed.

CalcFormPropSet acts as does the IMAPIFormMgr::CalcFormPropSet method, except that it
operates on every form registered in a particular container.

See Also

IMAPIFormMgr::CalcFormPropSet method , SMAPIFormPropArray structure

 IMAPIFormContainer::GetDisplay

The IMAPIFormContainer::GetDisplay method returns the display name of a form container.

HRESULT GetDisplay(
 ULONG ulFlags,
 LPTSTR FAR * pszDisplayName
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned string. The
following flag can be set:
MAPI_UNICODE

Indicates the returned string is in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

pszDisplayName
Output parameter pointing to a string containing the display name of the form container.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

 IMAPIFormContainer::InstallForm

The IMAPIFormContainer::InstallForm method installs a form into a form container.

HRESULT InstallForm(
 ULONG ulUIParam,
 ULONG ulFlags,
 LPCTSTR szCfgPathName
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays. The ulUIParam parameter is ignored unless the client application sets the
MAPI_DIALOG flag in the ulFlags parameter. The ulUIParam parameter can be NULL if
MAPI_DIALOG is not also passed.

ulFlags
Input parameter containing a bitmask of flags that controls the installation of the form. The following
flags can be set:
MAPI_DIALOG

Displays a dialog box to provide status or prompt the user for additional information. If this flag is
not set, no dialog box is displayed.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

MAPIFORM_INSTALL_OVERWRITEONCONFLICT
Indicates a previous definition of the form is to be replaced with the definition of the form being
installed. This flag is ignored when MAPI_DIALOG is present.

szCfgPathName
Input parameter containing the path to the form configuration file that describes the form and its
implementation.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_EXTENDED_ERROR
An implementation error occurred; to get the MAPIERROR structure associated with the error, call
the IMAPIFormContainer::GetLastError method.

MAPI_E_USER_CANCEL
The user canceled the installation of the form, typically by clicking the Cancel button in a dialog box.

Remarks

Client applications call the IMAPIFormContainer::InstallForm method to install a form into a specific
form container. The szCfgPathName parameter must contain the path of a form configuration file ¾ that
is, a file with the .CFG extension ¾ that describes the form and its implementation. The ulFlags
parameter specifies:

· That a user interface enabling the user installing the form to specify details of installation is
displayed, if the MAPI_DIALOG flag is set.

· That the previous form definition is overlaid with the form being installed, if the
MAPIFORM_INSTALL_OVERWRITEONCONFLICT flag is set. Otherwise, the form installation is
merged with the current form description, if one exists.

· That MAPIFORM_INSTALL_OVERWRITEONCONFLICT is ignored when MAPI_DIALOG is
present.

· That the absence of MAPIFORM_INSTALL_OVERWRITEONCONFLICT in the flag set means that a
merge will be done. Any new platforms in the .CFG file not currently present in the form description
will be installed and no other changes will take place.

· That the path to the form configuration file is a Unicode string, if the MAPI_UNICODE flag is set.

Form library providers implementing InstallForm should fill in a MAPIERROR structure and return
MAPI_E_EXTENDED_ERROR if any of the following conditions occur:

· The configuration file is not found.
· The configuration file is not readable.
· The configuration file is invalid.

Clients should call IMAPIFormContainer::GetLastError if InstallForm returns
MAPI_E_EXTENDED_ERROR and should check the returned MAPIERROR structure to determine the
condition causing the error.

 IMAPIFormContainer::RemoveForm

The IMAPIFormContainer::RemoveForm method removes a particular form from a form container.

HRESULT RemoveForm(
 LPCSTR szMessageClass
)

Parameters

szMessageClass
Input parameter containing a string naming the message class of the form to be removed from the
form container. Message class names are always ANSI strings, never Unicode.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The message class passed in the szMessageClass parameter does not match the message class
for any form in the form container.

 IMAPIFormContainer::ResolveMessageClass

The IMAPIFormContainer::ResolveMessageClass method resolves a message class to its form
within a form container and returns a form information object for that form.

HRESULT ResolveMessageClass(
 LPCSTR szMessageClass,
 ULONG ulFlags,
 LPMAPIFORMINFO FAR * ppforminfo
)

Parameters

szMessageClass
Input parameter containing a string naming the message class being resolved.

ulFlags
Input parameter containing a bitmask of flags that controls how the message class is resolved. The
following flag can be set:
MAPIFORM_EXACTMATCH

Indicates only message class strings that are an exact match should be resolved.
ppforminfo

Output parameter pointing to a variable where a pointer to the returned form information object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The message class passed in the szMessageClass parameter does not match the message class
for any form in the form container.

Remarks

Client applications call the IMAPIFormContainer::ResolveMessageClass method to resolve a
message class to a form within a form container. The form information object returned in the ppforminfo
parameter provides further access to the properties of the form with the given message class.

To resolve a message class to a form, a client passes in the name of the message class to be
resolved, for example IPM.HelpDesk.Software. To force the resolution to be exact ¾ that is, to prevent
resolution to a superclass of the message class ¾ the MAPIFORM_EXACTMATCH flag can be passed
in the ulFlags parameter.

Message class names are always ANSI strings, never Unicode.

The class identifier for the resolved message class is returned as part of the form information object. A
client should not work on the assumption that the class identifier exists in the OLE library until after the
client has called either the IMAPIFormMgr::PrepareForm method or the
IMAPIFormMgr::CreateForm method.

See Also

IMAPIFormInfo : IMAPIProp interface , IMAPIFormMgr::CreateForm method ,
IMAPIFormMgr::PrepareForm method

 IMAPIFormContainer::ResolveMultipleMessageClasses

The IMAPIFormContainer::ResolveMultipleMessageClasses method resolves a group of message
classes to their forms within a form container and returns an array of form information objects for those
forms.

HRESULT ResolveMultipleMessageClasses (
 LPSMESSAGECLASSARRAY pMsgClassArray,
 ULONG ulFlags,
 LPSMAPIFORMINFOARRAY FAR * ppfrminfoarray
)

Parameters

pMsgClassArray
Input parameter pointing to an array containing the names of the message classes to resolve.

ulFlags
Input parameter containing a bitmask of flags that controls how the message classes are resolved.
The following flag can be set:
MAPIFORM_EXACTMATCH

Indicates only message class strings that are an exact match should be resolved.
ppfrminfoarray

Output parameter pointing to a variable where the pointer to an array of form information objects is
stored. If a client application passes NULL in the pMsgClassArray parameter, the ppfrminfoarray
parameter contains form information objects for all forms in the container.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMAPIFormContainer::ResolveMultipleMessageClasses method to
resolve a group of message classes to forms within a form container. The array of form information
objects returned in ppfrminfoarray provides further access to each of the forms' properties.

To resolve a group of message classes to forms, a client passes in an array of message class names
to be resolved. To force the resolution to be exact ¾ that is, to prevent resolution to a superclass of the
message class ¾ the MAPIFORM_EXACTMATCH flag can be passed in the ulFlags parameter.

Message class names are always ANSI strings, never Unicode.

If a message class cannot be resolved to a form, NULL is returned for that message class in the form
information array. Therefore, even if the method returns S_OK, clients should not work on the
assumption that all message classes have been successfully resolved. Instead, clients should check
the values in the returned array.

See Also

IMAPIFormContainer::ResolveMessageClass method

 IMAPIFormFactory : IUnknown

The IMAPIFormFactory interface supports the use of configurable run-time forms in distributed
computing environments. This interface is based on the OLE IClassFactory interface, and objects
implementing IMAPIFormFactory should also inherit from IClassFactory. For more information on
IClassFactory, see the OLE Programmer's Reference.

At a Glance

Specified in header file: MAPIFORM.H
Object that supplies this
interface:

Form factory object

Corresponding pointer type: LPMAPIFORMFACTORY
Implemented by: Form servers
Called by: Form viewers

Vtable Order

CreateClassFactor
y

Returns a class factory object for a form.

LockServer Keeps an open form server in memory.

 IMAPIFormFactory::CreateClassFactory

The IMAPIFormFactory::CreateClassFactory method returns a class factory object for a form.

HRESULT CreateClassFactory(
 REFCLSID clsidForm,
 ULONG ulFlags,
 LPCLASSFACTORY FAR * lppClassFactory
)

Parameters

clsidForm
Input parameter containing the message class identifier of the form for which to create the class
factory.

ulFlags
Reserved; must be zero.

lppClassFactory
Output parameter pointing to a variable where the returned class factory object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IMAPIFormFactory::CreateClassFactory method to obtain a class factory for a
specific form from a form run-time package. CreateClassFactory can return the same object for
CreateClassFactory on multiple calls for the same message class identifier; creating a new instance is
not required. The class factory returned is used to generate a new instance of the form.

 IMAPIFormFactory::LockServer

The IMAPIFormFactory::LockServer method keeps an open form server in memory.

HRESULT LockServer(
 ULONG ulFlags,
 ULONG fLockServer
)

Parameters

ulFlags
Reserved; must be zero.

fLockServer
Input parameter containing a variable set to TRUE if the lock count is to be incremented, and FALSE
otherwise.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IMAPIFormFactory::LockServer method to keep an open form server
application in memory. Keeping the form server in memory improves its performance when form
objects are created and released frequently.

 IMAPIFormInfo : IMAPIProp

The IMAPIFormInfo interface gives client applications access to useful properties particular to form
definition. By keeping form information in a separate object, the form library provider can describe a
form to a client without activating the form.

Unlike most interfaces defined in the MAPIFORM.H header file, IMAPIFormInfo inherits from the
IMAPIProp interface, as it exports most form information through calls to the IMAPIProp::GetProps
method.

At a Glance

Specified in header file: MAPIFORM.H
Object that supplies this
interface:

Form information object

Corresponding pointer type: LPMAPIFORMINFO
Implemented by: Form library providers
Transaction model: Non-transacted
Called by: Client applications

Vtable Order

CalcFormPropSet Returns a pointer to the complete set of properties
used by a form.

CalcVerbSet Returns a pointer to the complete set of verbs used
by a form.

MakeIconFromBin
ary

Builds an icon from an icon property of a form.

SaveForm Saves a description of a particular form in a
configuration file.

OpenFormContain
er

Returns a pointer to the form container in which a
particular form is installed.

 IMAPIFormInfo::CalcFormPropSet

The IMAPIFormInfo::CalcFormPropSet method returns a pointer to the complete set of properties
used by a form.

HRESULT CalcFormPropSet (
 ULONG ulFlags,
 LPMAPIFORMPROPARRAY FAR * ppFormPropArray
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

ppFormPropArray
Output parameter pointing to a variable where the pointer to the returned SMAPIFormPropArray
structure is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

 IMAPIFormInfo::CalcVerbSet

The IMAPIFormInfo::CalcVerbSet method returns a pointer to the complete set of verbs used by a
form.

HRESULT CalcVerbSet(
 ULONG ulFlags,
 LPMAPIVERBARRAY FAR * ppMAPIVerbArray
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

ppMAPIVerbArray
Output parameter pointing to a variable where the pointer to the returned SMAPIVerbArray
structure is stored. The SMAPIVerbArray structure contains the form's verbs.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMAPIFormInfo::CalcVerbSet method to obtain a pointer to the set of verbs
used by a form. Within the SMAPIVerbArray structure returned in the ppMAPIVerbArray parameter,
the verbs are returned in order of index number; each verb's index is found in its lVerb member.

See Also

SMAPIVerbArray structure

 IMAPIFormInfo::MakeIconFromBinary

The IMAPIFormInfo::MakeIconFromBinary method builds an icon from an icon property of a form.

HRESULT MakeIconFromBinary(
 ULONG nPropID,
 HICON FAR * phicon
)

Parameters

nPropID
Input parameter containing the property identifier for an icon property.

phicon
Output parameter pointing to the returned icon.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMAPIFormInfo::MakeIconFromBinary method to build an icon from an
icon property of a form. In the nPropID parameter, MakeIconFromBinary takes the property identifier
of any of the icon properties of a form. Using this property identifier, it builds an icon that can be
displayed in table views that include property columns for icons.

 IMAPIFormInfo::OpenFormContainer

The IMAPIFormInfo::OpenFormContainer method returns a pointer to the form container in which a
particular form is installed.

HRESULT OpenFormContainer (
 LPMAPIFORMCONTAINER FAR * ppformcontainer
)

Parameters

ppformcontainer
Output parameter pointing to a variable where the pointer to the returned form container object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

 IMAPIFormInfo::SaveForm

The IMAPIFormInfo::SaveForm method saves a description of a particular form in a configuration file.

HRESULT SaveForm(
 LPCTSTR szFileName
)

Parameters

szFileName
Input parameter containing a string naming the form descriptor message file where the form
description is saved. This filename must have the .FDM extension.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_EXTENDED_ERROR
The configuration file could not be written. To get the MAPIERROR structure associated with the
error, call the IMAPIProp::GetLastError method.

MAPI_E_NO_SUPPORT
SaveForm was probably called to save a form in the local form container. SaveForm is not
supported on the local form container.

Remarks

Client applications call the IMAPIFormInfo::SaveForm method to save a description of the current
form in the file with the given filename. SaveForm creates a configuration file; the filename passed in
the szFileName parameter must have the extension .FDM.

Forms can be reinstalled by being selected from a list of form descriptor messages in a dialog box
displayed by form library providers. The recommended extension for form descriptor messages
is .FDM.

Clients should call IMAPIProp::GetLastError if SaveForm returns MAPI_E_EXTENDED_ERROR and
should check the returned MAPIERROR structure to determine the condition causing the error.

 IMAPIFormMgr : IUnknown

The IMAPIFormMgr interface is used by form viewers to get information about and activate form
servers.

At a Glance

Specified in header file: MAPIFORM.H
Object that supplies this
interface:

Form manager object

Corresponding pointer type: LPMAPIFORMMGR
Implemented by: Form library providers
Called by: Form viewers

Vtable Order

LoadForm Launches a form to open an existing
message.

ResolveMessageClass Resolves a message class to its form within
a form container and returns a form
information object for that form.

ResolveMultipleMessageCl
asses

Resolves a group of message classes to
their forms within a form container and
returns an array of form information objects
for those forms.

CalcFormPropSet Returns an array of the properties used by
a group of forms.

CreateForm Launches a form to create a new message
based on that form.

SelectForm Presents a dialog box that enables the user
to select a form and returns a form
information object describing that form.

SelectMultipleForms Presents a dialog box that enables the user
to select multiple forms and returns an
array of form information objects describing
those forms.

SelectFormContainer Presents a dialog box that enables the user
to select a form container and returns an
interface for the container object the user
selected.

OpenFormContainer Opens an IMAPIFormContainer interface
for a specific form container.

PrepareForm Downloads a form for launching.
IsInConflict Determines whether a form can handle its

own message conflicts.

 IMAPIFormMgr::CalcFormPropSet

The IMAPIFormMgr::CalcFormPropSet method returns an array of the properties used by a group of
forms.

HRESULT CalcFormPropSet (
 LPSMAPIFORMINFOARRAY pfrminfoarray,
 ULONG ulFlags,
 LPMAPIFORMPROPARRAY FAR * ppResults
)

Parameters

pfrminfoarray
Input parameter pointing to an array of form information objects identifying the forms for which to
return properties.

ulFlags
Input parameter containing a bitmask of flags that controls how the property array in the ppResults
parameter is returned. The following flags can be set:
FORMPROPSET_INTERSECTION

Indicates the returned array contains the intersection of the form's properties.
FORMPROPSET_UNION

Indicates the returned array contains the union of the form's properties.
MAPI_UNICODE

Indicates the strings returned in the array are in Unicode format. If the MAPI_UNICODE flag is not
set, the strings are in ANSI format.

ppResults
Output parameter pointing to a variable where the pointer to the returned SMAPIFormPropArray
structure is stored. This structure contains the properties used by the forms.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Form viewers call the IMAPIFormContainer::CalcFormPropSet method to obtain an array of the
properties used by a group of forms. CalcFormPropSet either takes an intersection or a union of these
forms' property sets, depending on the flag set in the ulFlags parameter, and it returns an
SMAPIFormPropArray structure containing the resulting group of properties. Passing the
PROPSET_UNION flag in ulFlags obtains the results from a union; passing the
PROPSET_INTERSECTION flag obtains the results from an intersection.

If a form viewer passes the MAPI_UNICODE flag in ulFlags, all strings returned are Unicode. Form
library providers that do not support Unicode strings should return MAPI_E_BAD_CHARWIDTH if
MAPI_UNICODE is passed.

See Also

SMAPIFormPropArray structure

 IMAPIFormMgr::CreateForm

The IMAPIFormMgr::CreateForm method launches a form to create a new message based on that
form.

HRESULT CreateForm(
 ULONG ulUIParam,
 ULONG ulFlags,
 IMAPIFormInfo pfrminfoToActivate,
 REFIID refiidToAsk,
 LPVOID FAR * ppvObj
)

Parameters

ulUIParam
Input parameter containing the handle to the parent window for the progress indicator displayed
while the form is launched. The ulUIParam parameter is ignored unless the MAPI_DIALOG flag is
set in the ulFlags parameter.

ulFlags
Input parameter containing a bitmask of flags that controls how the form is launched. The following
flag can be set:
MAPI_DIALOG

Displays a user interface to provide status or prompt the user for additional information. If this flag
is not set, no user interface is displayed.

pfrminfoToActivate
Input parameter pointing to the form information object used to launch the form.

refiidToAsk
Input parameter pointing to the interface identifier (IID) for the interface to be returned for the form
object created. The refiidToAsk parameter must not be NULL.

ppvObj
Output parameter pointing to a variable where the pointer to the returned interface is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_INTERFACE
The requested interface is not supported by the form object.

Remarks

Form viewers call the IMAPIFormMgr::CreateForm method to launch a form to create a new message
based on the form. CreateForm launches the form by creating an instance of the form server for that
form as described in the given form information object. If required, CreateForm calls
IMAPIFormMgr::PrepareForm to download the form server code to the user's disk.

The pfrminfoToActivate parameter must point to a form information object that has been correctly
resolved.

After the form has been launched, the calling form viewer must set up a message using the
IPersistMessage interface and can optionally set up a view context for the form.

See Also

IMAPIViewContext : IUnknown interface , IPersistMessage : IUnknown interface

 IMAPIFormMgr::IsInConflict

The IMAPIFormMgr::IsInConflict method determines whether a form can handle its own message
conflicts.

HRESULT IsInConflict(
 ULONG ulMessageFlags,
 ULONG ulMessageStatus,
 LPCSTR szMessageClass
 LPMAPIFOLDER pFolderFocus
)

Parameters

ulMessageFlags
Input parameter pointing to a bitmask of flags, copied from the PR_MESSAGE_FLAGS property of a
message, that indicates the current state of the message.

ulMessageStatus
Input parameter containing a bitmask of client-defined or provider-defined flags, copied from the
PR_MSG_STATUS property of a message, that provides further information on the state of the
message.

szMessageClass
Input parameter containing a string naming the message's message class.

pFolderFocus
Input parameter pointing to the folder that contains the message. The pFolderFocus parameter can
be NULL if such a folder doesn't exist, for example, in a case where the message is embedded in
another message.

Return Values

S_OK
The form does not handle its own message conflicts.

S_FALSE
The form handles its own message conflicts, or the message for which information was passed is
not in conflict.

Remarks

Form viewers call the IMAPIFormMgr::IsInConflict method to discover if a particular form does not
handle its own message conflicts. IsInConflict checks the bitmasks in the ulMessageFlags and
ulMessageStatus parameters for the presence of a conflict flag. If a conflict flag is set, IsInConflict
resolves the message class passed in the szMessageClass parameter and returns S_OK if the form
does not handle its own conflicts. IsInConflict returns S_FALSE if the form handles its own conflicts.

A form that does not handle its own conflicts must be launched using the IMAPIFormMgr::LoadForm
method and cannot reuse an existing form object.

See Also

IMAPIFormAdviseSink::OnActivateNext method , PR_MESSAGE_FLAGS property,
PR_MSG_STATUS property

 IMAPIFormMgr::LoadForm

The IMAPIFormMgr::LoadForm method launches a form to open an existing message.

HRESULT LoadForm(
 ULONG ulUIParam,
 ULONG ulFlags,
 LPCSTR lpszMessageClass,
 ULONG ulMessageStatus,
 ULONG ulMessageFlags,
 LPMAPIFOLDER pFolderFocus,
 LPMAPIMESSAGESITE pMessageSite,
 LPMESSAGE pmsg,
 LPMAPIVIEWCONTEXT pViewContext,
 REFIID riid,
 LPVOID FAR * ppvObj
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the progress indicator displayed
while the form is launched. The ulUIParam parameter is ignored unless the MAPI_DIALOG flag is
set in the ulFlags parameter.

ulFlags
Input parameter containing a bitmask of flags that controls how the form is launched. The following
flags can be set:
MAPI_DIALOG

Displays a user interface to provide status or prompt the user for additional information. If this flag
is not set, no user interface is displayed.

MAPIFORM_EXACTMATCH
Indicates only message class strings that are an exact match should be resolved.

lpszMessageClass
Input parameter pointing to a string naming the message class of the message to be loaded. If NULL
is passed in the lpszMessageClass parameter, the message class is determined from the message
pointed to by the pmsg parameter.

ulMessageStatus
Input parameter containing a bitmask of client- or provider-defined flags, copied from the
PR_MSG_STATUS property of the message, that provides information on the state of the message.
The ulMessageStatus parameter must be set if lpszMessageClass is non-null; otherwise
ulMessageStatus is ignored.

ulMessageFlags
Input parameter pointing to a bitmask of flags, copied from the PR_MESSAGE_FLAGS property of
the message, that indicates the current state of the message. The ulMessageFlags parameter must
be set if lpszMessageClass is non-null; otherwise ulMessageFlags is ignored.

pFolderFocus
Input parameter pointing to the folder that directly contains the message. The pFolderFocus
parameter can be NULL if such a folder doesn't exist, for example if the message is embedded in
another message.

pMessageSite
Input parameter pointing to the message site of the message.

pmsg
Input parameter pointing to the message.

pViewContext
Input parameter pointing to the view context for the message. The pViewContext parameter can be
NULL.

riid
Input parameter containing the interface identifier (IID) of the interface to be used for the returned
form object. The refiidToAsk parameter must not be NULL.

ppvObj
Output parameter pointing to a variable where the pointer to the returned interface is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_INTERFACE
The form does not support the requested interface.

MAPI_E_NOT_FOUND
The message class passed in lpszMessageClass does not match the message class for any form in
the form library.

Remarks

Form viewers call the IMAPIFormMgr::LoadForm method to launch a form for an existing message.
LoadForm launches the form object, loads the message into the form object, sets up the appropriate
view context if necessary, and returns the requested interface for the form object.

The pFolderFocus parameter points to the folder containing the message. If the message is embedded
within another message, pFolderFocus should be NULL. If NULL is passed in lpszMessageClass, then
the implementation obtains the message's message class and its PR_MSG_STATUS and
PR_MESSAGE_FLAGS properties. If a message class string is provided in lpszMessageClass, then
the implementation must use the values as ulMessageStatus and ulMessageFlags.

See Also

PR_MESSAGE_FLAGS property, PR_MSG_STATUS property

 IMAPIFormMgr::OpenFormContainer

The IMAPIFormMgr::OpenFormContainer method opens an IMAPIFormContainer interface for a
specific form container.

HRESULT OpenFormContainer(
 HFRMREG hfrmreg,
 LPUNKNOWN lpunk,
 LPMAPIFORMCONTAINER FAR * lppfcnt
)

Parameters

hfrmreg
Input parameter containing an HFRMREG enumeration indicating the form library to open ¾ that is,
the form container to open. A HFRMREG enumeration is an enumeration specific to a form library
provider. Possible HFRMREG values include:
HFRMREG_DEFAULT

Indicates a convenient form container.
HFRMREG_FOLDER

Indicates a folder container.
HFRMREG_PERSONAL

Indicates the container for the default message store.
HFRMREG_LOCAL

Indicates the local form container.
lpunk

Input parameter pointing to the object for which the interface is opened. The lpunk parameter must
be NULL unless the value for the hfrmreg parameter requires an object pointer.

lppfcnt
Output parameter pointing to a variable where the pointer to the returned form container object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_INTERFACE
The object pointed to by lpUnk does not support the required interface.

Remarks

Form viewers call the IMAPIFormMgr::OpenFormContainer method to open an
IMAPIFormContainer interface for a specific form container. This interface can then be used for
installing forms into and removing forms from a form container.

If the value in hfrmreg is HFRMREG_FOLDER, which indicates a folder container, the interface
identifier used in lpunk must be non-null and must allow QueryInterface calls to an IMAPIFolder
interface.

To open the local form container, a call to OpenFormContainer or the
MAPIOpenLocalFormContainer function must be used; the IMAPIFormMgr::SelectFormContainer
method cannot be used to enable the user to select the local form container.

See Also

IMAPIFormContainer::InstallForm method , IMAPIFormMgr::SelectFormContainer method ,

MAPIOpenLocalFormContainer function

 IMAPIFormMgr::PrepareForm

The IMAPIFormMgr::PrepareForm method downloads a form for launching.

HRESULT PrepareForm(
 ULONG ulUIParam,
 ULONG ulFlags,
 LPMAPIFORMINFO pfrmiInfo
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the progress indicator displayed
while the form is downloaded. The ulUIParam parameter is ignored unless the MAPI_DIALOG flag is
set in the ulFlags parameter.

ulFlags
Input parameter containing a bitmask of flags that controls how the form is downloaded. The
following flag can be set:
MAPI_DIALOG

Displays a user interface to provide status or prompt the user for additional information. If this flag
is not set, no user interface is displayed.

pfrmiInfo
Input parameter pointing to a form information object for the form to be downloaded.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IMAPIFormMgr::PrepareForm method to download a form from a form
container for launching. Most form viewers do not need to call PrepareForm as both the
IMAPIFormMgr::CreateForm and IMAPIFormMgr::LoadForm methods call PrepareForm if
necessary.

PrepareForm can be used to obtain the dynamic-link libraries (DLLs) and other files associated with a
form to modify them. If the modified form is loaded back into its form container, it must be reinstalled.

See Also

IMAPIFormMgr::CreateForm method , IMAPIFormMgr::LoadForm method

 IMAPIFormMgr::ResolveMessageClass

The IMAPIFormMgr::ResolveMessageClass method resolves a message class to its form within a
form container and returns a form information object for that form.

HRESULT ResolveMessageClass(
 LPCSTR szMsgClass,
 ULONG ulFlags,
 LPMAPIFOLDER pFolderFocus,
 LPMAPIFORMINFO FAR * ppResult
)

Parameters

szMsgClass
Input parameter containing a string naming the message class being resolved.

ulFlags
Input parameter containing a bitmask of flags that controls how the message class is resolved. The
following flag can be set:
MAPIFORM_EXACTMATCH

Indicates only message class strings that are an exact match should be resolved.
pFolderFocus

Input parameter pointing to the folder containing the message being resolved. The pFolderFocus
parameter can be NULL.

ppResult
Output parameter pointing to a variable where the pointer to a returned form information object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The message class passed in the szMsgClass parameter does not match the message class for any
form in the form library.

Remarks

Form viewers call the IMAPIFormMgr::ResolveMessageClass method to resolve a message class to
its form within a form container. The form information object returned in the ppResult parameter
provides further access to the properties of the form with the given message class.

To resolve a message class to a form, a form viewer passes in the name of the message class to be
resolved, for example IPM.HelpDesk.Software. To force the resolution to be exact ¾ that is, to prevent
resolution to a superclass of the message class ¾ the MAPIFORM_EXACTMATCH flag can be passed
in the ulFlags parameter. The pFolderFocus parameter should point to the folder containing the
message whose class is being resolved; it can, however, be NULL, in which case the message-class
resolution process does not search a folder container.

The order of the containers searched depends on the implementation of the form library provider. The
default library searches first the local container, then the folder container for the passed-in folder, the
personal form container, and finally the organization container.

Message class names are always ANSI strings, never Unicode.

The class identifier for the resolved message class is returned as part of the form information object. A
form viewer should not work on the assumption that the class identifier exists in the OLE library until

after the form viewer has called either the IMAPIFormMgr::PrepareForm method or the
IMAPIFormMgr::CreateForm method.

See Also

IMAPIFormInfo : IMAPIProp interface , IMAPIFormMgr::CreateForm method ,
IMAPIFormMgr::PrepareForm method

 IMAPIFormMgr::ResolveMultipleMessageClasses

The IMAPIFormMgr::ResolveMultipleMessageClasses method resolves a group of message
classes to their forms within a form container and returns an array of form information objects for those
forms.

HRESULT ResolveMultipleMessageClasses(
 LPSMESSAGECLASSARRAY pMsgClasses,
 ULONG ulFlags,
 LPMAPIFOLDER pFolderFocus,
 LPSMAPIFORMINFOARRAY FAR * ppfrminfoarray
)

Parameters

pMsgClasses
Input parameter pointing to an array containing the names of the message classes to resolve.

ulFlags
Input parameter containing a bitmask of flags that controls how the message classes are resolved.
The following flag can be set:
MAPIFORM_EXACTMATCH

Indicates only message class strings that are an exact match should be resolved.
pFolderFocus

Input parameter pointing to the folder containing the form whose message class is being resolved.
The pFolderFocus parameter can be NULL.

ppfrminfoarray
Output parameter pointing to a variable where the pointer to an array of form information objects is
stored. If a form viewer passes NULL in the pMsgClasses parameter, the ppfrminfoarray parameter
contains form information objects for all forms in the container.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IMAPIFormMgr::ResolveMultipleMessageClasses method to resolve a group
of message classes to forms within a form container. The array of form information objects returned in
ppfrminfoarray provides further access to each of the forms' properties.

To resolve a group of message classes to forms, a form viewer passes in an array of message class
names to be resolved. To force the resolution to be exact ¾ that is, to prevent resolution to a
superclass of the message class ¾ the MAPIFORM_EXACTMATCH flag can be passed in the ulFlags
parameter.

Message class names are always ANSI strings, never Unicode.

If a message class cannot be resolved to a form, NULL is returned for that message class in the form
information array. Therefore, even if the method returns S_OK, form viewers should not work on the
assumption that all message classes have been successfully resolved. Instead, form viewers should
check the values in the returned array.

See Also

IMAPIFormMgr::ResolveMessageClass method

 IMAPIFormMgr::SelectForm

The IMAPIFormMgr::SelectForm method presents a dialog box that enables the user to select a form
and returns a form information object describing that form.

HRESULT SelectForm(
 ULONG ulUIParam,
 ULONG ulFlags,
 LPCTSTR pszTitle,
 LPMAPIFOLDER pfld,
 LPMAPIFORMINFO FAR * ppfrminfoReturned
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the dialog box displayed.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in strings. The
following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

pszTitle
Input parameter pointing to a string containing the caption of the dialog box. If the pszTitle parameter
is NULL, the form library provider supplies a default caption.

pfld
Input parameter pointing to the folder from which to select the form. If the pfld parameter is NULL,
the form can be selected from the local, personal, or organization form container.

ppfrminfoReturned
Output parameter pointing to a pointer to the returned form information object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by clicking the Cancel button in the dialog box.

Remarks

Form viewers call the IMAPIFormMgr::SelectForm method to first present a dialog box that enables
the user to select a form and then to retrieve a form information object describing the selected form.
The dialog box constrains the user to select a single form.

The SelectForm dialog box only displays forms that are not hidden, that is, that have their hidden
properties clear. If a form viewer passes the MAPI_UNICODE flag in the ulFlags parameter, all strings
are Unicode. Form library providers that do not support Unicode strings should return
MAPI_E_BAD_CHARWIDTH if MAPI_UNICODE is passed.

 IMAPIFormMgr::SelectMultipleForms

The IMAPIFormMgr::SelectMultipleForms method presents a dialog box that enables the user to
select multiple forms and returns an array of form information objects describing those forms.

HRESULT SelectMultipleForms(
 ULONG ulUIParam,
 ULONG ulFlags,
 LPCTSTR pszTitle,
 LPMAPIFOLDER pfld,
 LPMAPIFORMINFOARRAY pfrminfoarray,
 LPMAPIFORMINFOARRAY FAR * ppfrminfoarray
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the dialog box displayed.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in strings. The
following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

pszTitle
Input parameter pointing to a string containing the caption of the dialog box. If the pszTitle parameter
is NULL, the form library provider that provides the forms supplies a default caption.

pfld
Input parameter pointing to the folder from which to select the forms. If the pfld parameter is NULL,
the forms are selected from the local, personal, or organization form container.

pfrminfoarray
Input parameter pointing to an array of form information objects that are preselected for the user.

ppfrminfoarray
Output parameter pointing to a variable where the pointer to the returned array of form information
objects is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by clicking the Cancel button in the dialog box.

Remarks

Form viewers call the IMAPIFormMgr::SelectMultipleForms method to first present a dialog box that
enables the user to select multiple forms and then to retrieve an array of form information objects
describing the selected forms.

The SelectMultipleForms dialog box displays all forms, whether or not they are hidden ¾ that is,
whether or not their hidden properties are clear. If a form viewer passes the MAPI_UNICODE flag in
the ulFlags parameter, all strings are Unicode. Form library providers that do not support Unicode

strings should return MAPI_E_BAD_CHARWIDTH if MAPI_UNICODE is passed.

 IMAPIFormMgr::SelectFormContainer

The IMAPIFormMgr::SelectFormContainer method presents a dialog box that enables the user to
select a form container and returns an interface for the container object the user selected.

HRESULT SelectFormContainer(
 ULONG ulUIParam,
 ULONG ulFlags,
 LPMAPIFORMCONTAINER FAR * lppfcnt
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the dialog box displayed.

ulFlags
Input parameter containing a bitmask of flags that controls how the form library is selected ¾ that is,
how the form container is selected. The following flags can be set:
MAPIFORM_SELECT_ALL_REGISTRIES

Indicates selection can be made from all containers. This type of selection is the default.
MAPIFORM_SELECT_FOLDER_REGISTRY_ONLY

Indicates selection can be made only from folder containers.
MAPIFORM_SELECT_NON_FOLDER_REGISTRY_ONLY

Indicates selection can be made only from containers not associated with folders.
lppfcnt

Output parameter pointing to a variable where the pointer to the returned interface is stored. This
interface is for the container object selected by the user.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers commonly call the IMAPIFormMgr::SelectFormContainer method to select a form
container into which a form is installed. SelectFormContainer cannot be used to select the local form
container, which has the value HFRMREG_LOCAL.

 IMAPIMessageSite : IUnknown

The IMAPIMessageSite interface manipulates messages and is implemented by the form viewer code
that responds to such manipulation.

At a Glance

Specified in header file: MAPIFORM.H
Object that supplies this
interface:

Message site object

Corresponding pointer type: LPMAPIMESSAGESITE
Implemented by: Form viewers
Called by: Form objects

Vtable Order

GetSession Returns the MAPI session in which the current message
was created or opened.

GetStore Returns the message store containing the current
message, if such a store exists.

GetFolder Returns the folder in which the current message was
created or opened, if such a folder exists.

GetMessage Returns the current message.
GetFormMana
ger

Returns a form manager interface, which a form server
can use to launch another form server.

NewMessage Creates a new message.
CopyMessage Copies the current message to a folder.
MoveMessage Moves the current message to a folder.
DeleteMessage Deletes the current message.
SaveMessage Requests that the current message be saved.
SubmitMessag
e

Requests that the current message be submitted to the
MAPI spooler.

GetSiteStatus Returns information from a message site object about the
message site's capabilities for the current message.

 IMAPIMessageSite::CopyMessage

The IMAPIMessageSite::CopyMessage method copies the current message to a folder.

HRESULT CopyMessage(
 LPMAPIFOLDER pFolderDestination
)

Parameters

pFolderDestination
Input parameter pointing to the folder where the message is copied.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT
The operation is not supported by this message site.

Remarks

Form servers call the IMAPIMessageSite::CopyMessage method to copy the current message to a
new folder. CopyMessage does not change the message currently being displayed to the user, and no
interface for the newly created message is returned to the form.

A typical implementation of CopyMessage does the following:

1. Creates the new message the current message is copied to.
2. Calls the IPersistMessage::Save method with a pointer to the new message in the pMessage

parameter and FALSE in the fSameAsLoad parameter.
3. Calls the IPersistMessage::SaveCompleted method passing NULL for its pMessage parameter.
4. Calls the IMAPIProp::SaveChanges method on the new message.

See Also

IMAPIProp::SaveChanges method , IPersistMessage::Save method ,
IPersistMessage::SaveCompleted method

 IMAPIMessageSite::DeleteMessage

The IMAPIMessageSite::DeleteMessage method deletes the current message.

HRESULT DeleteMessage(
 LPMAPIVIEWCONTEXT pViewContext,
 LPCRECT prcPosRect
)

Parameters

pViewContext
Input parameter pointing to a view context object.

prcPosRect
Input parameter pointing to a RECT structure containing the current form's window size and position.
The next form displayed also uses this window rectangle.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT
The operation is not supported by this message site.

Remarks

Form servers call the IMAPIMessageSite::DeleteMessage method to delete the message the form is
currently attached to. If a form viewer's implementation of DeleteMessage moves to the next message
after deleting a message, it should call the IMAPIViewContext::ActivateNext method passing the
VCDIR_DELETE flag prior to performing the actual deletion. If a form viewer's implementation of
DeleteMessage moves the deleted message, for example to a Deleted Items folder, it must save
changes to the message if the message has been modified.

Following the return of DeleteMessage, form objects must check for a new message and then dismiss
themselves if none exists. To determine whether a message DeleteMessage acted on is deleted or
moved to a Deleted Items folder, a form server can call the IMAPIMessageSite::GetSiteStatus
method and check if the DELETE_IS_MOVE flag was returned.

A typical implementation of DeleteMessage does the following:

1. If moving the message, it calls the IPersistMessage::Save method passing NULL for its pMessage
parameter and TRUE for its fSameAsLoad parameter.

2. It calls the IMAPIViewContext::ActivateNext method passing the VCDIR_DELETE flag in its ulDir
parameter.

3. If the ActivateNext call failed, it returns. If ActivateNext returned S_FALSE, it calls the
IPersistMessage::HandsOffMessage method.

4. It deletes or moves the message.

To obtain the RECT structure used by a form's window, call the Windows GetWindowRect function.

See Also

IMAPIMessageSite::GetSiteStatus method , IMAPIViewContext::ActivateNext method ,
IPersistMessage::HandsOffMessage method , IPersistMessage::Save method

 IMAPIMessageSite::GetFolder

The IMAPIMessageSite::GetFolder method returns the folder in which the current message was
created or opened, if such a folder exists.

HRESULT GetFolder(
 LPMAPIFOLDER FAR * ppFolder
)

Parameters

ppFolder
Output parameter pointing to a pointer to the returned folder.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

S_FALSE
No folder exists for the message.

 IMAPIMessageSite::GetFormManager

The IMAPIMessageSite::GetFormManager method returns a form manager interface, which a form
server can use to launch another form server.

HRESULT GetFormManager(
 LPMAPIFORMMGR FAR * ppFormMgr
)

Parameters

ppFormMgr
Output parameter pointing to a pointer to the returned form manager interface.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

 IMAPIMessageSite::GetMessage

The IMAPIMessageSite::GetMessage method returns the current message.

HRESULT GetMessage(
 LPMESSAGE FAR * ppmsg
)

Parameters

ppmsg
Output parameter pointing to a pointer to the returned interface for the message.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

S_FALSE
No message currently exists for the calling form.

Remarks

Forms call the IMAPIMessageSite::GetMessage method to obtain a message interface for the current
message. The current message is the same message as was previously passed in the
IPersistMessage::InitNew, IPersistMessage::Load, or IPersistMessage::SaveCompleted method.

GetMessage returns S_FALSE if no message currently exists. This state can occur after calls to the
IPersistMessage::HandsOffMessage method or before the next call to IPersistMessage::Load or
IPersistMessage::SaveCompleted is made.

See Also

IPersistMessage : IUnknown interface

 IMAPIMessageSite::GetSession

The IMAPIMessageSite::GetSession method returns the MAPI session in which the current message
was created or opened.

HRESULT GetSession(
 LPMAPISESSION FAR * ppSession
)

Parameters

ppSession
Output parameter pointing to a variable where the pointer to the returned session object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

S_FALSE
No session exists for the current message.

 IMAPIMessageSite::GetSiteStatus

The IMAPIMessageSite::GetSiteStatus method returns information from a message site object about
the message site's capabilities for the current message.

HRESULT GetSiteStatus(
 ULONG FAR * lpulStatus
)

Parameters

lpulStatus
Output parameter pointing to a variable in which a bitmask of flags giving information on message
status is returned. The following flags can be set:
VCSTATUS_COPY

Indicates the message can be copied.
VCSTATUS_DELETE

Indicates the message can be deleted.
VCSTATUS_DELETE_IS_MOVE

Indicates the message is not deleted but moved to a Deleted Items folder.
VCSTATUS_MOVE

Indicates the message can be moved.
VCSTATUS_NEW_MESSAGE

Indicates a new message can be created.
VCSTATUS_SAVE

Indicates the message can be saved.
VCSTATUS_SUBMIT

Indicates the message can be submitted.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Forms call the IMAPIMessageSite::GetSiteStatus method to obtain the message site's capabilities for
the current message. The flags returned in the lpulStatus parameter provide information on the
message site; typically, a form enables or disables menu commands based on information the flags
provide on the capabilities of the message site implementation. If a new message is loaded into a form
by the IPersistMessage::SaveCompleted method or the IPersistMessage::Load method, the status
flags must be checked. Some message sites, particularly read-only sites, do not permit messages to
be saved or deleted.

See Also

IPersistMessage::Load method , IPersistMessage::SaveCompleted method

 IMAPIMessageSite::GetStore

The IMAPIMessageSite::GetStore method returns the message store containing the current
message, if such a store exists.

HRESULT GetStore(
 LPMDB FAR * ppStore
)

Parameters

ppStore
Output parameter pointing to a variable where the pointer to the message store is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

S_FALSE
There is no store containing the message.

 IMAPIMessageSite::MoveMessage

The IMAPIMessageSite::MoveMessage method moves the current message to a folder.

HRESULT MoveMessage(
 LPFOLDER pFolderDestination,
 LPMAPIVIEWCONTEXT pViewContext,
 LPCRECT prcPosRect
)

Parameters

pFolderDestination
Input parameter pointing to the folder where the message is moved.

pViewContext
Input parameter pointing to a view context object.

prcPosRect
Input parameter pointing to a RECT structure containing the current form's window size and position.
The next form displayed also uses this window rectangle.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT
The operation is not supported by this message site.

Remarks

Forms call the IMAPIMessageSite::MoveMessage method to move the current message to a new
folder. A form viewer's implementation of MoveMessage must call the
IMAPIViewContext::ActivateNext method, passing the VCDIR_MOVE flag, prior to actually moving
the message to a new folder. Following the return of MoveMessage, forms must check for a current
message and then dismiss themselves if none exists.

To obtain the RECT structure used by a form's window, call the Windows GetWindowRect function.

See Also

IMAPIViewContext::ActivateNext method

 IMAPIMessageSite::NewMessage

The IMAPIMessageSite::NewMessage method creates a new message.

HRESULT NewMessage(
 ULONG fComposeInFolder,
 LPMAPIFOLDER pFolderFocus,
 LPPERSISTMESSAGE pPersistMessage,
 LPMESSAGE FAR * ppMessage,
 LPMAPIMESSAGESITE FAR * ppMessageSite,
 LPMAPIVIEWCONTEXT FAR * ppViewContext
)

Parameters

fComposeInFolder
Input parameter containing a variable indicating in which folder the message should be composed. If
the variable is FALSE, the pFolderFocus parameter is ignored and the form viewer can compose the
message in any folder. If the variable is TRUE and NULL is passed in pFolderFocus, the message is
composed in the current folder. If the variable is TRUE and a non-null value is passed in
pFolderFocus, the message is composed in the folder pointed to by pFolderFocus.

pFolderFocus
Input parameter pointing to the folder where the new message is created.

pPersistMessage
Input parameter pointing to the form object for the new form.

ppMessage
Output parameter pointing to a pointer to the new message.

ppMessageSite
Output parameter pointing to a pointer to a message site object for the new message.

ppViewContext
Output parameter pointing to a pointer to a view context appropriate for passing to a new form with
the new message. If the form implements its own view context, NULL can be passed in the
ppViewContext parameter.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Forms call the IMAPIMessageSite::NewMessage method to create a new message. The form uses
NewMessage to get a new message and the associated message site from its view. It can then modify
the new message and either aggregate the message site or use it message site directly.

An associated view context can also be obtained by passing in a non-null value in the ppViewContext
parameter. This view context can be used directly, or it can be aggregated and passed to the new
message. If a complete implementation is required, NULL should be passed in ppViewContext.

See Also

IMAPIViewContext : IUnknown interface

 IMAPIMessageSite::SaveMessage

The IMAPIMessageSite::SaveMessage method requests that the current message be saved.

HRESULT SaveMessage()

Parameters

None.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Forms call the IMAPIMessageSite::SaveMessage method to request that a message be saved. After
being saved, the message generates the usual form object behavior.

 IMAPIMessageSite::SubmitMessage

The IMAPIMessageSite::SubmitMessage method requests that the current message be submitted to
the MAPI spooler.

HRESULT SubmitMessage(
 ULONG ulFlags
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how a message is submitted. The
following flag can be set:
FORCE_SUBMIT

Indicates MAPI should submit the message even if it might not be sent right away.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Forms call the IMAPIMessageSite::SubmitMessage method to request that a message be submitted
to the MAPI spooler. The message site should call the IPersistMessage::HandsOffMessage method
prior to submitting the message. The message need not have previously been saved, as
SubmitMessage should cause the message to be saved if it has been modified. Following the return
of SubmitMessage, the form must check for a current message and then dismiss itself if none exists.

See Also

IPersistMessage::HandsOffMessage method

 IMAPIProgress : IUnknown

The IMAPIProgress interface is used by service providers to provide client applications with
information to update progress indicators, which indicate the progress toward completion of a lengthy
operation, such as the copying of folders between message stores. MAPI and client applications
implement progress objects and then pass those objects to provider-implemented methods, such as
IMAPIFolder::CopyFolder, which take progress objects as input parameters.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Progress object

Corresponding pointer type: LPMAPIPROGRESS
Implemented by: MAPI and client applications
Called by: Service providers

Vtable Order

Progress Updates the progress indicator with status on the progress
made toward completion of the operation in question.

GetFlags Returns flag settings from the progress object for the level of
operation on which progress information is calculated.

GetMax Returns the maximum number of items in the operation for
which progress information is displayed.

GetMin Returns the minimum number of items in the operation for
which progress information is displayed.

SetLimits Sets the minimum number of items operated on, the maximum
number of items operated on, and the flags that control how
progress information is calculated for the operation in question.

 IMAPIProgress::GetFlags

The IMAPIProgress::GetFlags method returns flag settings from the progress object for the level of
operation on which progress information is calculated.

HRESULT GetFlags(
 ULONG FAR * lpulFlags
)

Parameters

lpulFlags
Output parameter containing a bitmask of flags that controls the level of operation on which progress
information is calculated. The following flag can be returned:
MAPI_TOP_LEVEL

Uses the values in the IMAPIProgress::Progress method's ulCount and ulTotal parameters,
which indicate the item being operated on and the total items, respectively, to increment progress
on the operation. When this flag is set, the values of the global lower and upper limits have to be
set.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

See Also

IMAPIProgress::SetLimits method

 IMAPIProgress::GetMax

The IMAPIProgress::GetMax method returns the value stored in IMAPIProgress::SetLimits showing
the maximum number of items in the operation for which progress information is displayed.

HRESULT GetMax(
 ULONG FAR * lpulMax
)

Parameters

lpulMax
Output parameter pointing to a variable containing the maximum number of items in the operation.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

See Also

IMAPIProgress::GetMin method , IMAPIProgress::Progress method , IMAPIProgress::SetLimits
method

 IMAPIProgress::GetMin

The IMAPIProgress::GetMin method returns the minimum value in IMAPIProgress::SetLimits for
which progress information is displayed.

HRESULT GetMin(
 ULONG FAR * lpulMin
)

Parameters

lpulMin
Output parameter pointing to a variable containing the minimum number of items in the operation.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

See Also

IMAPIProgress::GetMax method , IMAPIProgress::Progress method , IMAPIProgress::SetLimits
method

 IMAPIProgress::Progress

The IMAPIProgress::Progress method updates the progress indicator with a display of the progress
as it is made toward completion of the operation.

HRESULT Progress(
 ULONG ulValue,
 ULONG ulCount,
 ULONG ulTotal
)

Parameters

ulValue
Input parameter that contains a number showing progress, calculated from the ulCount and ulTotal
parameters or from the lpulMin and lpulMax parameters of the IMAPIProgress::SetLimits method
between the global lower limit and the global upper limit.

ulCount
Input parameter containing the current count of the items being operated on.

ulTotal
Input parameter containing the total count of items.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Service providers call the IMAPIProgress::Progress method to update the progress indicator for the
progress object passed by a client application.

If an implementation is copying all messages within a single folder, then the value in ulTotal should
indicate the total number of messages being copied. If it is copying a folder, then the value in ulTotal
should be the number of subfolders within the folder. If the folder to be copied contains no subfolders
and only messages, the value in ulTotal should be set to 1.

See Also

IMAPIProgress::SetLimits method

 IMAPIProgress::SetLimits

The IMAPIProgress::SetLimits method sets the lower limit for the number of items operated on, the
maximum number of items operated on, and the flags that control how progress information is
calculated for the operation in question.

HRESULT SetLimits(
 LPULONG lpulMin,
 LPULONG lpulMax,
 LPULONG lpulFlags
)

Parameters

lpulMin
Input parameter pointing to a variable containing the lower limit of items in the operation.

lpulMax
Input parameter pointing to a variable containing the upper limit of items in the operation.

lpulFlags
Input parameter containing a bitmask of flags that controls the level of operation on which progress
information is calculated. The following flag can be set:
MAPI_TOP_LEVEL

Uses the values in the IMAPIProgress::Progress method's ulCount and ulTotal parameters,
which indicate the item being operated on and the total items, respectively, to increment
progresson the operation. When this flag is set, the values of the global lower and upper limits
have to be set.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications implement the IMAPIProgress::SetLimits method to establish the values that
control how operation progress is calculated for the progress indicator.

See Also

IMAPIProgress::Progress method

 IMAPIProp : IUnknown

The IMAPIProp interface is the core interface for working with properties for all MAPI objects.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

No object supplies this interface directly.

Corresponding pointer type: LPMAPIPROP
Implemented by: Service providers
Called by: All applications

Vtable Order

GetLastError Returns a MAPIERROR structure containing
information about the last error that occurred for an
object.

SaveChanges Makes permanent any changes made to an object
since the last save operation.

GetProps Retrieves the property values of one or more
properties of an object.

GetPropList Returns a list of all properties of an object.
OpenProperty Opens an interface for a property of an object.
SetProps Sets the property value of one or more properties of an

object.
DeleteProps Deletes all properties in the given list.
CopyTo Copies or moves all properties from a source object to

a destination object, except for a given set of excluded
properties.

CopyProps Copies or moves a selected set of properties from a
source object to a destination object.

GetNamesFromI
Ds

Provides property names, given a list of property
identifiers.

GetIDsFromNam
es

Provides property identifiers, given a list of property
names.

 IMAPIProp::CopyProps

The IMAPIProp::CopyProps method copies or moves a selected set of properties from a source
object to a destination object. The source object is the object on which the call to CopyProps is made.

HRESULT CopyProps(
 LPSPropTagArray lpIncludeProps,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 LPCIID lpInterface,
 LPVOID lpDestObj,
 ULONG ulFlags,
 LPSPropProblemArray FAR * lppProblems
)

Parameters

lpIncludeProps
Input parameter pointing to an SPropTagArray structure holding a counted array of property tags
indicating the properties to copy or move. The lpIncludeProps parameter cannot be NULL.

ulUIParam
Input parameter containing the handle of the parent window for the progress indicator displayed.

lpProgress
Input parameter pointing to a progress object that contains client- or provider-supplied progress
information. If NULL is passed in the lpProgress parameter, MAPI provides the progress information.
The lpProgress parameter is ignored unless the MAPI_DIALOG flag is set in the ulFlags parameter.

lpInterface
Input parameter pointing to the interface identifier (IID)for the destination object indicated in the
lpDestObj parameter. The lpInterface parameter must not be NULL.

lpDestObj
Input parameter pointing to the open destination object.

ulFlags
Input parameter containing a bitmask of flags that controls how the copy or move operation is
performed. The following flags can be set:
MAPI_DECLINE_OK

Informs the service provider that if it does not implement IMAPIProp::CopyProps, it should
immediately return MAPI_E_DECLINE_COPY. MAPI uses this flag to limit recursion within MAPI's
CopyProps implementation.

MAPI_DIALOG
Displays a user interface to provide progress information for the copy or move operation.

MAPI_MOVE
Indicates a move operation. The default operation is copying.

MAPI_NOREPLACE
Indicates that existing properties in the destination object should not be overwritten. The default
action is to overwrite existing properties.

lppProblems
Output parameter pointing to a variable where the pointer to an SPropProblemArray structure is
stored. If NULL is passed in the lppProblems parameter, no property problem array is returned.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_COLLISION
A sibling folder in the destination object already has the name in the PR_DISPLAY_NAME property
being copied from the source object.

MAPI_E_DECLINE_COPY
Indicates the provider does not implement the copy operation.

MAPI_E_FOLDER_CYCLE
The source object directly or indirectly contains the destination object. Significant work might have
been performed before this condition was discovered, so the source and destination objects might
be partially modified.

MAPI_E_INTERFACE_NOT_SUPPORTED
An appropriate interface cannot be obtained.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt to access an object for which the
user has insufficient permissions.

The following values can be returned in the SPropProblemArray structure, but not as return values for
CopyProps:

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_COMPUTED
The property can't be written because it is computed by the destination object's provider. This error
is not severe; the implementation should allow the process to continue.

MAPI_E_INVALID_TYPE
The property type is invalid.

MAPI_E_UNEXPECTED_TYPE
The property type is not the type expected by the calling client application.

Remarks

Use the IMAPIProp::CopyProps method to copy or move to the destination object those properties
designated in lpIncludeProps that are present in the source object. When copying properties between
like objects, for example between two message objects, the interface identifiers and object types must
be the same for both the source and destination objects. If any of the copied or moved properties
already exist in the destination object, the existing properties are overwritten by the new, unless the
MAPI_NOREPLACE flag is set in the ulFlags parameter. Existing information in the destination object
that is not overwritten is not deleted or modified. Note that the PR_NULL property should not be
included in the lpIncludeProps array.

For message objects, the PR_MESSAGE_RECIPIENTS and PR_MESSAGE_ATTACHMENTS
properties can be included in the SPropTagArray structure passed in lpIncludeProps to permit copying
or moving of message recipients and attachments. For folder objects, the
PR_CONTAINER_HIERARCHY, PR_CONTAINER_CONTENTS, and
PR_FOLDER_ASSOCIATED_CONTENTS properties can be included in the SPropTagArray to permit
copying or moving of subfolders, messages, or associated objects. If subfolders are copied or moved,
they are copied or moved in their entirety, regardless of the use of properties indicated by the
SPropTagArray.

If the source object directly or indirectly contains the destination object, the overall call fails and returns
MAPI_E_FOLDER_CYCLE. Some implementations, however, perform significant work before
discovering this error and leave the source and destination objects partially modified, so
implementations should avoid such calls. If the same pointer is used for both the source and
destination objects, the call returns MAPI_E_NO_ACCESS.

The interface of the destination object, indicated in lpInterface, is usually the same interface as for the

source object. If lpInterface is set to NULL, then CopyProps returns MAPI_E_INVALID_PARAMETER.
If an acceptable interface is passed in lpInterface but an invalid pointer is passed in the lpDestObj
parameter, the results are unpredictable; the most likely result is that the calling client stops.

If the MAPI_DIALOG flag is not set in ulFlags, CopyProps ignores the ulUIParam and lpProgress
parameters and no progress indicator is provided. If a client sets MAPI_DIALOG in ulFlags and passes
NULL in lpProgress, the provider is responsible for generating a progress indicator. If a client sets
MAPI_DIALOG in ulFlags and passes a progress object in lpProgress, the provider uses the
information supplied by the progress object to display progress information.

If the call succeeds overall but there are problems with copying or moving some properties,
CopyProps returns S_OK and an SPropProblemArray structure in the lppProblems parameter. The
SPropProblemArray structure contains details about each property problem. In some cases, a
CopyProps call can successfully set some of the requested properties, but not others; in these cases,
which properties were not successfully copied or moved can be determined from the
SPropProblemArray. If message recipients or attachments cannot be copied or moved,
PR_MESSAGE_RECIPIENTS or PR_MESSAGE_ATTACHMENTS is returned in the
SPropProblemArray.

The value returned in lppProblems is only valid if the call returns S_OK. When S_OK is returned, check
the values returned in the SPropProblemArray. If an error occurs on the call, then the
SPropProblemArray is not filled in; call the IMAPIProp::GetLastError method to get the
MAPIERROR structure describing the error.

The calling implementation must free the returned SPropProblemArray by calling the
MAPIFreeBuffer function, but this should only be done if CopyProps returns S_OK.

See Also

IMAPIFolder::CopyMessages method , IMAPIProp::CopyTo method , IMAPIProp::GetLastError
method, SPropProblemArray structure , SPropTagArray structure

 IMAPIProp::CopyTo

The IMAPIProp::CopyTo method copies or moves all properties from a source object to a destination
object, except for a given set of excluded properties. The source object is the object on which the call
to CopyTo is made.

HRESULT CopyTo(
 ULONG ciidExclude,
 LPCIID rgiidExclude,
 LPSPropTagArray lpExcludeProps,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 LPCIID lpInterface,
 LPVOID lpDestObj,
 ULONG ulFlags,
 LPSPropProblemArray FAR * lppProblems
)

Parameters

ciidExclude
Input parameter containing the number of interfaces to exclude when copying or moving properties.

rgiidExclude
Input parameter containing an array of interface identifiers (IIDs) indicating interfaces that should not
be used when copying or moving supplemental information to the destination object.

lpExcludeProps
Input parameter pointing to an SPropTagArray structure containing the property identifiers of the
properties that should not be copied or moved to the destination object. Passing NULL in the
lpExcludeProps parameter indicates all properties are copied or moved. Passing zero in the
cValues member of the lpExcludeProps SPropTagArray structure results in
MAPI_E_INVALID_PARAMETER being returned.

ulUIParam
Input parameter containing the handle of the parent window for the progress indicator.

lpProgress
Input parameter pointing to a progress object that contains client- or provider-supplied progress
information. If NULL is passed in the lpProgress parameter, MAPI provides the progress information
is provided by MAPI. The lpProgress parameter is ignored unless the MAPI_DIALOG flag is set in
the ulFlags parameter.

lpInterface
Input parameter pointing to the IID for the destination object.

lpDestObj
Input parameter pointing to the open destination object.

ulFlags
Input parameter containing a bitmask of flags that controls how the copy or move operation is
performed. The following flags can be set:
MAPI_DECLINE_OK

Informs the service provider that if it does not implement CopyTo, it should immediately return
MAPI_E_DECLINE_COPY. MAPI uses this flag to limit recursion within its CopyTo
implementation.

MAPI_DIALOG
Displays a user interface to provide progress information for the copy or move operation.

MAPI_MOVE
Indicates a move operation. The default operation is copying.

MAPI_NOREPLACE
Indicates that existing properties in the destination object should not be overwritten. The default
action is to overwrite existing properties.

lppProblems
Output parameter pointing to a variable where the pointer to an SPropProblemArray structure is
stored. If NULL is passed in the lppProblems parameter, no property problem array is returned.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_COLLISION
A sibling folder in the destination object already has the name in the PR_DISPLAY_NAME property
being copied from the source object.

MAPI_E_DECLINE_COPY
The provider does not implement the copy operation.

MAPI_E_FOLDER_CYCLE
The source object directly or indirectly contains the destination object. Significant work might have
been performed before this condition was discovered, so the source and destination objects might
be partially modified.

MAPI_E_INTERFACE_NOT_SUPPORTED
An appropriate interface cannot be obtained.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt to access an object for which the
user has insufficient permissions.

The following values can be returned in the SPropProblemArray structure, but not as return values for
CopyTo:

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_COMPUTED
The property can't be written because it is computed by the destination object's provider. This error
is not severe; the provider should allow the process to continue.

MAPI_E_INVALID_TYPE
The property type is invalid.

MAPI_E_UNEXPECTED_TYPE
The property type is not the type expected by the calling implementation.

Remarks

Use the IMAPIProp::CopyTo method to copy or move all properties of the source object to the
destination object, except for a given set of properties that are excluded from the copy or move
operation. Any objects contained in the source object and any subobjects of the source object are
included in the copy or move operation.

If any of the copied or moved properties already exist in the destination object, the existing properties
are overwritten by the new, unless the MAPI_NOREPLACE flag is set in the ulFlags parameter.
Existing information in the destination object that is not overwritten is not deleted or modified. When the
MAPI_NOREPLACE flag is clear, preferred but not required behavior of the implementation is to delete
the existing collection.

To exclude some properties from the copy or move operation, pass their property identifiers in the
lpExcludeProps parameter. Passing in a specific value causes any property in the source object whose

identifier matches that value to be excluded from the copy or move operation. For example, passing in
PROP_TAG(PT_LONG, 0x8002) excludes both the properties PROP_TAG(PT_STRING8, 0x8002) and
PROP_TAG(PT_OBJECT, 0x8002). PR_NULL should not be included in the lpExcludeProps array.

For message objects, the PR_MESSAGE_RECIPIENTS and PR_MESSAGE_ATTACHMENTS
properties can be included in the SPropTagArray structure passed in lpExcludeProps to prevent
copying or moving message recipients and attachments. For folder objects, the
PR_CONTAINER_HIERARCHY, PR_CONTAINER_CONTENTS, and
PR_FOLDER_ASSOCIATED_CONTENTS properties can be included in the SPropTagArray to
prevent copying or moving of subfolders, messages, or associated objects. If subfolders are copied or
moved, they are copied or moved in their entirety, regardless of the use of properties indicated by the
SPropTagArray.

Providers implementing CopyTo should not attempt to set any known read-only properties in the
destination object and should ignore MAPI_E_COMPUTED errors returned in the
SPropProblemArray structure in the lppProblems parameter.

If the source object directly or indirectly contains the destination object, the overall call fails and returns
MAPI_E_FOLDER_CYCLE. Some implementations, however, perform significant work before
discovering this error and leave the source and destination objects partially modified, so
implementations should avoid such calls. If the same pointer is used for both the source and
destination objects, the call returns MAPI_E_NO_ACCESS.

The interface of the destination object, indicated in lpInterface, is usually the same interface as for the
source object. If lpInterface is set to NULL, then CopyTo returns MAPI_E_INVALID_PARAMETER. If
an acceptable interface is passed in lpInterface but an invalid pointer is passed in the lpDestObj
parameter, the results are unpredictable; the most likely result is that the calling implementation stops.

Some objects contain supplemental information, which can be accessed with the interface pointer in
lpInterface. To copy or move such information, a provider's CopyTo implementation first calls the
IUnknown::QueryInterface method for the destination object to see if it can accept the extra data.
Conversely, if the calling implementation is aware of supplemental information and requires that
CopyTo not copy or move it, the implementation can specify in the array passed in the rgiidExclude
parameter IIDs for the properties that CopyTo should not copy or move. For example, if the client must
copy messages, but not embedded objects within the messages, it can pass IID_IMessage in the
rgiidExclude array. CopyTo ignores any interfaces listed in rgiidExclude it doesn't recognize.

Note When you use the rgiidExclude parameter to exclude an interface, it also excludes all interfaces
derived from that interface. For example, excluding the IMAPIProp interface also excludes the
IMAPIFolder, IMessage, and IAttach interfaces, and so on. If all known interfaces are excluded,
CopyTo returns the error value MAPI_E_INTERFACE_NOT_SUPPORTED. For that reason, you
should not pass IID_IUnknown or IID_IMAPIProp in rgiidExclude.

If the MAPI_DIALOG flag is not set in ulFlags, then CopyTo ignores the ulUIParam and lpProgress
parameters and no progress indicator is provided. If a client sets MAPI_DIALOG in ulFlags and passes
NULL in lpProgress, the provider is responsible for generating a progress indicator. If a client sets
MAPI_DIALOG in ulFlags and passes a progress object in lpProgress, the provider uses the
information supplied by the progress object to display progress information.

If the call succeeds overall but there are problems with copying or moving some properties, CopyTo
returns S_OK and an SPropProblemArray structure in the lppProblems parameter. The
SPropProblemArray structure contains details about each property problem. In some cases, a
CopyTo call can successfully set some of the requested properties, but not others; in these cases,
which properties were not successfully copied or moved can be determined from the
SPropProblemArray. If message recipients or attachments cannot be copied or moved,
PR_MESSAGE_RECIPIENTS or PR_MESSAGE_ATTACHMENTS is returned in the
SPropProblemArray.

The value returned in lppProblems is only valid if the call returns S_OK. When S_OK is returned, check
the values returned in the SPropProblemArray. If an error occurs on the call, then the
SPropProblemArray is not filled in; call the IMAPIProp::GetLastError method to get the
MAPIERROR structure describing the error.

If an error occurs on the CopyTo call, do not use or free the SPropProblemArray structure.
Implementations should ignore the ulIndex member in SPropProblemArray structures returned by
CopyTo.

The calling implementation must free the returned SPropProblemArray by calling the
MAPIFreeBuffer function, but this should only be done if CopyTo returns S_OK.

See Also

IMAPIFolder::CopyMessages method , IMAPIProp::GetLastError method , SPropProblemArray
structure, SPropTagArray structure

 IMAPIProp::DeleteProps

The IMAPIProp::DeleteProps method deletes all properties in the given list.

HRESULT DeleteProps(
 LPSPropTagArray lpPropTagArray,
 LPSPropProblemArray FAR * lppProblems
)

Parameters

lpPropTagArray
Input parameter pointing to an SPropTagArray structure containing an array of property tags
indicating the properties to delete. The lpPropTagArray parameter must not be NULL. The property
type in each property tag is ignored, and only the property identifier is used. Passing zero in the
cValues member of the SPropTagArray structure results in MAPI_E_INVALID_PARAMETER being
returned.

lppProblems
Output parameter pointing to a variable where the pointer to an SPropProblemArray structure is
stored. If NULL is passed in the lppProblems parameter, no property problem array is returned.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt to access an object for which the
user has insufficient permissions.

Remarks

Use the IMAPIProps::DeleteProps method to delete properties from an object. Not all objects allow
deletion of properties. If the DeleteProps call fails completely, its HRESULT returns with a nonzero
value.

If the call succeeds overall but there are problems with deleting some properties, DeleteProps returns
S_OK and an SPropProblemArray structure in lppProblems. The SPropProblemArray structure
contains details about each property problem. In some cases, a DeleteProps call can successfully set
some of the requested properties, but not others; in these cases, which properties were not
successfully deleted can be determined from the SPropProblemArray. If message recipients or
attachments cannot be deleted, the PR_MESSAGE_RECIPIENTS or PR_MESSAGE_ATTACHMENTS
property is returned in the SPropProblemArray structure.

The value returned in lppProblems is only valid if the call returns S_OK. When S_OK is returned, check
the values returned in SPropProblemArray. If an error occurs on the call, then SPropProblemArray
is not filled in; call the IMAPIProp::GetLastError method to get the MAPIERROR structure describing
the error.

The calling implementation must free the returned SPropProblemArray by calling the
MAPIFreeBuffer function, but this should only be done if DeleteProps returns S_OK.

See Also

IMAPIProp::GetProps method , IMAPIProp::SaveChanges method , MAPIFreeBuffer function ,
SPropTagArray structure

 IMAPIProp::GetIDsFromNames

The IMAPIProp::GetIDsFromNames method provides property identifiers, given a list of property
names.

HRESULT GetIDsFromNames(
 ULONG cPropNames,
 LPMAPINAMEID FAR * lppPropNames,
 ULONG ulFlags,
 LPSPropTagArray FAR * lppPropTags
)

Parameters

cPropNames
Input parameter containing the number of pointers to MAPINAMEID structures returned in the
lppPropNames parameter. If lppPropNames is NULL, the cPropNames parameter must be zero.

lppPropNames
Input parameter pointing to an array of pointers to MAPINAMEID structures containing names of
properties. Passing NULL requests property identifiers for all property names about which the object
has information. If the MAPI_CREATE flag is set in the ulFlags parameter, the lppPropNames
parameter must not be NULL.

ulFlags
Input parameter containing a bitmask of flags that controls how the property identifiers are returned.
The following flag can be set:
MAPI_CREATE

Allocates a property identifier for each named property in lppPropNames not registered in the
name-to-identifier mapping table and internally registers the identifier in this table.

lppPropTags
Output parameter pointing to a variable where a pointer to the array of existing or newly assigned
property identifiers is stored. The property types in this array are set to PT_UNSPECIFIED.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT
The operation is not supported by MAPI or by one or more service providers.

MAPI_E_NOT_ENOUGH_MEMORY
Insufficient memory was available to complete the operation.

MAPI_E_TOO_BIG
The operation cannot be performed because it requires too many property tags be returned.

MAPI_W_ERRORS_RETURNED
The call succeeded overall, but one or more properties could not be accessed and were returned
with a property type of PT_ERROR and an identifier of zero. To test for this warning, use the
HR_FAILED macro. When this warning is returned, the call should be handled as successful.

Remarks

Use the IMAPIProp::GetIDsFromNames method to get an array of property tags that holds the
property identifiers for the named properties. The returned property tags are in the same order as the
names passed in the LPMAPINAMEID array in lppPropNames. GetIDsFromNames returns the type
portion of each tag as PT_UNSPECIFIED; to set these, call the IMAPIProp::SetProps method.

Message store providers that need to extend property sets typically implement the GetIDsFromNames

and IMAPIProp::GetNamesFromIDs methods for message and folder objects. Other interfaces
derived from IMAPIProp typically return MAPI_E_NO_SUPPORT for calls to these methods.

Only identifiers in the range of 0x8000 to 0xFFFE use name-to-identifier mapping. MAPI requires a
store provider that supports named properties in folder contents tables to use the same name-to-
identifier mapping for all objects in a folder. A store provider that supports named properties in search-
results folders' contents tables must use the same name-to-identifier mapping for all objects in the
message store. Objects that support name-to-identifier mapping often contain an additional binary
property, PR_MAPPING_SIGNATURE (a MAPIUID structure). If two objects have mapping signatures
and both signatures have the same value, those objects use the same name-to-identifier mapping.

Implementations that move or copy objects with named properties must preserve names during such
operations by adjusting property identifiers to match the name-to-identifier mapping of the destination
object. The exception is if the source and destination objects have the same value for
PR_MAPPING_SIGNATURE, in which case the implementation can skip this step.

If a name set with GetIDsFromNames does not have an identifier, GetIDsFromNames returns
MAPI_W_ERRORS_RETURNED and in the appropriate entry of the property tag array returns a
property tag with a type of PT_ERROR and an identifier of zero. If a name passed with
GetIDsFromNames does not have an identifier and MAPI_CREATE was set, the GetIDsFromNames
call allocates an identifier for the name and internally registers the identifier in the name-to-identifier
mapping table. When NULL is passed in lppPropNames, the provider returns the entire name to
identifier mapping ¾ that is, all names and all property sets defined by the provider. The value in the
cPropNames parameter must also be zero if NULL is passed in lppPropNames. If the number of
defined identifiers in the store exceeds the implementation limit, GetIDsFromNames returns
MAPI_E_TOO_BIG and clients should query by identifier.

For more information on using the HR_Failed macro, see Using Macros for Error Handling.

See Also

IMAPIProp::GetNamesFromIDs method , MAPINAMEID structure , MAPIUID structure

 IMAPIProp::GetLastError

The IMAPIProp::GetLastError method returns a MAPIERROR structure containing information about
the last error that occurred for an object.

HRESULT GetLastError(
 HRESULT hResult,
 ULONG ulFlags,
 LPMAPIERROR FAR * lppMAPIError
)

Parameters

hResult
Input parameter containing the result returned for the last call for the object that returned an error.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the strings in the MAPIERROR structure returned in the lppMAPIError parameter are in
Unicode format. If the MAPI_UNICODE flag is not set, the strings are in ANSI format.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure containing version,
component, and context information for the error. The lppMAPIError parameter can be set to NULL if
there is no MAPIERROR structure to return.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Use the IMAPIProp::GetLastError method to retrieve information to display in a message to the user
regarding the last error returned from a method call for the object.

To release all the memory allocated by MAPI, clients need only call the MAPIFreeBuffer function for
the returned MAPIERROR structure.

The return value from GetLastError must be S_OK for the implementation to make use of the
MAPIERROR structure. Even if the return value is S_OK, a MAPIERROR structure might not be
returned. If the implementation cannot determine what the last error was, or if a MAPIERROR structure
is not available for that error, GetLastError returns a pointer to NULL in lppMAPIError instead.

See Also

MAPIERROR structure , MAPIFreeBuffer function

 IMAPIProp::GetNamesFromIDs

The IMAPIProp::GetNamesFromIDs method provides property names, given a list of property
identifiers.

HRESULT GetNamesFromIDs(
 LPSPropTagArray FAR * lppPropTags,
 LPGUID lpPropSetGuid,
 ULONG ulFlags,
 ULONG FAR * lpcPropNames,
 LPMAPINAMEID FAR * FAR * lpppPropNames
)

Parameters

lppPropTags
Input or output parameter pointing to a variable where the pointer to an SPropTagArray structure of
property tags is stored.

lpPropSetGuid
Optional input parameter pointing to a globally unique identifier (GUID) for the property set. This
parameter is zero if the lppPropTags parameter is zero.

ulFlags
Input parameter containing a bitmask of flags that controls how names are mapped. The following
flags can be used:
MAPI_NO_IDS

Indicates integer names, for which ulKind is MNID_ID, should not be returned.
MAPI_NO_STRINGS

Indicates string names, for which ulKind is MNID_STRING, should not be returned.
If both flags are set, no names will be returned.

lpcPropNames
Output parameter pointing to a variable containing the number of strings in lpppPropNames.

lpppPropNames
Output parameter pointing to a variable pointer to an array of pointers to MAPINAMEID structures
containing names of properties.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT
The operation is not supported by MAPI or by one or more service providers.

MAPI_W_ERRORS_RETURNED
The call succeeded overall, but one or more properties could not be accessed and were returned
with a property type of PT_ERROR. To test for the warning, use the HR_FAILED macro. When this
warning is returned, the call should be handled as successful.

Remarks

Use the IMAPIProp::GetNamesFromIDs method to get an array of pointers to Unicode strings that
are the names of the indicated properties. While access to a property is mainly by property identifier,
some implementations also need to associate names in Unicode string format with some properties in
their objects.

GetNamesFromIDs ignores the property type in each property tag passed in lppPropTags; only the
property identifier is significant. If a specified identifier does not have a Unicode name,

GetNamesFromIDs returns NULL in that identifier's place in the structure returned in lpppPropNames
and also returns MAPI_W_ERRORS_RETURNED. If lppPropTags is NULL, then the method allocates
a new property tag array and returns all names and identifiers mapped for the object. The returned
buffer for these strings is freed by calling the MAPIFreeBuffer function.

Two GUIDs identify particularly useful property sets: PS_MAPI and PS_PUBLIC_STRINGS. To use a
MAPI folder as a container for string properties, use PS_PUBLIC_STRINGS as the property set for
storing the ad hoc document property strings. Implementations that need to get the public names within
the container call GetNamesFromIDs with a pointer to a null property-tag array, a GUID of
PS_PUBLIC_STRINGS, and the MAPI_NO_IDS flag set in the ulFlags parameter.

Implementations attempting to retrieve all the registrations should set ulFlags to zero and pass in a null
property tag array and a null GUID. If NULL is passed in an SPropTagArray structure, it must be freed
by calling the MAPIFreeBuffer function.

This structure holds the identifiers for which names are needed. Passing zero in the cValues member
of the SPropTagArray structure results in MAPI_E_INVALID_PARAMETER being returned. The
lppPropTags parameter can be a pointer to NULL, in which case all the names are returned. If
lppPropTags is zero, the caller is asking for the identifiers and names of all properties in a given
property set. If it is nonzero, the caller is asking for the names of a given list of identifiers. If
lppPropTags and lppropSetGuid are both zero, the implementation should return all names from all
property sets. If both the lppPropTag and lppropSetGuid parameters are non-null, clients cannot
depend on the results and MAPI will not protect providers with parameter validation. However, it is
possible to ignore the GUID and get the names for the identifiers in the property tag array. Applications
should call MAPIFreeBuffer on lppPropTags and lpppPropnames as usual when success is returned,
and should check lpcPropNames to see if any names were found.

If there are no properties in the requested property set, or all of the properties are of a type excluded by
the flags, then a request for all properties will result in no properties being found. In this case, the
implementation should return S_OK, allocate and return an SPropTagArray structure with cValues==0
in lppPropTags, return 0 in lpcPropNames, and return NULL in lpppPropNames. Applications should
call MAPIFreeBuffer on lppPropTags and lpppPropNames as usual when success is returned, and
should check lpcPropNames to see if any names were found.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

See Also

IMAPIProp::GetIDsFromNames method , MAPIFreeBuffer function , MAPINAMEID structure ,
SPropTagArray structure

 IMAPIProp::GetPropList

The IMAPIProp::GetPropList method returns a list of all properties of an object.

HRESULT GetPropList(
 ULONG ulFlags,
 LPSPropTagArray FAR * lppPropTagArray
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the strings in the returned
property tags. The following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppPropTagArray
Output parameter pointing to a variable where the pointer to the returned SPropTagArray structure
is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Use the IMAPIProp::GetPropList method to get the property tag for each property of an object. If no
properties exist for the object, GetPropList returns a property tag array containing just a count, and
that count must have a value of zero. Properties of type PT_OBJECT are returned by GetPropList.

Some service providers exclude those properties for which the calling implementation does not have
access from the list of returned properties.

The calling implementation must free the property tag structure pointed to by the lppPropTagArray
parameter by calling the MAPIFreeBuffer function.

If the object for which properties are retrieved supports Unicode, string properties are returned with the
preferred character width, either PT_UNICODE or PTSTRING8. If the object does not support Unicode,
GetPropList returns MAPI_E_BAD_CHARWIDTH, even if there are no string properties defined for the
object.

See Also

MAPIFreeBuffer function

 IMAPIProp::GetProps

The IMAPIProp::GetProps method retrieves the property values of one or more properties of an
object.

HRESULT GetProps(
 LPSPropTagArray lpPropTagArray,
 ULONG ulFlags,
 ULONG FAR * lpcValues,
 LPSPropValue FAR * lppPropArray
)

Parameters

lpPropTagArray
Input parameter pointing to an SPropTagArray structure containing an array of property tags of the
properties whose values are to be retrieved. If NULL is passed in the lpPropTagArray parameter,
then values for all properties of the object are returned. If zero is passed in the cValues member of
the SPropTagArray structure, MAPI_E_INVALID_PARAMETER is returned.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the text for a returned property
value if an implementation passes the PT_UNSPECIFIED property type in the property tag array.
The following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lpcValues
Output parameter pointing to a variable that holds the number of properties for which tags are
returned in the lppPropArray parameter. The lpcValues parameter is always equal to the size of the
property value array, unless lppPropArray is NULL.

lppPropArray
Output parameter pointing to a pointer to the returned SPropValue array of property values.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_W_ERRORS_RETURNED
The call succeeded overall, but one or more properties could not be accessed and were returned
with a property type of PT_ERROR and an identifier of zero. To test for this warning, use the
HR_FAILED macro. When this warning is returned, the call should be handled as successful.

Remarks

Use the IMAPIProp::GetProps method to get the property values of one or more properties from an
object. An implementation should first set up a counted array of property tags in an SPropTagArray
structure and then call the IMAPIProp::GetProps method on the object for whose properties it requires
property values.

The order of the properties in the SPropValue structure returned in lppPropArray exactly matches the
order in which the SPropTagArray in lpPropTagArray requested the properties. If property types are
specified in the SPropTagArray in lpPropTagArray, then the property values in the SPropValue
returned in lppPropArray have types that exactly match the requested types, unless an error value is
returned instead.

If the calling implementation has the property identifier of a property for which it requires information

but not the property type, it can pass in a property tag formed from the identifier and the property type
PT_UNSPECIFIED. The actual type of the returned property is indicated in the returned SPropValue
structure.

When an implementation requires access to the contents of properties with property type PT_OBJECT,
it should use the IMAPIProp::OpenProperty method. It is not an error to request the value of a
property of type PT_OBJECT by using GetProps, but the data in the returned SPropValue contains no
useful information. To request values for secure properties, an implementation must explicitly request
the properties by identifier; secure properties' values are not returned when an implementation passes
NULL in lppPropTagArray.

Service providers must allocate memory for the SPropValue structure in lpPropTagArray using the
MAPIAllocateBuffer function; any additional memory needed for the structure's members is allocated
using the MAPIAllocateMore function. The calling implementation must free the returned SPropValue
structure by calling the MAPIFreeBuffer function, but it should only do so if GetProps returns S_OK or
MAPI_W_ERRORS_RETURNED.

When access to one or more properties fails, for example when the specified properties do not exist,
GetProps returns MAPI_W_ERRORS_RETURNED. The calling implementation should check the
property tags of the returned properties to determine for which properties access failed. Those for
which access failed have their type set to PT_ERROR, and their values indicate which error occurred.
For example, when a non-existent property is requested, the corresponding entry in the property tag
array is updated with the property type member set to PT_ERROR and the provider value member set
to MAPI_E_NOT_FOUND.

If no properties exist, and the calling implementation has requested values for all properties by passing
NULL in lpPropTagArray, GetProps returns S_OK, sets the count value in the cValues member of the
SPropTagArray structure to zero, and returns a zero length in lpcValues and NULL in lppPropArray.
GetProps must not return multivalued properties with cValues set to zero.

If GetProps encounters an individual string or binary property that is too large to conveniently be
returned, typically 4K or 8K, GetProps marks that property with PT_ERROR, sets its value to
MAPI_E_NOT_ENOUGH_MEMORY, and returns MAPI_W_ERRORS_RETURNED. To get the data
within the property, the implementation should call IMAPIProp::OpenProperty.

If the MAPI_UNICODE flag is set in the ulFlags parameter, then any string properties the
implementation did not specify be returned in ANSI format are returned in Unicode format. If
MAPI_UNICODE is not set, string properties with unspecified types are returned in ANSI format. String
properties with unspecified types occur when GetProps is called with null for lpPropTagArray and
when PT_UNSPECIFIED is passed for a property type in the lpPropTagArray parameter's
SPropTagArray structure. Providers that do not support string format conversion should return
PT_ERROR for the property type and MAPI_E_BAD_CHARWIDTH for the property value.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

See Also

IMAPIProp::OpenProperty method , MAPIAllocateBuffer function , MAPIAllocateMore function ,
MAPIFreeBuffer function , SPropTagArray structure , SPropValue structure

 IMAPIProp::OpenProperty

The IMAPIProp::OpenProperty method opens an interface for a property of an object.

HRESULT OpenProperty(
 ULONG ulPropTag,
 LPCIID lpiid,
 ULONG ulInterfaceOptions,
 ULONG ulFlags,
 LPUNKNOWN FAR * lppUnk
)

Parameters

ulPropTag
Input parameter containing the property tag for the property for which an interface is required. A
complete property tag should be passed.

lpiid
Input parameter pointing to the interface identifier (IID) to be used. The lpiid parameter must not be
NULL.

ulInterfaceOptions
Input parameter indicating interface-specific behavior.

ulFlags
Input parameter containing a bitmask of flags that controls how the property is opened. The following
flags can be set:
MAPI_CREATE

If the property does not exist, it should be created. If the property does exist, the current data in
the property should be discarded. When an implementation sets the MAPI_CREATE flag, it
should also set the MAPI_MODIFY flag.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling implementation. If the object is not accessible, some subsequent call to the object might
return an error.

MAPI_MODIFY
Requests read/write access. The default interface is read-only. MAPI_MODIFY must be set when
MAPI_CREATE is set.

lppUnk
Output parameter pointing to a variable where the pointer to the newly created interface pointer is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INTERFACE_NOT_SUPPORTED
The requested interface is not supported for this property.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt to access an object for which the
user has insufficient permissions.

MAPI_E_NO_SUPPORT
The operation is not supported by MAPI or by one or more service providers.

MAPI_E_NOT_FOUND
The requested object does not exist and MAPI_CREATE was not set in the ulFlags parameter.

Remarks

Use the IMAPIProp::OpenProperty method to open an interface to access a specified property. Using
this method is the only way to access a property of type PT_OBJECT, this method can also be used for
other properties, typically large string and binary properties, depending on the implementation.

With OLE 2 attachments, call IMAPIProp::OpenProperty to open the PR_ATTACH_DATA_OBJ
property with the IStreamDocfile interface. IStreamDocfile is a derivative of IStream that is based on an
OLE2. IStreamDocfile is the best choice for accessing OLE 2 attachments because it involves the least
amount of overhead. For more information, see PR_ATTACH_DATA_OBJ and Opening an Attachment.

When opening an interface for an object with OpenProperty, an implementation uses an IID to identify
the interface. IID_IStream is used for string and binary properties. IID_IMessage is used when opening
a PR_ATTACH_DATA_OBJ property for a message; PR_ATTACH_DATA_OBJ contains an embedded
OLE object or embedded message data. IID_IStreamDocFile can be used for those properties that
contain data stored in structured storage accessible through the IStorage interface.

To identify the property to open, a complete property tag should be passed in the ulPropTag parameter.
Using a property type of PT_UNSPECIFIED in a property tag passed with ulPropTag returns
MAPI_E_INVALID_PARAMETER.

Note Implementations using an IStream interface to access double-byte character set (DBCS) text
should not seek or call the IStream::SetSize method on the stream other than with a zero position or
size variable. Neither should implementations rely upon the value of the plibNewPosition output
parameter. In addition, implementations should not call the IMAPIProp::GetProps,
IMAPIProp::SetProps, or IMAPIProp::DeleteProps method or perform other calls that affect a
property opened with an IStream interface. Violation of these rules can cause implementations to
behave poorly, stop, or lose data.

The implementation of multiple openings of the same property is undefined and provider-dependent.

When a client implementation requires the ability to write to a stream it is opening, the client should set
MAPI_MODIFY in ulFlags, whether or not MAPI_CREATE is set in ulFlags. Some service providers
return MAPI_E_INVALID_PARAMETER when an implementation attempts to create a stream without
setting MAPI_MODIFY. If MAPI_CREATE is set, MAPI_MODIFY must also be set.

The calling implementation is responsible for recasting the interface pointer returned in the lppUnk
parameter to one appropriate for the interface specified in the lpiid parameter. The calling
implementation should release the opened interface when done using it.

Message store providers can limit access to certain properties and property types and to specific
interfaces for those properties. If a requested interface is not available for a given property,
OpenProperty returns MAPI_E_INTERFACE_NOT_SUPPORTED.

The caller should set both the ulFlags and the ulInterfaceOptions parameters according to the kind of
access needed to the underlying interface. When opening a stream for writing, for example, whenever
possible set both STGM_WRITE in ulInterfaceOptions and MAPI_MODIFY in ulFlags, although
sometimes this is not possible. Among the many interfaces accessible through OpenProperty, some of
the interface-specific options do not map to any of the bits defined for the ulFlags parameters. But, if
there is an interface option that maps to MAPI_MODIFY or MAPI_CREATE, that bit should be set in
ulFlags.

When opening a table using IID_IMAPITable, MAPI_UNICODE may be passed in the
ulInterfaceOptions parameter. This controls whether the table's default column set includes Unicode or
ANSI string columns.

See Also

HrIStorageFromStream function , IMAPIProp::DeleteProps method , IMAPIProp::GetProps method ,
IMAPIProp::SetProps method , IMAPISupport::IStorageFromStream method

 IMAPIProp::SaveChanges

The IMAPIProp::SaveChanges method makes permanent any changes made to an object since the
last save operation.

HRESULT SaveChanges(
 ULONG ulFlags
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls what happens to the object when the
IMAPIProp::SaveChanges method is called.
If no flags are set for the ulFlags parameter, the client application requests changes be made
permanent for the object but will make no further calls to the object except for calling Release. If a
service provider returns an error in this case, it is because the provider couldn't save the changes. If
neither the KEEP_OPEN_READWRITE nor KEEP_OPEN_READONLY flag are set, the results are
implementation-specific; some providers treat this state as equivalent to passing
KEEP_OPEN_READWRITE; others interpret it as KEEP_OPEN_READONLY; others shut down the
object. The following flags can be set:
FORCE_SAVE

Writes changes to the object and closes it. Read/write access must have been set for the
operation to succeed. The FORCE_SAVE flag only forces saving if
MAPI_E_OBJECT_CHANGED was returned from a preceding SaveChanges call.
FORCE_SAVE overrides the previous changes made to the object.

KEEP_OPEN_READONLY
Indicates the client requests changes be committed and the object be kept open for reading. The
KEEP_OPEN_READONLY flag informs the provider that the object should not be modified and
that the calling implementation will not call SaveChanges again. If the provider cannot keep the
object open for read-only access, then the entire call fails, changes are not saved, and
MAPI_E_NO_ACCESS is returned.
The provider can leave the object open for read/write access. However, the provider cannot
prevent all access to the object when KEEP_OPEN_READONLY is passed.
If a client passes KEEP_OPEN_READONLY, then calls the IMAPIProp::SetProps method and
then SaveChanges again, the same implementation might stop.

KEEP_OPEN_READWRITE
Indicates the client requests changes be committed and the object be kept open for read/write
access. This flag is usually set when the object was initially opened for read/write access. After
calling SaveChanges, the client can make further changes to the object if this flag is passed. If
the provider cannot keep the object open for read/write access, then the entire call fails, changes
are not saved, and MAPI_E_NO_ACCESS is returned.
After receiving such an error value, the client continues to have read/write access and might pass
KEEP_OPEN_READONLY or no flags with the KEEP_OPEN_suffix. Whether a provider supports
the KEEP_OPEN_READWRITE flad depends on the provider's implementation. However, in no
case can a provider leave an object in a read-only state when the KEEP_OPEN_READWRITE
flag is passed.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling implementation. If the object is not accessible, some subsequent call to the object might
return an error.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt to access an object for which the
user has insufficient permissions.

MAPI_E_OBJECT_CHANGED
The object has changed since it was opened.

MAPI_E_OBJECT_DELETED
The object has been deleted since it was opened.

Remarks

Use the IMAPIProp::SaveChanges method to make changes permanent for some objects, specifically
messages, attachments, address book containers, and messaging user objects. Other objects, such as
folders, message stores, and profile sections, make changes permanent immediately without calling
SaveChanges.

Some message store implementations do not show newly created messages in a folder until a client
saves the message changes using SaveChanges and releases the message objects using the
IUnknown::Release method. In addition, some object implementations cannot generate a
PR_ENTRYID property for a newly created object until after SaveChanges has been called, and some
can only do so after SaveChanges has been called with KEEP_OPEN_READONLY set in ulFlags.

Furthermore, changes to properties, such as the message subject, that are cached in a folder's
summary table cannot be processed until the implementation has called SaveChanges and in some
situations also Release.

When making bulk changes, such as saving attachments to multiple messages, an implementation
should defer error processing by setting the MAPI_DEFERRED_ERRORS flag in ulFlags. In the case
of saving attachments to multiple messages, MAPI_DEFERRED_ERRORS should be set for each
attachment modification and for all but the last message modification; the flag should be omitted from
the SaveChanges call for the last message so that errors can be returned. (Providers can in fact return
errors before the last modification is made in this case, or they can ignore this flag altogether.) If
KEEP_OPEN_READWRITE and KEEP_OPEN_READONLY are set with the same call as
MAPI_DEFERRED_ERRORS, providers usually ignore MAPI_DEFERRED_ERRORS. If
MAPI_DEFERRED_ERRORS is not set in ulFlags, one of the previously deferred errors is returned for
the SaveChanges call.

Standard client behavior when saving changes to an object for which a preceding call to SaveChanges
has returned MAPI_E_OBJECT_CHANGED is a normal save operation, rather than a forced save
operation, and examination of any returned error value. If the original object has been modified, the
implementation usually warns the user, who can either request the changes be saved or save the
message somewhere else. If the original message has been deleted, the implementation also warns
the user, who can save the message somewhere else.

If the user deletes an open object, the client is unable to force a save operation, even when
FORCE_SAVE has been set in ulFlags.

If SaveChanges returns an error, then the object whose changes were to be saved remains open,
regardless of the flags set in the ulFlags parameter.

 IMAPIProp::SetProps

The IMAPIProp::SetProps method sets the property value of one or more properties of an object.

HRESULT SetProps(
 ULONG cValues,
 LPSPropValue lpPropArray,
 LPSPropProblemArray FAR * lppProblems
)

Parameters

cValues
Input parameter containing the number of property values pointed to by the lpPropArray parameter.
The cValues parameter must not be zero.

lpPropArray
Input parameter pointing to an array of SPropValue structures holding property values indicating the
properties whose values are to be set.

lppProblems
Output parameter pointing to a variable where the pointer to an SPropProblemArray structure is
stored. If NULL is passed in the lppProblems parameter, no property problem array is returned.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

The following values can be returned in the SPropProblemArray structure, but not as return values for
SetProps:

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_COMPUTED
The property cannot be written because it is computed by the destination object's service provider.

MAPI_E_INVALID_TYPE
The property type is invalid.

MAPI_E_NO_ACCESS
An attempt to modify a read-only object or an attempt to access an object for which the user has
insufficient permissions.

MAPI_E_NOT_ENOUGH_MEMORY
The property cannot be written because it is larger than the RPC buffer size.

MAPI_E_UNEXPECTED_TYPE
The property type is not the type expected by the calling implementation.

Remarks

Use the IMAPIProp::SetProps method to set the property values of properties. A call to SetProps
passes a number of SPropValue structures. The property tag in each structure indicates which
property is having its value set, and the property value in each structure indicates what should be
stored as the property's value.

If a SetProps call passes a tag for a nonexistent property and the implementation supports the
creation of new properties, SetProps adds the new property to the object. Any previous value stored
with the property identifier used for the new property is discarded. Depending on the implementation, a
calling implementation can also change the property type and value of a stored property together at

one time by passing a property tag containing a different type than was previously used with a given
property identifier.

Any property with a property tag of PR_NULL or a property type of PT_ERROR is ignored by
SetProps; no value is set and no problem report is generated for the property. Properties with a
property type of PT_OBJECT cannot be set using SetProps; attempts to pass a property value array
containing properties of type PT_OBJECT result in SetProps returning
MAPI_E_INVALID_PARAMETER. Furthermore, an implementation cannot set multivalued properties
with zero values in the cValues member of the SPropValue structure. Calls to set zero-valued
multivalued properties should return MAPI_E_INVALID_PARAMETER.

If the call succeeds overall but there are problems with setting some property values, SetProps returns
S_OK and an SPropProblemArray structure in the lppProblems parameter. The SPropProblemArray
structure contains details about each property problem. In some cases, a SetProps call can
successfully set some of the requested properties, but not others; in these cases, which properties
were not successfully set can be determined from the SPropProblemArray. For example, if a property
type is invalid or not supported, the SetProps call returns MAPI_E_INVALID_TYPE for that property in
the SPropProblemArray.

The value returned in lppProblems is only valid if the call returns S_OK. When S_OK is returned, check
the values returned in the SPropProblemArray structure. If an error occurs on the call, then the
SPropProblemArray structure is not filled in and the calling implementation should not use or free the
SPropProblemArray structure; call the IMAPIProp::GetLastError method to get the MAPIERROR
structure describing the error.

The calling implementation must free the returned SPropProblemArray by calling the
MAPIFreeBuffer function, but this should only be done if SetProps returns S_OK.

Note that a return value that indicates success does not necessarily indicate that the property-setting
operation was successful. Some providers cache SetProps calls on the client side of the provider until
they receive a call that requires provider intervention, such as a call to the IMAPIProp::SaveChanges
or IMAPIProp::GetProps method. When such a call is received, the client attempts to transmit the
cached information to the provider and the client can receive error values related to the earlier calls.
For information about how a specific service provider implements SetProps, see the provider's
documentation.

When setting large properties, the SetProps call can fail and return the
MAPI_E_NOT_ENOUGH_MEMORY value. This most often happens when setting large properties in a
message store. The MAPI specification does not mandate a maximum size for properties, and different
message stores can have different limits. All messaging clients that deal with potentially large
properties should be prepared to call IMAPIProp::OpenProperty with IID_IStream as the interface
identifier if SetProps returns this error value.

See Also

IMAPIProp::GetProps method , IMAPIProp::SaveChanges method , MAPIFreeBuffer function ,
SPropProblemArray structure , SPropValue structure

 IMAPISession : IUnknown

The IMAPISession interface is used to manage objects associated with a MAPI logon session.

At a Glance

Specified in header file: MAPIX.H
Object that supplies this
interface:

Session object

Corresponding pointer type: LPMAPISESSION
Implemented by: MAPI
Called by: Client applications and MAPI

Vtable Order

GetLastError Returns a MAPIERROR structure
containing information about the last
error that occurred for a session
object.

GetMsgStoresTable Returns a table that provides
information about each of the
message stores configured in a
session's profile.

OpenMsgStore Opens a message store and returns a
pointer that provides further access to
the open store.

OpenAddressBook Opens an address book and returns a
pointer that provides further access to
the open address book.

OpenProfileSection Opens a section of the current profile
and returns a pointer that provides
further access to the profile object.

GetStatusTable Gets the status table for a given MAPI
session.

OpenEntry Opens an object and returns a pointer
to the object to provide further
access.

CompareEntryIDs Compares two entry identifiers to
determine if they refer to the same
object.

Advise Registers a client application for
notifications about changes to a
session object.

Unadvise Removes an object's registration for
notification of changes previously
established with a call to the
IMAPISession::Advise method.

MessageOptions Displays a dialog box enabling a user
to change options for a particular
message.

QueryDefaultMessageOpt Returns the available message

options and their default settings for a
particular messaging address type.

EnumAdrTypes Returns the messaging address types
for which the loaded transport
providers have registered support.

QueryIdentity Returns an entry identifier for the
primary identity for a user for a MAPI
session.

Logoff Ends a MAPI session.
SetDefaultStore Sets a message store provider as the

default.
AdminServices Administers configuration changes to

a profile.
ShowForm Displays a message form for editing

and sending.
PrepareForm Creates a message instance for use

by the IMAPISession::ShowForm
method.

 IMAPISession::AdminServices

The IMAPISession::AdminServices method administers configuration changes to a profile.

HRESULT AdminServices(
 ULONG ulFlags,
 LPSERVICEADMIN FAR * lppServiceAdmin
)

Parameters

ulFlags
Reserved; must be zero.

lppServiceAdmin
Output parameter pointing to a variable where a pointer to the returned message service
administration object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMAPISession::AdminServices method to acquire a pointer to an
IMsgServiceAdmin interface. Once a client has the pointer to this object, it can call
IMsgServiceAdmin methods to change the message service configuration within a profile. Changes
made using the IMsgServiceAdmin methods do not affect the current running session. If profile
configuration is the primary purpose for creating a session, a client should log on using the
MAPI_NO_MAIL flag.

See Also

IMsgServiceAdmin : IUnknown interface , IProfAdmin::AdminServices method

 IMAPISession::Advise

The IMAPISession::Advise method registers a client application for notifications about changes to a
session object.

HRESULT Advise(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 ULONG ulEventMask,
 LPMAPIADVISESINK lpAdviseSink,
 ULONG FAR * lpulConnection
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the session object about which notifications should
be generated. The entry identifier of a status object cannot be used. NULL can be passed to register
for critical error events on the session.

ulEventMask
Input parameter containing an event mask that describes the types of events to generate
notifications. The mask filters specific cases. If the lpEntryID parameter is NULL, the client is by
default registering for critical error notifications on the session. This is the only type of event
supported by the session. If the lpEntryID parameter contains a valid entry identifier, MAPI forwards
the Advise call to the service provider that owns the entry identifier. The ulEventMask parameter
should be set to one or more types of events supported by this provider.

lpAdviseSink
Input parameter pointing to the advise sink object to be called when an event occurs for the session
object about which notification has been requested. This advise sink object must have already been
allocated.

lpulConnection
Output parameter pointing to a variable that upon a successful return holds the connection number
for the notification registration. The connection number must be nonzero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INVALID_ENTRYID
The service provider is not able to use the entry identifier passed in lpEntryID.

MAPI_E_NO_SUPPORT
The service provider either does not support changes to its objects or does not support notification
of changes.

MAPI_E_UNKNOWN_ENTRYID
A service provider that could handle the lpEntryID entry identifier could not be found.

Remarks

Client applications call the IMAPISession::Advise method to register a session object for notification
callbacks. MAPI forwards this call to the service provider active for the session that is responsible for
the object indicated by the entry identifier in lpEntryID. Whenever a change occurs to the indicated
object, the provider checks to see what event mask bit was set in the ulEventMask parameter and thus

what type of change occurred. If a bit is set, then the provider calls the IMAPIAdviseSink::OnNotify
method for the advise sink object indicated by the lpAdviseSink parameter to report the event. Data
passed in the notification structure to the OnNotify routine describes the event.

The call to OnNotify can occur during the call that changes the object, or at any following time. On
systems that support multiple threads of execution, the call to OnNotify can occur on any thread. For a
way to turn a call to OnNotify that might happen at an inopportune time into one that is safer to handle,
a client should use the HrThisThreadAdviseSink function.

To provide notifications, the service provider implementing Advise needs to keep a copy of the pointer
to the lpAdviseSink advise sink object; to do so, it calls the IUnknown::AddRef method for the advise
sink to maintain its object pointer until notification registration is canceled with a call to the
IMAPISession::Unadvise method. The Advise implementation should assign a connection number to
the notification registration and call AddRef on this connection number before returning it in the
lpulConnection parameter. Service providers can release the advise sink object before the registration
is canceled, but they must not release the connection number until Unadvise has been called.

After a call to Advise has succeeded and before Unadvise has been called, clients must be prepared
for the advise sink object to be released. A client should therefore release its advise sink object after
Advise returns unless it has a specific long-term use for it.

For more information on the notification process, see About Notification.

See Also

ERROR_NOTIFICATION structure , HrThisThreadAdviseSink function , IMAPIAdviseSink::OnNotify
method, IMAPISession::Unadvise method

 IMAPISession::CompareEntryIDs

The IMAPISession::CompareEntryIDs method compares two entry identifiers to determine if they
refer to the same object. MAPI only passes this call to a service provider if the unique identifiers (UIDs)
in both entry identifiers to be compared are handled by that provider.

HRESULT CompareEntryIDs(
 ULONG cbEntryID1,
 LPENTRYID lpEntryID1,
 ULONG cbEntryID2,
 LPENTRYID lpEntryID2,
 ULONG ulFlags,
 ULONG FAR * lpulResult
)

Parameters

cbEntryID1
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID1
parameter.

lpEntryID1
Input parameter pointing to the first entry identifier to be compared.

cbEntryID2
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID2
parameter.

lpEntryID2
Input parameter pointing to the second entry identifier to be compared.

ulFlags
Reserved; must be zero.

lpulResult
Output parameter pointing to a variable where the returned result of the comparison is stored; this
variable is TRUE if the two entry identifiers refer to the same object, and FALSE otherwise.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_UNKNOWN_ENTRYID
The requested entry identifier does not exist.

Remarks

Client applications call the IMAPISession::CompareEntryIDs method to compare two entry identifiers
for a given entry within a service provider to determine whether they refer to the same object. If the two
entry identifiers refer to the same object, then CompareEntryIDs sets the lpulResult parameter to
TRUE; if they refer to different objects, CompareEntryIDs sets lpulResult to FALSE.

CompareEntryIDs is useful because an object can have more than one valid entry identifier; such a
situation can occur, for example, after a new version of a service provider is installed.

If CompareEntryIDs returns an error, the calling client or provider should not take any action based on
an assumption about the comparison's result. It should instead take the most conservative approach to
the action it is trying to perform.

CompareEntryIDs might fail if, for example, no provider has registered for one of the entry identifiers
compared. If a client or provider compares message-store entry identifiers when one or both of the

stores has not yet opened, CompareEntryIDs returns MAPI_E_UNKNOWN_ENTRYID.

 IMAPISession::EnumAdrTypes

The IMAPISession::EnumAdrTypes method returns the messaging address types for which the
loaded transport providers have registered support.

HRESULT EnumAdrTypes(
 ULONG ulFlags,
 ULONG FAR * lpcAdrTypes,
 LPTSTR FAR * FAR * lpppszAdrTypes
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lpcAdrTypes
Output parameter pointing to the number of strings indicating address types returned in the
lpppszAdrTypes parameter.

lpppszAdrTypes
Output parameter pointing to a variable where is stored an array of pointers to strings containing
messaging address types, such as FAX, SMTP, and X500. The array contains the types for which
the transport providers have registered support.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMAPISession::EnumAdrTypes method to determine which address types
are supported by the transport providers loaded for a given session. The list of address types returned
by EnumAddrTypes depends on what providers are loaded at the time. If a transport provider is not
open, the address types that it supports do not appear in the list.

A client should release the string array pointed to by the lpppszAdrTypes parameter when done with
the strings by calling the MAPIFreeBuffer function.

See Also

MAPIFreeBuffer function

 IMAPISession::GetLastError

The IMAPISession::GetLastError method returns a MAPIERROR structure containing information
about the last error that occurred for a session object.

HRESULT GetLastError(
 HRESULT hResult,
 ULONG ulFlags,
 LPMAPIERROR FAR * lppMAPIError
)

Parameters

hResult
Input parameter containing the result returned for the last call for the session object that returned an
error.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the strings in the MAPIERROR structure returned in the lppMAPIError parameter are in
Unicode format. If the MAPI_UNICODE flag is not set, the strings are in ANSI format.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure containing version,
component, and context information for the error. The lppMAPIError parameter can be set to NULL if
there is no MAPIERROR structure to return.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Client applications call the IMAPISession::GetLastError method to retrieve information to display in a
message to the user regarding the last error returned from a method call for the session object.

To release all the memory allocated by MAPI, clients need only call the MAPIFreeBuffer function for
the returned MAPIERROR structure.

The return value from GetLastError must be S_OK for a client to make use of the MAPIERROR
structure. Even if the return value is S_OK, a MAPIERROR structure might not be returned. If the
implementation cannot determine what the last error was, or if a MAPIERROR structure is not available
for that error, GetLastError returns a pointer to NULL in lppMAPIError instead.

See Also

MAPIERROR structure , MAPIFreeBuffer function

 IMAPISession::GetMsgStoresTable

The IMAPISession::GetMsgStoresTable method returns a table that provides information about each
of the message stores configured in a session's profile.

HRESULT GetMsgStoresTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Output parameter pointing to a variable where the returned table object is stored. The table object
contains message store information.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Client applications call the IMAPISession::GetMsgStoresTable method to retrieve a table holding
information about each open message store configured in a session's profile. The message-store
information table contains the following required property columns:

PR_DEFAULT_STORE
PR_DISPLAY_NAME
PR_ENTRYID
PR_INSTANCE_KEY
PR_PROVIDER_DISPLAY
PR_RECORD_KEY
PR_RESOURCE_TYPE

The message-store information table can also contain the following optional columns:

PR_MDB_PROVIDER
PR_RESOURCE_FLAGS

The default column set includes all of the columns defined for the table.

The message-store information table is updated during the session to reflect changes to the profile.
Possible changes include addition of new, permanent message stores to the table, removal of existing
stores, and changes to which message store is the default. Clients should register for notification of
such changes.

Setting the MAPI_UNICODE flag in the ulFlags parameter does the following:

· Sets the string type to Unicode for data returned for the initial active columns of the message-store
information table by the IMAPITable::QueryColumns method. The initial active columns for a
message-store information table are those columns QueryColumns returns before the service
provider that contains the table calls the IMAPITable::SetColumns method.

· Sets the string type to Unicode for data returned for the initial active rows of the message-store
information table by the IMAPITable::QueryRows method. The initial active rows for a message-
store information table are those rows QueryRows returns before the provider that contains the
table calls SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the provider that contains the message-store information table calls the
IMAPITable::SortTable method.

See Also

IMAPISession::OpenMsgStore method , IMAPITable::QueryColumns method ,
IMAPITable::QueryRows method , IMAPITable::QuerySortOrder method , IMAPITable::SetColumns
method, IMAPITable::SortTable method

 IMAPISession::GetStatusTable

The IMAPISession::GetStatusTable method gets the status table for a given MAPI session.

HRESULT GetStatusTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Output parameter pointing to a variable where the returned table object is stored. The table contains
status information.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMAPISession::GetStatusTable method to open the status table object that
contains information about everything going on in the session. There is one status table for each MAPI
session. The only way to get a status object is by calling the IMAPISession::OpenEntry method on an
entry identifier within the status table returned from GetStatusTable. The status table contains at least
the following property columns:

PR_DISPLAY_NAME
PR_ENTRYID
PR_IDENTITY_DISPLAY
PR_INSTANCE_KEY
PR_OBJECT_TYPE
PR_PROVIDER_DLL_NAME
PR_PROVIDER_DISPLAY
PR_RESOURCE_METHODS
PR_RESOURCE_FLAGS
PR_RESOURCE_TYPE
PR_ROWID
PR_STATUS_CODE

The following property columns are optional:

PR_IDENTITY_ENTRYID
PR_IDENTITY_SEARCH_KEY
PR_STATUS_STRING

The default column set includes all of the columns defined for the table.

Setting the MAPI_UNICODE flag in the ulFlags parameter does the following:

· Sets the string type to Unicode for data returned for the initial active columns of the status table by
the IMAPITable::QueryColumns method. The initial active columns for a status table are those
columns QueryColumns returns before the service provider that contains the table calls the
IMAPITable::SetColumns method.

· Sets the string type to Unicode for data returned for the initial active rows of the status table by the
IMAPITable::QueryRows method. The initial active rows for a status table are those rows
QueryRows returns before the provider that contains the table calls SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the provider that contains the status table calls the IMAPITable::SortTable method.

See Also

IMAPITable::QueryColumns method , IMAPITable::QueryRows method ,
IMAPITable::QuerySortOrder method , IMAPITable::SetColumns method , IMAPITable::SortTable
method

 IMAPISession::Logoff

The IMAPISession::Logoff method ends a MAPI session.

HRESULT Logoff(
 ULONG ulUIParam,
 ULONG ulFlags,
 ULONG ulReserved
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

ulFlags
Input parameter containing a bitmask of flags that controls how logoff is performed. The following
flags can be set:
MAPI_LOGOFF_SHARED

Indicates all clients logged on using the shared session are notified of the shared logoff and
should log off. Any client that uses the shared session can set this flag. If the specified MAPI
session is not part of the shared session, this flag is ignored.

MAPI_LOGOFF_UI
Indicates a logoff dialog box should be displayed ¾ some implementations of MAPI might request
confirmation of logoff if operations are pending. If this flag is not set, logoff proceeds without
displaying a dialog box.

ulReserved
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMAPISession::Logoff method to end a MAPI session. Calling Logoff
implicitly invalidates the session object. IMAPISession::Logoff is similar to the Simple MAPI function
MAPILogoff, except that IMAPISession::Logoff doesn't release the session and returns a value of
type HRESULT rather than ULONG.

If the MAPI_LOGOFF_SHARED flag is set in the ulFlags parameter, notifications are sent to all clients
using the shared session indicating they should also log off.

After calling Logoff, a client should immediately release the session object by calling the
IUnknown::Release method. After calling Logoff, a call to Release is the only valid call for the
session object.

See Also

MAPILogoff function

 IMAPISession::MessageOptions

The IMAPISession::MessageOptions method displays a dialog box enabling a user to change
options for a particular message.

HRESULT MessageOptions(
 ULONG ulUIParam,
 ULONG ulFlags,
 LPTSTR lpszAdrType,
 LPMESSAGE lpMessage
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the dialog box.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in strings. The
following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lpszAdrType
Input parameter pointing to a string containing the messaging address type for which the options
dialog box should be displayed, such as FAX, SMTP, or X500. If all registered address types should
be shown, the client should pass NULL in the lpszAdrType parameter.

lpMessage
Input parameter pointing to the message for which a dialog box is displayed.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
No options were registered for the message.

Remarks

Client applications call the IMAPISession::MessageOptions method to get from the user a set of
preferences governing message options for the message. Message option changes made by the user
only go into effect after the client calls the IMAPIProp::SaveChanges method for the message.
Changes made to the options for a particular message do not affect the default options for an address
type. These options are usually message service elements specific to a transport provider.

 IMAPISession::OpenAddressBook

The IMAPISession::OpenAddressBook method opens an address book and returns a pointer that
provides further access to the open address book.

HRESULT OpenAddressBook(
 ULONG ulUIParam,
 LPCIID lpInterface,
 ULONG ulFlags,
 LPADRBOOK FAR * lppAdrBook
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the address book window and any
dialog boxes this method displays.

lpInterface
Input parameter pointing to the interface identifier (IID) for the address book object. Passing NULL
indicates the returned address book is cast to the standard interface for an address book object.

ulFlags
Input parameter containing a bitmask of flags that controls how the address book is returned. The
following flag can be set:
AB_NO_DIALOG

Suppresses display of dialog boxes while underlying address book providers are initialized during
logon, when a call to the IMAPISession::OpenAddressBook method generally occurs. If the
AB_NO_DIALOG flag is not set, address book providers can prompt the user to correct the logon
name or password, to insert a disk, or to perform other actions necessary to establish
connections.

lppAdrBook
Output parameter pointing to a variable where the pointer to the returned address book object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_UNKNOWN_CPID
Indicates the server is not configured to support the client's code page.

MAPI_E_UNKNOWN_LCID
Indicates the server is not configured to support the client's locale information.

MAPI_W_ERRORS_RETURNED
The call succeeded, but one or more address book providers could not be loaded. To test for this
warning, use the HR_FAILED macro. When this warning is returned, the call should be handled as
successful.

Remarks

Client applications call the IMAPISession::OpenAddressBook method during the logon process to
get access to an address book. The returned pointer to the address book can then be used to open
address book containers, find messaging users, and display address dialog boxes.

This method can return MAPI_W_ERRORS_RETURNED if it cannot load an address book provider.
This value is a warning, not an error value, and a call that returns it should be handled as successful.
Even if all of the address book providers failed to load, OpenAddressBook succeeds and returns

MAPI_W_ERRORS_RETURNED and an address book object in the lppAdrBook parameter. Even
when no address book providers are loaded, a client can still use the IAddrBook interface and must
release it when done.

If one or more address book providers failed to load, a client can call the IMAPISession::GetLastError
method on the session object to obtain a MAPIERROR structure containing information about the
providers that did not load. If more than one provider failed to load, a single MAPIERROR structure is
returned that contains an aggregation of the strings returned by each provider.

For more information on the HR_FAILED macro, see Using Macros for Error Handling.

See Also

IMAPISession::GetLastError method , MAPIERROR structure

 IMAPISession::OpenEntry

The IMAPISession::OpenEntry method opens an object and returns a pointer to the object to provide
further access.

HRESULT OpenEntry(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 LPCIID lpInterface,
 ULONG ulFlags,
 ULONG FAR * lpulObjType,
 LPUNKNOWN FAR * lppUnk
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier for the object to open.

lpInterface
Input parameter pointing to the interface identifier (IID) for the object to open. Passing NULL
indicates the object is cast to the standard interface for such an object. The lpInterface parameter
can also be set to an identifier for an appropriate interface for the object.

ulFlags
Input parameter containing a bitmask of flags that controls how the object is opened. The following
flags can be used:
MAPI_BEST_ACCESS

Indicates the object should be opened with the maximum network permissions allowed for the
user and the maximum client application access. For example, if the client has read/write access,
the object is opened with read/write access; if the client has read-only access, the object is
opened with read-only access. The client can retrieve the access level by getting the
PR_ACCESS_LEVEL property.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

MAPI_MODIFY
Requests read/write access. By default, objects are created with read-only access, and clients
should not work on the assumption that read/write access has been granted.

lpulObjType
Output parameter pointing to a variable where the type of the opened object is stored.

lppUnk
Output parameter pointing to a variable where the pointer to the opened object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt to access an object for which the
user has insufficient permissions.

MAPI_E_NOT_FOUND

The object indicated by lpEntryID does not exist.
MAPI_E_UNKNOWN_ENTRYID

The object indicated by the lpEntryID parameter is not recognized. This value is typically returned if
the message store or address book provider that contains the object is not open.

Remarks

Client applications call the IMAPISession::OpenEntry method to open objects. Using
IMAPISession::OpenEntry is slower than using the IMsgStore:: OpenEntry method or the
IAddrBook::OpenEntry method, but IMAPISession::OpenEntry is useful if the calling client does not
have information on where to locate the object to open. The IMAPISession::OpenEntry call returns a
pointer that provides further access to the object. Default behavior is to open the object as read-only,
unless the call sets the MAPI_MODIFY or MAPI_BEST_ACCESS flag in the ulFlags parameter.

MAPI provides a status table with information about each of the installed service providers. In each row
of the status table, a status object is available with information about a particular service provider.
Calling OpenEntry with the entry identifier of a status object found in the status table is the only way to
open a status object.

Calling OpenEntry and passing in the entry identifier for a message store in lpEntryID, as a client does
when it does not have information on where that message store is located, is equivalent to calling the
IMAPISession::OpenMsgStore method with the MDB_NO_DIALOG flag set in its ulFlags parameter;
OpenMsgStore called so opens a message store and returns a pointer to it without displaying a logon
dialog box. When opening a message store, flags set in OpenEntry's ulFlags parameter map to
OpenMsgStore flags as follows:

OpenEntry flag OpenMsgStore equivalent
MAPI_BEST_ACCESS MAPI_BEST_ACCESS
MAPI_MODIFY MDB_WRITE
MAPI_DEFERRED_ERR
ORS

MAPI_DEFERRED_ERRORS

The calling client should check the value returned in the lpulObjType parameter to determine that the
object type returned is what was expected. Commonly, after the client checks the type of the object, it
then casts the pointer in the lppUnk parameter into a message object pointer, a folder object pointer, or
another appropriate object pointer.

See Also

IAddrBook::OpenEntry method , IMAPISession::OpenMsgStore method , IMsgStore:: OpenEntry
method

 IMAPISession::OpenMsgStore

The IMAPISession::OpenMsgStore method opens a message store and returns a pointer that
provides further access to the open store.

HRESULT OpenMsgStore(
 ULONG ulUIParam,
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 LPCIID lpInterface,
 ULONG ulFlags,
 LPMDB FAR * lppMDB
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the message store to be opened. The lpEntryID
parameter must be non-null.

lpInterface
Input parameter pointing to the interface identifier for the message-store object. Passing NULL
indicates the object is cast to the standard interface for a message store object.

ulFlags
Input parameter containing a bitmask of flags that controls how the message store is accessed. The
following flags can be used:
MAPI_BEST_ACCESS

Indicates the object should be opened with the maximum network permissions allowed for the
user and the maximum client application access. For example, if the client has read/write access,
the object is opened with read/write access; if the client has read-only access, the object is
opened with read-only access. The client can retrieve the access level by getting the
PR_ACCESS_LEVEL property.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

MDB_NO_DIALOG
Prevents display of logon dialog boxes. If this flag is set, MAPI_E_LOGON_FAILED is returned if
logon is unsuccessful. If this flag is not set, the message store provider can prompt the user to
correct a name or password, to insert a disk, or to perform other actions necessary to establish
connection to the store.

MDB_NO_MAIL
Indicates the message store should not be used for sending or receiving mail. The flag signals
MAPI not to notify the MAPI spooler this message store is being opened.

MDB_TEMPORARY
Instructs MAPI that the store is not to be added to the message-store information table and that
the store cannot be made permanent. This flag is used to log on the store so that information can
be retrieved programmatically from the profile section.

MDB_WRITE
Requests read/write access to the store.

lppMDB
Output parameter pointing to a variable where the returned pointer to the message store object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt to modify a read-only object or an attempt to access an object for which the user has
insufficient permissions.

MAPI_E_NOT_FOUND
The message store indicated by lpEntryID does not exist.

MAPI_E_UNKNOWN_CPID
Indicates the server is not configured to support the client's code page.

MAPI_E_UNKNOWN_LCID
Indicates the server is not configured to support the client's locale information.

MAPI_W_ERRORS_RETURNED
The call succeeded, but the message store provider has error information available. To test for this
warning, use the HR_FAILED macro. When this warning is returned, the call should be handled as
successful. To get the error information from the provider, call the IMAPISession::GetLastError
method.

Remarks

Client applications call the IMAPISession::OpenMsgStore method during the logon process to get
access to a particular message store using its entry identifier from the message store table. Default
behavior is to open the object as read-only, unless the client sets the MDB_WRITE flag in the ulFlags
parameter.

Note the following points about the default behavior of opening a message store as read-only:

· The STORE_MODIFY_OK and the STORE_CREATE_OK flags in the
PR_STORE_SUPPORT_MASK property return FALSE for the store object. This return occurs only
when a message store is opened as read-only using OpenMsgStore, not in other read-only
scenarios.

· Calls to the IMAPISession::OpenEntry method or the IMAPIProp::OpenProperty method passing
the flag MAPI_MODIFY, which requests read/write access, fail.

· Calls to the following methods fail: IMAPIFolder::CreateMessage, IMAPIFolder::DeleteMessages,
IMAPIFolder::CreateFolder, IMAPIFolder::DeleteFolder, IMAPIFolder::SetMessageStatus,
IMAPIProp::SetProps, IMAPIProp::DeleteProps.

· Calls to the following methods fail if the copying destination is within the same read-only message
store as the copying source: IMAPIFolder::CopyMessages, IMAPIFolder::CopyFolder,
IMAPIProp::CopyTo.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

 IMAPISession::OpenProfileSection

The IMAPISession::OpenProfileSection method opens a section of the current profile and returns a
pointer that provides further access to the profile object.

HRESULT OpenProfileSection(
 LPMAPIUID lpUID,
 LPCIID lpInterface,
 ULONG ulFlags,
 LPPROFSECT FAR * lppProfSect
)

Parameters

lpUID
Input parameter pointing to the MAPIUID structure holding the MAPI unique identifier (MAPIUID) for
the profile section.

lpInterface
Input parameter pointing to the interface identifier (IID) for the profile section. Passing NULL
indicates the profile section object is cast to the standard interface for a profile section. The
lpInterface parameter can also be set to an identifier for an appropriate interface for the object. Valid
interface identifiers are IID_IMAPIProp and IID_IProfSect.

ulFlags
Input parameter containing a bitmask of flags that controls access to the profile section. The
following flags can be set:
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

MAPI_MODIFY
Requests read/write access. By default, objects are created with read-only access, and client
applications should not work on the assumption that read/write access has been granted.

lppProfSect
Output parameter pointing to a variable where the pointer to the returned profile object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only profile section or an attempt to access an object for
which the user has insufficient permissions.

MAPI_E_NOT_FOUND
The requested object does not exist.

Remarks

Client applications call the IMAPISession::OpenProfileSection method to open a profile section for
reading information from and writing information to the active profile for the session. A profile section
object supporting the IProfSect interface is returned in the lppProfSect parameter. Default behavior is
to open the profile section as read-only, unless a client sets the MAPI_MODIFY flag in the ulFlags
parameter. Profile sections belonging to service providers cannot be opened by calls to
OpenProfileSection.

More than one method call can open a profile section with read-only access at a time, but only one

method call can open a profile section with read/write access at a time. If any other client has the
profile section open, a read/write open operation fails and returns MAPI_E_NO_ACCESS. A read-only
open operation fails if the section is open for writing.

If an OpenProfileSection call opens a nonexistent profile section by passing MAPI_MODIFY in
ulFlags, the call creates the section. If an OpenProfileSection call attempts to open a nonexistent
section with read-only access, it returns MAPI_E_NOT_FOUND.

See Also

IMAPIProp : IUnknown interface , IProfSect : IMAPIProp interface , MAPIUID structure

 IMAPISession::PrepareForm

The IMAPISession::PrepareForm method creates a message instance for use by the
IMAPISession::ShowForm method.

HRESULT PrepareForm(
 LPCIID lpInterface,
 LPMESSAGE lpMessage,
 ULONG FAR * lpulMessageToken
)

Parameters

lpInterface
Input parameter pointing to the interface identifier (IID) for the message object to create. Passing
NULL indicates the message object is cast to the standard interface for a message object. The
lpInterface parameter can also be set to IID_IMessage, which is the only valid IID for the message
object.

lpMessage
Input parameter pointing to the message object.

lpulMessageToken
Output parameter pointing to a returned message token, which must be passed in the following
ShowForm call.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMAPISession::PrepareForm method to create a message instance for use
by IMAPISession::ShowForm. Clients should only have a single reference to the message passed in
PrepareForm's lpMessage parameter. If the call to PrepareForm succeeds, the client must release
the message, then call ShowForm and pass in the ulMessageToken parameter the message token
returned in PrepareForm's lpulMessageToken parameter. Failure to do so causes memory leaks.

See Also

IMAPISession::ShowForm method

 IMAPISession::QueryDefaultMessageOpt

The IMAPISession::QueryDefaultMessageOpt method returns the available message options and
their default settings for a particular messaging address type.

HRESULT QueryDefaultMessageOpt(
 LPTSTR lpszAdrType,
 ULONG ulFlags,
 ULONG FAR * lpcValues,
 LPSPropValue FAR * lppOptions
)

Parameters

lpszAdrType
Input parameter pointing to a string containing the messaging address type in question, such as
FAX, SMTP, or X500.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in and returned
strings. The following flag can be set:
MAPI_UNICODE

Indicates the passed-in and returned strings are in Unicode format. If the MAPI_UNICODE flag is
not set, the strings are in ANSI format.

lpcValues
Output parameter pointing to the number of property values returned in the lppOptions parameter.

lppOptions
Output parameter pointing to a variable where a pointer to the returned array of SPropValue
structures is stored. The SPropValue structures contain available message options and their default
values.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMAPISession::QueryDefaultMessageOpt method to find out what
message options are available for a particular messaging address type. The returned SPropValue
property value array includes the property identifier for each message option and its default property
value, if there is one.

Message options are properties of a message that control its behavior after it is submitted to the
transport provider; they are part of the message envelope, not its content. They are not usually specific
to a particular address type.

 IMAPISession::QueryIdentity

The IMAPISession::QueryIdentity method returns an entry identifier that represents the object acting
as the primary identity for the current MAPI session.

HRESULT QueryIdentity(
 ULONG FAR * lpcbEntryID,
 LPENTRYID FAR * lppEntryID
)

Parameters

lpcbEntryID
Output parameter pointing to a variable in which is returned the size, in bytes, of the entry identifier
pointed to by the lppEntryID parameter.

lppEntryID
Output parameter pointing to a variable where the pointer to the newly created entry identifier is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_W_NO_SERVICE
The call succeeded, but no provider can provide the primary identifier. To test for this warning, use
the HR_FAILED macro. When this warning is returned, the call should be handled as successful.

Remarks

Client applications call the IMAPSession::QueryIdentity method to retrieve a user's primary identity
for the current session.

A primary identity is a string that represents the user of a MAPI session. Each message service
provider that MAPI has information about establishes an identity for each of its users. This identity can
be established when a client logs onto the service. However, because MAPI supports connections to
multiple service providers for each MAPI session, there is no firm definition of a particular user's
identity for the MAPI session as a whole; a user's identity depends on which service is involved.
Service providers that utilize the functionality provided by primary identities should set the
STATUS_PRIMARY_IDENTITY flag in the PR_RESOURCE_FLAGS property. Clients can call the
IMsgServiceAdmin::SetPrimaryIdentity method to designate one of the many identities established
for a user by message service providers as the primary identity for that user.

The QueryIdentity method provides clients a convenient way to retrieve a primary identity. Once a
client has a user's primary identity, it can call the session object's IMAPISession::OpenEntry method
and query the resulting interface to obtain properties associated with that primary identity from the
returned entry identifiers, such as the display name or messaging address. Sophisticated clients that
are aware of the service provider, or the providers within whose context they operate, can browse the
status table to determine users' identities in the context of the current service providers rather than
using QueryIdentity. More traditional clients, which work with a single identity for a session, use
QueryIdentity to obtain a user's primary identity.

QueryIdentity returns the best information MAPI can locate for the user's primary identity for a
session. Ideally, this is the PR_IDENTITY_ENTRYID property from the status row tagged with
STATUS_PRIMARY_IDENTITY, although there are other possibilities:

· If no provider can provide a primary identifier, QueryIdentity succeeds with the warning
MAPI_W_NO_SERVICE and returns a hard-coded entry identifier in lppEntryID.

· If some rows make available PR_IDENTITY_ENTRYID but no row is tagged with

STATUS_PRIMARY_IDENTITY, QueryIdentity returns the first entry identifier found.
· If a row is tagged with STATUS_PRIMARY_IDENTITY but holds no entry identifier, QueryIdentity

returns a custom-recipient entry identifier built with other information from that row.

When a client has finished using the entry identifier for the primary identity returned by QueryIdentity,
it should free the memory that held it by using the MAPIFreeBuffer function.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

See Also

IMAPISession::OpenEntry method , IMsgServiceAdmin::SetPrimaryIdentity method ,
MAPIFreeBuffer function

 IMAPISession::SetDefaultStore

The IMAPISession::SetDefaultStore method sets a message store provider as the default.

HRESULT SetDefaultStore(
 ULONG ulFlags,
 ULONG cbEntryID,
 LPENTRYID lpEntryID
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the setting of the default message store.
The flags used for the ulFlags parameter are mutually exclusive, so only one flag can be set for
each call to the IMAPISession::SetDefaultStore method. The following flags can be set:
MAPI_DEFAULT_STORE

Sets the STATUS_DEFAULT_STORE flag in the PR_RESOURCE_FLAGS property column of
the status table.

MAPI_PRIMARY_STORE
Sets the STATUS_PRIMARY_STORE flag in the PR_RESOURCE_FLAGS column of the status
table. This flag indicates the store that clients should try to use when they log on. If the primary
store is not the default store, clients should set it as the default.

MAPI_SECONDARY_STORE
Sets the STATUS_SECONDARY_STORE flag in the PR_RESOURCE_FLAGS column of the
status table. This flag indicates the store that clients should try to use if the primary store is not
available. If a client cannot open the primary store, it should open the secondary store and set it
as the default store.

MAPI_SIMPLE_STORE_PERMANENT
Causes the STATUS_SIMPLE_STORE flag in the PR_RESOURCE_FLAGS column of the status
table to be set and permanently saved in the profile in addition to updating the status and
message store tables.

MAPI_SIMPLE_STORE_TEMPORARY
Causes modification STATUS_SIMPLE_STORE flag in the PR_RESOURCE_FLAGS column of
the status table and message store table to be set, but does not save the settings permanently in
the profile.

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the message store object intended as the default. If
a client passes NULL in lpEntryID, no message store is selected as the default.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMAPISession::SetDefaultStore method to make a single call to reset the
default store that message store operations take place in.

Information on which message store is the default is kept in the message-store information table.
Information in this table is consistent with information in the status table; the message-store information

table has a PR_RESOURCE_FLAGS property column with the same values as the
PR_RESOURCE_FLAGS property column in the status table.

When either the MAPI_DEFAULT_STORE or the MAPI_SIMPLE_STORE_PERMANENT flag is set
changing the default store, the profile is updated along with any message-store information table or
status table open for the profile. Whenever a change is made to the message store default setting, the
following notifications are generated:

· An fnevTableModified event notification is issued for each of the affected rows in both the
message-store table and the status table.

· An internal notification is issued to the MAPI spooler. Operations already in progress are completed
without change; new operations involving the default message store, such as message
downloading, are processed for the new default store.

No special message store capabilities are required for the simple store. However, setting the default
store fails if the target store does not set the STORE_SUBMIT_OK, STORE_CREATE_OK, and
STORE_MODIFY_OK flags in the PR_STORE_SUPPORT_MASK property.

See Also

PR_RESOURCE_FLAGS property , PR_STORE_SUPPORT_MASK property , TABLE_NOTIFICATION
structure

 IMAPISession::ShowForm

The IMAPISession::ShowForm method displays a message form for editing and sending.

HRESULT ShowForm(
 ULONG ulUIParam,
 LPMDB lpMsgStore,
 LPMAPIFOLDER lpParentFolder,
 LPCIID lpInterface,
 ULONG ulMessageToken,
 LPMESSAGE lpMessageSent,
 ULONG ulFlags,
 ULONG ulMessageStatus,
 ULONG ulMessageFlags,
 ULONG ulAccess,
 LPSTR lpszMessageClass
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the window in which the form is
displayed or NULL.

lpMsgStore
Input parameter pointing to the message store containing the folder pointed to by the lpParentFolder
parameters.

lpParentFolder
Input parameter pointing to the folder in which the message was created or NULL.

lpInterface
Reserved; must be NULL.

ulMessageToken
Input parameter containing the message token returned by the preceding call to the
IMAPISession::PrepareForm method. The same token returned by the PrepareForm call must be
passed in ShowForm, or the message object is not released.

lpMessageSent
Reserved; must be NULL.

ulFlags
Input parameter containing a bitmask of flags that controls how and whether the message is saved.
The following flags can be set:
MAPI_NEW_MESSAGE

Indicates the message has not previously been saved (that is, the IMAPIProp::SaveChanges
method has not been called on the message).

MAPI_POST_MESSAGE
Indicates the message should be saved to its parent folder. The message is not processed for
sending but posted to the folder instead. If this flag is not set, the message is copied to the
Outbox and processed for sending.

ulMessageStatus
Input parameter containing a bitmask of client- or provider-defined flags, copied from the
PR_MSG_STATUS property of the message referenced to the message in the ulMessageToken
parameter. The flags provide information on the state of the message.

ulMessageFlags
Input parameter pointing to a bitmask of flags, copied from the PR_MESSAGE_FLAGS property of
the message referenced to the message in ulMessageToken. The flags provide further information

on the state of the message.
ulAccess

Input parameter containing flags copied from the PR_ACCESS_LEVEL property of the message
referenced to the message in ulMessageToken. The flags indicate whether the message has
read/write or read-only access.

lpszMessageClass
Input parameter pointing to a string naming the message class of the message referenced to the
message in ulMessageToken. This string is copied from the PR_MESSAGE_CLASS property of the
message.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by clicking the Cancel button in a dialog box.

Remarks

Client applications call the IMAPISession::ShowForm method together with
IMAPISession::PrepareForm to display a message form for editing and sending. Clients should only
have a single reference to the message passed in PrepareForm's lpMessage parameter. If the call to
PrepareForm succeeds, the client must release the message, then call ShowForm and pass in
ulMessageToken the message token returned in PrepareForm's lpulMessageToken parameter. Failure
to do so causes memory leaks.

Form implementations can return error codes other than the ones documented by MAPI. If the client
application is able to use these error codes to make a more accurate determination of the error
condition, it can do so; otherwise, it should treat these errors as if the return code was
MAPI_E_CALL_FAILED.

See Also

IMAPISession::PrepareForm method

 IMAPISession::Unadvise

The IMAPISession::Unadvise method removes an object's registration for notification of changes
previously established with a call to the IMAPISession::Advise method.

HRESULT Unadvise(
 ULONG ulConnection
)

Parameters

ulConnection
Input parameter containing the number of the registration connection previously returned by a call to
IMAPISession::Advise.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMAPISession::Unadvise method to release the pointer to the advise sink
object passed in the lpAdviseSink parameter in the previous call to IMAPISession::Advise, thereby
canceling a notification registration. As part of discarding the pointer to the advise sink object, the
object's IUnknown::Release method is called. Generally, Release is called during the Unadvise call,
but if another thread is in the process of calling the IMAPIAdviseSink::OnNotify method for the advise
sink object, the Release call is delayed until the OnNotify method returns.

See Also

IMAPIAdviseSink::OnNotify method , IMAPISession::Advise method

 IMAPIStatus : IMAPIProp

The IMAPIStatus interface is used by service providers to support client application requests for
information that is not maintained in the status table. Clients can call one of the logon object's
OpenStatusEntry methods to retrieve a pointer to a provider status object. With a status object
pointer, clients can call one of the four methods in the IMAPIStatus interface: ValidateState,
SettingsDialog, ChangePassword, or FlushQueues. However, providers are only required to support
ValidateState; they can return MAPI_E_NO_SUPPORT from their implementations of the other three
methods.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Status object

Corresponding pointer type: LPMAPISTATUS
Implemented by: Service providers
Transaction model: Non-transacted
Called by: Client applications

Vtable Order

ValidateState Confirms the external status information available for
a transport provider by checking with the transport
provider itself.

SettingsDialog Displays a dialog box enabling the user to change
the configuration of the active service provider.

ChangePassword Changes a password specific to a service provider,
without displaying a user interface.

FlushQueues Forces all messages waiting to be sent or received
by a particular transport provider to be uploaded or
downloaded synchronously.

Required Properties

PR_DISPLAY_NAME Read/write
PR_ENTRYID Read-only
PR_PROVIDER_DLL_NAME Read-only
PR_RESOURCE_FLAGS Read-only
PR_RESOURCE_METHODS Read-only
PR_RESOURCE_TYPE Read-only
PR_STATUS_CODE Read-only

 IMAPIStatus::ChangePassword

The IMAPIStatus::ChangePassword method changes a password specific to a service provider,
without displaying a user interface.

HRESULT ChangePassword(
 LPTSTR lpOldPass,
 LPTSTR lpNewPass,
 ULONG ulFlags
)

Parameters

lpOldPass
Input parameter pointing to a string containing the old password.

lpNewPass
Input parameter pointing to a string containing the new password.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the password strings. The
following flag can be set:
MAPI_UNICODE

Indicates the strings are in Unicode format. If the MAPI_UNICODE flag is not set, the strings are
in ANSI format.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
The password is wrong or invalid.

MAPI_E_NO_SUPPORT
The STATUS_CHANGE_PASSWORD flag is not set in the PR_RESOURCE_METHODS property.

See Also

PR_RESOURCE_METHODS property

 IMAPIStatus::FlushQueues

The IMAPIStatus::FlushQueues method forces all messages waiting to be sent or received by a
particular transport provider to be uploaded or downloaded synchronously.

HRESULT FlushQueues(
 ULONG ulUIParam,
 ULONG cbTargetTransport,
 LPENTRYID lpTargetTransport,
 ULONG ulFlags
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

cbTargetTransport
Input parameter containing the size, in bytes, of the entry identifier pointed to by the
lpTargetTransport parameter. The cbTargetTransport parameter is only valid when called by the
MAPI spooler's status object. To flush all queues, pass zero in cbTargetTransport.

lpTargetTransport
Input parameter pointing to the entry identifier of the transport provider for which message queues
are to be flushed ¾ that is, emptied by uploading or downloading. The lpTargetTransport parameter
is only valid when called from the MAPI spooler's status object. To flush all queues, pass NULL in
lpTargetTransport.

ulFlags
Input parameter containing a bitmask of flags that controls how message queue flushing is done.
The following flags can be set:
FLUSH_ASYNC_OK

Notifies the MAPI spooler that the queues can be flushed asynchronously and return before the
operation is complete. This flag only applies to the MAPI spooler's status object. Client
applications can register for notifications on the MAPI spooler's status row to receive notifications
when the flushing operation is complete.

FLUSH_DOWNLOAD
Indicates the inbound message queue or queues should be flushed.

FLUSH_FORCE
Indicates the transport provider should process this flush request if possible, even if doing so is
time-consuming. Asynchronous transport providers cannot respond to unforced
IMAPIStatus::FlushQueues and IXPLogon::FlushQueues method calls.

FLUSH_NO_UI
Indicates the transport provider should not display a user interface. This flag is used only by the
MAPI spooler; providers ignore this flag.

FLUSH_UPLOAD
Indicates the outbound message queue or queues should be flushed.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

MAPI_E_NO_SUPPORT

The STATUS_FLUSH_QUEUES flag is not set in the PR_RESOURCE_METHODS property.

Remarks

Use the IMAPIStatus::FlushQueues method to force all messages in a particular transport provider's
inbound or outbound message queue to be uploaded or downloaded. FlushQueues is only available
from the status object. Queues are flushed synchronously when FlushQueues is called to the MAPI
spooler and asynchronously when called to a specific transport.

Unless the FLUSH_NO_UI flag is set in the ulFlags parameter, the MAPI spooler displays a user
interface indicating progress during the flushing operation. Transport providers ignore requests for a
user interface. FlushQueues processing can take a long time; MAPI_E_BUSY should be returned for
asynchronous requests so that clients can continue work. Transport providers can ignore
FlushQueues requests and return MAPI_E_NO_SUPPORT if they cannot handle them.

See Also

PR_RESOURCE_METHODS property

 IMAPIStatus::SettingsDialog

The IMAPIStatus::SettingsDialog method displays a dialog box enabling the user to change the
configuration of the active service provider.

HRESULT SettingsDialog(
 ULONG ulUIParam,
 ULONG ulFlags
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the dialog box.

ulFlags
Input parameter containing a bitmask of flags that controls how the configuration dialog box is
displayed. The following flag can be set:
UI_READONLY

Suggests the provider not enable users to change provider settings. This flag can be ignored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT
The STATUS_SETTINGS_DIALOG flag is not set in the PR_RESOURCE_METHODS property.

Remarks

Use the IMAPIStatus::SettingsDialog method to have a service provider display a user interface for
configuration, usually for the user to make changes to property sheets. A call to SettingsDialog
commonly displays a user interface, so SettingsDialog should only be used by interactive
applications.

 IMAPIStatus::ValidateState

The IMAPIStatus::ValidateState method confirms the external status information available for a
transport provider by checking with the transport provider itself.

HRESULT ValidateState(
 ULONG ulUIParam,
 ULONG ulFlags
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

ulFlags
Input parameter containing a bitmask of flags that controls how the status check is done and its
results. The following flags can be set:
ABORT_XP_HEADER_OPERATION

Indicates the user canceled the operation, typically by clicking the Cancel button in a dialog box.
The transport provider has the option to continue working on the operation, or it can abort the
operation and return MAPI_E_USER_CANCELED.

CONFIG_CHANGED
Validates the state of the currently loaded transport providers by calling their
IXPLogon::AddressTypes and IMAPISession::MessageOptions methods at the next
convenient time, when set for calls to the MAPI spooler. This flag also can be set to allow the
MAPI spooler to correct critical transport provider failures without forcing client applications to log
off and then log on again. When a specific transport provider is called with this flag set, the
transport provider calls the IMAPISupport::SpoolerNotify method to notify the MAPI spooler if
its profile section has been updated.

FORCE_XP_CONNECT
Indicates the user selected a connect operation. When this flag is used with the
REFRESH_XP_HEADER_CACHE or PROCESS_XP_HEADER_CACHE flag, the connect action
occurs without caching.

FORCE_XP_DISCONNECT
Indicates the user selected a disconnect operation. When this flag is used with the
REFRESH_XP_HEADER_CACHE or PROCESS_XP_HEADER_CACHE flag, the disconnect
action occurs without caching.

PROCESS_XP_HEADER_CACHE
Indicates that entries in the header cache table should be processed, that all messages marked
with the MSGSTATUS_REMOTE_DOWNLOAD flag should be downloaded, and that all
messages marked with the MSGSTATUS_REMOTE_DELETE flag should be deleted. Messages
that have both MSGSTATUS_REMOTE_DOWNLOAD and MSGSTATUS_REMOTE_DELETE set
should be moved.

REFRESH_XP_HEADER_CACHE
Indicates that a new list of message headers should be downloaded and that all message status
marking flags should be cleared.

SUPPRESS_UI
Prevents the transport provider from displaying a user interface.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

MAPI_E_NO_SUPPORT
The STATUS_VALIDATE_STATE flag is not set in the PR_RESOURCE_METHODS property.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by clicking the Cancel button in a dialog box. This value is
only returned by remote transport providers.

Remarks

Use the IMAPIStatus::ValidateState method to have a transport provider check its internal state and
ensure that this internal state is consistent with its status table row settings. ValidateState calls can
take a long time.

 IMAPISupport : IUnknown

MAPI provides four different support objects. There is one support object for each type of service
provider and a configuration support object that all providers receive when their message service entry
point function is called. There are a few IMAPISupport methods that are used in all of the support
objects, such as the GetLastError method. Other IMAPISupport methods are specific to one type of
support object. For example, the CopyMessages method is only used by message store providers.
Methods that are not implemented for a particular type of support object return
MAPI_E_NO_SUPPORT when called.

The following table indicates the methods that are implemented for the different types of support
objects.

Method Type of support object
Address Address book
CompareEntryIDs Address book, message store,

transport
CompleteMsg Message store
CopyFolder Message store
CopyMessages Message store
CreateOneOff Address book, message store,

and transport providers
Details Address book
DoConfigPropsheet Address book, message store,

transport, configuration support
DoCopyProps Message store
DoCopyTo Message store
DoProgressDialog Address book and message

store
DoSentMail Message store
ExpandRecips Message store
GetLastError Address book, message store,

transport, configuration support
GetMemAllocRoutines Address book, message store,

transport, configuration support
GetOneOffTable Address book
GetSvcConfigSupportObj Address book, message store,

transport, configuration support
IStorageFromStream Address book, message store,

transport
MakeInvalid Address book, message store,

transport, configuration support
ModifyProfile Message store
ModifyStatusRow Address book, message store,

transport
NewEntry Address book
NewUID Address book, message store,

transport, configuration support
Notify Address book, message store,

transport
OpenAddressBook Address book, message store,

transport
OpenEntry Address book, message store,

transport
OpenProfileSection Address book, message store,

transport, configuration support
OpenTemplateID Address book
PrepareSubmit Message store
ReadReceipt Message store
RegisterPreprocessor Transport
SetProviderUID Address book and message

store
SpoolerNotify Message store and transport
SpoolerYield Transport
StatusRecips Transport
StoreLogoffTransports Message store
Subscribe Address book, message store,

transport
Unsubscribe Address book, message store,

transport
WrapStoreEntryID Address book, message store,

transport

At a Glance

Specified in header file: MAPISPI.H
Object that supplies this
interface:

Support object

Corresponding pointer type: LPMAPISUP
Implemented by: MAPI
Called by: Service providers

Vtable Order

GetLastError Returns a MAPIERROR structure containing
information about the last error that occurred for
a support object.

GetMemAllocRoutines Retrieves the addresses of the MAPI memory
allocation and deallocation functions,
MAPIAllocateBuffer, MAPIAllocateMore, and
MAPIFreeBuffer.

Subscribe Sets up a subscription for notification events with
the MAPI.

Unsubscribe Removes an object's subscription for notification
of changes previously established with a call to
the IMAPISupport::Subscribe method.

Notify Notifies registered applications about changes to
an object that the service provider owns.

ModifyStatusRow Creates or modifies a service provider's status

table row.
OpenProfileSection Opens a section of the current profile and returns

a pointer that provides further access.
RegisterPreprocessor Registers a preprocessor function for a transport

provider.
NewUID Returns a new MAPI unique identifier (MAPIUID)

for an item.
MakeInvalid Invalidates an object derived from the IUnknown

interface.
SpoolerYield Allows the transport provider to permit the MAPI

spooler to give processing time to Windows.
SpoolerNotify Informs the MAPI spooler the transport provider

requires service.
CreateOneOff Creates an entry identifier for a custom recipient.
SetProviderUID Informs MAPI of the MAPI unique identifier

(MAPIUID) assigned to the service provider
using the current support object.

CompareEntryIDs Compares two entry identifiers to determine if
they refer to the same object.

OpenTemplateID Allows run-time binding of one address book
provider's code to data for an entry in another
address book provider, so the entry's properties
can later be updated. This method is called only
for interaction between address book providers.

OpenEntry Opens an object given its entry identifier.
GetOneOffTable Returns a table of templates for custom recipient

addresses that can be used to create recipients
for a message.

Address Updates the list of recipients for a message by
displaying MAPI's default address dialog box.

Details Displays MAPI's default dialog box showing
details about an address book entry.

NewEntry Displays MAPI's default dialog box for creating
new entries within a container or custom
recipient addresses within a message.

DoConfigPropsheet Enables a service provider to display a property
sheet, usually for configuration, using MAPI's
default user interface.

CopyMessages Copies or moves messages from one folder to
another.

CopyFolder Copies or moves a subfolder from its current
parent folder to another folder.

DoCopyTo Copies or moves all properties from a source
object to a destination object, except for a given
set of excluded properties.

DoCopyProps Copies or moves a selected set of properties
from a source object to a destination object.

DoProgressDialog Provides a default implementation of a progress
indicator for use by service providers.

ReadReceipt Generates a read or nonread report for a

message.
PrepareSubmit Prepares a message for submission to the MAPI

spooler.
ExpandRecips Completes all recipient lists and expands certain

distribution lists for the transmission of a
message.

DoSentMail Generates for an open message a corresponding
message in the SentItems folder.

OpenAddressBook Opens an address book and returns a pointer
that provides further access to the open address
book.

CompleteMsg Calls the MAPI spooler to complete message
delivery processing. This method is called only
by message store providers that are tightly
coupled with service providers.

StoreLogoffTransports Specifies the orderly release of a message store
to the MAPI spooler.

StatusRecips Generates delivery and nondelivery reports on
behalf of transport providers.

WrapStoreEntryID Maps the private entry identifier of a message
store object to an entry identifier more useful to
the messaging system.

ModifyProfile Makes the profile section for a message store
provider permanent.

IStorageFromStream Implements a storage object to access a stream.
GetSvcConfigSupport
Obj

Creates a new support object for use by calls to
a message service's entry point function.

 IMAPISupport::Address

The IMAPISupport::Address method updates the list of recipients for a message by displaying MAPI's
default address dialog box.

HRESULT Address(
 ULONG FAR * lpulUIParam,
 LPADRPARM lpAdrParms,
 LPADRLIST FAR * lppAdrList
)

Parameters

lpulUIParam
Input-output parameter containing the handle of the parent window of the dialog box. On input, a
window handle must always be passed. On output, if the DIALOG_SDI flag is set in the ADRPARM
structure pointed to by the lpAdrParms parameter, then the window handle of the modeless dialog
box is returned.

lpAdrParms
Input-output parameter pointing to an ADRPARM structure that controls the presentation and
behavior of the address dialog box.

lppAdrList
Input-output parameter pointing to a variable where the pointer to an ADRLIST structure holding the
recipient list is stored. On input, this list is the current list of recipients in a message; on output, the
list is an updated recipient list. The lppAdrList parameter can be NULL on input.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

When an address book provider calls the IMAPISupport::Address method it passes the current list of
recipients for a message, possibly empty, in the lppAdrList parameter, and Address returns in
lppAdrList an ADRLIST structure holding an updated list of recipients. Client applications can use the
updated list to set the recipients of a message by using the IMessage::ModifyRecipients method.

The recipient entries in the passed and returned ADRLIST structures consist of ADRENTRY
structures, with each holding an individual recipient. The ADRENTRY structures are organized in the
ADRLIST by which type of recipient they hold, as indicated by the recipient's PR_RECIPIENT_TYPE
property. The possible types are MAPI_TO (that is, a primary recipient), MAPI_CC (a recipient that
receives a copy of a message), and MAPI_BCC (a recipient that receives a blind carbon copy of a
message).

ADRLIST structures can hold both resolved and unresolved recipient entries. An unresolved entry does
not have a PR_ENTRYID property. Client applications that enable users to type recipient names
directly into a message, in addition to choosing names from a list, create unresolved entries by creating
an ADRENTRY with just the PR_DISPLAY_NAME and PR_RECIPIENT_TYPE properties. A resolved
entry contains at least the following properties:

PR_ENTRYID
PR_RECIPIENT_TYPE
PR_DISPLAY_NAME
PR_ADDRTYPE
PR_DISPLAY_TYPE

An address book provider should use the pointers to the MAPI memory allocation functions passed in
during provider initialization to allocate memory. Memory for the ADRLIST structure passed by
Address on output and each property value structure held within that ADRLIST must be allocated with
the MAPIAllocateBuffer function. If, on output, Address needs to pass a larger ADRLIST structure
than passed in by the calling provider, or if NULL is passed in lppAdrList on input, then Address
allocates a larger buffer for the ADRLIST structure it returns using MAPIAllocateBuffer and returns
this buffer's address in lppAdrList. Address frees the old buffer by calling the MAPIFreeBuffer
function. The Address method also allocates additional property value structures in the ADRLIST and
frees old ones as appropriate.

Address returns immediately if the DIALOG_SDI flag was set in the ADRPARM structure in the
lpAdrParms parameter.

See Also

ADRENTRY structure , ADRLIST structure , ADRPARM structure , FreePadrlist function , FreeProws
function, IMAPISupport::GetMemAllocRoutines method , IMAPITable::QueryRows method ,
IMessage::ModifyRecipients method , MAPIAllocateBuffer function , MAPIAllocateMore function ,
MAPIFreeBuffer function , SPropValue structure , SRowSet structure

 IMAPISupport::CompareEntryIDs

The IMAPISupport::CompareEntryIDs method compares two entry identifiers to determine if they
refer to the same object.

HRESULT CompareEntryIDs(
 ULONG cbEntryID1,
 LPENTRYID lpEntryID1,
 ULONG cbEntryID2,
 LPENTRYID lpEntryID2,
 ULONG ulFlags,
 ULONG FAR * lpulResult
)

Parameters

cbEntryID1
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID1
parameter.

lpEntryID1
Input parameter pointing to the first entry identifier to be compared.

cbEntryID2
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID2
parameter.

lpEntryID2
Input parameter pointing to the second entry identifier to be compared.

ulFlags
Reserved; must be zero.

lpulResult
Output parameter pointing to a variable where the returned result of the comparison is stored; this
variable is TRUE if the two entry identifiers refer to the same object, and FALSE otherwise.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_UNKNOWN_ENTRYID
The requested entry identifier does not exist.

Remarks

Service providers call the IMAPISupport::CompareEntryIDs method to compare two entry identifiers
for a given entry within a service provider to determine whether they refer to the same object. If the two
entry identifiers refer to the same object, then CompareEntryIDs sets the lpulResult parameter to
TRUE; if they refer to different objects, CompareEntryIDs sets lpulResult to FALSE.

CompareEntryIDs is useful because an object can have more than one valid entry identifier; such a
situation can occur, for example, after a new version of a service provider is installed.

If CompareEntryIDs returns an error, the calling provider should not take any action based on an
assumption about the comparison's results. It should instead take the most conservative approach to
the action it is trying to perform.

CompareEntryIDs might fail if, for example, no provider has registered for one of the entry identifiers
compared. If a provider compares message store entry identifiers when one or both of the stores has
not yet opened, CompareEntryIDs returns MAPI_E_UNKNOWN_ENTRYID.

 IMAPISupport::CompleteMsg

The IMAPISupport::CompleteMsg method calls the MAPI spooler to complete message delivery
processing. This method is called only by message store providers that are tightly coupled with
transport providers.

HRESULT CompleteMsg(
 ULONG ulFlags,
 ULONG cbEntryID,
 LPENTRYID lpEntryID
)

Parameters

ulFlags
Reserved; must be zero.

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the message for which to finish processing.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers call the IMAPISupport::CompleteMsg method to instruct the MAPI spooler
to complete postprocessing for a message. CompleteMsg is available to all message store providers
but should only be called by those store providers that are tightly coupled with transport providers.
Those store providers should only call CompleteMsg in the following circumstances:

· When the message in question required preprocessing.
· When the store provider can handle all recipients of the message, the transport provider the

message store is coupled with can handle all message recipients without involving the MAPI
spooler, and the MAPI spooler's transport provider order indicates the transport provider can handle
all the recipients.

 IMAPISupport::CopyFolder

The IMAPISupport::CopyFolder method copies or moves a folder from its current parent folder to
another.

HRESULT CopyFolder(
 LPCIID lpSrcInterface,
 LPVOID lpSrcFolder,
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 LPCIID lpInterface,
 LPVOID lpDestFolder,
 LPSTR lpszNewFolderName,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 ULONG ulFlags
)

Parameters

lpSrcInterface
Input parameter pointing to the interface identifier (IID) of the source folder indicated in the
lpSrcFolder parameter.

lpSrcFolder
Input parameter pointing to the source folder for the folder whose entry identifier is passed in the
lpEntryID parameter.

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by lpEntryID.

lpEntryID
Input parameter pointing to the entry identifier of the folder to copy or move.

lpInterface
Reserved; must be NULL.

lpDestFolder
Input parameter pointing to the open destination folder where the folder identified in the lpEntryID
parameter is copied or moved.

lpszNewFolderName
Input parameter pointing to a string naming the newly created or moved folder. If a message store
provider passes NULL in the lpszNewFolderName parameter, the name of the newly created or
moved folder is the same as the name of the original.

ulUIParam
Input parameter containing the handle of the window for any dialog boxes or windows this method
displays. The ulUIParam parameter is ignored unless the provider sets the FOLDER_DIALOG flag in
the ulFlags parameter and passes NULL in the lpProgress parameter.

lpProgress
Input parameter pointing to a progress object that contains client-supplied progress information. If
NULL is passed in lpProgress, MAPI provides the progress information. The lpProgress parameter is
ignored unless the FOLDER_DIALOG flag is set in ulFlags.

ulFlags
Input parameter containing a bitmask of flags that controls how the copy or move operation is
accomplished. The following flags can be set:
COPY_SUBFOLDERS

Indicates all subfolders are included in the copy operation. This functionality is optional for copy
operations and is implied for move operations.

FOLDER_DIALOG
Displays a progress indicator while the operation proceeds.

FOLDER_MOVE
Indicates that the folder is moved. If this flag is not set, the folder is copied.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_COLLISION
The first folder being created as a result of the copy or move operation has the same name as the
source folder. The operation stops without completing.

MAPI_W_PARTIAL_COMPLETION
The call succeeded, but not everything was copied or moved. To test for this warning, use the
HR_FAILED macro. When this warning is returned, the call should be handled as successful.

Remarks

Message store providers call the IMAPISupport::CopyFolder method to copy or move folders from
one location to another. The folder being copied or moved is added to the destination folder as a
subfolder; the destination folder can be in a message store other than that where the copied or moved
folder currently resides. Only one folder can be copied or moved at a time; messages contained in the
copied or moved folder are not copied or moved at the same time as the folder.

CopyFolder allows simultaneous renaming and moving of folders and the copying or moving of
subfolders of the affected folder. To copy or move all subfolders nested within the copied or moved
folder, a provider passes the COPY_SUBFOLDERS flag in ulFlags.

In copy or move operations involving more than one folder, even if one or more folders specified do not
exist or have already been moved elsewhere, a message store provider should complete the operation
as best it can for each folder specified. The provider should stop the operation without completing it
only in the case of failures it cannot control, such as running out of memory or disk space, message
store corruption, and so on.

If CopyFolder successfully completes the copy or move operation for every folder, it returns S_OK. If
one or more folders cannot be copied or moved, CopyFolder returns
MAPI_W_PARTIAL_COMPLETION. If CopyFolder returns a different value, such as
MAPI_E_NOT_ENOUGH_MEMORY, that indicates the call did not complete, it might already have
copied or moved one or more folders without being able to continue. The calling provider cannot
proceed on the assumption that an error return implies no work was done.

If an entry identifier for a folder that doesn't exist is passed in lpEntryID, CopyFolder returns
MAPI_W_PARTIAL_COMPLETION.

 IMAPISupport::CopyMessages

The IMAPISupport::CopyMessages method copies or moves messages from one folder to another.

HRESULT CopyMessages(
 LPCIID lpSrcInterface,
 LPVOID lpSrcFolder,
 LPENTRYLIST lpMsgList,
 LPCIID lpDestInterface,
 LPVOID lpDestFolder,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 ULONG ulFlags
)

Parameters

lpSrcInterface
Input parameter pointing to the interface identifier (IID) of the source folder from which to copy or
move messages.

lpSrcFolder
Input parameter pointing to the source folder from which to copy or move messages.

lpMsgList
Input parameter pointing to an array of ENTRYLIST structures that identify the message or
messages to be copied or moved.

lpDestInterface
Input parameter pointing to the IID for the destination folder to which messages are copied or
moved.

lpDestFolder
Input parameter pointing to the open destination folder where the message or messages identified in
the lpMsgList parameter are copied or moved.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays. The ulUIParam parameter is ignored unless the provider sets the
MESSAGE_DIALOG flag in the ulFlags parameter and passes NULL in the lpProgress parameter.

lpProgress
Input parameter pointing to a progress object that contains client- or provider-supplied progress
information. If NULL is passed in lpProgress, MAPI provides the progress information. The
lpProgress parameter is ignored unless MESSAGE_DIALOG is set in ulFlags.

ulFlags
Input parameter containing a bitmask of flags that controls how the copy or move operation is
accomplished. The following flags can be set:
MESSAGE_DIALOG

Displays a progress indicator as the operation proceeds.
MESSAGE_MOVE

Moves messages. If this flag is not set, the method copies messages.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by choosing the Cancel button in a dialog box.

Remarks

Message store providers call the IMAPISupport::CopyMessages method to call MAPI to move or
copy messages from one folder to another as specified by a client application. As part of the
CopyMessages call, the message store provider can specify that MAPI display a user interface
showing progress information.

 IMAPISupport::CreateOneOff

The IMAPISupport::CreateOneOff method creates an entry identifier for a custom recipient.

HRESULT CreateOneOff(
 LPTSTR lpszName,
 LPTSTR lpszAdrType,
 LPTSTR lpszAddress,
 ULONG ulFlags,
 ULONG FAR * lpcbEntryID,
 LPENTRYID FAR * lppEntryID
)

Parameters

lpszName
Input parameter pointing to a string containing the display name of the recipient. The lpszName
parameter can be NULL.

lpszAdrType
Input parameter pointing to a string containing the messaging address type of the recipient, such as
FAX, SMTP, or X500. The lpszAdrType parameter cannot be NULL.

lpszAddress
Input parameter pointing to a string containing the messaging address of the recipient. The
lpszAddress parameter cannot be NULL.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in strings. The
following flags can be set:
MAPI_SEND_NO_RICH_INFO

If a service provider sets this flag, MAPI sets the custom recipient's PR_SEND_RICH_INFO
property to FALSE. If this flag is not set, in most cases MAPI sets this property to TRUE. The one
exception is when the custom recipient's address is interpreted to be an Internet address, MAPI
sets PR_SEND_RICH_INFO to FALSE.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lpcbEntryID
Output parameter pointing to a variable in which is returned the size, in bytes, of the entry identifier
pointed to by the lppEntryID parameter.

lppEntryID
Output parameter pointing to a variable where the pointer to the newly created entry identifier is
stored.

Return Values

S_OK
The custom recipient entry identifier was successfully created.

Remarks

Service providers call the IMAPISupport::CreateOneOff method to create an entry identifier for a
custom recipient. This entry identifier can be used to represent a recipient on a message.

Although most transport providers by default send messages with TNEF (Transport Neutral
Encapsulation Format), some do not regardless of how the recipient sets its PR_SEND_RICH_INFO
property. This is not an issue for messaging clients that work with IPM messages, but because TNEF is

typically used to send custom properties for custom message classes, not supporting it can be a
problem for form-based clients or clients that require custom MAPI properties.

When the provider is done using the entry identifier returned by CreateOneOff, it should free the
memory allocated for the entry identifier by using the MAPIFreeBuffer function.

See Also

MAPIFreeBuffer function

 IMAPISupport::Details

The IMAPISupport::Details method displays a modal dialog box showing details about an address
book entry.

HRESULT Details(
 ULONG FAR * lpulUIParam,
 LPFNDISMISS lpfnDismiss,
 LPVOID lpvDismissContext,
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 LPFNBUTTON lpfButtonCallback,
 LPVOID lpvButtonContext,
 LPTSTR lpszButtonText,
 ULONG ulFlags
)

Parameters

lpulUIParam
Output parameter containing the handle of the parent window for the returned dialog box.

lpfnDismiss
Input parameter pointing to the address of a function based on the DISMISSMODELESS function
prototype. This function is called when the modeless variety of the details dialog box is dismissed.
However, because MAPI does not support a modeless details dialog box, this parameter is ignored.

lpvDismissContext
Input parameter containing data that is passed to the function specified by the lpfnDismiss
parameter. However, because MAPI does not support a modeless details dialog box, this parameter
is ignored.

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier for the object for which details are displayed.

lpfButtonCallback
Input parameter pointing to a pointer to a button callback function that adds a button to the dialog
box. The callback function is based on the LPFNBUTTON function prototype.

lpvButtonContext
Input parameter pointing to data used as a parameter for the button callback function.

lpszButtonText
Input parameter pointing to a string containing text to be applied to the added button if that button is
extensible. The lpszButtonText parameter should be NULL if an extensible button is not needed.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the text for lpszButtonText.
The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Address book providers call the IMAPISupport::Details method to display a modal dialog box giving
details on a particular entry in an address book. The lpfButtonCallback, lpvButtonContext, and
lpButtonText parameters can be used to add a button the provider has defined to the dialog box. When
the button is chosen, MAPI calls the callback function pointed to by lpfButtonCallback, passing both the
entry identifier of the button and the data in lpvButtonContext. If an extensible button is not needed,
lpszButtonText should be NULL. The callback function pointed to by lpfButtonCallback is based on the
LPFNBUTTON function prototype.

See Also

IMAPISupport::Address method , LPFNBUTTON function prototype

 IMAPISupport::DoConfigPropsheet

The IMAPISupport::DoConfigPropsheet method enables a service provider to display a property
sheet, usually for configuration, using MAPI's default user interface.

HRESULT DoConfigPropsheet(
 ULONG ulUIParam,
 ULONG ulFlags,
 LPTSTR lpszTitle,
 LPMAPITABLE lpDisplayTable,
 LPMAPIPROP lpConfigData,
 ULONG ulTopPage
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the property sheet displayed.

ulFlags
Reserved; must be zero.

lpszTitle
Input parameter pointing to the string that contains the title of the property sheet.

lpDisplayTable
Input parameter pointing to the display table that contains information about the controls in the
property sheet.

lpConfigData
Input parameter pointing to the property object containing the default values for the properties used
to build the display table pointed to by the lpDisplayTable parameter.

ulTopPage
Input parameter containing a zero-based index to the default top page of the property sheet.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Service providers call the IMAPISupport::DoConfigPropSheet method to display a configuration
property sheet. DoConfigPropSheet can be called as part of the implementation of the
IMAPIStatus::SettingsDialog method or from a button used to display details on properties. It can
also be called from the entry point for a message service.

The display table passed in the lpDisplayTable parameter can be built using the BuildDisplayTable
function or by any other means convenient for the provider.

Microsoft strongly recommends that service providers use property sheets for their configuration user
interfaces so that users benefit from a consistent Windows interface.

See Also

BuildDisplayTable function , CreateIProp function , IABProvider::Logon method , IMAPIProp :
IUnknown interface , IMAPIStatus::SettingsDialog method , IMsgServiceAdmin : IUnknown
interface, IMSProvider::Logon method , IXPProvider::TransportLogon method

 IMAPISupport::DoCopyProps

The IMAPISupport::DoCopyProps method copies or moves a selected set of properties from a
source object to a destination object. The source object is the object on which the call to
DoCopyProps is made.

HRESULT DoCopyProps(
 LPCIID lpSrcInterface,
 LPVOID lpSrcObj,
 LPSPropTagArray lpIncludeProps,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 LPCIID lpDestInterface,
 LPVOID lpDestObj,
 ULONG ulFlags,
 LPSPropProblemArray FAR * lppProblems
)

Parameters

lpSrcInterface
Input parameter pointing to the interface identifier (IID) of the source object from which the
properties are copied or moved.

lpSrcObj
Input parameter pointing to the source object from which the properties are copied or moved.

lpIncludeProps
Input parameter pointing to an SPropTagArray structure holding a counted array of property tags
indicating the properties to copy or move. The lpIncludeProps parameter cannot be NULL.

ulUIParam
Input parameter containing the handle of the parent window for the progress indicator.

lpProgress
Input parameter pointing to a progress object that contains client- or provider-supplied progress
information. If NULL is passed in the lpProgress parameter, MAPI provides the progress information.
The lpProgress parameter is ignored unless the MAPI_DIALOG flag is set in the ulFlags parameter.

lpDestInterface
Input parameter pointing to the IID for the destination object to which properties are copied or
moved.

lpDestObj
Input parameter pointing to the open destination object.

ulFlags
Input parameter containing a bitmask of flags that controls how the copy or move operation is
performed. The following flags can be set:
MAPI_DIALOG

Displays a user interface to provide progress information for the copy operation.
MAPI_MOVE

Indicates a move operation. The default operation is copying.
MAPI_NOREPLACE

Indicates that existing properties in the destination object should not be overwritten. The default
action is to overwrite existing properties.

lppProblems
Output parameter pointing to a variable where the pointer to an SPropProblemArray structure is
stored. If NULL is passed in the lppProblems parameter, no property problem array is returned.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_COLLISION
A sibling folder in the destination object already has the name in the PR_DISPLAY_NAME property
being copied from the source object.

MAPI_E_FOLDER_CYCLE
The source object directly or indirectly contains the destination object. Significant work might have
been performed before this condition was discovered, so the source and destination objects might
be partially modified.

MAPI_E_INTERFACE_NOT_SUPPORTED
An appropriate interface cannot be obtained.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt to access an object for which the
user has insufficient permissions.

The following values can be returned in the SPropProblemArray structure, but not as return values for
DoCopyProps:

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_COMPUTED
The property can't be written because it is computed by the destination object's provider. This error
is not severe; the implementation should allow the process to continue.

MAPI_E_INVALID_TYPE
The property type is invalid.

MAPI_E_UNEXPECTED_TYPE
The property type is not the type expected by the calling provider.

Remarks

Message store providers call the IMAPISupport::DoCopyProps method to copy or move to the
destination object those properties designated in lpIncludeProps that are present in the source object.
When copying properties between like objects, for example between two message objects, the
interface identifiers and object types must be the same for both the source and destination objects. If
any of the copied or moved properties already exist in the destination object, the existing properties are
overwritten by the new, unless the MAPI_NOREPLACE flag is set in the ulFlags parameter. Existing
information in the destination object that is not overwritten is not deleted or modified.

For message objects, the PR_MESSAGE_RECIPIENTS and PR_MESSAGE_ATTACHMENTS
properties can be included in the SPropTagArray structure passed in lpIncludeProps to permit copying
or moving of message recipients and attachments. For folder objects, the
PR_CONTAINER_HIERARCHY, PR_CONTAINER_CONTENTS, and
PR_FOLDER_ASSOCIATED_CONTENTS properties can be included in the SPropTagArray to permit
copying or moving of subfolders, messages, or associated objects. If subfolders are copied or moved,
their contents are copied or moved in their entirety, regardless of the use of properties indicated by the
SPropTagArray.

If the source object directly or indirectly contains the destination object, the overall call fails and returns
MAPI_E_FOLDER_CYCLE. Some implementations, however, perform significant work before
discovering this error and leave the source and destination objects partially modified, so providers
should try to avoid such calls. If the same pointer is used for both the source and destination objects,
the call returns MAPI_E_NO_ACCESS.

The interface of the destination object, indicated in lpInterface, is usually the same interface as for the
source object. If lpInterface is set to NULL, then DoCopyProps returns
MAPI_E_INVALID_PARAMETER. If an acceptable interface is passed in lpInterface but an invalid
pointer is passed in the lpDestObj parameter, the results are unpredictable; the most likely result is that
the calling provider stops.

If the MAPI_DIALOG flag is not set in ulFlags, DoCopyProps ignores the ulUIParam and lpProgress
parameters and no progress indicator is provided. If the calling implementation sets MAPI_DIALOG in
ulFlags and passes NULL in lpProgress, then the provider is responsible for generating a progress
indicator. If the calling implementation sets MAPI_DIALOG in ulFlags and passes a progress object in
lpProgress, the information supplied by the progress object is used to display progress information.

If the call succeeds overall but there are problems with copying or moving some properties,
DoCopyProps returns S_OK and an SPropProblemArray structure in the lppProblems parameter.
The SPropProblemArray structure contains details about each property problem. In some cases, a
DoCopyProps call can successfully set some of the requested properties, but not others; in these
cases, which properties were not successfully copied or moved can be determined from the
SPropProblemArray structure. If message recipients or attachments cannot be copied or moved,
PR_MESSAGE_RECIPIENTS or PR_MESSAGE_ATTACHMENTS is returned in the
SPropProblemArray structure.

The value returned in lppProblems is only valid if the call returns S_OK. When S_OK is returned, check
the values returned in the SPropProblemArray structure. If an error occurs on the call, then the
SPropProblemArray structure is not filled in; call the IMAPISupport::GetLastError method to get the
MAPIERROR structure describing the error.

The calling provider must free the returned SPropProblemArray structure by calling the
MAPIFreeBuffer function, but this should only be done if DoCopyProps returns S_OK.

See Also

IMAPISupport::CopyMessages method , IMAPISupport::DoCopyTo method , SPropProblemArray
structure, SPropTagArray structure

 IMAPISupport::DoCopyTo

The IMAPISupport::DoCopyTo method copies or moves all properties from a source object to a
destination object, except for a given set of excluded properties. The source object is the object on
which the call to DoCopyTo is made.

HRESULT DoCopyTo(
 LPCIID lpSrcInterface,
 LPVOID lpSrcObj,
 ULONG ciidExclude,
 LPCIID rgiidExclude,
 LPSPropTagArray lpExcludeProps,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 LPCIID lpDestInterface,
 LPVOID lpDestObj,
 ULONG ulFlags,
 LPSPropProblemArray FAR * lppProblems
)

Parameters

lpSrcInterface
Input parameter pointing to the interface identifier (IID) of the source object from which properties
and objects are copied or moved.

lpSrcObj
Input parameter pointing to the source object from which the properties and objects are copied or
moved.

ciidExclude
Input parameter containing the number of interfaces to exclude when copying or moving properties.

rgiidExclude
Input parameter containing an array of IIDs indicating interfaces that should not be used when
copying or moving supplemental information to the destination object.

lpExcludeProps
Input parameter pointing to an SPropTagArray structure containing the property identifiers of the
properties that should not be copied or moved to the destination object. Passing NULL in the
lpExcludeProps parameter indicates all properties are copied or moved. Passing zero in the
cValues member of the lpExcludeProps SPropTagArray structure results in
MAPI_E_INVALID_PARAMETER being returned.

ulUIParam
Input parameter containing the handle of the parent window of the progress indicator displayed.

lpProgress
Input parameter pointing to a progress object that contains client- or provider-supplied progress
information. If NULL is passed in the lpProgress parameter, MAPI provides the progress information.
The lpProgress parameter is ignored unless the MAPI_DIALOG flag is set in the ulFlags parameter.

lpDestInterface
Input parameter pointing to the IID for the destination object.

lpDestObj
Input parameter pointing to the open destination object.

ulFlags
Input parameter containing a bitmask of flags that controls how the copy or move operation is
performed. The following flags can be set:
MAPI_DIALOG

Displays a user interface to provide progress information for the copy or move operation.
MAPI_MOVE

Indicates a move operation. The default operation is copying.
MAPI_NOREPLACE

Indicates that existing properties in the destination object should not be overwritten. The default
action is to overwrite existing properties.

lppProblems
Output parameter pointing to a variable where the pointer to an SPropProblemArray structure is
stored. If NULL is passed in the lppProblems parameter, no property problem array is returned.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_COLLISION
A sibling folder in the destination object already has the name in the PR_DISPLAY_NAME property
being copied from the source object.

MAPI_E_FOLDER_CYCLE
The source object directly or indirectly contains the destination object. Significant work might have
been performed before this condition was discovered, so the source and destination objects might
be partially modified.

MAPI_E_INTERFACE_NOT_SUPPORTED
An appropriate interface cannot be obtained.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt to access an object for which the
user has insufficient permissions.

The following values can be returned in the SPropProblemArray structure, but not as return values for
DoCopyTo:

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

MAPI_E_COMPUTED
The property can't be written because it is computed by the destination object's provider. This error
is not severe; the implementation should allow the process to continue.

MAPI_E_INVALID_TYPE
The property type is invalid.

MAPI_E_UNEXPECTED_TYPE
The property type is not the type expected by the calling provider.

Remarks

Message store providers call the IMAPISupport::DoCopyTo method to copy or move all properties of
the source object to the destination object, except for a given set of properties that are excluded from
the copy or move operation. Any objects contained in the source object and any subobjects of the
source object are included in the copy or move operation.

If any of the copied or moved properties already exist in the destination object, the existing properties
are overwritten by the new, unless the MAPI_NOREPLACE flag is set in the ulFlags parameter.
Existing information in the destination object that is not overwritten is not deleted or modified.

To exclude some properties from the copy or move operation, pass their property identifiers in the
lpExcludeProps parameter. Passing in a specific value causes any property in the source object whose
identifier matches that value to be excluded from the copy or move operation. For example, passing in

PROP_TAG(PT_LONG, 0x8002) excludes both the properties PROP_TAG(PT_STRING8, 0x8002)
and PROP_TAG(PT_OBJECT, 0x8002).

For message objects, the PR_MESSAGE_RECIPIENTS and PR_MESSAGE_ATTACHMENTS
properties can be included in the SPropTagArray structure passed in lpExcludeProps to prevent
copying or moving message recipients and attachments. For folder objects, the
PR_CONTAINER_HIERARCHY, PR_CONTAINER_CONTENTS, and
PR_FOLDER_ASSOCIATED_CONTENTS properties can be included in the SPropTagArray structure
to prevent copying or moving of subfolders, messages, or associated objects. If subfolders are copied
or moved, their contents are copied or moved in their entirety, regardless of the use of properties
indicated by the SPropTagArray structure.

Implementations of DoCopyTo should not attempt to set any known read-only properties in the
destination object and should ignore MAPI_E_COMPUTED errors returned in the
SPropProblemArray structure in the lppProblems parameter.

If the source object directly or indirectly contains the destination object, the overall call fails and returns
MAPI_E_FOLDER_CYCLE. Some implementations, however, perform significant work before
discovering this error and leave the source and destination objects partially modified, so providers
should avoid such calls. If the same pointer is used for both the source and destination objects, the call
returns MAPI_E_NO_ACCESS.

The interface of the destination object, indicated in lpInterface, is usually the same interface as for the
source object. If lpInterface is set to NULL, then DoCopyTo returns MAPI_E_INVALID_PARAMETER.
If an acceptable interface is passed in lpInterface but an invalid pointer is passed in the lpDestObj
parameter, the results are unpredictable; the most likely result is that the calling provider stops.

Some objects contain supplemental information, which can be accessed with the interface pointer in
lpInterface. To copy or move such information, a DoCopyTo implementation first calls the
IUnknown::QueryInterface method for the destination object to see if it can accept the extra data.
Conversely, if the calling provider is aware of supplemental information and requires that DoCopyTo
not copy or move it, the provider can specify in the array passed in the rgiidExclude parameter IIDs for
the properties that DoCopyTo should not copy or move. For example, if the provider must copy
messages, but not embedded objects within the messages, it can pass IID_IMessage in the
rgiidExclude array. DoCopyTo ignores any interfaces listed in rgiidExclude it doesn't recognize.

Note When you use the rgiidExclude parameter to exclude an interface, you also exclude all
interfaces derived from that interface. For example, excluding the IMAPIProp interface also excludes
the IMAPIFolder, IMessage, and IAttach interfaces, and so on. If all known interfaces are excluded,
DoCopyTo returns the error value MAPI_E_INTERFACE_NOT_SUPPORTED. For that reason, you
should not pass IID_IUnknown or IID_IMAPIProp in rgiidExclude.

If the MAPI_DIALOG flag is not set in ulFlags, then DoCopyTo ignores the ulUIParam and lpProgress
parameters and no progress indicator is provided. If the calling implementation sets MAPI_DIALOG in
ulFlags and passes NULL in lpProgress, then the provider is responsible for generating a progress
indicator. If the calling implementation sets MAPI_DIALOG in ulFlags and passes a progress object in
lpProgress, the information supplied by the progress object is used to display progress information.

If the call succeeds overall but there are problems with copying or moving some properties, DoCopyTo
returns S_OK and an SPropProblemArray structure in the lppProblems parameter. The
SPropProblemArray structure contains details about each property problem. In some cases, a
DoCopyTo call can successfully set some of the requested properties, but not others; in these cases,
which properties were not successfully copied or moved can be determined from the
SPropProblemArray structure. If message recipients or attachments cannot be copied or moved,
PR_MESSAGE_RECIPIENTS or PR_MESSAGE_ATTACHMENTS is returned in the
SPropProblemArray.

The value returned in lppProblems is only valid if the call returns S_OK. When S_OK is returned, check

the values returned in the SPropProblemArray structure. If an error occurs on the call, then the
SPropProblemArray structure is not filled in; call the IMAPISupport::GetLastError method to get the
MAPIERROR structure describing the error.

If an error occurs on the DoCopyTo call, do not use or free the SPropProblemArray structure.
Providers should ignore the ulIndex member in SPropProblemArray structures returned by
DoCopyTo.

The calling provider must free the returned SPropProblemArray by calling the MAPIFreeBuffer
function, but this should only be done if DoCopyTo returns S_OK.

See Also

IMAPISupport:: CopyFolder method , IMAPISupport::CopyMessages method , SPropProblemArray
structure, SPropTagArray structure

 IMAPISupport::DoProgressDialog

The IMAPISupport::DoProgressDialog method provides a default implementation of a progress
indicator for use by service providers.

HRESULT DoProgressDialog(
 ULONG ulUIParam,
 ULONG ulFlags,
 LPMAPIPROGRESS FAR * lppProgress
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the user interface.

ulFlags
Input parameter containing a bitmask of flags that controls how progress information is calculated.
The following flag can be set:
MAPI_TOP_LEVEL

Uses the values in the IMAPIProgress::Progress method's ulCount and ulTotal parameters,
which indicate the item being operated on and the total items to operate on respectively, to
increment progress made on the operation. For example, if a folder is being copied that contains
10 subfolders and the MAPI_TOP_LEVEL flag is set in the ulFlags parameter, progress
increments for each subfolder copied: 1 of 10, 2 of 10, 3 of 10, and so on.

lppProgress
Output parameter pointing to a variable where the pointer to the progress object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Address book and message store providers call the IMAPISupport::DoProgressDialog method in
concert with the methods of the IMAPIProgress interface to calculate progress information and display
the result in a user interface when requested to do so by a client application. A pointer to a progress
object supporting the IMAPIProgress interface is returned in the lppProgress parameter.

See Also

IMAPIProgress : IUnknown interface

 IMAPISupport::DoSentMail

The IMAPISupport::DoSentMail method generates for an open message a corresponding message in
another folder. This method is only valid when called from within the MAPI spooler's process.

HRESULT DoSentMail(
 ULONG ulFlags,
 LPMESSAGE lpMessage
)

Parameters

ulFlags
Reserved; must be zero.

lpMessage
Input parameter pointing to the open message for which a message should be generated in the
folder designated to hold sent items.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

When the MAPI spooler has finished processing a message, it calls a message store provider's
IMsgStore::FinishedMsg method. Message store providers call the IMAPISupport::DoSentMail
method from within their FinishedMsg implementation. FinishedMsg should unlock the message and
ensure that the reference count is only one when this DoSentMail call is made. After DoSentMail
returns, the message has been fully released.

The MAPI spooler's implementation of DoSentMail does the following:

· Determines whether the message should be deleted after sending by checking the message for the
PR_DELETE_AFTER_SUBMIT property.

· Determines the location of the SentItems folder.
· Initiates message hook processing for any hooks set on the SentItems folder.
· Moves the message to the SentItems folder, DeletedItems folder, or to another folder as specified by

any message hooks.
· Releases the message.

See Also

IMsgStore::FinishedMsg method

 IMAPISupport::ExpandRecips

The IMAPISupport::ExpandRecips method completes all recipient lists and expands certain
distribution lists for the transmission of a message.

HRESULT ExpandRecips(
 LPMESSAGE lpMessage,
 ULONG FAR * lpulFlags
)

Parameters

lpMessage
Input parameter pointing to the open message object that has read/write access.

lpulFlags
Output parameter pointing to a variable where a bitmask of flags that controls what occurs after
recipient entries are resolved is stored. The following flags can be set:
NEEDS_PREPROCESSING

Indicates the message needs preprocessing before sending.
NEEDS_SPOOLER

Indicates the message store provider should have the MAPI spooler send the message rather
than the transport provider to which this store provider is tightly coupled.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers call the IMAPISupport::ExpandRecips method to prompt MAPI to complete
all recipient entries and distribution lists in the recipient list for a particular message. The process of
completing recipient entries and distribution lists involves expanding certain personal distribution lists to
their component recipients, replacing all display names that have been altered with the original names,
marking any duplicate entries, and resolving all custom recipient addresses. ExpandRecips expands
any distribution lists that have the messaging address type of MAPIPDL.

After MAPI reads and updates the recipient list for the message indicated in the lpMessage parameter,
MAPI checks to see if the message needs preprocessing. If it does, MAPI sets and returns the
NEEDS_PREPROCESSING flag in the lpulFlags parameter.

Message store providers should always call ExpandRecips as part of processing a message, and it
should be one of the first calls made as part of a provider's IMessage::SubmitMessage
implementation.

See Also

IMessage::SubmitMessage method

 IMAPISupport::GetLastError

The IMAPISupport::GetLastError method returns a MAPIERROR structure containing information
about the last error that occurred for a support object.

HRESULT GetLastError(
 HRESULT hResult,
 ULONG ulFlags,
 LPMAPIERROR FAR * lppMAPIError
)

Parameters

hResult
Input parameter containing the result returned for the last call for the support object that returned an
error.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the strings in the MAPIERROR structure returned in the lppMAPIError parameter are in
Unicode format. If the MAPI_UNICODE flag is not set, the strings are in ANSI format.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure containing version,
component, and context information for the error. The lppMAPIError parameter can be set to NULL if
there is no MAPIERROR structure to return.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Service providers call the IMAPISupport::GetLastError method to retrieve information to display in a
message to the user regarding the last error returned from a method call for the support object.

To release all the memory allocated by MAPI, providers need only call the MAPIFreeBuffer function for
the returned MAPIERROR structure.

The return value from GetLastError must be S_OK for a provider to make use of the MAPIERROR
structure. Even if the return value is S_OK, a MAPIERROR structure might not be returned. If the
implementation cannot determine what the last error was, or if a MAPIERROR structure is not available
for that error, GetLastError returns a pointer to NULL in lppMAPIError instead.

See Also

MAPIERROR structure , MAPIFreeBuffer function

 IMAPISupport::GetMemAllocRoutines

The IMAPISupport::GetMemAllocRoutines method retrieves the addresses of the MAPI memory
allocation and deallocation functions, MAPIAllocateBuffer, MAPIAllocateMore, and MAPIFreeBuffer.

HRESULT GetMemAllocRoutines(
 LPALLOCATEBUFFER FAR * lppAllocateBuffer,
 LPALLOCATEMORE FAR * lppAllocateMore,
 LPFREEBUFFER FAR * lppFreeBuffer
)

Parameters

lppAllocateBuffer
Output parameter pointing to a variable where a pointer to the MAPIAllocateBuffer function is
stored. The MAPIAllocateBuffer function allocates memory.

lppAllocateMore
Output parameter pointing to a variable where a pointer to the MAPIAllocateMore function is
stored. The MAPIAllocateMore function allocates additional memory where required

lppFreeBuffer
Output parameter pointing to a variable where a pointer to the MAPIFreeBuffer function is stored.
The MAPIFreeBuffer function frees memory.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

A service provider calls the IMAPISupport::GetMemAllocRoutines method to get the addresses of
the three memory allocation functions passed in its initialization call. For the syntax of each function,
see its reference entry.

See Also

MAPIAllocateBuffer function , MAPIAllocateMore function , MAPIFreeBuffer function

 IMAPISupport::GetOneOffTable

The IMAPISupport::GetOneOffTable method returns a table of templates for custom recipient
addresses that can be used to create recipients for a message.

HRESULT GetOneOffTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Output parameter pointing to a variable where the pointer to the returned table object is stored. The
table contains a complete list of all custom recipient addresses supported within the current MAPI
session.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Address book providers call the IMAPISupport::GetOneOffTable method to retrieve the list of
available, new custom recipient addresses (also called one-off addresses) relevant to the current MAPI
session. Providers use the returned custom recipient table to identify the kinds of entries that can be
added to their address book container.

The five property columns required in a table of custom recipients are as follows:

PR_DISPLAY_NAME
PR_DISPLAY_TYPE
PR_ENTRYID
PR_DEPTH
PR_SELECTABLE
PR_ADDRTYPE
PR_INSTANCE_KEY

Setting the MAPI_UNICODE flag in the ulFlags parameter does the following:

· Sets the string type to Unicode for data returned for the initial active columns of the custom recipient
table by the IMAPITable::QueryColumns method. The initial active columns for a custom recipient
table are those columns QueryColumns returns before the provider that contains the table calls the
IMAPITable::SetColumns method.

· Sets the string type to Unicode for data returned for the initial active rows of the custom recipient
table by the IMAPITable::QueryRows method. The initial active rows for a custom recipient table
are those rows QueryRows returns before the provider that contains the table calls SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the provider that contains the custom recipient table calls the IMAPITable::SortTable

method.

If a provider registers for notification of changes to its custom recipient table, it also receives
notifications of changes made to other providers' custom recipient tables. A provider can, based on
these notifications, support new address types that are added during the current session.

See Also

IABContainer::CreateEntry method , IMAPISupport::NewEntry method , PR_CREATE_TEMPLATES
property

 IMAPISupport::GetSvcConfigSupportObj

The IMAPISupport::GetSvcConfigSupportObj method creates a new support object for use by calls
to a message service's entry point function.

HRESULT GetSvcConfigSupportObj(
 ULONG ulFlags,
 LPMAPISUP FAR * lppSvcSupport
)

Parameters

ulFlags
Reserved; must be zero.

lppSvcSupport
Output parameter pointing to a pointer to the newly created support object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Service providers call the IMAPISupport::GetSvcConfigSupportObj method to acquire a pointer to a
support object that can be used for a message service's implementation of the MSGSERVICEENTRY
function prototype. An entry point function based on MSGSERVICEENTRY is called by methods of the
IMsgServiceAdmin interface and allows message services to configure themselves or perform other
actions when an implementation changes the profile. The primary action of such a function is to furnish
a dialog box in which the user can change message service settings. A function based on
MSGSERVICEENTRY can also support configuration by a client through a property value array passed
through the IMsgServiceAdmin::ConfigureMsgService method.

See Also

IMsgServiceAdmin::CreateMsgService method , IProfAdmin : IUnknown interface ,
MSGSERVICEENTRY function prototype

 IMAPISupport::IStorageFromStream

The IMAPISupport::IStorageFromStream method implements a storage object to access a stream.

HRESULT IStorageFromStream(
 LPUNKNOWN lpUnkIn,
 LPCIID lpInterface,
 ULONG ulFlags,
 LPSTORAGE FAR * lppStorageOut
)

Parameters

lpUnkIn
Input parameter pointing to the stream interface implementation.

lpInterface
Input parameter pointing to the identifier (IID) for the interface implementation pointed to by the
lpUnkIn parameter. Any of the following values can be passed in the lpInterface parameter: NULL,
IID_IStream, or IID_ILockBytes. Passing NULL in lpInterface is the same as passing IID_IStream.

ulFlags
Input parameter containing a bitmask of flags that controls how the storage is to be created relative
to the stream. The default setting is that the storage has read-only access and occurs within the
stream starting at position zero. The following flags can be set:
STGSTRM_CREATE

Creates a new storage object for the stream object.
STGSTRM_CURRENT

Starts storage at the current position of the stream.
STGSTRM_MODIFY

Allows the calling service provider to write to the returned storage.
STGSTRM_RESET

Starts storage at position zero.
lppStorageOut

Output parameter pointing to a variable where the pointer to the returned storage object is stored.

Return Values

S_OK
The storage object was successfully created.

Remarks

Service providers that don't implement the OLE IStorage interface themselves call the
IMAPISupport::IStorageFromStream method to implement IStorage. IStorage must be implemented
by any message store that supports streams to hold binary properties, because MAPI guarantees client
applications that such message stores support IStorage to store these binary properties.

When handling a call from the IMAPIProp::OpenProperty method to open an IStorage interface on a
property, as indicated by an interface identifier of IID_IStorage having been passed, a provider first
opens an OLE stream object with read/write access for the property, then internally marks the property
stream as an storage object, generates an IStorage interface from the support function, and returns
the MAPI-generated IStorage interface to the calling implementation.

A newly created storage object returned by IStorageFromStream calls the IUnknown::AddRef
method to add a reference for the stream to the stream reference count, then releases the reference
when the storage is released. Providers that support interfaces in addition to IStorage ¾ for instance,
an administrative interface for all object properties ¾ must wrap the storage object returned by

IStorageFromStream using their own IUnknown::QueryInterface method.

Message store providers should not allow a property to be opened as a stream with
IMAPIProp::OpenProperty calls if it was created using IStorage. With one exception, message stores
can use IID_IStreamDocfile to stream an storage object from one container to another, but they must
pass IID_IStreamDocfile in the OpenProperty method's lpInterface parameter. Message store
providers should also not allow a property to be opened as a storage object if it was created using the
OLE IStream interface.

For more information on OLE programming, see Inside OLE, Second Edition, by Kraig Brockschmidt,
and the OLE Programmer's Reference.

See Also

IMAPIProp::OpenProperty method

 IMAPISupport::MakeInvalid

The IMAPISupport::MakeInvalid method invalidates an object derived from the IUnknown interface.

HRESULT MakeInvalid(
 ULONG ulFlags,
 LPVOID lpObject,
 ULONG ulRefCount,
 ULONG cMethods
)

Parameters

ulFlags
Reserved; must be zero.

lpObject
Input parameter pointing to the object to be invalidated. The object's interface must be derived from
IUnknown.

ulRefCount
Input parameter containing the object's present reference count.

cMethods
Input parameter containing the number of methods in the object's vtable.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Service providers call the IMAPISupport::MakeInvalid method to invalidate an object, typically when a
provider is shutting down. However, a provider can call MakeInvalid at any time; for instance, if a client
application releases an object without releasing some of its subobjects, a provider can call
MakeInvalid immediately to release those subobjects. The object to be invalidated must be derived
from the IUnknown interface or from an interface derived from IUnknown.

Note An implementation must own any object it attempts to invalidate with MakeInvalid. In addition, it
must update the cMethods parameter if it changes the number of methods in the vtable for the object to
be invalidated, as usually results from a MakeInvalid call.

The object passed to MakeInvalid must have been allocated by using the MAPIAllocateBuffer
function and must be at least 16 bytes long. The number of methods for the object, as indicated in
cMethods, must be at least 3 and should not be more than 2000.

MAPI handles calls to MakeInvalid by replacing the object's vtable with a stub vtable of similar size, in
which the IUnknown::AddRef and IUnknown::Release methods perform as expected but any other
methods fail, returning the value MAPI_E_INVALID_OBJECT.

A provider can call MakeInvalid and then perform any shutdown work, such as discarding associated
data structures, that it usually does if it releases an object. Code to support the object need not be kept
in memory because MAPI frees the memory by calling MAPIFreeBuffer and then releases the object.
Providers can release their resources, call MakeInvalid, and then ignore the invalidated object. Client
applications are required to release any memory associated with the object.

See Also

MAPIAllocateBuffer function

 IMAPISupport::ModifyProfile

The IMAPISupport::ModifyProfile method makes the profile section for a message store provider
permanent.

HRESULT ModifyProfile(
 ULONG ulFlags
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how a store logs onto the current profile.
The following flags can be set:
MDB_TEMPORARY

Advises MAPI the store is temporary and should not be added to the message store information
table. The method returns S_OK immediately.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers call the IMAPISupport::ModifyProfile method to prompt MAPI to modify
their profile information. When a message store provider calls IMAPISupport::ModifyProfile, MAPI
adds the profile section associated with that provider resource to the list of installed message store
provider resources. MAPI's doing so causes the message store to be listed in the table returned by a
call to the IMAPISession::GetMsgStoresTable method and makes it possible to open the message
store without displaying a dialog box. If the MDB_TEMPORARY flag is set, MAPI does nothing and the
method returns with S_OK immediately.

See Also

IMAPISession::GetMsgStoresTable method

 IMAPISupport::ModifyStatusRow

The IMAPISupport::ModifyStatusRow method creates or modifies a service provider's status table
row.

HRESULT ModifyStatusRow(
 ULONG cValues,
 LPSPropValue lpColumnVals,
 ULONG ulFlags
)

Parameters

cValues
Input parameter containing the number of property columns in the status table row to pass to MAPI.

lpColumnVals
Input parameter pointing to an SPropValue structure containing the property values used to define
the columns in the status table row.

ulFlags
Input parameter containing a bitmask of flags that controls how information defining the status table
row is processed. The following flag can be set:
STATUSROW_UPDATE

Directs MAPI to merge new status information with an existing status table row.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Service providers call the IMAPISupport::ModifyStatusRow method to enter a row in the status table
at logon. A provider should call ModifyStatusRow during its logon process. For any subsequent
ModifyStatusRow call, the STATUSROW_UPDATE flag should be set. Doing so informs MAPI that
only the columns being changed are passed in the lpColumnVals parameter.

ModifyStatusRow provides MAPI with the information necessary to build the initial status table. During
ModifyStatusRow processing, MAPI copies the data in the lpColumnVals parameter defining status
table columns and from this data creates the status table. MAPI requires service providers to pass the
following property column values in the lpColumnVals parameter:

PR_PROVIDER_DISPLAY
PR_RESOURCE_METHODS
PR_STATUS_CODE

The following property columns are required if a service provider lists its user identity in the status
table:

PR_IDENTITY_ENTRYID
PR_IDENTITY_DISPLAY
PR_IDENTITY_SEARCH_KEY

The following property columns should not be passed by a provider in lpColumnVals; they are provided
by the messaging subsystem:

PR_ENTRYID
PR_OBJECT_TYPE

PR_PROVIDER_DLL_NAME
PR_RESOURCE_FLAGS
PR_RESOURCE_TYPE
PR_ROWID

The following optional property columns can be passed by a provider in lpColumnVals:

PR_DISPLAY_NAME
PR_STATUS_STRING

Although not required, the values for PR_DISPLAY_NAME and PR_STATUS_STRING are computed
by MAPI if they are not provided by service providers.

MAPI displays all these properties in the status table, and implementations can retrieve the settings for
a provider by opening its status object.

 IMAPISupport::NewEntry

The IMAPISupport::NewEntry displays MAPI's default dialog box for creating new entries within a
container or custom recipient addresses within a message.

HRESULT NewEntry(
 ULONG ulUIParam,
 ULONG ulFlags,
 ULONG cbEIDContainer,
 LPENTRYID lpEIDContainer,
 ULONG cbEIDNewEntryTpl,
 LPENTRYID lpEIDNewEntryTpl,
 ULONG FAR * lpcbEIDNewEntry,
 LPENTRYID FAR * lppEIDNewEntry
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for the dialog box.

ulFlags
Reserved; must be zero.

cbEIDContainer
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEIDContainer
parameter.

lpEIDContainer
Input parameter pointing to the entry identifier of the container where the new custom recipient
address is added. If the cbEIDContainer method is zero, NewEntry returns a recipient entry
identifier and a list of templates as if the IMAPISupport::CreateOneOff method was called.

cbEIDNewEntryTpl
Input parameter containing the size, in bytes, of the entry identifier pointed to by the
lpEIDNewEntryTpl parameter.

lpEIDNewEntryTpl
Input parameter pointing to a template to be used to create the new entry or custom recipient
address. If the cbEIDNewEntryTpl parameter is zero, passing NULL in the lpEIDNewEntryTpl
parameter displays a dialog box enabling the user to select an address-creation template.

lpcbEIDNewEntry
Output parameter pointing to a variable where the size, in bytes, of the entry identifier pointed to by
the lppEIDNewEntry parameter is returned.

lppEIDNewEntry
Output parameter pointing to a variable where the returned pointer to the entry identifier for the new
entry or custom recipient address is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Address book providers call the IMAPISupport::NewEntry method to display a dialog box to create a
new container entry or custom recipient address. NewEntry can be used in several different modes. To
add a custom recipient address directly to the open message and not to a modifiable container, a
provider passes zero in cbEIDContainer and NULL in lpEIDContainer. To display a dialog box enabling
the user to select a template for adding custom recipients to a modifiable container, the provider passes

zero in cbEIDNewEntryTpl and NULL in lpEIDNewEntryTpl.

To create an entry in a modifiable address book and not get its entry identifier back, a provider passes
the container's entry identifier in the lpEIDContainer, zero in cbEIDContainer, and NULL for the rest of
the parameters.

To open a specific custom recipient dialog box directly, so that users enter custom recipients in their
personal address books using a predetermined template, a provider uses the following series of calls.
First, it calls the IMAPISupport::OpenEntry method and passes in either the entry identifier of a
modifiable container or zero; passing zero opens the root folder of the address book container. Next, the
provider calls the IABContainer::OpenProperty method and passes the PR_CREATE_TEMPLATES
property in the ulPropTag parameter so it can open PR_CREATE_TEMPLATES. Doing so returns a
table object that lists the types of objects that can be created in the address book container. The
provider finds in this table the entry identifier for the template with which new entries should be created.
Then, the provider calls NewEntry and passes NULL in lpEIDContainer and the entry identifier for the
entry-creation template to use in lpEIDNewEntryTpl.

Calls made to NewEntry return the entry identifier of the new custom recipient address in
lppEIDNewEntry, unless the provider passed NULL in lppEIDNewEntry. The calling provider is
responsible for freeing the returned entry identifier by calling the MAPIFreeBuffer function.

See Also

IMAPIProp::OpenProperty method , IMAPISupport::OpenEntry method , PR_CREATE_TEMPLATES
property

 IMAPISupport::NewUID

The IMAPISupport::NewUID method returns a new MAPI unique identifier (MAPIUID) for an item.

HRESULT NewUID(
 LPMAPIUID lpMuid
)

Parameters

lpMuid
Points to the 16 bytes of memory where the new MAPIUID structure holding the MAPIUID is placed.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Service providers call the IMAPISupport::NewUID method in a wide variety of situations where they
need to generate a long-term unique tag for an item. A message store provider, for instance, might call
NewUID to obtain a unique identifier to place in the PR_SEARCH_KEY property of a newly created
message to enable searching within tables.

Each service provider has its own MAPIUID, which is used to distinguish entry identifiers created by
that provider. When you create a service provider, you should choose a MAPIUID for your provider and
hard-code it, as opposed to obtaining it from NewUID during provider initialization. By doing so, you
ensure your provider will have the same MAPIUID on all systems. To generate the MAPIUID, use the
UUIDGEN.EXE utility program.

See Also

MAPIUID structure

 IMAPISupport::Notify

The IMAPISupport::Notify method notifies registered client applications and service providers about
changes to an object that the calling provider owns.

HRESULT Notify(
 LPNOTIFKEY lpKey,
 ULONG cNotification,
 LPNOTIFICATION lpNotifications,
 ULONG FAR * lpulFlags
)

Parameters

lpKey
Input parameter pointing to a key for the object whose notification status is reported. The lpKey
parameter provides a unique key to the object and cannot be NULL.

cNotification
Input parameter containing the number of notifications in the lpNotifications parameter.

lpNotifications
Input parameter pointing to an array of NOTIFICATION structures holding notifications to be
broadcast.

lpulFlags
Input-output parameter containing a bitmask of flags that controls how the notification is performed.
On input, the following flag can be set by the service provider:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

On output, the following flag can be set by MAPI:

NOTIFY_CANCELED
Indicates a callback function canceled a synchronous notification.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Service providers call the IMAPISupport::Notify method to request that MAPI generate a notification
for an advise sink that has previously registered for the notification using IMAPISupport::Subscribe.
Notify copies the structures indicated by the lpNotifications parameter into memory that is accessible
to the advise sink's process. It is also responsible for calling the callback function that broadcasts the
notifications, and for releasing the memory involved. The provider calling Notify does not need to
allocate memory; MAPI performs all necessary memory allocation.

Providers can use only the notification events and event structures defined by MAPI; to support a
custom notification event that does not fit easily into the other structures defined by MAPI, a provider
can use an event of the fnevExtended type. For more information on the event types that can be
used to trigger notifications, see NOTIFICATION.

The notification key passed in the Notify method's lpKey parameter for the object whose notification
status is reported should be the same as the key formerly passed for that object in the lpKey parameter
of the IMAPISupport::Subscribe method that set up notification registration. This key is similar to the
PR_RECORD_KEY property in that it is binary-comparable and can be used to ensure the correct
object is used. MAPI uses this key to find the objects that are registered for notifications about the

identified object.

Many notification structures include the entry identifier of the object receiving notifications; providers
should be careful to pass the long-term entry identifier for the receiving object to provide an entry
identifier useful to all implementations registered for notifications.

When a provider instructs MAPI to broadcast a notification held in an ERROR_NOTIFICATION or
NEWMAIL_NOTIFICATION structure and the error or new message string held in the structure is in
Unicode format, the provider must set the MAPI_UNICODE flag in the ulFlags member of the
NOTIFICATION structure. If in such a case the error or new message string is in ANSI format, the
provider should not set MAPI_UNICODE. MAPI_UNICODE only applies to the strings within the
notification structures.

For asynchronous notifications, Notify returns before callbacks are made to the implementation
registered for notifications. For synchronous notifications, Notify makes the callbacks before returning
so the calling implementation can determine whether a process is active. It does so by checking
whether the NOTIFY_CANCELED flag is set; if any callback function has set the
CALLBACK_DISCONTINUE flag, MAPI stops sending notifications and returns NOTIFY_CANCELED
in the Notify method's lpulFlags parameter. Providers can then stop making notifications for that
process. If zero is returned in lpulFlags, the process is still active and the provider should continue to
send notifications as appropriate.

Providers using synchronous notifications must be careful to avoid deadlock situations.

For more information on the notification process, see About Notification.

See Also

IMAPISupport::Subscribe method , IMAPISupport::Unsubscribe method , NOTIFCALLBACK
function prototype NOTIFICATION structure , NOTIFKEY structure , PR_RECORD_KEY property

 IMAPISupport::OpenAddressBook

The IMAPISupport::OpenAddressBook method opens an address book and returns a pointer that
provides further access to the open address book.

HRESULT OpenAddressBook(
 LPCIID lpInterface,
 ULONG ulFlags,
 LPADRBOOK FAR * lppAdrBook
)

Parameters

lpInterface
Input parameter pointing to the interface identifier (IID) for the address book object. Passing NULL
indicates the returned address book is cast to the standard interface for an address book. The
lpInterface parameter can also be set to IID_IAddrBook.

ulFlags
Reserved; must be zero.

lppAdrBook
Output parameter pointing to a pointer to the returned address book object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_W_ERRORS_RETURNED
The call succeeded, but one or more address book providers could not be loaded. To test this
warning, use the HR_FAILED macro. When this warning is returned, the call should be handled as
successful.

Remarks

Tightly coupled message store and transport providers call the IMAPISupport::OpenAddressBook
method to get access to an address book. The returned pointer to the address book can then be used
to open address book containers, find messaging users, and display address dialog boxes.

This method can return MAPI_W_ERRORS_RETURNED if it cannot load an address book provider.
This value is a warning, not an error value, and a call that returns it should be handled as successful.
Even if all of the address book providers failed to load, OpenAddressBook succeeds and returns
MAPI_W_ERRORS_RETURNED and an address book object in the lppAdrBook parameter. Even
when no address book providers are loaded, a provider can still use the IAddrBook interface and must
release it when done.

If one or more address book providers failed to load, a provider can call the
IMAPISupport::GetLastError method on the support object to obtain a MAPIERROR structure
containing information about the providers that did not load. If more than one provider failed to load, a
single MAPIERROR structure is returned that contains an aggregation of the strings returned by each
provider.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

See Also

IAddrBook : IUnknown interface , IMAPISession::OpenAddressBook method

 IMAPISupport::OpenEntry

The IMAPISupport::OpenEntry method opens an object given its entry identifier.

HRESULT OpenEntry(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 LPCIID lpInterface,
 ULONG ulOpenFlags,
 ULONG FAR * lpulObjType,
 LPUNKNOWN FAR * lppUnk
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the object to open.

lpInterface
Input parameter pointing to the interface identifier (IID) for the object to open. Passing NULL
indicates the object is cast to the standard interface for such an object.

ulOpenFlags
Input parameter containing a bitmask of flags that controls how the object is opened. The following
flags can be set:
MAPI_BEST_ACCESS

Indicates the object should be opened with the maximum network permissions allowed for the
user and the maximum client application access. For example, if the client has read/write access,
the object is opened with read/write access; if the client has read-only access, the object is
opened with read-only access. The client can retrieve the access level by getting the
PR_ACCESS_LEVEL property.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling implementation. If the object is not accessible, some subsequent call to the object might
return an error.

MAPI_MODIFY
Requests write access. By default, objects are created with read-only access, and clients should
not work on the assumption that read/write access has been granted.

lpulObjType
Output parameter pointing to a variable where the type of the opened object is stored.

lppUnk
Output parameter pointing to a variable where the pointer to the opened object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt was made to access an object for
which the user has insufficient permissions.

MAPI_E_NOT_FOUND
The object indicated by lpEntryID does not exist.

MAPI_E_UNKNOWN_ENTRYID
The object indicated by the lpEntryID parameter is not recognized. This value is typically returned if
the message store or address book provider that contains the object is not open.

Remarks

Service providers call the IMAPISupport::OpenEntry method to open objects. Default behavior is to
open an object as read-only, unless the call sets the MAPI_MODIFY or MAPI_BEST_ACCESS flag in
the ulFlags parameter. Unlike when calling the IMAPISession::OpenEntry method, a provider cannot
open the root folder by passing NULL in lpEntryID for IMAPISupport::OpenEntry.

The calling provider should check the value returned in the lpulObjType parameter to determine
whether the object type returned is what was expected. Commonly, after the provider checks the type
of the object, it then casts the pointer in the lppUnk parameter into a message object pointer, a folder
object pointer, or another appropriate object pointer. In order to open address book objects, a provider
must open the address book first.

If a provider passes an entry identifier in the lpEntryID parameter that belongs to a container, such as a
message store or address book that is not currently open, the call might fail and return
MAPI_E_UNKNOWN_ENTRYID.

 IMAPISupport::OpenProfileSection

The IMAPISupport::OpenProfileSection method opens a section of the current profile and returns a
pointer that provides further access.

HRESULT OpenProfileSection(
 LPMAPIUID lpUid,
 ULONG ulFlags,
 LPPROFSECT FAR * lppProfileObj
)

Parameters

lpUid
Input parameter pointing to the MAPIUID structure holding the MAPI unique identifier (MAPIUID) for
the profile section. Passing NULL for the lpUid parameter opens a profile section containing service
provider information and credentials for the current provider session.

ulFlags
Input parameter containing a bitmask of flags that controls how the profile section is opened. The
following flags can be set:
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling provider. If the object is not accessible, some subsequent call to the object might return an
error.

MAPI_MODIFY
Requests read/write access. By default, objects are created with read-only access, and clients
should not work on the assumption that read/write access has been granted.

lppProfileObj
Output parameter pointing to a variable where the pointer to the returned profile section object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only profile section or an attempt was made to access an
object for which the user has insufficient permissions.

MAPI_E_NOT_FOUND
The requested object does not exist.

MAPI_E_UNKNOWN_FLAGS
Reserved or unsupported flags were used, and therefore the operation did not complete.

Remarks

Service providers call the IMAPISupport::OpenProfileSection method to open a property interface on
a section of the profile. A profile section object supporting the IProfSect interface is returned in the
lppProfSect parameter. Providers can use an OpenProfileSection call to make their configuration
information available to other implementations. To do so, a provider passes in lpUid a MAPIUID for the
profile section that is known to other client applications or providers.

Default behavior for OpenProfileSection is to open the profile section object as read-only, unless a
provider sets the MAPI_MODIFY flag in the ulFlags parameter. If an OpenProfileSection call attempts
to open a nonexistent section with read-only access, MAPI_E_NOT_FOUND is returned. If an
OpenProfileSection call opens a nonexistent profile section with read/write access by passing

MAPI_MODIFY in ulFlags, the call creates the section.

See Also

IMAPIProp : IUnknown interface , IProfSect : IMAPIProp interface , MAPIUID structure

 IMAPISupport::OpenTemplateID

The IMAPISupport::OpenTemplateID method allows run-time binding of a foreign address book
provider's interface implementation to an entry in a container in the calling provider. This method is
called only for interaction between address book providers.

HRESULT OpenTemplateID(
 ULONG cbTemplateID,
 LPENTRYID lpTemplateID,
 ULONG ulTemplateFlags,
 LPMAPIPROP lpMAPIPropData,
 LPCIID lpInterface,
 LPMAPIPROP FAR * lppMAPIPropNew,
 LPMAPIPROP lpMAPIPropSibling
)

Parameters

cbTemplateID
Input parameter containing the size, in bytes, of the lpTemplateID parameter.

lpTemplateID
Input parameter pointing to the template identifier representing an entry in a foreign provider's
container. This value is obtained from the entry's PR_TEMPLATEID property.

ulTemplateFlags
Input parameter containing a bitmask of flags used to describe to the foreign provider how the entry
is to be opened. The following flag can be set:
FILL_ENTRY

Should be used when calling OpenTemplateID to bind code for a new entry in the calling
provider's address book container. This flag indicates to MAPI and to the foreign provider that
receives a subsequent IABLogon::OpenTemplateID call, that a new entry is being created. The
foreign provider can control how the entry is created by modifying properties in the object pointed
to by the lpMAPIPropData parameter or by returning a specific interface implementation in
lppMAPIPropNew to control how properties for the new entry are set.

lpMAPIPropData
Input parameter pointing to the property object with the data for the entry in the calling provider's
container. This is the object that is to be bound to the foreign provider's property object
implementation returned in the lppMAPIPropNew parameter.This object must support the interface
being requested in the lpInterface parameter and it must provide read/write access..

lpInterface
Input parameter pointing to the interface identifier (IID) specifying the desired interface for the object
returned in lppMAPIPropNew. Passing NULL for this parameter is the same as passing the standard
interface for a messaging user, IID_IMailUser.

lppMAPIPropNew
Output parameter pointing to the property object implementation supplied by the foreign provider.

lpMAPIPropSibling
Reserved; must be NULL.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_UNKNOWN_ENTRYID
The foreign address book provider doesn't exist.

Remarks

Address book providers call the IMAPISupport::OpenTemplateID method to bind, at run time,
interface implementation code that exists in a foreign address book provider to data for an entry in the
calling provider.

An address book provider only needs to call OpenTemplateID if it supports the storage of entries with
template identifiers from foreign address book providers. Such support places additional requirements
on the calling provider's CreateEntry and OpenEntry implementations.

The calling provider should ensure that the object it returns from CreateEntry or OpenEntry uses the
bound interface, the interface returned by OpenTemplateID in the lppMAPIPropNew parameter, to
manipulate data in the property object.

If the OpenTemplateID call returns as the bound interface the same property object implementation as
the calling provider passed in, the calling provider can Release its reference to this property object.
This is because the foreign provider has called the object's AddRef method to keep its own reference.
If the foreign provider does not need to keep a reference to the property object, then OpenTemplateID
will return the unbound property object back to the calling provider.

If OpenTemplateID fails with MAPI_E_UNKNOWN_ENTRYID, the calling provider should try to
continue by treating the entry as read-only.

See Also

IABLogon::OpenTemplateID method , IPropData : IMAPIProp interface , PR_TEMPLATEID property

 IMAPISupport::PrepareSubmit

The IMAPISupport::PrepareSubmit method prepares a message for submission to the MAPI spooler.

HRESULT PrepareSubmit(
 LPMESSAGE lpMessage,
 ULONG FAR * lpulFlags
)

Parameters

lpMessage
Input parameter pointing to the message to prepare.

lpulFlags
On input, the lpulFlags parameter is reserved and must be zero. On output, lpulFlags must be NULL.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers call the IMAPISupport::PrepareSubmit method to prepare a message for
submission to the MAPI spooler. Message store providers call PrepareSubmit as one of the first steps
in their IMessage::SubmitMessage implementation. Clients call IMessage::SubmitMessage to
initiate the transmission of a message.

Message store providers must call the IMAPISupport::SpoolerNotify method, passing the
NOTIFY_READYTOSEND flag in the ulFlags parameter, to synchronize the MAPI spooler and to
ensure that all needed transport providers are logged on and their address types registered. The
SpoolerNotify call must be made once per session before the call to PrepareSubmit.

Message store providers call the IMAPIFolder::GetMessageStatus method to check the status of a
message. If a message has its status flag MSGSTATUS_RESEND set, its recipient list is checked and
the PR_RESPONSIBILITY property is set to TRUE for all recipients that don't have the
MAPI_SUBMITTED flag set. The IMessage::ModifyRecipients method is then called to remove the
recipients from the list that have already received the message.

See Also

IMAPIFolder::GetMessageStatus method , IMessage::SubmitMessage method

 IMAPISupport::ReadReceipt

The IMAPISupport::ReadReceipt method generates a read or nonread report for a message.

HRESULT ReadReceipt(
 ULONG ulFlags,
 LPMESSAGE lpReadMessage,
 LPMESSAGE FAR * lppEmptyMessage
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how the read or nonread report is
generated. The following flag can be set:
MAPI_NON_READ

Indicates a nonread report is generated.
lpReadMessage

Input parameter pointing to the newly read message.
lppEmptyMessage

Input-output parameter pointing to a variable where the pointer to the newly created message to use
as the report is stored. On input, the message store provider passes in the newly created message.
On output, MAPI returns the changed message; only the contents of the message are changed, not
the parameter's value.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers call the IMAPISupport::ReadReceipt method to instruct MAPI to generate a
read or nonread report for the message indicated by the lpReadMessage parameter and to place the
pointer to the resulting report in the lppEmptyMessage parameter. Setting the MAPI_NON_READ flag
in the ulFlags parameter generates a nonread report.

Providers typically call ReadReceipt in response to a message being read, but also when a message
is moved or copied. Providers do not call ReadReceipt when a message is deleted. Providers can call
ReadReceipt in response to calls to the IMessage::SetReadFlag method, but a read or nonread
report should only be sent once for a message. Providers need to keep track of messages' read status
and should not send multiple reports for a single message.

If lppEmptyMessage references a valid message when MAPI returns from ReadReceipt, the store
provider should call IMessage::SubmitMessage followed by the IUnknown::Release method for the
message.

Providers can either hide or display read and nonread reports generated by stores in their folders.
Storing read and nonread reports in hidden folders allows providers to implement tighter security.

If ReadReceipt fails, the message should be released without being submitted. Providers can also be
implemented to store the message's status and again attemp to generate the read or nonread report
later.

See Also

IMAPIFolder::DeleteMessages method , IMessage::SubmitMessage method ,
PR_READ_RECEIPT_REQUESTED property

 IMAPISupport::RegisterPreprocessor

The IMAPISupport::RegisterPreprocessor method registers a preprocessor function for a transport
provider.

HRESULT RegisterPreprocessor(
 LPMAPIUID lpMuid,
 LPTSTR lpszAdrType,
 LPTSTR lpszDLLName,
 LPSTR lpszPreprocess,
 LPSTR lpszRemovePreprocessInfo,
 ULONG ulFlags
)

Parameters

lpMuid
Input parameter pointing to the MAPIUID structure holding the MAPI unique identifier (MAPIUID) for
the entry identifier that the preprocessor function handles. The lpMuid parameter can be NULL.

lpszAdrType
Input parameter pointing to a string containing the messaging address type for the messages the
function operates on, such as FAX, SMTP, or X500. The lpszAdrType parameter can be NULL or
empty.

lpszDLLName
Input parameter pointing to a string naming the dynamic-link library (DLL) containing the entry point
for the preprocessor function.

lpszPreprocess
Input parameter pointing to a string naming the function. The lpszPreprocess parameter can be
NULL.

lpszRemovePreprocessInfo
Input parameter pointing to a string naming the function that removes preprocessor information. The
lpszRemovePreprocessInfo parameter can be NULL.

ulFlags
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Transport providers call the IMAPISupport::RegisterPreprocessor method to register their
preprocessor function. Such a function must be registered before they can be called by the MAPI
spooler to process messages.

The lpMuid and lpszAdrType parameters are used to match the preprocessor function with specific
address types. If both lpMuid and lpszAdrType are non-null, matching occurs if either MAPIUID or the
address type match. If lpMuid is NULL and lpszAdrType is non-null, then matching only occurs on the
address type. If lpMuid is non-null and lpszAdrType is NULL, then matching only occurs on the specific
MAPIUID and for any address type. If both are NULL, then the message is processed.

The lpszPreprocess, lpszRemovePreprocessInfo and lpszDLLName parameters should all point to
strings that can be used in conjunction with calls to the Win32 GetProcAddress function so the
preprocessor's DLL entry point is called correctly.

Calls to preprocessors are specific to transport provider order. This functionality means that if a

transport provider ahead of your transport provider in MAPI's transport order is able to handle a
message, your provider's preprocessor won't get called for that message.

See Also

MAPIUID structure , PreprocessMessage function , RemovePreprocessInfo function

 IMAPISupport::SetProviderUID

The IMAPISupport::SetProviderUID method informs MAPI of the MAPI unique identifier (MAPIUID)
assigned to the service provider using the current support object.

HRESULT SetProviderUID(
 LPMAPIUID lpProviderID,
 ULONG ulFlags
)

Parameters

lpProviderID
Input parameter pointing to the MAPIUID structure holding the MAPIUID identifying the service
provider object.

ulFlags
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Address book and message store providers call the IMAPISupport::SetProviderUID method to inform
MAPI that they handle all globally unique identifiers (GUIDs) as indicated by the MAPIUID structure
passed in the lpProvider parameter. MAPI uses the provider MAPIUID when sending outbound
messages to the MAPI spooler or when routing instructions from client applications to the appropriate
providers, for example a call to the IMAPISupport::OpenEntry method to open another object
belonging to a particular service provider.

A call to SetProviderUID should be made at logon to provide a MAPIUID for the provider for the logon
session, although SetProviderUID can also be called later.

If a provider supports access to its entries with a variety of provider identifiers, it can make multiple
calls to SetProviderUID. A call to SetProviderUID is additive in that it always adds a MAPIUID, even if
one already exists. It never subtracts a MAPIUID, and once one is created, it cannot be removed.

See Also

MAPIUID structure

 IMAPISupport::SpoolerNotify

The IMAPISupport::SpoolerNotify method informs the MAPI spooler the provider requires service.

HRESULT SpoolerNotify(
 ULONG ulFlags,
 LPVOID lpvData
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how the transport provider is serviced.
The following flags can be set:
NOTIFY_CONFIG_CHANGE

Indicates to the MAPI spooler that the transport provider's configuration has changed. This flag
causes the MAPI spooler to call the transport provider's IXPLogon::AddressTypes and
IMAPISession::MessageOptions methods at the next convenient time.

NOTIFY_CRITICAL_ERROR
Indicates that the transport provider has encountered an unrecoverable error situation and that
the MAPI spooler should stop message processing and deinitialize the transport provider. If the
provider calls the IMAPISupport::SpoolerNotify method with this flag set during an
IXPLogon::StartMessage or IXPLogon::SubmitMessage method call, it should return from the
StartMessage or SubmitMessage call immediately after the SpoolerNotify call with an
appropriate error value.

NOTIFY_CRITSEC
Indicates the transport provider cannot allow the MAPI spooler to automatically yield to Windows
during processing of calls from the provider to the MAPI spooler. The provider will either yield
when it can or begin automatically yielding again later. The provider's IXPLogon::Idle and
IXPLogon::Poll methods should not be called. The lpvData parameter is undefined and should
be NULL.

NOTIFY_NEWMAIL
Indicates the transport provider has new incoming messages the MAPI spooler should request.
Message downloading occurs at the next available time. The lpvData parameter is undefined and
should be set to NULL.

NOTIFY_NEWMAIL_RECEIVED
Indicates lpvData points to a NEWMAIL_NOTIFICATION structure. This flag is used for transport
providers that are tightly coupled with message store providers and is ignored if the store provider
logged on with the MAPI_NO_MAIL flag set.

NOTIFY_NONCRIT
Indicates the transport provider needs to end the critical section it declared earlier. The lpvData
parameter is undefined and should be set to NULL.

NOTIFY_READYTOSEND
Indicates the transport provider has recovered from a condition that caused it to fail earlier and is
again ready to accept messages. For more information on failure conditions, see the
documentation for the possible return values in IXPLogon::SubmitMessage. When set by a
message store provider, this flag indicates the MAPI spooler should synchronize with the client
application's session. If this flag is set, lpvData is undefined and should be set to NULL.

NOTIFY_SENTDEFERRED
Indicates the transport provider has completed some part of the process of sending a deferred
message and requests to be notified at the next IXPLogon::SubmitMessage call. The entry
identifier of the deferred message is contained in an SBinary structure pointed to by lpvData.

lpvData

Input parameter pointing to a notification structure holding data associated with the notification. The
meaning of the data in lpvData depends on what flags are set in the ulFlags parameter; for more
information on what lpvData can hold, see the preceding description for ulFlags.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Transport providers call the IMAPISupport::SpoolerNotify method to notify the MAPI spooler to
process a new message. A transport provider can call IMAPISupport::SpoolerNotify at any time.

When a message store provider tightly coupled with a transport provider calls SpoolerNotify, the MAPI
spooler opens the message and begins processing the hook function that handles new messages. This
process culminates in the MAPI spooler calling the IMsgStore::NotifyNewMail method to inform the
message store about its own new message.

The notification structure pointed to by lpvData is sent to the MAPI spooler by MAPI. Note that only the
NOTIFY_SENT_DEFERRED and NOTIFY_CRITICAL_ERROR flags for ulFlags have data associated
with them. These two flags must not be set with the same SpoolerNotify call, although any other
combination of flags can be set.

If a transport provider places one of its processes within a critical section, it should set the
NOTIFY_CRITSEC flag in ulFlags. For example, a remote transport provider uploading messages
might need to display a dialog box so the user can select a telephone number to dial to establish the
remote connection. If the transport provider displays the dialog box using its own function, it should
declare a critical section before looping through the dialog box function. After the user closes the dialog
box and the dialog box function terminates, the transport provider should end the critical section.

In response to receiving NOTIFY_CRITSEC with a SpoolerNotify call, the MAPI spooler stops making
calls to the transport provider until the provider notifies it that the critical section has ended.
Furthermore, a transport provider can return the value MAPI_E_BUSY for any calls made to update its
status for an open status object while it has a critical section open.

If a transport provider has changed its configuration, it should set the NOTIFY_CONFIG_CHANGED
flag in ulFlags so that the MAPI spooler can reconfigure the transport on IXPLogon::AddressTypes
and IMAPISession::MessageOptions calls.

Message store providers that need to ensure the MAPI spooler is synchronized with the client
application as part of their IMAPISupport::PrepareSubmit method implementation should call
SpoolerNotify, passing the NOTIFY_READYTOSEND flag in ulFlags.

See Also

IMsgStore::NotifyNewMail method , IXPLogon::StartMessage method , IXPLogon::SubmitMessage
method

 IMAPISupport::SpoolerYield

The IMAPISupport::SpoolerYield method allows the transport provider to permit the MAPI spooler to
give processing time to Windows.

HRESULT SpoolerYield(
 ULONG ulFlags
)

Parameters

ulFlags
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_W_CANCEL_MESSAGE
Indicates the user wants to stop transfer for an incoming or outgoing message regardless of how
many recipients might already have received it.

Remarks

Transport providers call the IMAPISupport::SpoolerYield method to allow the MAPI spooler to cede
code processing to Windows. Transport providers typically make this call when they are performing
lengthy operations that can be paused. This functionality allows foreground applications to run during
long transport provider operations.

During the processing of a SpoolerYield call, the MAPI spooler might detect a number of conditions
important to the transport provider, which it signals to the provider in the SpoolerYield return value. If
SpoolerYield returns with MAPI_W_CANCEL_MESSAGE, the MAPI spooler has determined that the
message should no longer be sent. If it receives this value a provider should return
MAPI_E_USER_CANCEL to the calling process and exit if possible.

 IMAPISupport::StatusRecips

The IMAPISupport::StatusRecips method generates delivery and nondelivery reports on behalf of
transport providers.

HRESULT StatusRecips(
 LPMESSAGE lpMessage,
 LPADRLIST lpRecipList
)

Parameters

lpMessage
Input parameter pointing to the message for which a report is generated.

lpRecipList
Input parameter pointing to an ADRLIST structure holding a set of recipients for which delivery or
nondelivery information is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_W_ERRORS_RETURNED
The call succeeded overall, but there are no recipient options for this type of recipient. To test for this
warning, use the HR_FAILED macro. When this warning is returned, the call should be handled as
successful.

Remarks

Transport providers call the IMAPISupport::StatusRecips method to notify MAPI that delivery or
nondelivery reports should be sent for a set of one or more recipients. Transport providers can call
StatusRecips multiple times during the processing of a message. However, transport providers that
call StatusRecips for an open message should do their best to collect all delivery and nondelivery
information for the message recipients and call StatusRecips for that recipient list. A single point of
collection is important because each time a transport provider calls StatusRecips, MAPI can generate
delivery and nondelivery reports, so multiple StatusRecips calls for one recipient can result in multiple
identical reports being sent.

A provider should store properties relating to message delivery or nondelivery in the ADRLIST
structure indicated by the lpRecipList parameter. The following properties are required for both delivery
reports and nondelivery reports:

PR_MESSAGE_CLASS
PR_REPORT_TEXT
PR_REPORT_TIME
PR_ROWID
PR_SEARCH_KEY

The following additional property is required for delivery reports:

PR_MESSAGE_DELIVERY_TIME

The following additional property is required for nondelivery reports:

PR_NDR_DIAG_CODE

MAPI adds additional properties to the final delivery or nondelivery report.

A provider should allocate memory for the ADRLIST structure in lpRecipList using the
MAPIAllocateBuffer and MAPIAllocateMore functions. MAPI releases the memory by calling the
MAPIFreeBuffer function only if IMAPISupport::StatusRecips succeeds.

See Also

ADRLIST structure , IMAPISupport:: Address method , IMAPISupport::SpoolerNotify method ,
IXPLogon::EndMessage method , MAPIAllocateBuffer function , MAPIAllocateMore function ,
MAPIFreeBuffer function

 IMAPISupport::StoreLogoffTransports

The IMAPISupport::StoreLogoffTransports method specifies the orderly release of a message store
to the MAPI spooler.

HRESULT StoreLogoffTransports(
 ULONG FAR * lpulFlags
)

Parameters

lpulFlags
Input-output parameter containing a bitmask of flags that controls how message store logoff occurs.
On input, all flags for this parameter are mutually exclusive; a message store provider can set only
one per call. Which flag is set is determined by which flag is returned from a previous client
application call to the IMsgStore::StoreLogoff method. The following flags can be set on input for
the lpulFlags parameter:
LOGOFF_ABORT

Indicates any transport provider activity for this store should be stopped before logoff. Control is
returned to the client after the activity is stopped and the MAPI spooler has logged off the store. If
any transport activity is taking place, the logoff does not occur and no change in MAPI spooler or
transport provider behavior occurs. If transport activity is quiet, the MAPI spooler releases the
store.

LOGOFF_NO_WAIT
Indicates the message store should not wait for messages from transport providers before
closing. All outbound mail that is ready to be sent, is sent; if this store has the default Inbox, any
in-process message is received, and then further reception is disabled. When all activity is
completed, the MAPI spooler releases the store and control is returned to the client immediately.

LOGOFF_ORDERLY
Indicates the message store should not wait for information from transport providers before
closing. Any message being processed by the store is completed, and no new messages are
processed. When all activity is completed, the MAPI spooler releases the store and control is
returned to the store provider immediately.

LOGOFF_PURGE
Works the same as the LOGOFF_NO_WAIT flag. The LOGOFF_PURGE flag returns control to
the client after completion.

LOGOFF_QUIET
Indicates that if any transport provider activity is taking place, the logoff does not occur and the
type of activity taking place is returned as a flag on output.

On output, the MAPI spooler can return more than one flag. The following flags can be set on output for
lpulFlags:

LOGOFF_COMPLETE
Indicates the logoff can complete. All resources associated with the store have been released,
and the object has been invalidated. The MAPI spooler has performed or will perform all requests.
Only the IUnknown::Release method should be called at this point.

LOGOFF_INBOUND
Indicates a message is currently coming into the store from one or more transport providers.

LOGOFF_OUTBOUND
Indicates a message is currently being sent from the store by one or more transport providers.

LOGOFF_OUTBOUND_QUEUE
Indicates there are currently messages in the outbound queue for the store.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers call the IMAPISupport::StoreLogoffTransports method to give client
applications some control over how MAPI handles transport provider activity as the message store is
closing.

Before a StoreLogoffTransports call occurs, a client calls the IMsgStore::StoreLogoff method and
sets flags in its lpulFlags parameter to indicate how the client requires the message store to be shut
down. A message store provider should pass these client-set IMsgStore::StoreLogoff flags as input
values for the StoreLogoffTransports method's lpulFlags. The status returned from a client call to
IMsgStore::StoreLogoff is usually the same status that the message store provider then passes on
the call to StoreLogoffTransports.

If the client calls Release on a message store object without calling IMsgStore::StoreLogoff first, the
message store provider involved should set the LOGOFF_ABORT flag in lpulFlags for
StoreLogoffTransports.

If another process has the store to be logged off open for the same profile, MAPI ignores a call to
StoreLogoffTransports and returns the flag LOGOFF_COMPLETE in lpulFlags.

The behavior of the store provider following the return from StoreLogoffTransports should be based
on the value of lpulFlags, which indicates system status and conveys client instructions on logoff
behavior.

See Also

IMsgStore::StoreLogoff method , IXPLogon:: FlushQueues method

 IMAPISupport::Subscribe

The IMAPISupport::Subscribe method sets up a subscription for notification events with MAPI.

HRESULT Subscribe(
 LPNOTIFKEY lpKey,
 ULONG ulEventMask,
 ULONG ulFlags,
 LPMAPIADVISESINK lpAdviseSink,
 ULONG FAR * lpulConnection
)

Parameters

lpKey
Input parameter pointing to the NOTIFKEY structure for the object whose changes should generate
notifications. The lpKey parameter provides a unique key to the object and cannot be NULL.

ulEventMask
Input parameter containing an event mask of the types of notification events occurring for the object
for which MAPI will generate notifications. The event mask filters specific cases. Each event type
has a structure associated with it that holds additional information about the event. The following
table lists the possible event types along with their corresponding structures.

Notification event type Corresponding structure
fnevCriticalError ERROR_NOTIFICATION
fnevNewMail NEWMAIL_NOTIFICATION
fnevObjectCreated OBJECT_NOTIFICATION
fnevObjectDeleted OBJECT_NOTIFICATION
fnevObjectModified OBJECT_NOTIFICATION
fnevObjectCopied OBJECT_NOTIFICATION
fnevSearchComplete OBJECT_NOTIFICATION
fnevTableModified TABLE_NOTIFICATION
fnevStatusObjectMod
ified

STATUS_OBJECT_NOTIFICATI
ON

fnevExtended EXTENDED_NOTIFICATION

ulFlags
Input parameter containing a bitmask of flags that controls how notification occurs. The following flag
can be set:
NOTIFY_SYNC

Indicates all notification callbacks should be made before the Notify method returns to the calling
service provider. If this flag is not set, notification callbacks are queued to the processes that have
subscribed and started when those processes gain control of the CPU.

lpAdviseSink
Input parameter pointing to an advise sink object created by the calling provider. This advise sink is
called when an event occurs for the object about which notification has been requested.

lpulConnection
Output parameter pointing to a variable that upon a successful return holds the connection number
for the notification subscription.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Service providers call the IMAPISupport::Subscribe method to allow MAPI to handle the registration
of notifications for their objects. A provider can make one call to Subscribe for every call to its
HrAllocAdviseSink function or to an Advise method. Three IMAPISupport methods, Subscribe,
Unsubscribe and Notify, help provider developers implement notification. These methods are merely
a convenience; providers can use them as the basis for their implementation of notification support, or
they can supply their own implementation.

To use the MAPI support methods for notification, providers must create a key for the object for which
notifications should be generated and place that key in the lpKey parameter. MAPI uses this key after
notification subscription is set up to search for any callbacks registered for the corresponding object.
The value of the key must be unique to the item being subscribed; any value that uniquely identifies the
object and is easily regenerated each time the object changes is acceptable. However, a key must be
provided; NULL cannot be passed in lpKey. A NOTIFKEY structure is used in lpKey so a provider can
map different entry identifiers to the same object using the same key.

Once notification subscription is set up, a provider, when calling IMAPISupport::Notify to signal that a
notification event has taken place, should provide the notification key in Notify's lpKey parameter.

The NOTIFY_SYNC flag in the Subscribe ulFlags parameter indicates whether the service provider
requested synchronous or asynchronous notifications. MAPI records this information and issues the
appropriate type of callback when the provider calls Notify. Synchronous notifications can never be
requested on behalf of client applications; they are only for internal service provider use, for situations
where careful sequencing of access to provider data structures is necessary.

There are limitations on what a synchronous callback function can do:

· It cannot cause another synchronous notification to be generated.
· It cannot display a user interface.

Although a synchronous callback function is called with the same parameters as an asynchronous
callback function, its possible return values are predetermined. A synchronous callback function can
return CALLBACK_DISCONTINUE, indicating that MAPI should immediately stop processing the
callbacks for this notification, something an asynchronous callback function cannot do. If a callback
function returns CALLBACK_DISCONTINUE, MAPI does not queue additional eligible notifications but
calls Notify and sets the NOTIFY_CANCELED flag in its lpulFlags parameter.

A synchronous callback function can also stop callback processing by returning the
CALLBACK_DISCONTINUE flag in the HrAllocAdviseSink function's lppAdviseSink parameter.

See Also

HrAllocAdviseSink function , IMAPIAdviseSink::OnNotify method , IMAPISupport:: Notify method ,
NOTIFICATION structure , NOTIFKEY structure

 IMAPISupport::Unsubscribe

The IMAPISupport::Unsubscribe method removes an object's subscription for notification of changes
previously established with a call to the IMAPISupport::Subscribe method.

HRESULT Unsubscribe(
 ULONG ulConnection
)

Parameters

ulConnection
Input parameter containing the number of the registration connection returned by a call to
IMAPISupport::Subscribe.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The connection number passed in does not exist.

Remarks

Providers call the IMAPISupport::Unsubscribe method to cancel a notification subscription.
Unsubscribe does so by releasing the pointer to the advise sink object passed in the lpAdviseSink
parameter in the previous call to Subscribe. As part of discarding the pointer to the advise sink object,
the object's IUnknown::Release method is called. Generally, Release is called during the
Unsubscribe call, but if another thread is in the process of calling the IMAPIAdviseSink::OnNotify
method for the advise sink object, the Release call is delayed until the OnNotify method returns.

See Also

IMAPIAdviseSink::OnNotify method , IMAPISupport::Subscribe method

 IMAPISupport::WrapStoreEntryID

The IMAPISupport::WrapStoreEntryID method maps the private entry identifier of a message store
object to an entry identifier more useful to the messaging system.

HRESULT WrapStoreEntryID(
 ULONG cbOrigEntry,
 LPENTRYID lpOrigEntry,
 ULONG FAR * lpcbWrappedEntry,
 LPENTRYID FAR * lppWrappedEntry
)

Parameters

cbOrigEntry
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpOrigEntry
parameter.

lpOrigEntry
Input parameter pointing to the private entry identifier for the message store provider.

lpcbWrappedEntry
Output parameter pointing to a variable that contains the size, in bytes, of the entry identifier pointed
to by the lppWrappedEntry parameter.

lppWrappedEntry
Output parameter pointing to a pointer to the new entry identifier returned, to which MAPI has
mapped the message store provider's private entry identifier.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Service providers use the IMAPISupport::WrapStoreEntryID method to have MAPI generate a
wrapped entry identifier for the store provider object. To allow storage of a message store's
PR_STORE_ENTRYID property by the messaging system, MAPI must map the store's private entry
identifier to an identifier useful to the messaging system. MAPI returns the wrapped version in
response to any requests for PR_STORE_ENTRYID. In other words, when a client application calls the
IMAPIProp::GetProps method to retrieve PR_STORE_ENTRYID, a store provider should call
WrapStoreEntryID instead of returning its entry identifier directly.

One use of WrapStoreEntryID is to allow an entry in a message store to be opened if the store itself is
not open. In such cases, a valid entry identifier for the entry to open must be passed in the OpenEntry
call.

Calls to the IMSProvider::Logon and IMSLogon::CompareEntryIDs methods always obtain the
store's private entry identifier; the wrapped version is used only between client applications and MAPI.

The memory for the entry identifier returned in the lppWrappedEntry parameter must be freed using the
MAPIFreeBuffer function after the provider is done with the identifier.

See Also

IMAPIProp::GetProps method , IMAPISupport::CompareEntryIDs method ,
IMSLogon::CompareEntryIDs method , IMSProvider::Logon method , MAPIFreeBuffer function

 IMAPITable : IUnknown

The IMAPITable interface is used for working with MAPI table objects.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Table object

Corresponding pointer type: LPMAPITABLE
Implemented by: Service providers
Called by: Client applications, service providers

Vtable Order

GetLastError Returns a MAPIERROR structure containing information
about the last error that occurred for a table object.

Advise Registers an implementation for notification on changes
to a table object.

Unadvise Removes a table's registration for notification of
changes previously established with a call to the
IMAPITable::Advise method.

GetStatus Returns the status and type of a table.
SetColumns Sets the order of columns for table rows returned by the

IMAPITable::QueryRows method.
QueryColumns Returns either the current list of columns for a table view

or the full list of columns available for the table.
GetRowCount Returns the total number of rows in a table view.
SeekRow Moves the cursor to a specific position in a table.
SeekRowAppro
x

Moves the cursor to an approximate fractional position
in a table.

QueryPosition Retrieves the current table row position of the cursor,
based on a fractional value.

FindRow Finds the next row in a table that contains a property
matching the specified criteria.

Restrict Applies a restriction to a table, reducing the rows visible
to only those matching the restriction criteria.

CreateBookmar
k

Marks the current position of the table cursor so an
implementation can return to that position even when
the table is updated.

FreeBookmark Releases a bookmark from memory.
SortTable Sorts table rows based on the sort criteria provided.
QuerySortOrde
r

Retrieves the current sort order for a table.

QueryRows Returns one or more rows from a table, beginning at the
current cursor position.

Abort Stops any asynchronous operations currently in
progress for a table.

ExpandRow Expands a collapsed table category and adds the rows
of that category to the table view.

CollapseRow Collapses a table category and removes it from the
table view.

WaitForComple
tion

Suspends the calling implementation while
asynchronous operations occur on a table.

GetCollapseSta
te

Returns the data necessary to rebuild the current table
view.

SetCollapseSta
te

Reestablishes the expanded or collapsed state of the
table view that was saved by a call to the
IMAPITable::GetCollapseState method.

 IMAPITable::Abort

The IMAPITable::Abort method stops any asynchronous operations currently in progress for a table.

HRESULT Abort()

Parameters

None

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_UNABLE_TO_ABORT
The operation is in progress and could not be canceled.

Remarks

Use the IMAPITable::Abort method to stop any asynchronous operation that is in progress on a table.
To detect asynchronous operations currently in progress, a client or provider can call the
IMAPITable::GetStatus method.

If a call to the IMAPITable::Restrict method is interrupted by a call to Abort, whatever data is in the
table when the Abort call is processed remains in the table. If a call to the IMAPITable::SortTable
method is interrupted by a call to Abort, the order of rows in the table is not changed from their order
before the sort operation.

If the asynchronous operation cannot be stopped or if it completes before Abort returns, Abort returns
MAPI_E_UNABLE_TO_ABORT.

See Also

IMAPITable::GetStatus method , IMAPITable::Restrict method , IMAPITable::SortTable method

 IMAPITable::Advise

The IMAPITable::Advise method registers an implementation for notification on changes to a table
object.

HRESULT Advise(
 ULONG ulEventMask,
 LPMAPIADVISESINK lpAdviseSink,
 ULONG FAR * lpulConnection
)

Parameters

ulEventMask
Input parameter containing an event mask of the types of notification events occurring for the object
about which MAPI will generate notifications. The mask filters specific cases. Each event type has a
structure associated with it that holds additional information about the event. The only possible event
type is fnevTableModified; the corresponding data structure is TABLE_NOTIFICATION.

lpAdviseSink
Input parameter pointing to an advise sink object to be called when an event occurs for the table
object about which notification has been requested. This advise sink object must have already been
allocated.

lpulConnection
Output parameter pointing to a variable that upon a successful return holds the connection number
for the notification registration. The connection number must be nonzero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT
The service provider either does not support changes to its objects or does not support notification
of changes.

Remarks

Use the IMAPITable::Advise method to register a table object implemented in the provider for
notification callbacks. Whenever a change occurs to the table object, the provider checks to see what
event mask bit was set in the ulEventMask parameter and thus what type of change occurred. If a bit is
set, then the provider calls the IMAPIAdviseSink::OnNotify method for the advise sink object
indicated by the lpAdviseSink parameter to report the event. Data passed in the notification structure to
the OnNotify routine describes the event.

The call to OnNotify can occur during the call that changes the object, or at any following time. On
systems that support multiple threads of execution, the call to OnNotify can occur on any thread. For a
way to turn a call to OnNotify that might happen at an inopportune time into one that is safer to handle,
a provider should use the HrThisThreadAdviseSink function.

To provide notifications, the provider implementing Advise needs to keep a copy of the pointer to the
lpAdviseSink advise sink object; to do so, it calls the IUnknown::AddRef method for the advise sink to
maintain its object pointer until notification registration is canceled with a call to the
IMAPITable::Unadvise method. The Advise implementation should assign a connection number to
the notification registration and call AddRef on this connection number before returning it in the
lpulConnection parameter. Service providers can release the advise sink object before the registration
is canceled, but they must not release the connection number until Unadvise has been called.

After a call to Advise has succeeded and before Unadvise has been called, clients must be prepared

for the advise sink object to be released. A clients should therefore release its advise sink object after
Advise returns unless it has a specific long-term use for it.

Because of the asynchronous behavior of notification, implementations that change table column
settings can receive notifications with information organized in a previous column order. For instance, a
table row might be returned for a message that has just been deleted from the container. Such a
notification is sent when the column setting change has been made and information about it sent but
the notification table view has not been updated with that information yet.

For more information on the notification process, see About Notification.

See Also

HrThisThreadAdviseSink function , IMAPIAdviseSink::OnNotify method , IMAPITable::Unadvise
method, TABLE_NOTIFICATION structure

 IMAPITable::CollapseRow

The IMAPITable::CollapseRow method collapses a table category and removes it from the table view.

HRESULT CollapseRow(
 ULONG cbInstanceKey,
 LPBYTE pbInstanceKey,
 ULONG ulFlags,
 ULONG FAR * lpulRowCount
)

Parameters

cbInstanceKey
Input parameter containing the size, in bytes, of the instance key pointed to by the pbInstanceKey
parameter.

pbInstanceKey
Input parameter pointing to a variable containing the instance key ¾ that is, the
PR_INSTANCE_KEY property ¾ for the categorization row.

ulFlags
Reserved; must be zero.

lpulRowCount
Output parameter pointing to a variable containing the total number of rows, including heading and
data rows, that are being removed from the table view.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The categorization row does not exist.

MAPI_E_INVALID_ENTRYID
The categorization row does not exist. MAPI service providers that implement IMAPITable are
allowed to return this error instead of MAPI_E_NOT_FOUND.

Remarks

Use the IMAPITable::CollapseRow method to collapse a table category and remove it from the table
view. The rows are collapsed at the row containing the PR_INSTANCE_KEY property passed in the
pbInstanceKey parameter. The number of rows that are removed from the view is returned in the
lpulRowCount parameter.

Providers must not generate notifications on rows that are collapsed out of a table view.

See Also

IMAPITable::ExpandRow method , IMAPITable::GetCollapseState method ,
IMAPITable::QuerySortOrder method , IMAPITable::SetCollapseState method ,
IMAPITable::SortTable method , SSortOrderSet structure

 IMAPITable::CreateBookmark

The IMAPITable::CreateBookmark method marks the current position of the table cursor so an
implementation can return to that position even when the table is updated.

HRESULT CreateBookmark(
 BOOKMARK FAR * lpbkPosition
)

Parameters

lpbkPosition
Output parameter pointing to a variable where the returned 32-bit bookmark value is stored. This
bookmark can later be passed in a call to the IMAPITable::SeekRow method.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_UNABLE_TO_COMPLETE
The requested operation could not be completed.

Remarks

Use the IMAPITable::CreateBookmark method to create a bookmark, which is used to retain
information about a position in a table so as to return to that position. The bookmarked position is
associated with the object at that row in the table.

Because of the memory expense of maintaining cursor positions in this way, an implementation can
limit the number of bookmarks permitted. If an implementation has done so and an attempt is made to
create a bookmark that would surpass the number allowed, the call to CreateBookmark returns
MAPI_E_UNABLE_TO_COMPLETE.

A bookmark pointing to a row that is no longer in the table view can still be used. If a client or provider
attempts to move the cursor to such a bookmark, the cursor moves to the next visible row and stops
there. A call using a bookmark pointing to a collapsed row returns MAPI_W_POSITION_CHANGED.
Table implementations can move bookmarks for positions collapsed out of view either at the time of
use or at the time the row is collapsed. If a bookmark is moved at the time the row is collapsed, a bit
must be retained in the bookmark that indicates whether the bookmark has moved since its last use or,
if it has never been used, since its creation.

CreateBookmark can allocate memory for the bookmark it creates. An implementation must release
the resources for the bookmark by calling the IMAPITable::FreeBookmark method.

Bookmarks are not supported for a message's attachment table, and CreateBookmark will return
MAPI_E_NO_SUPPORT.

See Also

IMAPITable::FreeBookmark method , IMAPITable::SeekRow method

 IMAPITable::ExpandRow

The IMAPITable::ExpandRow method expands a collapsed table category and adds the rows of that
category to the table view.

HRESULT ExpandRow(
 ULONG cbInstanceKey,
 LPBYTE pbInstanceKey,
 ULONG ulRowCount,
 ULONG ulFlags,
 LPSRowSet FAR * lppRows,
 ULONG FAR * lpulMoreRows
)

Parameters

cbInstanceKey
Input parameter containing the size, in bytes, of the instance key pointed to by the pbInstanceKey
parameter.

pbInstanceKey
Input parameter pointing to a variable containing the instance key ¾ that is, the
PR_INSTANCE_KEY property ¾ for the categorization row.

ulRowCount
Input parameter containing the maximum number of rows to return in the lppRows parameter.

ulFlags
Reserved; must be zero.

lppRows
Output parameter pointing to a variable where a returned SRowSet structure is stored. The
SRowSet holds the set of new rows inserted into the table view after the row indicated by the
pbInstanceKey parameter. The lppRows parameter can be NULL if the ulRowCount parameter is
zero.

lpulMoreRows
Output parameter pointing to a variable holding the total number of rows added to the table.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The categorization row doesn't exist.

Remarks

Use the IMAPITable::ExpandRow method to expand a collapsed table category, adding its rows to the
table view. The position of the bookmark BOOKMARK_CURRENT is moved to the row immediately
following the last row in the SRowSet returned in lppRows. If zero rows were requested, or zero rows
were returned, the position of BOOKMARK_CURRENT is set to the row following the row specified in
pbInstanceKey.

Providers must not generate notifications on rows that are collapsed out of a table view.

See Also

IMAPITable::CollapseRow method

 IMAPITable::FindRow

The IMAPITable::FindRow method finds the next row in a table that contains a property matching the
specified criteria.

HRESULT FindRow(
 LPSRestriction lpRestriction,
 BOOKMARK BkOrigin,
 ULONG ulFlags
)

Parameters

lpRestriction
Input parameter pointing to an SRestriction structure containing the property to search for.

BkOrigin
Input parameter indicating the bookmark from which the search originates. A bookmark can be
created using the IMAPITable::CreateBookmark method, or one of the following predefined values
can be passed:
BOOKMARK_BEGINNING

Searches from the beginning of the table.
BOOKMARK_CURRENT

Searches from the row in the table where the cursor is located.
BOOKMARK_END

Searches from the end of the table.
ulFlags

Input parameter containing a bitmask of flags that controls the direction of the search. The following
flag can be set:
DIR_BACKWARD

Searches backward from the bookmark.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INVALID_BOOKMARK
The bookmark is invalid because it has been removed or because it is beyond the last row
requested.

MAPI_E_NOT_FOUND
No rows were found that matched the restriction.

MAPI_W_POSITION_CHANGED
The call succeeded, but the bookmark used in the operation is no longer set at the same row as
when it was last used; if the bookmark has not been used, it is no longer in the same position as
when it was created. To test for this warning, use the HR_FAILED macro. When this warning is
returned, the call should be handled as successful.

Remarks

Service providers implement the IMAPITable::FindRow method to support scrolling based on strings
typed by the user, especially in list boxes within addressing dialog boxes. In this type of scrolling, users
enter progressively longer prefixes of a desired string value, and the client application periodically
issues a FindRow call to jump to the first row that matches the prefix. Which direction the cursor jumps
depends on which direction the search is set to run.

To use FindRow, a bookmark must be set. The string search can originate from any bookmark,

including from the preset bookmarks indicating the current position and the beginning and end of the
table. If there is a large number of rows in the table, the search operation can be slow.

Clients use a restriction to find a string prefix for scrolling as follows: For forward searching on a
column sorted in ascending order, and for backward searching on a column sorted in descending order,
a client passes in the lpRestriction parameter an SPropertyRestriction structure with relation
RELOP_GE and the appropriate property tag and prefix, using the format tag GE prefix.

Note The type of prefix searching performed by FindRow is only useful when the search follows the
same direction as the table organization. Implementers of the IMAPITable interface should note that in
order to achieve the required behavior, the comparison function implied by the RELOP_GE passed in
the property restriction structure should be the same comparison function on which the table sort order
is based.

Usually, FindRow searches forward from the specified bookmark. The calling implementation can set
the search to move backward from the bookmark by setting the DIR_BACKWARD flag in the ulFlags
parameter. Searching forward starts from the current bookmark; searching backward starts from the
row prior to the bookmark. The end position of the search is just before the first row found that satisfied
the restriction. FindRow returns the data of the found row.

If the row pointed to by the bookmark in the BkOrigin parameter no longer exists in the table and the
table cannot establish a new position for the bookmark, FindRow returns
MAPI_E_INVALID_BOOKMARK. If the row pointed to by BkOrigin no longer exists and the table is
able to establish a new position for the bookmark, FindRow returns MAPI_W_POSITION_CHANGED.

If the bookmark passed in BkOrigin is either BOOKMARK_BEGINNING or BOOKMARK_END,
FindRow returns MAPI_E_NOT_FOUND if no matching row is found. If the bookmark used in BkOrigin
is BOOKMARK_CURRENT, FindRow can return MAPI_W_POSITION_CHANGED but not
MAPI_E_INVALID_BOOKMARK, because there is always a current cursor position.

The PR_INSTANCE_KEY property column is required for all tables, and all implementations of
FindRow are required to support calls seeking a row based on PR_INSTANCE_KEY.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

See Also

IMAPITable::CreateBookmark method , SPropertyRestriction structure , SRestriction structure

 IMAPITable::FreeBookmark

The IMAPITable::FreeBookmark method releases a bookmark from memory.

HRESULT FreeBookmark(
 BOOKMARK bkPosition
)

Parameters

bkPosition
Input parameter containing a token representing the bookmark to be freed, as obtained from a call to
the IMAPITable::CreateBookmark method.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INVALID_BOOKMARK
The bookmark does not exist.

Remarks

Use the IMAPITable::FreeBookmark method to release a bookmark that is no longer needed. The
bookmark is no longer valid after this call. When MAPI frees a table from memory, it also frees all
associated bookmarks.

If the calling implementation passes one of the three predefined bookmarks to FreeBookmark to be
freed, FreeBookmark ignores it and returns no error.

See Also

IMAPITable::CreateBookmark method

 IMAPITable::GetCollapseState

The IMAPITable::GetCollapseState method returns the data necessary to rebuild the current table
view.

HRESULT GetCollapseState(
 ULONG ulFlags,
 ULONG cbInstanceKey,
 LPBYTE lpbInstanceKey,
 ULONG FAR * lpcbCollapseState,
 LPBYTE FAR * lppbCollapseState
)

Parameters

ulFlags
Reserved; must be zero.

cbInstanceKey
Input parameter containing the size, in bytes, of the instance key pointed to by the lpbInstanceKey
parameter.

lpbInstanceKey
Input parameter pointing to the instance key ¾ that is, the PR_INSTANCE_KEY property ¾
identifying the table row at which the current collapsed or expanded state should be rebuilt. The
lpbInstanceKey parameter cannot be NULL; a row's instance key must be passed in.

lpcbCollapseState
Output parameter pointing to a variable containing the size, in bytes, of the structures pointed to by
the lppbCollapseState parameter.

lppbCollapseState
Output parameter pointing to a variable where the pointer to structures containing data describing
the current table view is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

MAPI_E_NO_SUPPORT
The operation is not supported by one or more service providers.

Remarks

Use the IMAPITable::GetCollapseState method to get the data necessary to rebuild a table view to its
current collapsed or expanded state. Use GetCollapseState and the IMAPITable::SetCollapseState
method together to present to the user, upon opening a table in your implementation, a table that in its
expanded or collapsed state can be recognized as the table the user formerly viewed. Implementations
of GetCollapseState commonly store the entire current state of all nodes of a table in the
lppbCollapseState parameter.

To restore the expanded or collapsed state retrieved by GetCollapseState, an implementation calls
SetCollapseState and rebuilds the stored state using the information in the structures saved in the
lppbCollapseState parameter.

See Also

IMAPITable::SetCollapseState method

 IMAPITable::GetLastError

The IMAPITable::GetLastError method returns a MAPIERROR structure containing information about
the last error that occurred for a table object.

HRESULT GetLastError(
 HRESULT hResult,
 ULONG ulFlags,
 LPMAPIERROR FAR * lppMAPIError
)

Parameters

hResult
Input parameter containing the result returned for the last call for the table object that returned an
error.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the strings in the MAPIERROR structure returned in the lppMAPIError parameter are in
Unicode format. If the MAPI_UNICODE flag is not set, the strings are in ANSI format.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure containing version,
component, and context information for the error. The lppMAPIError parameter can be set to NULL if
there is no MAPIERROR structure to return.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Use the IMAPITable::GetLastError method to retrieve information to display in a message to the user
regarding the last error returned from a method call for the table object.

To release all the memory allocated by MAPI for the MAPIERROR structure, implementations need
only call the MAPIFreeBuffer function.

The return value from GetLastError must be S_OK for an implementation to make use of the
MAPIERROR structure. Even if the return value is S_OK, a MAPIERROR structure might not be
returned. If the implementation cannot determine what the last error was, or if a MAPIERROR structure
is not available for that error, GetLastError returns a pointer to NULL in lppMAPIError instead.

See Also

MAPIERROR structure , MAPIFreeBuffer function

 IMAPITable::GetRowCount

The IMAPITable::GetRowCount method returns the total number of rows in a table view.

HRESULT GetRowCount(
 ULONG ulFlags,
 ULONG FAR * lpulCount
)

Parameters

ulFlags
Reserved; must be zero.

lpulCount
Output parameter pointing to a variable where the returned total number of rows in the table view is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

MAPI_E_NO_SUPPORT
The operation is not supported by one or more service providers.

MAPI_W_APPROX_COUNT
The call succeeded, but an approximate row count was returned because the exact row count could
not be determined. To test for this warning, use the HR_FAILED macro. When this warning is
returned, the call should be handled as successful.

Remarks

Use the IMAPITable::GetRowCount method to find out how many rows a table view holds before
making a call to the IMAPITable::QueryRows method to return rows of data from that table. If the row
count returned in the lpulCount parameter is less than 20, QueryRows can be called for the whole
table. If the row count is greater than 20, the calling implementation might limit the rows QueryRows
returns.

Some providers do not support GetRowCount and return MAPI_E_NO_SUPPORT. If GetRowCount
is not supported, the implementation should call the IMAPITable::QueryPosition method to determine
the current cursor position in the table. QueryPosition retrieves the fractional position of the cursor
within the table.

If GetRowCount cannot determine a table view's exact row count ¾ that is, if the value returned in
lpulCount is approximate and not exact ¾ it returns MAPI_W_APPROX_COUNT. This result can occur
for implementations where an exact count expends too much memory to perform, for example for
implementations that use large tables that are sparsely populated.

When GetRowCount is temporarily unable to return the number of rows in a table, it returns
MAPI_E_BUSY. This result can occur because of asynchronous operations in progress. If the calling
client or provider deduces from a return value of MAPI_E_BUSY that asynchronous operations are in
progress, it can call the IMAPITable::WaitForCompletion method, then once the asynchronous
operations are complete retry the call to GetRowCount. Another way to detect whether asynchronous
operations are in progress is to call the IMAPITable::GetStatus method, which returns the status and
type of a table.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

See Also

IMAPITable::GetStatus method , IMAPITable::QueryPosition method , IMAPITable::QueryRows
method, IMAPITable::WaitForCompletion method

 IMAPITable::GetStatus

The IMAPITable::GetStatus method returns the status and type of a table.

HRESULT GetStatus(
 ULONG FAR * lpulTableStatus,
 ULONG FAR * lpulTableType
)

Parameters

lpulTableStatus
Output parameter pointing to a variable where the status of the table is stored. One of the following
values can be returned:
TBLSTAT_COMPLETE

No operations are in progress.
TBLSTAT_QCHANGED

The contents of the table have changed. This status is not returned for changes that result from
sort or restriction operations but rather indicates unexpected changes.

TBLSTAT_RESTRICT_ERROR
An error occurred during restriction.

TBLSTAT_RESTRICTING
A restriction operation is in progress.

TBLSTAT_SETCOL_ERROR
An error occurred while columns were being set.

TBLSTAT_SETTING_COLS
A column-setting operation is in progress.

TBLSTAT_SORT_ERROR
An error occurred during sorting.

TBLSTAT_SORTING
A sort operation is in progress.

lpulTableType
Output parameter pointing to a variable where the type of the table is stored. One of the following
three table types can be returned:
TBLTYPE_DYNAMIC

The table's contents are dynamic and can change as the underlying data changes.
TBLTYPE_KEYSET

The rows within the table are fixed, but the values within these rows are dynamic and can change
as the underlying data changes.

TBLTYPE_SNAPSHOT
The table is static, and its contents do not change when the underlying data changes.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Use the IMAPTable::GetStatus method to gather information on the type and current status of a table.
GetStatus can be used in conjunction with the IMAPITable::Restrict method to poll the status of
updates to the table occurring as the result of a new restriction. GetStatus can also be used with the
IMAPITable::SortTable method to monitor the status of a sort operation and with the
IMAPITable::SetColumns method to see whether a column-setting operation has completed.

See Also

IMAPITable::Restrict method , IMAPITable::SetColumns method , IMAPITable::SortTable method

 IMAPITable::QueryColumns

The IMAPITable::QueryColumns method returns either the current list of columns for a table view or
the full list of columns available for the table.

HRESULT QueryColumns(
 ULONG ulFlags,
 LPSPropTagArray FAR * lpPropTagArray
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls what table column information is
returned. The following flag can be set:
TBL_ALL_COLUMNS

Returns all available columns.
lpPropTagArray

Output parameter pointing to a variable where the returned SPropTagArray structure is stored. This
structure contains a counted array of property tags in which each tag identifies a particular table
column.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

Remarks

Use the IMAPITable::QueryColumns method to get any one of the following:

· The current list of table columns for a table view as set when the table was created.
· The current list of columns for a table view as set by a call to the IMAPITable::SetColumns method.
· The full list of columns available for the table.

To retrieve the entire set of columns available for a table, the calling implementation should set the
TBL_ALL_COLUMNS flag in the ulFlags parameter. Otherwise, QueryColumns returns the columns in
the provider's current table columns, typically those columns that are cached. To retrieve additional
columns, a client or provider calls the IMAPITable::SetColumns method.

To free the memory holding the structure returned in the lpPropTagArray parameter, an implementation
uses the MAPIFreeBuffer function.

See Also

IMAPITable::SetColumns method , MAPIFreeBuffer function , SPropTagArray structure

 IMAPITable::QueryPosition

The IMAPITable::QueryPosition method retrieves the current table row position of the cursor, based
on a fractional value.

HRESULT QueryPosition(
 ULONG FAR * lpulRow,
 ULONG FAR * lpulNumerator,
 ULONG FAR * lpulDenominator
)

Parameters

lpulRow
Output parameter pointing to the variable where the current row number is stored. The row number
is zero-based, with the first row in the table being zero.

lpulNumerator
Output parameter pointing to the variable where the numerator of the fraction representing the table
position is stored.

lpulDenominator
Output parameter pointing to the variable where the denominator of the fraction representing the
table position is stored. The lpulDenominator parameter cannot be zero.

Return Values

S_OK
The method returned valid values in lpulRow, lpulNumerator, and lpulDenominator.

Remarks

Use the IMAPITable::QueryPosition method to determine the current row based on a fractional value
that approximates the position of the scroll box in the scroll bar compared to the number of rows in the
table. For example, in a table containing 100 rows, if the scroll box indicates a cursor position 3/4 into
the table, QueryPosition returns a value of 75 in the lpulNumerator parameter, 100 in the
lpulDenominator parameter, and 75/100 in the lpulRow parameter. The value in lpulDenominator is not
guaranteed to be the number of rows in the table, and QueryPosition cannot identify the exact row
that the cursor is positioned in. MAPI defines the current row as the next row to be read.

Note that calculation of the values for the QueryPosition parameters can expend large amounts of
memory in cases where the implementation must provide a useful cursor position value for a large
categorized table. If QueryPosition cannot determine the current row, it returns a value of
0xFFFFFFFF in lpulRow; this result can occur for implementations where the QueryPosition
calculation requires too much memory to perform. Clients and providers that receive such a return
should call the IMAPITable::SeekRowApprox method to retrieve an approximate fractional value for
the cursor position.

Calling SeekRowApprox with the same fraction as returned by QueryPosition does not necessarily
reposition the cursor to the same row.

See Also

IMAPITable::SeekRowApprox method

 IMAPITable::QueryRows

The IMAPITable::QueryRows method returns one or more rows from a table, beginning at the current
cursor position.

HRESULT QueryRows(
 LONG lRowCount,
 ULONG ulFlags,
 LPSRowSet FAR * lppRows
)

Parameters

lRowCount
Input parameter containing the number of rows requested.

ulFlags
Input parameter containing a bitmask of flags that controls how rows are returned. The following flag
can be set:
TBL_NOADVANCE

Prevents the cursor from advancing, so that the position value HRESULT is returned, indicating
the current cursor position.

lppRows
Output parameter pointing to a variable where the pointer to the returned SRowSet structure is
stored. The SRowSet holds the set of table rows returned.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

Remarks

Use the IMAPITable::QueryRows method to get rows of data from a table.

If the value in the lRowCount parameter is positive, rows are read starting at the current position and
reading forward. If the value in lRowCount is negative, the cursor position moves backward the
indicated number of rows, and then rows are read in forward order.

The cRows member in the SRowSet structure returned in the lppRows parameter indicates the
number of rows returned. If zero rows are returned, the cursor was already positioned at the beginning
of the table and the value of IRowCount is negative or the cursor was already positioned at the end of
the table and the value of IRowCount is positive. Fewer rows might be returned than are requested if
memory or implementation limits are reached and in situations when QueryRows reaches the
beginning or end of the table before returning all requested rows. Service providers cannot return zero
rows unless the current position is at the beginning or end of the table. If fewer rows than requested
are returned, the implementation acts as if a smaller value was passed in the lRowCount parameter.

The IMAPITable::SetColumns method supports the insertion of PR_NULL placeholders in the column
set to reserve empty property-value slots in the SPropValue arrays within the lppRows SRowSet. This
functionality enables calling implementations that must later add properties to the SRowSet to avoid
having to copy a new SPropValue to the SRowSet before adding a new property.

Upon completion of a QueryRows call, the table cursor is positioned by default at the row following the
last row returned. However, if the TBL_NOADVANCE flag is set in the ulFlags parameter, the table
cursor is positioned at the first of the returned rows.

The columns returned in each row contain properties as previously specified by a call to the
IMAPITable::SetColumns method. If no SetColumns call has been made, the columns returned
reflect the default column set for that particular type of table. The number of properties and their
ordering is the same for each table row. If a property does not exist in a row, the property value column
returned holds a property type of PT_ERROR and a property value of MAPI_E_NOT_FOUND. Other
errors in reading individual properties are indicated in a similar manner following the model used by the
IMAPIProp::GetProps method, except that IMAPITable::QueryRows does not return warnings in its
HRESULT. Specifically, IMAPITable::Query Rows does not return MAPI_W_ERRORS_RETURNED.

If the calling implementation requests zero rows, QueryRows returns
MAPI_E_INVALID_PARAMETER. If an asynchronous operation is in progress, a call to QueryRows
can return MAPI_E_BUSY. If an implementation receives MAPI_E_BUSY in such a situation, it can call
the IMAPITable::WaitForCompletion method, then once the asynchronous operation is complete retry
the call to QueryRows.

For most complex MAPI structures, implementations use the MAPIFreeBuffer function to free the
structure by freeing the top level pointer. The SRowSet structure returned by QueryRows is an
exception to this general behavior. Memory used for the properties held in the SRow structures that
make up the SRowSet in the lppRows parameter and for the rgPropVals members of the ADRENTRY
structures is separately allocated for each row, and memory for each row must be separately freed by a
call to MAPIFreeBuffer. The SRowSet structure itself must also be freed. Thus, to free all the memory
returned for 10 rows requires 11 calls to MAPIFreeBuffer. This process might seem complex, but
freeing memory for each row separately enables implementations to free different rows at different
times. When a call to QueryRows returns zero, however, indicating the beginning or end of the table,
only the SRowSet structure itself needs to be freed.

See Also

ADRENTRY structure , FreeProws function , HrQueryAllRows function , IMAPIProp::GetProps
method, IMAPITable::SetColumns method , IMAPITable::WaitForCompletion method ,
MAPIFreeBuffer function , SRow structure , SRowSet structure

 IMAPITable::QuerySortOrder

The IMAPITable::QuerySortOrder method retrieves the current sort order for a table.

HRESULT QuerySortOrder(
 LPSSortOrderSet FAR * lppSortCriteria
)

Parameters

lppSortCriteria
Output parameter pointing to a variable where the pointer to the returned SSortOrderSet structure
holding the current sort order is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

Remarks

Use the IMAPITable::QuerySortOrder method to retrieve the current sort order for a table. The sort
order is returned in an SSortOrderSet structure.

QuerySortOrder returns an SSortOrderSet holding zero columns when:

· The table is unsorted.
· The provider does not have information on how the table is sorted.
· The provider cannot express the sort order within the capabilities of an SSortOrderSet structure.

In cases where an implementation calls IMAPITable::SortTable with an SSortOrderSet containing
zero columns, the sort order is removed and the default sort order is applied. Subsequent calls to
QuerySortOrder can return zero or more columns as being sorted, depending on the implementation
of the service provider, and can return more columns than are in the present view.

To free the returned SSortOrderSet structure, an implementation uses the MAPIFreeBuffer function.

See Also

IMAPITable::SortTable method , MAPIFreeBuffer function , SSortOrderSet structure

 IMAPITable::Restrict

The IMAPITable::Restrict method applies a restriction to a table, reducing the rows visible to only
those matching the restriction criteria.

HRESULT Restrict(
 LPSRestriction lpRestriction,
 ULONG ulFlags
)

Parameters

lpRestriction
Input parameter pointing to an SRestriction structure defining the conditions of the restriction.
Passing NULL in the lpRestriction parameter removes the current restriction criteria.

ulFlags
Input parameter containing a bitmask of flags that controls how the call returns when asynchronous
operations are in progress. The following flags can be set:
TBL_ASYNC

Starts the operation asynchronously and returns before the operation completes.
TBL_BATCH

Defers evaluation until the results of the operation are required.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

MAPI_E_TOO_COMPLEX
Although the calling client or provider has passed valid parameters, the specified sort operation,
typically a subrestriction, is too complex for the implementation and could not be performed.

Remarks

Use the IMAPITable::Restrict method to set a restriction on a table view. MAPI discards the previous
restriction, if any. A restriction should be thought of as a filter; it does not remove the underlying data.
Rather, it simply suppresses some data so only certain rows are seen. To discard the current restriction
without creating a new one, pass NULL in lpRestriction.

A restriction on a multivalued property works just as does a restriction on a single-valued property. To
reference columns of multivalued properties on which a restriction is to operate, the restriction must
have the MVI_FLAG flag set. This means that the following two members of an SPropertyRestriction
structure can have different values:

SPropertyRestriction.ulPropTag
SPropertyRestriction.lpProp->ulPropTag

Restrictions on a column of multivalued properties without the MVI_FLAG being set treat the column's
values as a totally ordered tuple. A comparison of two multivalued columns compares the column
elements in order, reporting the relation of the columns at the first inequality, and returns equality only if
the columns compared contain the same values in the same order. If one column has fewer values
than the other, the reported relation is that of a null value to the other value.

A call to Restrict completes its operation before returning, unless different treatment of asynchronous
operations is indicated by the flag set in the ulFlags parameter. If the TBL_BATCH flag is set in ulFlags,

the implementation can defer the restriction operation until it requires the results. If the TBL_ASYNC
flag is set in ulFlags, the Restrict operation can begin asynchronously and return before the operation
completes.

Asynchronous calls in progress when a Restrict call is required can be stopped by calling the
IMAPITable::Abort method. Most implementations of Restrict return MAPI_E_BUSY if a call is made
to start an asynchronous restriction operation while a previous asynchronous call is still running.

All bookmarks for a table are discarded when a call to Restrict is made, and the
BOOKMARK_CURRENT bookmark, indicating the current cursor position, is set to the beginning of the
table.

The result of a property value restriction is undefined when the property does not exist. When a client
requires well-defined behavior for such a restriction and is not sure whether the property exists ¾ for
example, it is not a required column of a table ¾ it should combine the property restriction with an
SExistRestriction in an SAndRestriction.

Service providers must not generate notifications for table rows that are hidden from view by calls to
Restrict.

See Also

IMAPITable::Abort method , IMAPITable::FindRow method , IMAPITable::GetRowCount method ,
IMAPITable::QueryRows method , SPropertyRestriction structure

 IMAPITable::SeekRow

The IMAPITable::SeekRow method moves the cursor to a specific position in a table.

HRESULT SeekRow(
 BOOKMARK bkOrigin,
 LONG lRowCount,
 LONG FAR * lplRowsSought
)

Parameters

bkOrigin
Input parameter indicating the bookmark from which the operation searching for the table position
starts. A bookmark can be created using the IMAPITable::CreateBookmark method, or one of the
following predefined values can be passed:
BOOKMARK_BEGINNING

Searches from the beginning of the table.
BOOKMARK_CURRENT

Searches from the row in the table where the cursor is located.
BOOKMARK_END

Searches from the end of the table.
lRowCount

Input parameter indicating the signed number of rows to move, starting from the bookmark in the
bkOrigin parameter.

lplRowsSought
Output parameter pointing to a variable where the returned number of rows actually searched
through is stored. Passing NULL in the lplRowsSought parameter indicates that a number of rows
searched need not be returned.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

MAPI_E_INVALID_BOOKMARK
The bookmark is invalid because it has been removed or because it is beyond the last row
requested.

MAPI_W_POSITION_CHANGED
The call succeeded, but the bookmark used in the operation is no longer set at the same row as
when it was last used; if the bookmark has not been used, it is no longer in the same position as
when it was created. To test for this warning, use the HR_FAILED macro. When this warning is
returned, the call should be handled as successful.

Remarks

Use the IMAPITable::SeekRow method to establish a new BOOKMARK_CURRENT position for the
cursor. The lRowCount parameter indicates the number of rows the cursor moves. The number of rows
in lRowCount should be less than 50; to search through a larger number of rows, use the
IMAPITable::SeekRowApprox method.

If the resulting position is beyond the last row of the table, the cursor is positioned after the last row; if
the resulting position is before the first row of the table, the cursor is placed at the beginning of the first

row. To indicate a backward move for SeekRow, pass a negative value in lRowCount. To search to the
beginning of the table, pass zero in lRowCount and the value BOOKMARK_BEGINNING in bkOrigin. If
there are large numbers of rows in the table, the SeekRow operation can be slow.

SeekRow returns the number of rows actually searched through, positive or negative, in the variable
pointed to by lplRowsSought. In normal operation, it should return the same value for lplRowsSought
as passed in for lRowCount, unless the search reached the beginning or end of the table.

The operation of SeekRow can be slower than otherwise if the calling implementation requires a
number of rows to be returned in lplRowsSought. If the calling implementation does not require a return
count, it should pass NULL for lplRowsSought.

If the row pointed to by bkOrigin no longer exists in the table and the provider cannot establish a new
position for the bookmark, SeekRow returns MAPI_E_INVALID_BOOKMARK. If the row pointed to by
bkOrigin no longer exists and the provider is able to establish a new position for the bookmark,
SeekRow returns MAPI_W_POSITION_CHANGED.

A bookmark pointing to a row that is collapsed out of the table view can still be used. If an
implementation attempts to move the cursor to such a bookmark, the cursor moves to the next visible
row and stops there. A call using a bookmark pointing to a collapsed row returns
MAPI_W_POSITION_CHANGED. Providers can move bookmarks for positions collapsed out of view
either at the time of use or at the time the row is collapsed. If a bookmark is moved at the time the row
is collapsed, a bit must be retained in the bookmark that indicates whether the bookmark has moved
since its last use or, if it has never been used, since its creation.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

See Also

IMAPITable::CreateBookmark method , IMAPITable::FindRow method , IMAPITable::QueryRows
method, IMAPITable::SeekRowApprox method

 IMAPITable::SeekRowApprox

The IMAPITable::SeekRowApprox method moves the cursor to an approximate fractional position in
a table.

HRESULT SeekRowApprox(
 ULONG ulNumerator,
 ULONG ulDenominator
)

Parameters

ulNumerator
Input parameter pointing to the variable containing the numerator of the fraction representing the
table position. If the ulNumerator parameter is zero, it points to the beginning of the table regardless
of the denominator value. If ulNumerator is equal to the ulDenominator parameter, the cursor is
positioned after the last table row.

ulDenominator
Input parameter pointing to the variable containing the denominator of the fraction representing the
table position. The ulDenominator parameter cannot be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

Remarks

Use the IMAPITable::SeekRowApprox method to provide the data used to support scroll bar
implementations. For example, if the user positions the scroll box 2/3 down the scroll bar, the calling
implementation can model that action by calling SeekRowApprox and passing in an equivalent
fractional value using ulNumerator and ulDenominator. The SeekRowApprox search is always
absolute from the beginning of the table. To move to the end of the table, the values in ulNumerator
and ulDenominator must be the same. A SeekRowApprox implementation can use any numbering
scheme, based on what is convenient: 9/10, 90/100, or 900/1000.

The cursor position in a table after a call to SeekRowApprox is heuristically the fraction and might not
be exact. For example, certain providers might implement a table on top of a binary tree, treating the
table's halfway point as the top of the tree for performance reasons. If the tree is not balanced, then the
halfway point used might not be exactly halfway through the table.

 IMAPITable::SetCollapseState

The IMAPITable::SetCollapseState method reestablishes the expanded or collapsed state of the table
view that was saved by a call to the IMAPITable::GetCollapseState method.

HRESULT SetCollapseState(
 ULONG ulFlags,
 ULONG cbCollapseState,
 LPBYTE pbCollapseState,
 BOOKMARK FAR * lpbkLocation
)

Parameters

ulFlags
Reserved; must be zero.

cbCollapseState
Input parameter containing the size, in bytes, of the structure pointed to by the pbCollapseState
parameter.

pbCollapseState
Input parameter pointing to the structures containing the saved table view.

lpbkLocation
Output parameter pointing to a bookmark identifying the row location within the table at which the
indicated table state should be rebuilt. This bookmark identifies the same row as pointed to by the
instance key in the lpbInstanceKey parameter on the call to IMAPITable::GetCollapseState.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

MAPI_E_UNABLE_TO_COMPLETE
The requested operation could not be completed.

Remarks

Use the IMAPITable::SetCollapseState method to reestablish the expanded or collapsed state of the
table view that was saved by a call to IMAPITable::GetCollapseState. Use SetCollapseState and
GetCollapseState together to present to the user, upon opening a table in your implementation, a
table that in its expanded or collapsed state can be recognized as the table the user formerly viewed.

To restore an entire table state, SetCollapseState uses the structures pointed to in the
pbCollapseState parameter, which hold a restriction or sort order that defines the table view.

To call SetCollapseState, an implementation must have previously used GetCollapseState. The sort
order passed with SetCollapseState should be the same as was saved in the GetCollapseState call;
if the client application fails to reset the columns, the results of the operation are unpredictable.

Providers must not generate notifications for table rows that are hidden from view by calls to
SetCollapseState.

See Also

IMAPITable::CreateBookmark method , IMAPITable::FreeBookmark method ,
IMAPITable::GetCollapseState method

 IMAPITable::SetColumns

The IMAPITable::SetColumns method sets the order of columns for table rows returned by the
IMAPITable::QueryRows method.

HRESULT SetColumns(
 LPSPropTagArray lpPropTagArray,
 ULONG ulFlags
)

Parameters

lpPropTagArray
Input parameter pointing to an SPropTagArray structure containing a counted array of property
tags. Each property tag identifies a particular table column. Passing zero properties in the
lpPropTagArray parameter results in the IMAPITable::SetColumns method returning
MAPI_E_INVALID_PARAMETER.

ulFlags
Input parameter containing a bitmask of flags that controls the return of an asynchronous call to
SetColumns, for example when SetColumns is used in notification. The following flags can be set:
TBL_ASYNC

Starts the operation asynchronously and returns before the operation completes.
TBL_BATCH

Defers evaluation until the results of the operation are required.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

Remarks

Use the IMAPITable::SetColumns method to control the order of the property values returned for each
table row by an IMAPITable::QueryRows call. Some providers allow a SetColumns call to order only
table columns that are part of the available columns for a table view. Other providers allow a
SetColumns call to order all table columns, including those containing properties not in the original
column set.

SetColumns supports inclusion of one or more PR_NULL property types in the property tag array in
lpPropTagArray. Such property tags are used by QueryRows to reserve empty slots in SPropValue
arrays in the SRowSet structure that represents the table rows it returns. This functionality enables
calling implementations that must later add properties to this SRowSet to avoid having to copy a new
SPropValue array before adding a new property.

To provide multiple row instances for a multivalued property with SetColumns, an implementation
applies the MVI_FLAG flag to a table column's property type. To do so, it specifies
MVI_PROP(ulPropTag) for that column in the SPropTagArray structure in lpPropTagArray instead of
a single-valued property tag. MVI_FLAG is only meaningful for multivalued properties; it sets both bits,
including the MVI_INSTANCE flag. MAPI ignores MVI_FLAG if it is applied to a single-valued property
column.

If a call to SetColumns changes the order of table columns that contain multivalued properties, the call
can change the number of rows in the table. This situation is the only one in which a SetColumns call
can change the number of table rows. If a SetColumns call changes the number of table rows, all

bookmarks for the table are discarded. If a call to SetColumns adds or removes one or more columns,
the call can also change a table's column set.

A call to SetColumns completes its operation before returning, unless different treatment of
asynchronous operations is indicated by the flag set in the ulFlags parameter. If the TBL_BATCH flag is
set in ulFlags, the implementation can defer setting table columns until it requires the results of the
operation. If the TBL_ASYNC flag is set in ulFlags, the SetColumns operation can begin
synchronously and returns before completing. When TBL_BATCH is set for asynchronous operations,
providers should return a property type of PT_ERROR and a property value of NULL for columns that
are not supported.

When a SetColumns call is required, asynchronous calls in progress can be stopped by using the
IMAPITable::Abort method. Most applications of SetColumns return MAPI_E_BUSY if a call is made
to start an asynchronous operation while a previous asynchronous call is still running.

Note that service providers must not generate notifications for table rows that are hidden from view by
calls to Restrict. When sending table notifications, a provider must order the properties in its table
column set the same as in the column set that existed when the notification request was sent.

See Also

HrQueryAllRows function , IMAPITable::Abort method, IMAPITable::GetRowCount method ,
IMAPITable::QueryColumns method , IMAPITable::QueryRows method , IMAPITable::Restrict
method, IMAPITable::SortTable method , SPropTagArray structure , SPropValue structure , SRowSet
structure, TABLE_NOTIFICATION structure

 IMAPITable::SortTable

The IMAPITable::SortTable method sorts table rows based on the sort criteria provided.

HRESULT SortTable(
 LPSSortOrderSet lpSortCriteria,
 ULONG ulFlags
)

Parameters

lpSortCriteria
Input parameter pointing to an SSortOrderSet structure containing the sort criteria to apply. Passing
an SSortOrderSet containing zero columns indicates the calling client application or service
provider doesn't require the table be sorted or doesn't require any specific sort order.

ulFlags
Input parameter containing a bitmask of flags that controls the return of an asynchronous call to the
IMAPITable::SortTable method. The following flags can be set:
TBL_ASYNC

Starts the operation asynchronously and returns before the operation completes.
TBL_BATCH

Defers evaluation until the results of the operation are required.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

MAPI_E_NO_SUPPORT
The provider either does not support changes to its objects or does not support notification of
changes.

MAPI_E_TOO_COMPLEX
Although the calling client or provider has passed valid parameters, the specified sort operation,
typically a subrestriction, is too complex for the implementation and could not be performed.

Remarks

Use the IMAPITable::SortTable method to reorder the rows in a table view.

MAPI does not require providers to be able to sort tables. To indicate table sorting is unavailable,
providers should return MAPI_E_NO_SUPPORT for a SortTable call.

Address book providers commonly do not support table sorting. Message store providers commonly
support sorting to the extent that they retain the sort order of folders that results when a full table ¾ that
is, a table with no restrictions ¾ is insorted.

Some implementations allow sorting to be done on any table column. Some require that sorting only
affect the current list of columns for a table view; in such an implementation, columns not set in the
table view are not affected by a SortOrder call. Some implementations require that only active
columns be sorted. The active columns for a table are those columns a call to the
IMAPITable::QueryColumns method returns.

If an implementation calls SortTable with zero columns in the SSortOrderSet structure in the
lpSortCriteria parameter, it indicates it doesn't require the table affected to be sorted or doesn't require
information on the table's sort order. The set of currently active columns is returned in this case. When

an implementation passes zero columns in lpSortCriteria for a particular table, it can still call
IMAPITable::QuerySortOrder to get the current sort order for that table.

A sort operation performed on a column of multivalued properties without the flag MVI_FLAG being set
treats the column's values as a totally ordered tuple. A comparison of two multivalued columns
compares the column elements in order, reporting the relation of the columns at the first inequality, and
returns equality only if the columns compared contain the same values in the same order. If one
column has fewer values than the other, the reported relation is that of a null value to the other value.

A call to SortTable completes its operation before returning, unless different treatment of asynchronous
operations is indicated by the flag set in the ulFlags parameter. If the TBL_BATCH flag is set in ulFlags,
the implementation can defer the sort operation until it requires the results. If the TBL_ASYNC flag is
set in ulFlags, the SortTable operation can begin synchronously and return before the operation
completes.

Asynchronous calls in progress when a SortTable call is required can be stopped by using the
IMAPITable::Abort method. Most implementations of SortTable return MAPI_E_BUSY if a call is
made to start an asynchronous sort operation while a previous asynchronous call is still running.

All bookmarks for a table are invalidated and should be deleted when a call to SortTable is made, and
the BOOKMARK_CURRENT bookmark, indicating the current cursor position, should be set to the
beginning of the table.

SortTable can return MAPI_E_TOO_COMPLEX under any of the following conditions:

· A sort operation is requested for a property column that the implementation cannot sort.
· The implementation does not support the sort order requested in the ulOrder member of the

SSortOrderSet structure.
· The number of columns to be sorted, as specified in the cSorts member in SSortOrderSet, is larger

than the implementation can handle.
· A sort operation is requested, as indicated by a property tag in SSortOrderSet, based on a property

that is not in the available or active set and the implementation does not support sorting on
properties not in the available set.

· One property is specified multiple times in a sort order set, as indicated by multiple instances of the
same property tag, and the implementation cannot perform such a sort operation.

· A sort operation based on multivalued property columns is requested using MVI_FLAG and the
implementation does not support sorting on multivalued properties.

· A property tag for a property in SSortOrderSet specifies a property or type that the implementation
does not support.

· A sort operation other than one that proceeds through the table from the
PR_RENDERING_POSITION property forward is specified only for an attachment table that
supports this type of sorting.

For best performance, implementations of SortTable should establish a table column set with
SetColumns and then any restrictions with Restrict before sorting a table.

See Also

IMAPITable::Abort method , IMAPITable::GetRowCount method , IMAPITable::QueryColumns
method, IMAPITable::QuerySortOrder method , IMAPITable::SetColumns method , SSortOrderSet
structure

 IMAPITable::Unadvise

The IMAPITable::Unadvise method removes a table's registration for notification of changes
previously established with a call to the IMAPITable::Advise method.

HRESULT Unadvise(
 ULONG ulConnection
)

Parameters

ulConnection
Input parameter containing the number of the registration connection returned by a call to
IMAPITable::Advise.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Use the IMAPITable::Unadvise method to release the pointer to the advise sink object passed in the
lpAdviseSink parameter in the previous call to IMAPITable::Advise, thereby canceling a notification
registration. As part of discarding the pointer to the advise sink object, the object's IUnknown::Release
method is called. Generally, Release is called during the Unadvise call, but if another thread is in the
process of calling the IMAPIAdviseSink::OnNotify method for the advise sink, the Release call is
delayed until the OnNotify method returns.

See Also

IMAPIAdviseSink::OnNotify method , IMAPITable::Advise method

 IMAPITable::WaitForCompletion

The IMAPITable::WaitForCompletion method suspends the calling implementation while
asynchronous operations occur on a table.

HRESULT WaitForCompletion(
 ULONG ulFlags,
 ULONG ulTimeout,
 ULONG FAR * lpulTableStatus
)

Parameters

ulFlags
Reserved; must be zero.

ulTimeout
Input parameter indicating the maximum number of milliseconds to wait for asynchronous operations
to complete. If the operations do not complete in the time specified, the
IMAPITable::WaitForCompletion method should return MAPI_E_TIMEOUT. If 0xFFFFFFFF is sent
in the ulTimeout parameter, the calling implementation pauses until the operation completes,
however long that takes.

lpulTableStatus
Output parameter pointing to a variable where a returned value indicating the most recent status of
the table in question is stored. If NULL is passed in the lpulTableStatus parameter, no status
information is returned. If WaitForCompletion returns any nonzero HRESULT, including
MAPI_E_TIMEOUT, the contents of lpulTableStatus are undefined.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT
The operation is not supported by MAPI or by one or more service providers.

MAPI_E_TIMEOUT
The operation did not complete in the specified time.

Remarks

Use the IMAPITable::WaitForCompletion method to suspend processing untilany asynchronous
operations currently under way for a table have completed. WaitForCompletion can allow the
asynchronous operations either to complete or to run for a certain number of milliseconds, as indicated
by ulTimeout, before being interrupted. To detect asynchronous operations in progress, use the
IMAPITable::GetStatus method.

See Also

IMAPITable::GetRowCount method , IMAPITable::GetStatus method , IMAPITable::Restrict method ,
IMAPITable::SetColumns method , IMAPITable::SortTable method

 IMAPIViewAdviseSink : IUnknown

The IMAPIViewAdviseSink interface is implemented by form viewers. Its methods are called by a form
to notify a viewer that some event has occurred in the form.

At a Glance

Specified in header file: MAPIFORM.H
Object that supplies this
interface:

View advise sink object

Corresponding pointer type: LPMAPIVIEWADVISESINK
Implemented by: Form viewers
Called by: Forms

Vtable Order

OnShutdown Notifies a form viewer that a form is being closed.
OnNewMessage Notifies a form viewer that either a new or an existing

message has been loaded in a form.
OnPrint Notifies a form viewer of the printing status of a form.
OnSubmitted Notifies a form viewer that the current message has

been submitted to the MAPI spooler.
OnSaved Notifies a form viewer that the current message in a

form has been saved.

 IMAPIViewAdviseSink::OnShutdown

The IMAPIViewAdviseSink::OnShutdown method notifies a form viewer that a form is being closed.

HRESULT OnShutdown()

Parameters

None

Return Values

S_OK
The call succeeded.

 IMAPIViewAdviseSink::OnNewMessage

The IMAPIViewAdviseSink::OnNewMessage method notifies a form viewer that either a new or an
existing message has been loaded in a form.

HRESULT OnNewMessage()

Parameters

None

Return Values

S_OK
The call succeeded.

Remarks

Forms call the IMAPIViewAdviseSink::OnNewMessage method whenever a message is loaded in a
form using either the IPersistMessage::InitNew or IPersistMessage::Load method. A viewer often
releases any IMAPIForm interfaces it has open at this point because the existing form object no longer
points to the message the viewer was formerly viewing.

See Also

IMAPIForm : IUnknown interface , IPersistMessage::InitNew method , IPersistMessage::Load
method

 IMAPIViewAdviseSink::OnPrint

The IMAPIViewAdviseSink::OnPrint method notifies a form viewer of the printing status of a form.

HRESULT OnPrint(
 ULONG dwPageNumber,
 HRESULT hrStatus
)

Parameters

dwPageNumber
Input parameter holding the number of the last page printed.

hrStatus
Input parameter holding an HRESULT variable whose value shows the status of the print job. The
following values can be used to indicate status:
S_FALSE

The printing job has finished successfully.
S_OK

The printing job is in progress.
FAILED

The printing job was terminated due to a failure.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by clicking the Cancel button in a dialog box.

Remarks

Forms call the IMAPIViewAdviseSink::OnPrint method while printing to inform the current view of
printing progress. If the printing job involves multiple pages, OnPrint can be called after each page is
printed with the page number for the last page printed in the dwPageNumber parameter and S_OK in
the hrStatus parameter to indicate that the printing job is proceeding. When the printing job is
complete, OnPrint should be called with the page number of the last page printed in dwPageNumber
and S_FALSE in hrStatus.

 IMAPIViewAdviseSink::OnSaved

The IMAPIViewAdviseSink::OnSaved method notifies a form viewer that the current message in a
form has been saved.

HRESULT OnSaved()

Parameters

None

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Forms call the IMAPIViewAdviseSink::OnSaved method after the current message in a form has
been successfully saved. Its doing so permits viewers to update their windows to reflect changes to the
message.

 IMAPIViewAdviseSink::OnSubmitted

The IMAPIViewAdviseSink::OnSubmitted method notifies a form viewer that the current message
has been submitted to the MAPI spooler.

HRESULT OnSubmitted()

Parameters

None

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Forms call the IMAPIViewAdviseSink::OnSubmitted method after a call to the
IMAPIMessageSite::SubmitMessage method has returned successfully. After OnSubmitted is called,
form viewers can continue on the assumption the message has been updated and can update their
windows.

See Also

IMAPIMessageSite::SubmitMessage method

 IMAPIViewContext : IUnknown

The IMAPIViewContext interface is implemented by form viewers to support form commands that
activate the next or previous message, or that print or save the current message.

At a Glance

Specified in header file: MAPIFORM.H
Object that supplies this
interface:

View context object

Corresponding pointer type: LPMAPIVIEWCONTEXT
Implemented by: Form viewers
Called by: Forms

Vtable Order

SetAdviseSink Registers a form object for notifications about
changes to a view's status.

ActivateNext Activates the next or previous message in a view.
GetPrintSetup Retrieves the current print setup so as to print a

message.
GetSaveStream Retrieves a stream to place in it a version of the

current message converted to text format.
GetViewStatus Retrieves the current viewer status.

 IMAPIViewContext::ActivateNext

The IMAPIViewContext::ActivateNext method activates the next or previous message in a view.

HRESULT ActivateNext(
 ULONG ulDir,
 LPCRECT prcPosRect
)

Parameters

ulDir
Input parameter containing a status value indicating which message to activate. The value can be
one of the following flags:
VCDIR_DELETE

Activates the next message because the current message has been deleted.
VCDIR_MOVE

Activates the next message because the current message has been moved.
VCDIR_NEXT

Activates the next message in the view order.
VCDIR_PREV

Activates the previous message in the view order.
prcPosRect

Input parameter pointing to a RECT structure containing the size and position of the window used to
display the message to activate.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

S_FALSE
The call succeeded but a different type of form was opened; call the IMAPIForm::ShutdownForm
method for your form object.

Remarks

Forms call the IMAPIViewContext::ActivateNext method to change what message is displayed to the
user. The value passed in the ulDir parameter informs the form viewer why and how the current
message status has been changed. The VCDIR_NEXT and VCDIR_PREVIOUS flags correspond to
users choosing the Next and Previous command in a view, respectively. These operations usually
correspond to moving up or down one message in the form viewer's list of messages.

The VCDIR_DELETE and VCDIR_MOVE flags are set by the IMAPIMessageSite::DeleteMessage
and IMAPIMessageSite::MoveMessage methods, respectively. Implementations of these methods
call ActivateNext with the appropriate direction and then perform the requested operation on the
message, if the ActivateNext call did not fail. Form viewers typically enable users to specify the
direction to move in the message list.

Upon return from ActivateNext, form objects must check for a current message and go through normal
shutdown if a message is not present. If a next or previous message is displayed, the form uses the
window rectangle passed in the prcPosRect parameter to display it.

See Also

IMAPIViewContext::GetViewStatus method

 IMAPIViewContext::GetPrintSetup

The IMAPIViewContext::GetPrintSetup method retrieves the current print setup so as to print a
message.

HRESULT GetPrintSetup(
 ULONG ulFlags,
 LPFORMPRINTSETUP FAR * lppFormPrintSetup
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppFormPrintSetup
Output parameter pointing to where the pointer to the returned FORMPRINTSETUP structure is
stored. The FORMPRINTSETUP structure holds information on the print setup.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Forms call the IMAPIViewContext::GetPrintSetup method to retrieve the current print setup to print
the current message. A form should pass the MAPI_UNICODE flag in the ulFlags parameter if Unicode
strings are required for the hDevMode and hDevName members of the FORMPRINTSETUP structure
returned in the lppFormPrintSetup parameter. Otherwise, GetPrintSetup returns the contents of these
members as ANSI strings.

The returned FORMPRINTSETUP must be freed by the calling form using the MAPIFreeBuffer
function. The hDevMode and hDevNames members must be allocated using the Win32 function
GlobalAlloc and must be freed using the Win32 function GlobalFree.

See Also

FORMPRINTSETUP structure

 IMAPIViewContext::GetSaveStream

The IMAPIViewContext::GetSaveStream method retrieves a stream in which a version of the current
message converted to text format will be placed.

HRESULT GetSaveStream(
 ULONG FAR * pulFlags,
 ULONG FAR * pulFormat,
 LPSTREAM FAR * ppstm
)

Parameters

pulFlags
Output parameter pointing to a bitmask of flags that controls the type of the saved text. The following
flag can be set:
MAPI_UNICODE

Indicates the returned text is in Unicode format. If the MAPI_UNICODE flag is not set, the text is
in ANSI format.

pulFormat
Output parameter pointing to a bitmask of flags that controls additional formatting characteristics.
The following flags can be set:
SAVE_FORMAT_RICHTEXT

The message is converted to Rich Text Format.
SAVE_FORMAT_TEXT

The message is converted to plain text format.
ppstm

Output parameter pointing to a pointer where the converted version of the message is written.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Forms call the IMAPIViewContext::GetSaveStream method to support the Save As verb set for form
viewers. A stream interface is returned to the form. Forms are not permitted to write any data before the
seek pointer on entry, and they must leave the seek pointer at the end of the converted message when
done. The message should be fully converted to text and placed into the stream before returning from
the IMAPIForm::DoVerb call.

 IMAPIViewContext::GetViewStatus

The IMAPIViewContext::GetViewStatus method retrieves the current viewer status.

HRESULT GetViewStatus(
 ULONG FAR * lpulStatus
)

Parameter

lpulStatus
Output parameter pointing to a variable where a returned bitmask of flags giving information on view
status is stored. The following flags can be set:
VCSTATUS_READONLY

Indicates the form is to be opened in read-only mode.
VCSTATUS_INTERACTIVE

Indicates the form should suppress displaying user interface even in response to a verb that
usually causes user interface to be displayed.

VCSTATUS_MODAL
Indicates the form is modal to the viewer.

VCSTATUS_NEXT
Indicates there is a next form.

VCSTATUS_PREV
Indicates there is a previous form.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Forms call the IMAPIViewContext::GetViewStatus method to determine whether there are more
messages to be activated in a form view in either or both directions ¾ that is, in the direction in which a
Next command activates messages, in the direction in which a Previous command activates
messages, or in both directions. The value in the lpulStatus parameter is used to determine whether
the VCSTATUS_NEXT and VCSTATUS_PREVIOUS flags are valid for
IMAPIViewContext::ActivateNext. If the VCSTATUS_DELETE flag is set, but not the
VCSTATUS_READONLY flag, then the message can be deleted using the
IMAPIMessageSite::DeleteMessage method.

Typically, forms disable menu commands and buttons if not valid for the context. The lpulStatus values
are dynamic and can be changed if the view context calls the IMAPIFormAdviseSink::OnChange
method.

The VCSTATUS_MODAL flag is set if the form must be modal to the window whose handle is passed
in the earlier IMAPIForm::DoVerb call. If VCSTATUS_MODAL is set, the form can use the thread on
which the DoVerb call was made until the form closes. If VCSTATUS_MODAL is not set, the form
should not be modal to this window and must not use the thread.

See Also

IMAPIForm::DoVerb method , IMAPIFormAdviseSink::OnChange method ,
IMAPIMessageSite::DeleteMessage method , IMAPIMessageSite::GetSiteStatus method ,
IMAPIViewContext::ActivateNext method

 IMAPIViewContext::SetAdviseSink

The IMAPIViewContext::SetAdviseSink method registers a form for notifications about changes to a
view's status.

HRESULT SetAdviseSink(
 LPMAPIFORMADVISESINK pmvns
)

Parameters

pmvns
Input parameter pointing to a form advise-sink object.

Return Value

S_OK
The call succeeded.

Remarks

Forms call the IMAPIViewContext::SetNotifySink method to register for notification about changes to
which message is next or previous within a particular view context. When called with NULL in the
pmvns parameter, SetNotifySink cancels a previous registration for notification.

 IMessage : IMAPIProp

The IMessage interface is used for managing messages, attachments, and recipients.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Message object

Corresponding pointer type: LPMESSAGE
Implemented by: Message store providers
Transaction model: Transacted
Called by: Client applications

Vtable Order

GetAttachmentTab
le

Returns the attachment table for a message.

OpenAttach Opens an attachment.
CreateAttach Creates a new attachment in a message.
DeleteAttach Deletes an attachment from a message.
GetRecipientTable Returns the recipient table for a message.
ModifyRecipients Adds, deletes, or modifies recipients in a message.
SubmitMessage Saves all changes to a message and marks the

message as ready for sending.
SetReadFlag Sets or clears the read flags for a message and

manages the sending of read reports.

Required Message Properties

PR_CREATION_TIME Read-only - new messages
PR_DISPLAY_BCC Read-only - saved messages
PR_DISPLAY_CC Read-only - saved messages
PR_DISPLAY_TO Read-only - saved messages
PR_ENTRYID Read-only - all messages
PR_LAST_MODIFICATION_TI
ME

Read-only - saved messages

PR_MESSAGE_ATTACHMEN
TS

Read-only - all messages

PR_MESSAGE_CLASS Read/write - all messages
PR_MESSAGE_FLAGS Read/write - all messages
PR_MESSAGE_RECIPIENTS Read-only - all messages
PR_PARENT_DISPLAY Read-only - all messages
PR_PARENT_ENTRYID Read-only - all messages
PR_RECORD_KEY Read-only - all messages
PR_SEARCH_KEY Read-only - all messages
PR_STORE_ENTRYID Read-only - all messages
PR_STORE_RECORD_KEY Read-only - all messages

Required Message Report Properties

PR_BODY Read/write
PR_MESSAGE_CLASS Read/write
PR_MESSAGE_DELIVERY_TI
ME

Read-only

PR_ORIGINAL group Read-only
PR_REPORT_TAG Read-only
PR_REPORT_TEXT Read-only
PR_REPORT_TIME Read-only
PR_SEARCH_KEY Read-only
PR_SENDER group Read-only
PR_SUBJECT Read/write

Required Message Recipient Properties

PR_ADDRTYPE Read-only
PR_DISPLAY_NAME Read/write
PR_DISPLAY_TYPE Read/write
PR_ENTRYID Read-only
PR_OBJECT_TYPE Read-only

 IMessage::CreateAttach

The IMessage::CreateAttach method creates a new attachment in a message.

HRESULT CreateAttach(
 LPCIID lpInterface,
 ULONG ulFlags,
 ULONG FAR * lpulAttachmentNum,
 LPATTACH FAR * lppAttach
)

Parameters

lpInterface
Input parameter pointing to the interface identifier (IID) for the returned attachment object. Passing
NULL indicates that IID_IAttach is used. Client applications must pass NULL. Message store
providers can also set the lpInterface parameter to IID_IUnknown, IID_IMAPIProp, or IID_IMessage.

ulFlags
Input parameter containing a bitmask of flags that controls how the attachment is created. The
following flag can be set:
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

lpulAttachmentNum
Output parameter pointing to a variable where an index number identifying the newly created
attachment is stored. This number is valid only within the message.

lppAttach
Output parameter pointing to a variable where the pointer to the open attachment object is stored.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMessage::CreateAttach method to create a new attachment
within a message. An index number uniquely identifying the attachment within the message is returned,
along with a pointer to the open attachment. The index number and the pointer are needed to access
and refer to the attachment after it has been created.

 IMessage::DeleteAttach

The IMessage::DeleteAttach method deletes an attachment from a message.

HRESULT DeleteAttach(
 ULONG ulAttachmentNum,
 ULONG ulUIParam,
 LPMAPIPROGRESS lpProgress,
 ULONG ulFlags
)

Parameters

ulAttachmentNum
Input parameter containing the index number of the attachment to delete. This index number
uniquely identifies the attachment within the message but is valid only within the message.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays. The ulUIParam parameter is ignored unless the client application sets the
ATTACH_DIALOG flag in the ulFlags parameter and passes NULL in the lpProgress parameter.

lpProgress
Input parameter pointing to a progress object that contains client-supplied progress information. If
NULL is passed in lpProgress, MAPI provides the progress information. The lpProgress parameter is
ignored unless ATTACH_DIALOG is set in ulFlags.

ulFlags
Input parameter containing a bitmask of flags that controls what happens when the attachment is
deleted. The following flag can be set:
ATTACH_DIALOG

Displays a progress indicator as the operation proceeds.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMessage::DeleteAttach method to delete an attachment
from within a message. Before calling DeleteAttach to delete the attachment, a client should call the
IUnknown::Release method on all pointers to the attachment and its streams. A deleted attachment is
not permanently deleted until the IMAPIProp::SaveChanges method has been called for the message
that held the attachment.

See Also

IMAPIProp::SaveChanges method

 IMessage::GetAttachmentTable

The IMessage::GetAttachmentTable method returns the attachment table for a message.

HRESULT GetAttachmentTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the text in the returned strings.
The following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling implementation. If the object is not accessible, some subsequent call to the object might
return an error.

lppTable
Output parameter pointing to a variable where the pointer to the returned attachment table object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMessage::GetAttachmentTable method to acquire a pointer
to a message's attachment table, which lists all the attachments within the message. The attachment
table for either a sent message or a message under composition contains one row for each
attachment.

The attachment table must contain the following property columns:

PR_ATTACH_NUM
PR_RECORD_KEY
PR_RENDERING_POSITION

The table can contain additional property columns depending on a message store provider's
implementation. Any potential for restrictions on the table is also determined by a store provider's
implementation, so clients should not function as if restrictions are supported in all cases.

An attachment does not necessarily appear in the attachment table until the
IMAPIProp::SaveChanges method is called on the message. The attachment table can change while
open if the client calls the IMessage::CreateAttach or IMessage:: DeleteAttach method to create or
delete an attachment, or if an attachment is modified so its properties in the attachment table change
and SaveChanges is called for the message.

Attachment tables when initially opened are not necessarily sorted in any particular order.

Setting the MAPI_UNICODE flag in the ulFlags parameter does the following:

· Sets the string type to Unicode for data returned for the initial active columns of the attachment table
by the IMAPITable::QueryColumns method. The initial active columns for an attachment table are

those columns QueryColumns returns before the provider that contains the table calls the
IMAPITable::SetColumns method.

· Sets the string type to Unicode for data returned for the initial active rows of the attachment table by
the IMAPITable::QueryRows method. The initial active rows for an attachment table are those rows
QueryRows returns before the provider that contains the table calls SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the provider that contains the attachment table calls the IMAPITable::SortTable method.

See Also

IMessage::CreateAttach method , IMessage::DeleteAttach method , IMessage::OpenAttach method

 IMessage::GetRecipientTable

The IMessage::GetRecipientTable method returns the recipient table for a message.

HRESULT GetRecipientTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the return of the table. The following flags
can be set:
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client application. If the object is not accessible, some subsequent call to the object might
return an error.

MAPI_UNICODE
Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Output parameter pointing to a variable where the pointer to the returned recipient table object is
stored.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMessage::GetRecipientTable method to get a list of the
recipients for a message. Changes to the recipient table can be made by calling the
IMessage::ModifyRecipients method.

The recipient table for either a received message or a message under composition contains one row
for each recipient of the message.

Recipient tables have a different column set depending on whether the message has been submitted.
The following properties make up the required column set in recipient tables:

PR_DISPLAY_NAME
PR_RECIPIENT_TYPE
PR_ROWID

The optional properties are as follows:

PR_DISPLAY_TYPE
PR_ENTRYID
PR_SPOOLER_STATUS
PR_OBJECT_TYPE

Submitted message should include these additional properties in their required column set:

PR_ADDRTYPE
PR_RESPONSIBILITY

Depending on a provider's implementation, additional columns, such as PR_SENDER_NAME and
ENTRYID, might be in the table.

Most messaging systems recognize only three recipient types: MAPI_TO, MAPI_CC, and MAPI_BCC.
MAPI specifies constant values for these types and updates the PR_DISPLAY_TO, PR_DISPLAY_CC,
and PR_DISPLAY_BCC properties of the message appropriately when the IMAPIProp::SaveChanges
method is called.

MAPI and clients use an additional recipient type, MAPI_SUBMITTED, for sending delivery reports and
resend messages to message store recipients that are created as a result of expansion or transmission
of the original message recipients. MAPI_SUBMITTED recipients can appear in a delivery report
indicating that a recipient name is resolved to a group included from an outside messaging system, or if
one or more members of a group of recipients generates such a report. MAPI_SUBMITTED recipients
can also appear in a message when an attempt is made to resend a message to one or more
recipients named in a nondelivery report.

The initial active columns for a newly opened recipient table, that is those columns that the
IMAPITable::QueryRows method returns if a client does not call the IMAPITable::SetColumns
method, include all available columns. Whether restrictions can be applied to the table depends on a
provider's implementation, so clients should not function as if restrictions are supported in all cases.

A client can change the recipient table while it is open by calling the IMessage::ModifyRecipients
method. When modifying the recipient table, the client must call the IMAPITable::QueryColumns,
IMAPITable::SetColumns, and IMAPITable::QueryRows methods for each column to appear in the
table ¾ not just the modified columns ¾ because ModifyRecipients deletes from the recipient list all
columns not specified.

Setting the MAPI_UNICODE flag in the ulFlags parameter does the following:

· Sets the string type to Unicode for data returned for the initial active columns of the recipient table by
QueryColumns.

· Sets the string type to Unicode for data returned for the initial active rows of the recipient table by
QueryRows. The initial active rows for a recipient table are those rows QueryRows returns before
the provider that contains the table calls SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the provider that contains the recipient table calls the IMAPITable::SortTable method.

See Also

IMAPIProp::SaveChanges method , IMAPITable::QueryRows method , IMessage::ModifyRecipients
method

 IMessage::ModifyRecipients

The IMessage::ModifyRecipients method adds, deletes, or modifies recipients in a message.

HRESULT ModifyRecipients(
 ULONG ulFlags,
 LPADRLIST lpMods
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how the recipient table is modified ¾ that
is, how recipients are added, deleted, or modified. If zero is passed for the ulFlags parameter, the
entire recipient table is replaced with the table passed in the lpMods parameter. The following flags
can be set for ulFlags:
MODRECIP_ADD

Adds all recipients to the current table.
MODRECIP_MODIFY

Replaces an entire row with the rows specified.
MODRECIP_REMOVE

Removes recipients using the PR_ROWID property as an index.
lpMods

Input parameter pointing to an ADRLIST structure containing a table of recipients to be added,
deleted, or modified in the message.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMessage::ModifyRecipients method to make changes to a
message's recipient table.

The IMAPISupport::Address method returns ADRLIST structures that are the standard MAPI
recipient tables; clients should send the same type of table in the lpMods parameter of
ModifyRecipients to modify, add to, or delete recipients in the existing recipient table. Clients can also
pass in the recipient table returned from the IMessage::GetRecipientTable method. When modifying
the recipient table, a client must call the IMAPITable::QueryColumns, IMAPITable::SetColumns, and
IMAPITable::QueryRows methods for each column to appear in the table ¾ not just the modified
columns ¾ because ModifyRecipients deletes from the recipient list all columns not specified.

The default behavior of ModifyRecipients if all bits in the ulFlags bitmask are set to zero is to replace
the entire existing recipient table with the table passed in lpMods. When calling ModifyRecipients with
the MODRECIP_MODIFY flag set in ulFlags, ModifyRecipients instead replaces each entire recipient
row with the associated row in the ADRLIST structure passed in lpMods.

Following are some rules for setting the properties of the recipients in the lpMods table:

· The presence of a property of type PT_NULL in the lpMods table returns an error value for the
ModifyRecipients call.

· Any recipient property with type PT_ERROR is ignored by ModifyRecipients.
· The PR_ROWID property, identifying a particular recipient table row, must be provided for recipients

in the lpMods table when the MODRECIP_REMOVE or MODRECIP_MODIFY flag is set in ulFlags.
· The PR_ROWID property must not be provided for lpMods table recipients when the

MODRECIP_ADD flag or zero is set in ulFlags.
· An unresolved recipient entry in lpMods must contain only the PR_DISPLAY_NAME and

PR_RECIPIENT_TYPE properties.
· A resolved recipient entry in lpMods must contain the PR_DISPLAY_NAME, PR_ADDRTYPE,

PR_ENTRYID, and PR_RECIPIENT_TYPE properties.
· The PR_EMAIL_ADDRESS property, containing a messaging address for a recipient, does not have

to be present for resolved recipients in the lpMods table, but it can be.

A client can store in a message's recipient table both resolved and unresolved entries. However, if a
message with unresolved entries in its recipient table is submitted to the MAPI spooler, it causes a
nondelivery report to be created and sent to the user who sent the message.

If for a recipient in the lpMods table either PR_ADDRTYPE, giving a recipient's address type, or
PR_EMAIL_ADDRESS, giving a recipient's messaging address, is not consistent with the address of
the recipient as identified by PR_ENTRYID, the address where the message with the modified recipient
table is delivered is undefined. The message might be delivered to the addresses specified in
PR_ADDRTYPE and PR_EMAIL_ADDRESS or to the recipient identified by PR_ENTRYID, or it might
be returned as undeliverable because of the ambiguity of the address information.

The ADRLIST structure passed in lpMods must be allocated as an SRowSet structure.
ModifyRecipients does not free the ADRLIST structure nor any of its substructures. The ADRLIST
structure and each SPropValue structure must be separately allocated by using the
MAPIAllocateBuffer function such that each can be freed individually. If the method requires
additional space for any SPropValue structure, it can replace the SPropValue structure with a new
one that can later be freed by the calling client using the MAPIFreeBuffer function. The original
SPropValue structure should also be freed using MAPIFreeBuffer.

An ADRLIST structure contains several ADRENTRY structures. In addition to resolved and unresolved
recipient entries, ADRENTRY structures can be NULL, that is, the cValues member is zero and there
are no property values. This is the case, for example, when the dialog box presented by
IAddrBook::Address is used to remove a recipient from the list. For more information about resolved
and unresolved recipient entries, see IAddrBook::Address.

See Also

ADRENTRY structure , ADRLIST structure , IAddrBook:: Address method , IMAPISupport::Address
method, MAPIAllocateBuffer function , MAPIFreeBuffer function , SPropValue structure

 IMessage::OpenAttach

The IMessage::OpenAttach method opens an attachment.

HRESULT OpenAttach(
 ULONG ulAttachmentNum,
 LPCIID lpInterface,
 ULONG ulFlags,
 LPATTACH FAR * lppAttach
)

Parameters

ulAttachmentNum
Input parameter containing the index number of the attachment to open. This index number uniquely
identifies the attachment within the message but is valid only within the message.

lpInterface
Input parameter pointing to the interface identifier (IID) for the returned attachment object. Passing
NULL indicates that IID_IAttach is used. Client applications must pass NULL. Message store
providers can also set the lpInterface parameter to IID_IUnknown, IID_IMAPIProp, or IID_IMessage.

ulFlags
Input parameter containing a bitmask of flags that controls how the attachment is opened. The
following flags can be set:
MAPI_BEST_ACCESS

Indicates the object should be opened with the maximum network permissions allowed for the
user and the maximum client access. For example, if the client has read/write access, the object
is opened with read/write access; if the client has read-only access, the object is opened with
read-only access. The client can retrieve the access level by getting the PR_ACCESS_LEVEL
property.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

MAPI_MODIFY
Requests read/write access. By default, objects are created with read-only access, and clients
should not work on the assumption that read/write access has been granted.

lppAttach
Output parameter pointing to a variable where the pointer to the open attachment object is stored.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMessage::OpenAttach method to open an attachment within
a message. A client can open an attachment by first locating the attachment's PR_ATTACH_NUM
property (that is, the attachment's index number) in the table that is returned from the
IMessage::GetAttachmentTable method, and then passing this PR_ATTACH_NUM value in the
ulAttachmentNum parameter of OpenAttach. OpenAttach returns in the lppAttach parameter a pointer
that provides further access to the open attachment.

Each attachment in a message has a different PR_ATTACH_NUM value, but this value is only unique
within the message; messages in a store can have attachments with the same PR_ATTACH_NUM

values as other messages. For example, an implementation can assign the value of zero to the first
attachment in every message.

The expected behavior for opening multiple instances of the same attachment in the same message is
undefined and specific to a particular provider's implementation.

 IMessage::SetReadFlag

The IMessage::SetReadFlag method sets or clears the read flags for a message and manages the
sending of read reports.

HRESULT SetReadFlag(
 ULONG ulFlags
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the setting of a message's read flag (that
is, the message's MSGFLAG_READ flag in its PR_MESSAGE_FLAGS property) and the processing
of read reports. The following flags can be set:
CLEAR_READ_FLAG

Clears MSGFLAG_READ. No read report is sent.
GENERATE_RECEIPT_ONLY

Generates a read report if it is pending but does not change the state of MSGFLAG_READ.
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

SUPPRESS_RECEIPT
Directs the message store provider to cancel the generation of a read report if this call changes
the state of the message from unread to read and a read report has been requested. If this call
does not change the state of the message, the message store provider can ignore this flag.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPRESS
The message store provider does not support the suppression of read reports.

Remarks

Message store providers implement the IMessage::SetReadFlag method to mark a message as read
and, optionally, to send a read report for that message. A read report is only sent if the user who sent
the message requested it. Implementations generally cannot determine if the user requested a read
report. After setting the read flag (that is, setting the MSGFLAG_READ flag in the message's
PR_MESSAGE_FLAGS property), SetReadFlag calls the IMAPIProp::SaveChanges method on the
message. If MSGFLAG is set for a message, the message is marked as having been read, which does
not necessarily indicate the intended recipient has read the message.

If none of the flags are set in the ulFlags parameter, the following rules apply:

· If MSGFLAG_READ is already set, no change should be made.
· If the PR_READ_RECEIPT_REQUESTED property is set, the client should send the read report and

set MSGFLAG_READ.

SetReadFlag returns MAPI_E_INVALID_PARAMETER if any of the following combinations are set in
ulFlags:

· SUPPRESS_RECEIPT | CLEAR_READ_FLAG
· SUPPRESS_RECEIPT | CLEAR_READ_FLAG | GENERATE_RECEIPT_ONLY

· CLEAR_READ_FLAG | GENERATE_RECEIPT_ONLY

If both the SUPPRESS_RECEIPT and GENERATE_RECEIPT_ONLY flags are set, the
PR_READ_RECEIPT_REQUESTED bit, if set, should be cleared and a read report should not be sent.

Note Providers can optimize report behavior so that a client's setting a message attribute to get a
read or delivery report is only a request and so that the provider can support not sending read or
delivery reports. However, some message store providers do not support the suppression of read
reports for some messages. If a client calls SetReadFlag on such a message with
SUPPRESS_RECEIPT set in ulFlags, SetReadFlag returns MAPI_E_NO_SUPPRESS; in this case,
MAPI does not set the read flag and does not generate a report.

See Also

IMAPIContainer::OpenEntry method , IMAPIFolder::SetReadFlags method , IMAPIProp::GetProps
method, IMAPIProp::SaveChanges method , PR_MESSAGE_FLAGS property

 IMessage::SubmitMessage

The IMessage::SubmitMessage method saves all changes to a message and marks the message as
ready for sending.

HRESULT SubmitMessage(
 ULONG ulFlags
)

Parameters

ulFlags
Input parameter containing a bitmask of flags used to control how a message is submitted. The
following flag can be set:
FORCE_SUBMIT

Indicates MAPI should submit the message even if it might not be sent immediately.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_RECIPIENTS
Indicates that the message's recipient table is empty.

Remarks

Message store providers implement the IMessage::SubmitMessage method to indicate to transport
providers that a message is ready for sending.

After a message is successfully saved and submitted, the pointers to the message and all its
associated subobjects ¾ messages, folders, attachments, streams, tables, and so on ¾ are no longer
valid. MAPI does not permit any further operations on these pointers, except for calling the objects'
IUnknown::Release methods. In other words, MAPI is designed such that after SubmitMessage is
called a client should release the message object and all associated subobjects. However, if
SubmitMessage returns an error value indicating missing or invalid fields in the message, such as
results when a message is sent with no recipients listed, then MAPI keeps the message open and all
pointers remain valid.

To attempt to cancel a send operation, a client must get and store a pointer to the entry identifier of the
message before the message is submitted, because the entry identifier is invalidated after the
message has been submitted. Once the client has this entry identifier pointer, it then passes it as the
lpEntryId parameter of the IMsgStore::AbortSubmit method.

MAPI passes messages to the underlying messaging system in the order in which they are marked for
sending. Because of this functionality, a message might stay in a message store for some time before
the underlying messaging system can take responsibility for it. The order of receipt at the destination is
in the underlying messaging system's control and does not necessarily match the order in which
messages were sent.

See Also

IMsgStore::AbortSubmit method

 IMsgServiceAdmin : IUnknown

The IMsgServiceAdmin interface is used to make changes to a message service within a profile. An
implementation can get a pointer to an IMsgServiceAdmin interface in two ways: by calling the
IMAPISession::AdminServices method or by calling the IProfAdmin::AdminServices method. For
clients primarily concerned with profile configuration, for example control panels,
IProfAdmin::AdminServices is the preferred way to get the IMsgServiceAdmin interface because it
does not log providers onto the MAPI session. If a client requires the ability to make changes to the
active profile, then IMAPISession::AdminServices should be called to get the IMsgServiceAdmin
pointer. Clients that are modifying the profile that is active for the session should be designed with the
awareness that although MAPI does not allow a profile that is in use to be deleted, there are no
safeguards to prevent a client from removing all the message services within the profile.

At a Glance

Specified in header file: MAPIX.H
Object that supplies this
interface:

Message service administration object

Corresponding pointer type: LPSERVICEADMIN
Implemented by: MAPI
Called by: Client applications

Vtable Order

GetLastError Returns a MAPIERROR structure containing
information about the last error that occurred
for a message service administration object.

GetMsgServiceTable Returns a table listing the message services
installed in a profile.

CreateMsgService Adds a message service to the current profile.
DeleteMsgService Deletes a message service and its associated

profile sections from a profile.
CopyMsgService Copies a message service into a profile.
RenameMsgService Renames a message service that cannot be

copied.
ConfigureMsgService Enables a user to reconfigure a message

service using the service's configuration
property sheet.

OpenProfileSection Opens a section of the current profile and
returns a pointer that provides further access
to the profile section object.

MsgServiceTransportOr
der

Sets the order in which transport providers are
called to deliver a message.

AdminProviders Returns a pointer providing access to a
provider administration object.

SetPrimaryIdentity Designates a message service as the supplier
of the primary identity for the profile.

GetProviderTable Returns a table listing the service providers
installed in a profile.

 IMsgServiceAdmin::AdminProviders

The IMsgServiceAdmin::AdminProviders method returns a pointer providing access to a provider
administration object.

HRESULT AdminProviders(
 LPMAPIUID lpUID,
 ULONG ulFlags,
 LPPROVIDERADMIN FAR * lppProviderAdmin
)

Parameters

lpUID
Input parameter pointing to the MAPIUID structure holding the MAPI unique identifier (MAPIUID) for
the message service. This MAPIUID is typically obtained from the PR_SERVICE_UID property
column in the message service administration table.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in string. The
following flag can be set:
MAPI_UNICODE

Indicates the passed-in string is in Unicode format. If the MAPI_UNICODE flag is not set, the
string is in ANSI format.

lppProviderAdmin
Output parameter pointing to a variable where the pointer to the returned provider administration
object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The MAPIUID passed in does not exist.

Remarks

Use the IMsgServiceAdmin::AdminProviders method to get a pointer to a provider administration
object so the methods of the IProviderAdmin interface can be called for that object. Clients cannot
make changes to service providers; all a client can do is determine the providers within a message
service and determine each provider's MAPIUID. The types of changes that can be made to a
message service while the profile is in use are implementation-specific; however, most message
services do not support changes such as adding and deleting providers while the profile is in use.

See Also

IProviderAdmin : IUnknown interface , MAPIUID structure

 IMsgServiceAdmin::ConfigureMsgService

The IMsgServiceAdmin::ConfigureMsgService method enables a user to reconfigure a message
service using the service's configuration property sheet.

HRESULT ConfigureMsgService(
 LPMAPIUID lpUID,
 ULONG ulUIParam,
 ULONG ulFlags,
 ULONG cValues,
 LPSPropValue lpProps
)

Parameters

lpUID
Input parameter pointing to the MAPIUID structure holding the MAPI unique identifier (MAPIUID) for
the message service to configure.

ulUIParam
Input parameter containing the handle of the parent window for the configuration property sheet.

ulFlags
Input parameter containing a bitmask of flags that controls the display of the property sheet. The
following flags can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

MSG_SERVICE_UI_READ_ONLY
Indicates the service's configuration property sheet should display the current configuration but
not enable the user to change it. Most message services ignore this flag.

SERVICE_UI_ALLOWED
Displays the message service's configuration property sheet only if the service is not completely
configured.

SERVICE_UI_ALWAYS
Requires the message service display a configuration property sheet. If SERVICE_UI_ALWAYS is
not set, a configuration property sheet can still be displayed if SERVICE_UI_ALLOWED is set
and valid configuration information is not available from the property value array in the lpProps
parameter. Either SERVICE_UI_ALLOWED or SERVICE_UI_ALWAYS must be set for a property
sheet to be displayed.

cValues
Input parameter containing the number of property values in the SPropValue structure pointed to by
lpProps. The cValues parameter should be zero if there are no properties.

lpProps
Input parameter pointing to an SPropValue structure containing the property values of the
properties to display to the user in the property sheet. The lpProps parameter should be NULL if the
message service is being configured without displaying a property sheet.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_EXTENDED_ERROR
An error specific to a message service. To get the MAPIERROR structure describing the error, the
client application should call the IMsgServiceAdmin::GetLastError method.

MAPI_E_NOT_FOUND

The MAPIUID does not match that of an existing message service.
MAPI_E_NOT_INITIALIZED

The message service does not have an entry point function.
MAPI_E_USER_CANCEL

The user canceled the operation, typically by clicking the Cancel button in the property sheet.

Remarks

Use the IMsgServiceAdmin::ConfigureMsgService method to display the configuration property
sheet for a message service so that users can configure the message service in their profiles. The
MAPIUID used in the lpUID parameter is typically retrieved from the message service administration
table by calling the IMsgServiceAdmin::GetMsgServiceTable method after the message service has
been created with the IMsgServiceAdmin::CreateMsgService method.

Clients can also configure the message service without displaying the property sheet to the user. This
type of configuration can only be performed if the client has information on the message service's
property identifiers and property values in advance. If a client is configuring the service without
displaying a property sheet, neither the SERVICE_UI_ALLOWED nor the SERVICE_UI_ALWAYS flag
should be set in the ulFlags parameter. If a client receives its configuration information from the
property sheet, or if the existing information is insufficient to completely configure the service, the client
should set SERVICE_UI_ALLOWED in ulFlags. If a client uses existing property information only to
establish the default settings and the user is able to change the settings, the client should set
SERVICE_UI_ALWAYS in ulFlags.

To allow configuration without property sheet display, message services typically prepare a header file
that includes constants for all the required and optional properties and their values.

See Also

MAPIUID structure , SPropValue structure

 IMsgServiceAdmin::CopyMsgService

The IMsgServiceAdmin::CopyMsgService method copies a message service into a profile.

HRESULT CopyMsgService(
 LPMAPIUID lpUID,
 LPTSTR lpszDisplayName,
 LPCIID lpInterfaceToCopy,
 LPCIID lpInterfaceDst,
 LPVOID lpObjectDst,
 ULONG ulUIParam,
 ULONG ulFlags
)

Parameters

lpUID
Input parameter pointing to the MAPIUID structure holding the MAPI unique identifier (MAPIUID) for
the message service to copy.

lpszDisplayName
Input parameter pointing to a string containing the display name for the message service to copy

lpInterfaceToCopy
Input parameter pointing to the interface identifier (IID) for the profile section object into which to
copy the message service. Passing NULL indicates the identifier for the profile section object
interface, IID_IProfSect, is used. The lpInterfaceToCopy parameter can also be set to an identifier
for an appropriate interface, for example IID_IMAPIProp or IID_IUnknown.

lpInterfaceDst
Input parameter pointing to the IID for the session or message service administration object
indicated in the lpObjectDst parameter. Passing NULL indicates the MAPI session interface
identifier, IID_IMAPISession, is used. The lpInterfaceDst parameter can also be set to
IID_IMsgServiceAdmin.

lpObjectDst
Input parameter pointing to a pointer to a session or message service administration object; the type
of object should correspond to the interface identifier passed in lpInterfaceDst. Valid object pointers
are LPMAPISESSION and LPSERVICEADMIN.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

ulFlags
Input parameter containing a bitmask of flags that controls how the message service is copied. The
following flags can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

SERVICE_UI_ALWAYS
Requires the message service display a configuration property sheet. If SERVICE_UI_ALWAYS is
not set, a configuration property sheet can still be displayed if SERVICE_UI_ALLOWED is set
and valid configuration information is not available from the property value array in the lpProps
parameter. Either SERVICE_UI_ALLOWED or SERVICE_UI_ALWAYS must be set for a property
sheet to be displayed.

Return Values

S_OK

The call succeeded and has returned the expected value or values.
MAPI_E_NO_ACCESS

The message service is already in the profile and does not allow multiple instances of itself.
MAPI_E_NOT_FOUND

The MAPIUID passed in does not refer to an existing message service.

Remarks

Use the IMsgServiceAdmin::CopyMsgService method to copy a message service into a profile
section. To do so, a client must previously have obtained an interface for the target profile, but it does
not have to be logged onto the profile. The target profile is not necessarily the same as the profile from
which the message service is copied. Clients can copy message services within a profile or from one
profile to another.

The message service's entry point function does not get called for either the source or the destination
of the copy operation. After the copy operation, the configuration settings of the service remain
unchanged. To configure the copied message service, a client should call the
IMsgServiceAdmin::ConfigureMsgService method.

See Also

IMsgServiceAdmin::ConfigureMsgService method , MAPIUID structure

 IMsgServiceAdmin::CreateMsgService

The IMsgServiceAdmin::CreateMsgService method adds a message service to the current profile.

HRESULT CreateMsgService(
 LPTSTR lpszService,
 LPTSTR lpszDisplayName,
 ULONG ulUIParam,
 ULONG ulFlags
)

Parameters

lpszService
Input parameter pointing to a string naming the message service to add. This message service
name must appear in the [Services] section of MAPISVC.INF.

lpszDisplayName
Input parameter pointing to a string containing the display name for the message service to add. The
lpszDisplayName parameter is ignored because service providers set the PR_DISPLAY_NAME
property in MAPISVC.INF themselves.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

ulFlags
Input parameter containing a bitmask of flags that controls how the message service is installed. The
following flags can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

SERVICE_UI_ALLOWED
Displays the message service's configuration property sheet only if the service is not completely
configured.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The message service name is not in the [Services] section of MAPISVC.INF.

Remarks

Use the IMsgServiceAdmin::CreateMsgService method to add a message service to the current
profile. A client passes the name of the service to add in the lpszService parameter.

If the service has defined an entry point function, it is called so the service can perform any service-
specific configuration tasks. If the SERVICE_UI_ALLOWED flag is set in the ulFlags parameter, the
message service being installed can display a property sheet to enable the user to configure its
settings.

The list of providers that make up a message service and the properties for each are contained within
the MAPISVC.INF file. CreateMsgService first creates a new profile section for the message service
and then copies all of the information for that service from the MAPISVC.INF file into the profile,
creating new sections for each provider. After all the information has been copied from MAPISVC.INF,
the message service's entry point function is called with the MSG_SERVICE_CREATE value set in the
ulContext parameter. If the SERVICE_UI_ALLOWED flag is set in the CreateMsgService method's

ulFlags parameter, then the values in the CreateMsgService ulUIParam and ulFlags parameters are
also passed when the message service's entry point function is called. Service providers should display
their configuration property sheets so users can configure the message service.

CreateMsgService does not return the MAPIUID for the message service added to the profile. To
retrieve this MAPIUID, a client should call the IMsgServiceAdmin::GetMsgServiceTable method to
get the message service administration table. It then searches for the message service using the
PR_SERVICE_NAME property and retrieves the service's PR_SERVICE_UID property. It then passes
the MAPIUID from PR_SERVICE_UID in the lpUid parameter when calling the
IMsgServiceAdmin::ConfigureMsgService method to configure the service.

 IMsgServiceAdmin::DeleteMsgService

The IMsgServiceAdmin::DeleteMsgService method deletes a message service and its associated
profile sections from a profile.

HRESULT DeleteMsgService(
 LPMAPIUID lpuid
)

Parameters

lpuid
Input parameter pointing to the MAPIUID structure holding the MAPI unique identifier (MAPIUID) for
the message service to delete.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The MAPIUID passed in does not match an existing message service.

Remarks

Use the IMsgServiceAdmin::DeleteMsgService method to delete a message service from a profile.
To retrieve the MAPIUID for the message service, a client should call the
IMsgServiceAdmin::GetMsgServiceTable method to get the message service administration table. It
then searches for the message service using the PR_SERVICE_NAME property and retrieves the
service's PR_SERVICE_UID property. It then passes the MAPIUID from PR_SERVICE_UID in the
lpuid parameter when calling DeleteMsgService. DeleteMsgService removes all profile sections
related to the message service.

If the service has a defined entry point function, that function is called with the
MSG_SERVICE_DELETE value set in the ulContext parameter before the profile sections are removed
so the service can perform any service-specific tasks. Next, the service is deleted, and then the
service's profile section is deleted. The message service's entry point function is not called again after
the service has been deleted.

See Also

MAPIUID structure

 IMsgServiceAdmin::GetLastError

The IMsgServiceAdmin::GetLastError method returns a MAPIERROR structure containing
information about the last error that occurred for a message service administration object.

HRESULT GetLastError(
 HRESULT hResult,
 ULONG ulFlags,
 LPMAPIERROR FAR * lppMAPIError
)

Parameters

hResult
Input parameter containing the result returned for the last call for the message service administration
object that returned an error.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the strings in the MAPIERROR structure returned in the lppMAPIError parameter are in
Unicode format. If the MAPI_UNICODE flag is not set, the strings are in ANSI format.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure containing version,
component, and context information for the error. The lppMAPIError parameter can be set to NULL if
there is no MAPIERROR structure to return.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Use the IMsgServiceAdmin::GetLastError method to retrieve information to display in a message to
the user regarding the last error returned from a method call for the message service administration
object.

To release all the memory allocated by MAPI, client applications need only call the MAPIFreeBuffer
function for the returned MAPIERROR structure.

The return value from GetLastError must be S_OK for a client to make use of the MAPIERROR
structure. Even if the return value is S_OK, a MAPIERROR structure might not be returned. If the
implementation cannot determine what the last error was, or if a MAPIERROR structure is not available
for that error, GetLastError returns a pointer to NULL in lppMAPIError instead.

See Also

MAPIERROR structure , MAPIFreeBuffer function

 IMsgServiceAdmin::GetMsgServiceTable

The IMsgServiceAdmin::GetMsgServiceTable method returns a table listing the message services
installed in a profile.

HRESULT GetMsgServiceTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the strings returned in the
table's default column set. The following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Output parameter pointing to a variable where the pointer to the returned table object is stored.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Use the IMsgServiceAdmin::GetMsgServiceTable method to get a pointer to a table object that lists
the message administration services currently installed in a profile. The columns of this message
service table contain the current information for the following properties:

PR_DISPLAY_NAME
PR_SERVICE_NAME
PR_RESOURCE_FLAGS
PR_SERVICE_DLL_NAME
PR_SERVICE_ENTRY_NAME
PR_SERVICE_UID
PR_SERVICE_SUPPORT_FILES
PR_INSTANCE_KEY

Once a message service administration table has been returned, it does not reflect changes being
made to the profile, such as the addition or deletion of providers. Calls to the IMAPITable::Advise
method for the message service administration table return S_OK, but no changes are made to the
table.

If no profile exists, GetMsgServiceTable does not return an error but returns a table object supporting
the IMAPITable interface. If a client calls the IMAPITable::QueryRows method on that table, zero
rows are returned.

Clients that are configuring or deleting message services using the
IMsgServiceAdmin::ConfigureMsgService or IMsgServiceAdmin::DeleteMsgService method
typically call GetMsgServiceTable to get the MAPIUID stored in the PR_SERVICE_UID property for
the service they are working with.

Setting the MAPI_UNICODE flag in the ulFlags parameter does the following:

· Sets the string type to Unicode for data returned for the initial active columns of the message service
administration table by the IMAPITable::QueryColumns method. The initial active columns for a
message service administration table are those columns QueryColumns returns before the provider
that contains the table calls the IMAPITable::SetColumns method.

· Sets the string type to Unicode for data returned for the initial active rows of the message service
administration table by the IMAPITable::QueryRows method. The initial active rows for a message
service administration table are those rows QueryRows returns before the provider that contains the
table calls SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the provider that contains the message service administration table calls the
IMAPITable::SortTable method.

See Also

IMsgServiceAdmin::ConfigureMsgService method , IMsgServiceAdmin::DeleteMsgService
method

 IMsgServiceAdmin::GetProviderTable

The IMsgServiceAdmin::GetProviderTable method returns a table listing the service providers
installed in a profile.

HRESULT GetProviderTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the strings returned in the
provider table's default column set. The following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Output parameter pointing to a variable where the pointer to the returned provider table object is
stored.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Use the IMsgServiceAdmin::GetProviderTable method to get a pointer to a table object that lists all
of the address book, message store, transport, and message hook providers currently installed in a
profile. The columns of the provider table contain the current information for the following properties:

PR_DISPLAY_NAME
PR_INSTANCE_KEY
PR_PROVIDER_DISPLAY
PR_PROVIDER_DLL_NAME
PR_PROVIDER_ORDINAL
PR_PROVIDER_UID
PR_RESOURCE_FLAGS
PR_RESOURCE_TYPE
PR_SERVICE_NAME
PR_SERVICE_UID

Providers that have been deleted, or are in use but have been marked for deletion, are not returned in
the provider table. Once a provider table has been returned, it does not reflect changes being made to
the profile, such as the addition or deletion of providers. Calls to the IMAPITable::Advise method for
the provider table return S_OK, but no changes are made to the table.

If no provider exists, GetProviderTable does not return an error but returns a table object supporting
the IMAPITable interface. If the client calls the IMAPITable::QueryRows method on that table, zero
rows are returned.

The provider table's PR_PROVIDER_ORDINAL property can be used to restrict sort operations on the
table. The first transport provider in the list has PR_PROVIDER_ORDINAL set to 0, the next provider to
1, and so on; this functionality enables a client to retrieve the table with the list of providers set to the

correct order. This list of providers can then be used to select the order of transport providers by calling
the IMsgServiceAdmin::MsgServiceTransportOrder method.

To display the transport provider order, a client should restrict the table such that
PR_RESOURCE_TYPE==MAPI Transport Provider. The client then sorts the table by
PR_PROVIDER_ORDINAL and calls QueryRows to get the rows of the table. These calls can also all
be made as a single call to the HrQueryAllRows function with all of the appropriate data structures
passed in. However, the information used in setting the transport provider order can only be obtained
by calling GetProviderTable.

Setting the MAPI_UNICODE flag in the ulFlags parameter does the following:

· Sets the string type to Unicode for data returned for the initial active columns of the provider table by
the IMAPITable::QueryColumns method. The initial active columns for a provider table are those
columns the QueryColumns method returns before the provider that contains the table calls the
IMAPITable::SetColumns method.

· Sets the string type to Unicode for data returned for the initial active rows of the provider table by
QueryRows. The initial active rows for a provider table are those rows QueryRows returns before
the provider that contains the table calls SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the client that contains the provider table calls the IMAPITable::SortTable method.

See Also

IMsgServiceAdmin::GetMsgServiceTable method ,
IMsgServiceAdmin::MsgServiceTransportOrder method , IProviderAdmin::GetProviderTable
method

 IMsgServiceAdmin::MsgServiceTransportOrder

The IMsgServiceAdmin::MsgServiceTransportOrder method sets the order in which transport
providers are called to deliver a message.

HRESULT MsgServiceTransportOrder(
 ULONG cUID,
 LPMAPIUID lpUIDList,
 ULONG ulFlags
)

Parameters

cUID
Input parameter containing the number of unique identifiers in the lpUIDList parameter.

lpUIDList
Input parameter pointing to a counted array of MAPIUID structures holding MAPI unique identifiers
(MAPIUIDs). The array contains one identifier for each transport provider configured in the current
profile.

ulFlags
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
The value in the cUID parameter differs from the number of transport providers actually in the profile.

MAPI_E_NOT_FOUND
One or more of the MAPIUIDs passed in the lpUIDList parameter does not refer to a transport
provider currently in the profile.

Remarks

Use the IMsgServiceAdmin::MsgServiceTransportOrder method to set the delivery order of
transport providers within a profile. The lpUIDList parameter must contain a sorted list of transport-
provider entry identifiers obtained from the PR_PROVIDER_UID property of the table returned from the
IMsgServiceAdmin::GetProviderTable method. A client application must pass the complete list in
lpUIDList.

SetTransportOrder overrides transport provider preferences such as the
STATUS_XP_PREFER_LAST flag set in the PR_RESOURCE_FLAGS property.

See Also

MAPIUID structure

 IMsgServiceAdmin::OpenProfileSection

The IMsgServiceAdmin::OpenProfileSection method opens a section of the current profile and
returns a pointer that provides further access to the profile object.

HRESULT OpenProfileSection(
 LPMAPIUID lpUID,
 LPCIID lpInterface,
 ULONG ulFlags,
 LPPROFSECT FAR * lppProfSect
)

Parameters

lpUID
Input parameter pointing to the MAPIUID structure holding the MAPI unique identifier (MAPIUID) for
the profile section. The lpUID parameter must not be NULL.

lpInterface
Input parameter pointing to the interface identifier (IID) for the profile section. Passing NULL
indicates the object is cast to the standard interface for a profile section. The lpInterface parameter
can also be set to an identifier for an appropriate interface for the object. Valid interface identifiers
are IID_IMAPIProp and IID_IProfSect.

ulFlags
Input parameter containing a bitmask of flags that controls access to the profile section. The
following flags can be set:
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

MAPI_MODIFY
Requests read/write access. By default, objects are created with read-only access, and client
applications should not work on the assumption that read/write access has been granted.

lppProfSect
Output parameter pointing to a variable where the pointer to the returned profile section object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only profile section or an attempt to access an object for
which the user has insufficient permissions.

MAPI_E_NOT_FOUND
The requested object does not exist.

Remarks

Use the IMsgServiceAdmin::OpenProfileSection method to open a profile section for reading
information from and writing information to the active profile for the session. A profile section object
supporting the IProfSect interface is returned in the lppProfSect parameter. Default behavior is to open
the profile section as read-only, unless a client sets the MAPI_MODIFY flag in the ulFlags parameter.
Profile sections belonging to service providers cannot be opened by calls to OpenProfileSection.

If an OpenProfileSection call opens a nonexistent profile section by passing MAPI_MODIFY in

ulFlags, the call creates the section. If an OpenProfileSection call attempts to open a nonexistent
section with read-only access, it returns MAPI_E_NOT_FOUND.

See Also

IMAPIProp : IUnknown interface , IMAPISession::OpenProfileSection method , IProfSect :
IMAPIProp interface , MAPIUID structure

 IMsgServiceAdmin::RenameMsgService

The IMsgServiceAdmin::RenameMsgService method renames a message service that cannot be
copied.

HRESULT RenameMsgService(
 LPMAPIUID lpUID,
 ULONG ulFlags,
 LPTSTR lpszDisplayName
)

Parameters

lpUID
Input parameter pointing to the MAPIUID structure holding the MAPI unique identifier (MAPIUID) for
the message service being renamed.

ulFlags
Reserved; must be zero.

lpszDisplayName
Input parameter pointing to a string containing the new display name for the message service.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT
This method always returns this value.

See Also

MAPIUID structure

 IMsgServiceAdmin::SetPrimaryIdentity

The IMsgServiceAdmin::SetPrimaryIdentity method designates each service provider belonging to
the message service as being the supplier of the primary identifier for the profile.

HRESULT SetPrimaryIdentity(
 LPMAPIUID lpUID,
 ULONG ulFlags
)

Parameters

lpUID
Input parameter pointing to the unique identifier for the message service whose identity is to be
designated as primary.

ulFlags
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
SetPrimaryIdentity attempted to designate a primary identity for a service that has the
SERVICE_NO_PRIMARY_IDENTITY flag set in the PR_RESOURCE_FLAGS property.

Remarks

Use the IMsgServiceAdmin::SetPrimaryIdentity method to set the primary identity for each provider
in the message service indicated by the lpUID parameter. The primary identity for a message service is
the identity of the user logged onto the message service; it is represented by the entry identifier
returned by a call to the IMAPISession::QueryIdentity method.

Each message service provider that MAPI has information about establishes an identity for each of its
users. This identity can be established when a client logs onto the service. However, because MAPI
supports connections to multiple service providers for each MAPI session, there is no firm definition of
a particular user's identity for the MAPI session as a whole; a user's identity depends on which service
is involved. Clients can call SetPrimaryIdentity to designate one of the many identities established for
a user by message services as the primary identity for that user. Service providers that utilize the
functionality provided by primary identities should set the STATUS_PRIMARY_IDENTITY flag in
PR_RESOURCE_FLAGS.

If the calling client passes NULL in lpUID, the primary identity for the indicated message service is
cleared. Calls to SetPrimaryIdentity fail and return MAPI_E_NO_ACCESS if the service designated in
lpUID has the SERVICE_NO_PRIMARY_IDENTITY flag set for its PR_RESOURCE_FLAGS property,
meaning that service providers cannot be used to supply an identity.

See Also

IMAPISession::QueryIdentity method , MAPIUID structure

 IMsgStore : IMAPIProp

The IMsgStore interface provides access to message store information.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Message store object

Corresponding pointer type: LPMDB
Implemented by: Message store providers
Transaction model: Non-transacted
Called by: Client applications, the MAPI spooler,

MAPI

Vtable Order

Advise Registers a client application for notifications
about changes within a message store.

Unadvise Removes an object's registration for notification of
message store changes previously established
with a call to the IMsgStore::Advise method.

CompareEntryIDs Compares two entry identifiers to determine if
they refer to the same entry within a message
store.

OpenEntry Opens a folder or message in a message store
given its entry identifier.

SetReceiveFolder Sets the receive folder for a particular message
class.

GetReceiveFolder Obtains the receive folder set to receive
messages for a particular message class and
related information about message reception
behavior of that message class.

GetReceiveFolderTab
le

Returns a table that shows property settings for
all receive folders for a message store, including
which message classes the folders are
associated with.

StoreLogoff Enables the orderly logoff of a message store
under client application control.

AbortSubmit Attempts to remove a message from a message
store's outgoing queue.

GetOutgoingQueue Returns a table listing the messages in a
message store's outgoing queue. This method is
called only by the MAPI spooler.

SetLockState Allows the MAPI spooler to lock or unlock a
message.

FinishedMsg Enables a message store provider to finish its
processing for a sent message. This method is
called only by the MAPI spooler.

NotifyNewMail Notifies a message store that a new message has
arrived. This method is called only by the MAPI

spooler.

Required Properties

PR_DISPLAY_NAME Read/write
PR_ENTRYID Read-only
PR_OBJECT_TYPE Read-only
PR_RECORD_KEY Read-only
PR_STORE_ENTRYID Read-only
PR_STORE_RECORD_KEY Read-only
PR_MDB_PROVIDER Read-only
PR_STORE_SUPPORT_MASK Read-only

Properties for IPM Message Stores

PR_IPM_OUTBOX_ENTRYID PR_IPM_OUTBOX_SEARCH_KE
Y

PR_IPM_SENTMAIL_ENTRYID PR_IPM_SENTMAIL_SEARCH_K
EY

PR_IPM_SUBTREE_ENTRYID PR_IPM_SUBTREE_SEARCH_KE
Y

PR_IPM_WASTEBASKET_ENTRYID PR_IPM_WASTEBASKET_SEAR
CH_KEY

PR_MDB_PROVIDER PR_STORE_SUPPORT_MASK

 IMsgStore::AbortSubmit

The IMsgStore::AbortSubmit method attempts to remove a message from a message store's
outgoing queue.

AbortSubmit(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 ULONG ulFlags
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the message to remove from the message queue.

ulFlags
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_IN_QUEUE
The message is no longer in the message store's outgoing queue, typically because it has already
been sent.

MAPI_E_UNABLE_TO_ABORT
The message is locked by the MAPI spooler, and the operation cannot be aborted.

Remarks

Message store providers implement the IMsgStore::AbortSubmit method to attempt to remove a
submitted message from the message store's outgoing queue. Calling AbortSubmit for a message in
the store is the only action that a client can perform on a message after it has been submitted. If
possible, the AbortSubmit call removes the message from the submission queue. However,
depending on how the underlying messaging system is implemented, it might not be possible to cancel
the sending of the message.

See Also

IMessage::SubmitMessage method

 IMsgStore::Advise

The IMsgStore::Advise method registers a client application for notifications about changes within a
message store.

HRESULT Advise(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 ULONG ulEventMask,
 LPMAPIADVISESINK lpAdviseSink,
 ULONG FAR * lpulConnection
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the object about which notifications should be
generated. This object can be a folder or a message. Alternatively, if the client application sets the
cbEntryID parameter to zero and passes NULL for lpEntryID, the advise sink provides notifications
about changes to the entire message store.

ulEventMask
Input parameter containing an event mask of the types of notification events occurring for the object
about which MAPI will generate notifications. The mask filters specific cases. Each event type has a
structure associated with it that holds additional information about the event. The following table lists
the possible event types along with their corresponding structures.

Notification event
type

Corresponding structure

fnevCriticalErro
r

ERROR_NOTIFICATION

fnevNewMail NEWMAIL_NOTIFICATION
fnevObjectCreate
d

OBJECT_NOTIFICATION

fnevObjectDelete
d

OBJECT_NOTIFICATION

fnevObjectModifi
ed

OBJECT_NOTIFICATION

fnevObjectCopied OBJECT_NOTIFICATION
fnevObjectMoved OBJECT_NOTIFICATION
fnevSearchComple
te

OBJECT_NOTIFICATION

lpAdviseSink
Input parameter pointing to the advise sink object to be called when an event occurs for the object
about which notification has been requested.

lpulConnection
Output parameter pointing to a variable that upon a successful return holds the connection number
for the notification registration. The connection number must be nonzero.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT
This error value is returned if the method is called by any process other than the MAPI spooler.

Remarks

Message store providers implement the IMsgStore::Advise method to register an object in a message
store provider for notification callbacks. Whenever a change occurs to the indicated object, the provider
checks to see what event mask bit was set in the ulEventMask parameter and thus what type of
change occurred. If a bit is set, then the provider calls the IMAPIAdviseSink::OnNotify method for the
advise sink object indicated by the lpAdviseSink parameter to report the event. Data passed in the
notification structure to the OnNotify method describes the event.

The call to OnNotify can occur during the call that changes the object, or at any following time. On
systems that support multiple threads of execution, the call to OnNotify can occur on any thread. For a
way to turn a call to OnNotify that might happen at an inopportune time into one that is safer to handle,
a client should use the HrThisThreadAdviseSink function.

To provide notifications, the message store provider implementing Advise needs to keep a copy of the
pointer to the lpAdviseSink advise sink object; to do so, it calls the IUnknown::AddRef method for the
advise sink to maintain its object pointer until notification registration is canceled with a call to the
IMsgStore::Unadvise method. The Advise implementation should assign a connection number to the
notification registration and call AddRef on this connection number before returning it in the
lpulConnection parameter. Service providers can release the advise sink object before the registration
is canceled, but they must not release the connection number until Unadvise has been called.

After a call to Advise has succeeded and before Unadvise has been called, clients must be prepared
for the advise sink object to be released. A client should therefore release its advise sink object after
Advise returns unless it has a specific long-term use for it.

For more information on the notification process, see About Notification.

See Also

HrThisThreadAdviseSink function , IMAPIAdviseSink::OnNotify method , IMsgStore::Unadvise
method, NOTIFICATION structure

 IMsgStore::CompareEntryIDs

The IMsgStore::CompareEntryIDs method compares two entry identifiers to determine if they refer to
the same entry within a message store. MAPI only passes this call to a service provider if the unique
identifiers (UIDs) in both entry identifiers to be compared are handled by that provider.

HRESULT CompareEntryIDs(
 ULONG cbEntryID1,
 LPENTRYID lpEntryID1,
 ULONG cbEntryID2,
 LPENTRYID lpEntryID2,
 ULONG ulFlags,
 ULONG FAR * lpulResult
)

Parameters

cbEntryID1
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID1
parameter.

lpEntryID1
Input parameter pointing to the first entry identifier to be compared.

cbEntryID2
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID2
parameter.

lpEntryID2
Input parameter pointing to the second entry identifier to be compared.

ulFlags
Reserved; must be zero.

lpulResult
Output parameter pointing to a variable where is stored the returned result of the comparison; this
variable is TRUE if the two entry identifiers refer to the same object, and FALSE otherwise.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMsgStore::CompareEntryIDs method to compare two entry
identifiers for a given entry within a message store to determine whether they refer to the same object.
If the two entry identifiers refer to the same object, then CompareEntryIDs sets the lpulResult
parameter to TRUE; if they refer to different objects, CompareEntryIDs sets lpulResult to FALSE.

CompareEntryIDs is useful because an object can have more than one valid entry identifier; such a
situation can occur, for example, after a new version of a message store provider is installed.

See Also

MAPIUID structure

 IMsgStore::FinishedMsg

The IMsgStore::FinishedMsg method enables a message store provider to finish its processing for a
sent message. This method is called only by the MAPI spooler.

HRESULT FinishedMsg(
 ULONG ulFlags,
 ULONG cbEntryID,
 LPENTRYID lpEntryID
)

Parameters

ulFlags
Reserved; must be zero.

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the message for which processing is finished.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT
This error value is returned if the method is called by any process other than the MAPI spooler.

Remarks

The MAPI spooler calls the IMsgStore::FinishedMsg method when it has finished its processing for a
message. When MAPI calls a message store provider's FinishedMsg implementation, the provider
should unlock the message for which processing is complete and, if the
PR_DELETE_AFTER_SUBMIT flag is set in the PR_MESSAGE_FLAGS property, delete the message
from the folder in which it was last stored. The message store provider should then call the
IMAPISupport::DoSentMail method. The MAPI spooler never passes the entry identifier for an
unlocked message to FinishedMsg.

See Also

IMAPISupport::DoSentMail method

 IMsgStore::GetOutgoingQueue

The IMsgStore::GetOutgoingQueue method returns a table listing the messages in a message
store's outgoing queue. This method is called only by the MAPI spooler.

HRESULT GetOutgoingQueue(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Reserved; must be zero.

lppTable
Output parameter pointing to a variable where the pointer to the returned outgoing queue table is
stored.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The MAPI spooler calls the IMsgStore::GetOutgoingQueue method to get a pointer to the table
showing the queue of outgoing messages for a message store.

Message store providers must present the following required property columns in the outgoing queue
table:

PR_CLIENT_SUBMIT_TIME PR_DISPLAY_BCC
PR_DISPLAY_CC PR_DISPLAY_TO
PR_ENTRYID PR_MESSAGE_FLAGS
PR_MESSAGE_SIZE PR_PRIORITY
PR_SENDER_NAME PR_SUBJECT
PR_SUBMIT_FLAGS

Because messages must be preprocessed and submitted to a transport provider in the same order that
the client application called the IMessage::SubmitMessage method for them, some messages
marked for sending by clients might not appear in the outgoing queue table immediately.

The MAPI spooler is designed to accept messages from the message store in ascending order of
submission time. Message stores should either allow sorting on the outgoing queue table so the MAPI
spooler can sort the messages by submission time, or the default sort order should be by ascending
submission time.

The message store provider must set up notifications for the outgoing message queue and ensure the
notification callback function is called when the contents of the queue change.

See Also

IMessage::SubmitMessage method

 IMsgStore::GetReceiveFolder

The IMsgStore::GetReceiveFolder method obtains the receive folder set to receive messages for a
particular message class and related information about message reception behavior of that message
class.

HRESULT GetReceiveFolder(
 LPTSTR lpszMessageClass,
 ULONG ulFlags,
 ULONG FAR * lpcbEntryID,
 LPENTRYID FAR * lppEntryID,
 LPTSTR FAR * lppszExplicitClass
)

Parameters

lpszMessageClass
Input parameter pointing to a string naming the message class the client application requires
information about, for instance IPM.Note.Phone. If the client passes NULL or an empty string in the
lpszMessageClass parameter, the GetReceiveFolder method returns the default receive folder for
the message store.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in and returned
strings. The following flag can be set:
MAPI_UNICODE

Indicates the passed-in and returned strings are in Unicode format. If the MAPI_UNICODE flag is
not set, the strings are in ANSI format.

lpcbEntryID
Output parameter pointing to a variable in which the size, in bytes, of the entry identifier in the
lppEntryID parameter is returned.

lppEntryID
Output parameter pointing to a variable where the pointer to the entry identifier returned for the
requested receive folder is stored.

lppszExplicitClass
Output parameter pointing to a pointer to a string naming the message class that explicitly sets as its
receive folder the folder indicated by lppEntryID. This message class name should either be that of
the class indicated by lpszMessageClass or of a superclass of that class. Passing NULL indicates
that no message class name should be returned and that the folder identified in lppEntryID is the
default receive folder for the message store.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMsgStore::GetReceiveFolder method to obtain the entry
identifier of the folder where the client should put messages of a specific class when they are received.
If the message class indicated in lpszMessageClass does not explicitly set a receive folder, then
GetReceiveFolder returns in the lppszExplicitClass parameter the name of the first superclass of that
message class that does explicitly set a receive folder and in lppEntryID the entry identifier of the
receive folder that superclass sets.

For example, suppose the receive folder of the message class IPM.Note has been set to the entry
identifier of the Inbox and a client calls GetReceiveFolder on the message class IPM.Note.Phone. If

IPM.Note.Phone does not have an explicit receive folder set, GetReceiveFolder returns the entry
identifier of the Inbox in lppEntryID and IPM.Note in lppszExplicitClass.

If the client calls GetReceiveFolder for a message class and has not set a receive folder for that
message class, lppszExplicitClass is either a zero-length string, a string in Unicode format, or a string
in ANSI format depending on whether the client set the MAPI_UNICODE flag in the ulFlags parameter.

A default receive folder, obtained by passing NULL in the lpszMessageClass parameter, always exists
for every message store.

A client should call the MAPIFreeBuffer function when it is done with the entry identifier returned in
lppEntryID to free the memory that holds that entry identifier. It should also call MAPIFreeBuffer when
it is done with the message class string returned in lppszExplicitClass to free the memory that holds
that string.

See Also

MAPIFreeBuffer function

 IMsgStore::GetReceiveFolderTable

The IMsgStore::GetReceiveFolderTable method returns a table that shows property settings for all
receive folders for a message store, including which message classes the folders are associated with.

HRESULT GetReceiveFolderTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how the table is returned. The following
flags can be set:
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling implementation. If the object is not accessible, some subsequent call to the object might
return an error.

MAPI_UNICODE
Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Output parameter pointing to a variable where the pointer to the returned receive folder table is
stored.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMsgStore::GetReceiveFolderTable method to get a table
showing the property settings for all receive folders in a message store, including which message
classes the receive folders are associated with. The table returned contains information for one receive
folder in each of its rows and contains the following property columns:

PR_MESSAGE_CLASS
PR_RECORD_KEY
PR_ENTRYID

A message store provider should implement the receive folder table to support setting restrictions to
filter for particular values of PR_RECORD_KEY, allowing easy access to particular receive folders.

Setting the MAPI_UNICODE flag in the ulFlags parameter does the following:

· Sets the string type to Unicode for data returned for the initial active columns of the receive folder
table by the IMAPITable::QueryColumns method. The initial active columns for a receive folder
table are those columns QueryColumns returns before the provider that contains the table calls the
IMAPITable::SetColumns method.

· Sets the string type to Unicode for data returned for the initial active rows of the receive folder table
by the IMAPITable::QueryRows method. The initial active rows for a receive folder table are those
rows QueryRows returns before the provider that contains the table calls SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the provider that contains the receive folder table calls the IMAPITable::SortTable method.

See Also

IMAPITable::QueryColumns method , IMAPITable::QueryRows method ,
IMAPITable::QuerySortOrder method , IMAPITable::SetColumns method

 IMsgStore::NotifyNewMail

The IMsgStore::NotifyNewMail method notifies a message store that a new message has arrived.
This method is called only by the MAPI spooler.

HRESULT NotifyNewMail(
 LPNOTIFICATION lpNotification
)

Parameters

lpNotification
Input parameter pointing to the NOTIFICATION structure holding the new-message notification.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

A message store provider implements the IMsgStore::NotifyNewMail method so that the MAPI
spooler can notify the provider that it has received a message for delivery to the store. Although the
MAPI spooler handles all notifications of changes sent to the message store provider, the provider is
responsible for notifying client applications. After the MAPI spooler calls a message store's
NotifyNewMail implementation, the store provider can then inform any clients that have registered for
new mail notification about the new message. To register for notification about new messages, a client
includes the fnevNewMail event type in the ulEventMask parameter passed in its call to the
IMsgStore::Advise method. Message stores are free to implement their own client notification
scheme; one way is to use the IMAPISupport::Subscribe and IMAPISupport::Unsubscribe
methods.

The MAPI spooler allocates memory for the NOTIFICATION structure that holds information about the
new mail notification, and that memory should not be released, kept, or modified by the message store.
If a store must use the NOTIFICATION structure, it must copy it; the utility function
ScCopyNotifications is provided as one way to perform the copy operation.

See Also

IMAPISupport::Subscribe method , IMAPISupport::Unsubscribe method , NOTIFICATION structure ,
ScCopyNotifications function

 IMsgStore::OpenEntry

The IMsgStore::OpenEntry method opens a folder or a message in a message store given its entry
identifier.

HRESULT OpenEntry(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 LPCIID lpInterface,
 ULONG ulFlags,
 ULONG FAR * lpulObjType,
 LPUNKNOWN FAR * lppUnk
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the folder or message to open. The root folder of
the store can be opened either with its entry identifier, as with any other folder, or by passing NULL
for lpEntryID.

lpInterface
Input parameter pointing to the interface identifier (IID) for the object to open. Passing NULL
indicates the object is cast to the standard interface for such an object. The lpInterface parameter
can also be set to an identifier for an appropriate interface for the object.

ulFlags
Input parameter containing a bitmask of flags that controls how the object is opened. The following
flags can be set:
MAPI_BEST_ACCESS

Indicates the object should be opened with the maximum network permissions allowed for the
user and the maximum client application access. For example, if a client has read/write access,
the object is opened with read/write access; if the client has read-only access, the object is
opened with read-only access. The client can retrieve the access level by getting the
PR_ACCESS_LEVEL property.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling client. If the object is not accessible, some subsequent call to the object might return an
error.

MAPI_MODIFY
Requests read/write access. By default, objects are created with read-only access, and clients
should not work on the assumption that read/write access has been granted.

lpulObjType
Output parameter pointing to a variable where the type of the opened object is stored.

lppUnk
Output parameter pointing to a variable where the pointer to the opened object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt to access an object for which the

user has insufficient permissions.

Remarks

Message store providers implement the IMsgStore::OpenEntry method to open a folder or a message
in the message store. The calling implementation passes in the entry identifier of the object to open,
and OpenEntry returns a pointer in the lppUnk parameter that provides further access to the object.
OpenEntry's behavior is to open the object as read-only, unless the call sets the MAPI_MODIFY or
MAPI_BEST_ACCESS flag in the ulFlags parameter.

Although a client can use IMsgStore::OpenEntry to open any folder or message, it is usually faster if
the calling client instead uses the IMAPIContainer::OpenEntry method on the folder containing the
object being opened.

The calling client should check the value returned in the lpulObjType parameter to determine that the
object type returned is what was expected. The object types, as included in PR_OBJECT_TYPE, are
MAPI_MESSAGE and MAPI_FOLDER. Commonly, after the client checks the type of the object, it then
casts the pointer in the lppUnk parameter into a message object pointer, a folder object pointer, or
another appropriate object pointer.

See Also

IMAPIContainer::OpenEntry method

 IMsgStore::SetLockState

The IMsgStore::SetLockState method allows the MAPI spooler to lock or unlock a message.

HRESULT SetLockState(
 LPMESSAGE lpMessage,
 ULONG ulLockState
)

Parameters

lpMessage
Input parameter pointing to the message to lock or unlock.

ulLockState
Input parameter containing a value indicating whether the MAPI spooler is locking or unlocking the
message. One of the following values can be used with the ulLockState parameter:
MSG_LOCKED

Locks the message.
MSG_UNLOCKED

Releases a previous lock on the message.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The MAPI spooler calls the IMsgStore::SetLockState method to lock a message while it is sending
the message. The MAPI spooler locks the message so that calls to the IMsgStore::AbortSubmit
method cannot succeed. SetLockState also provides the MAPI spooler with a mechanism to unlock
messages it previously locked. If the MAPI spooler passes the MSG_LOCKED value in ulLockState,
the message affected is locked; if the MAPI spooler passes the MSG_UNLOCKED value in
ulLockState, the message affected is unlocked.

Usually, when the MAPI spooler calls SetLockState to lock a message, it only locks the oldest
message ¾ that is, the next message queued for the MAPI spooler to send. If the oldest message in
the queue is waiting for a temporarily unavailable transport provider, and the next message in the
queue uses a different transport provider, the MAPI spooler can begin processing the later message. It
begins processing by locking that message using SetLockState.

The message store provider can call the IMAPIProp::SaveChanges method as a part of its response
to the SetLockState call so that any changes made to the message before the SetLockState call was
received are saved.

The MAPI spooler unlocks the message before calling the IMsgStore::FinishedMsg method.

See Also

IMsgStore::AbortSubmit method , IMsgStore::FinishedMsg method

 IMsgStore::SetReceiveFolder

The IMsgStore::SetReceiveFolder method sets the receive folder for a particular message class.

HRESULT SetReceiveFolder(
 LPTSTR lpszMessageClass,
 ULONG ulFlags,
 ULONG cbEntryID,
 LPENTRYID lpEntryID
)

Parameters

lpszMessageClass
Input parameter pointing to a string naming the message class for which the receive folder should
be set. If a client application passes NULL or an empty string in the lpszMessageClass parameter, it
sets the message class's receive folder to the default for the message store provider.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the text in the passed-in
strings. The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the folder to set as the receive folder. Passing
NULL in lpEntryID indicates that the current receive folder setting is replaced with the message
store's default.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMsgStore::SetReceiveFolder method to set or change the
receive folder for a particular message class. With SetReceiveFolder, an application can, by using
successive calls, specify a different receive folder for each message class defined or specify that
incoming messages for multiple message classes all go to the same folder. A client can, for example,
have its own class of messages arrive in its own folder. For instance, a fax application can designate a
folder where the store provider places incoming faxes and one where the provider places outgoing
faxes.

If an error occurs while calling SetReceiveFolder, the receive folder setting remains unchanged.

If SetReceiveFolder changes the receive folder setting with lpEntryID set to NULL, indicating the
default receive folder should be set, SetReceiveFolder returns S_OK even if there was no existing
setting for the indicated message class.

 IMsgStore::StoreLogoff

The IMsgStore::StoreLogoff method enables the orderly logoff of a message store under client
application control.

HRESULT StoreLogoff(
 ULONG FAR * lpulFlags
)

Parameters

lpulFlags
Input-output parameter containing a bitmask of flags that controls logoff from the message store. On
input, all flags set for this parameter are mutually exclusive; a client must specify only one flag per
call. A client can set the following flags on input:
LOGOFF_ABORT

Indicates any transport provider activity for this store should be stopped before logoff. Control is
returned to the client after activity is stopped. If any transport provider activity is taking place, the
logoff does not occur and no change in the behavior of the MAPI spooler or transport providers
occurs. If transport provider activity is quiet, the MAPI spooler releases the store.

LOGOFF_NO_WAIT
Indicates the message store should not wait for messages from transport providers before
closing. All outbound mail that is ready to be sent, is sent; if this store contains the default Inbox,
any in-process message is received, and then further reception is disabled. When all activity is
completed, the MAPI spooler releases the store, and control is returned to the client immediately.

LOGOFF_ORDERLY
Indicates the message store should not wait for information from transport providers before
closing. Any message being processed by the store is completed, and no new messages are
processed. When all activity is completed, the MAPI spooler releases the store, and control is
returned to the store provider immediately.

LOGOFF_PURGE
Works the same as LOGOFF_NO_WAIT but also calls the IXPLogon::FlushQueues method or
the IMAPIStatus::FlushQueues method for the appropriate transport providers. The
LOGOFF_PURGE flag returns control to the client after completion.

LOGOFF_QUIET
Indicates that if any transport provider activity is taking place, the logoff does not occur.

On output the following flags can be returned:

LOGOFF_INBOUND
Indicates that there are inbound messages arriving.

LOGOFF_OUTBOUND
Indicates that there are outbound messages in the process of being sent.

LOGOFF_OUTBOUND_QUEUE
Indicates that there are outbound messages pending, that is, in the Outbox.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call the IMsgStore::StoreLogoff method to exert some control over how transport
providers log off when the message store object is released. After StoreLogoff returns with S_OK, any

further calls to StoreLogoff are ignored.

The client can either set requirements about message store and transport provider interaction at
message store release by setting the appropriate flags, or it can allow MAPI either to stop sending
messages at message store release or to complete sending before message store release.

A client is only allowed to control transport provider logoff if it is the only implementation using the
message store. If another client is still using the store, the store object is immediately released and
control is returned to the client.

Message store providers implement StoreLogoff as a way to record the flags that the client requires
passed to the IMAPISupport::StoreLogoffTransports method. Store providers should not actually
make the StoreLogoffTransports call until the reference count on the message store object drops to
zero, during the final release of the message store object. Multiple calls to StoreLogoffTransports
simply overwrite the saved flags.

By default, if no clients call StoreLogoff before the reference count on the message store reaches
zero, the store provider should set the LOGOFF_ABORT flag in the ulFlags parameter that it passes on
the call to StoreLogoffTransports, which conducts logoff as described earlier.

See Also

IMAPIStatus::FlushQueues method , IMAPISupport::StoreLogoffTransports method ,
IXPLogon::FlushQueues method

 IMsgStore::Unadvise

The IMsgStore::Unadvise method removes an object's registration for notification of message store
changes previously established with a call to the IMsgStore::Advise method.

HRESULT Unadvise(
 ULONG ulConnection
)

Parameters

ulConnection
Input parameter containing the number of the registration connection returned by a call to
IMsgStore::Advise.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMsgStore::Unadvise method to release the pointer to the
advise sink object passed in the lpAdviseSink parameter in the previous call to IMsgStore::Advise,
thereby canceling a notification registration. As part of discarding the pointer to the advise sink object,
the object's IUnknown::Release method is called. Generally, Release is called during the Unadvise
call, but if another thread is in the process of calling the IMAPIAdviseSink::OnNotify method for the
advise sink object, the Release call is delayed until the OnNotify method returns.

See Also

IMAPIAdviseSink::OnNotify method , IMsgStore::Advise method

 IMSLogon : IUnknown

The IMSLogon interface is used to access resources in a message store logon object. The message
store logon object is the part of an open message store provider that is called directly by MAPI. There
is a one-to-one correspondence between the message store logon object called by MAPI and the
message store object called by client applications; you can think of the logon and store objects as one
object exposing two interfaces. The two objects are created together and freed together.

At a Glance

Specified in header file: MAPISPI.H
Object that supplies this
interface:

Message store logon object

Corresponding pointer type: LPMSLOGON
Implemented by: Message store providers
Called by: MAPI

Vtable Order

GetLastError Returns a MAPIERROR structure containing
information about the last error that occurred for a
message store logon object.

Logoff Logs off a message store provider.
OpenEntry Opens a folder or message object and returns a pointer

to the object to provide further access.
CompareEntryI
Ds

Compares two entry identifiers to determine if they refer
to the same object.

Advise Registers a message store provider for notifications
about changes within the message store.

Unadvise Removes an object's registration for notification of
message store changes previously established with a
call to the IMSLogon::Advise method.

OpenStatusEntr
y

Opens a status object.

 IMSLogon::Advise

The IMSLogon::Advise method registers a message store provider for notifications about changes
within the message store.

HRESULT Advise(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 ULONG ulEventMask,
 LPMAPIADVISESINK lpAdviseSink,
 ULONG FAR * lpulConnection
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier of the object about which notifications should be
generated. This object can be a folder, a message, or any other object in the message store.
Alternatively, if MAPI sets the cbEntryID parameter to zero and passes NULL for lpEntryID, the
advise sink provides notifications about changes to the entire message store.

ulEventMask
Input parameter containing an event mask of the types of notification events occurring for the object
about which MAPI will generate notifications. The mask filters specific cases. Each event type has a
structure associated with it that holds additional information about the event. The following table lists
the possible event types along with their corresponding structures.

Notification event type Corresponding structure
fnevCriticalError ERROR_NOTIFICATION
fnevNewMail NEWMAIL_NOTIFICATION
fnevObjectCreated OBJECT_NOTIFICATION
fnevObjectDeleted OBJECT_NOTIFICATION
fnevObjectModified OBJECT_NOTIFICATION
fnevObjectCopied OBJECT_NOTIFICATION
fnevObjectMoved OBJECT_NOTIFICATION
fnevSearchComplete OBJECT_NOTIFICATION
fnevStatusObjectModifie
d

STATUS_OBJECT_NOTIFICATION

lpAdviseSink
Input parameter pointing to an advise sink object to be called when an event occurs for the session
object about which notification has been requested. This advise sink object must have already been
allocated.

lpulConnection
Output parameter pointing to a variable that upon a successful return holds the connection number
for the notification registration. The connection number must be nonzero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_SUPPORT

The operation is not supported by MAPI or by one or more service providers.

Remarks

Message store providers implement the IMSLogon::Advise method to register an object for
notification callbacks. Whenever a change occurs to the indicated object, the provider checks to see
what event mask bit was set in the ulEventMask parameter and thus what type of change occurred. If a
bit is set, then the provider calls the IMAPIAdviseSink::OnNotify method for the advise sink object
indicated by the lpAdviseSink parameter to report the event. Data passed in the notification structure to
the OnNotify routine describes the event.

The call to OnNotify can occur during the call that changes the object, or at any following time. On
systems that support multiple threads of execution, the call to OnNotify can occur on any thread. For a
way to turn a call to OnNotify that might happen at an inopportune time into one that is safer to handle,
a client application should use the HrThisThreadAdviseSink function.

To provide notifications, the message store provider implementing Advise needs to keep a copy of the
pointer to the lpAdviseSink advise sink object; to do so, it calls the IUnknown::AddRef method for the
advise sink to maintain its object pointer until notification registration is canceled with a call to the
IMSLogon::Unadvise method. The Advise implementation should assign a connection number to the
notification registration and call AddRef on this connection number before returning it in the
lpulConnection parameter. Service providers can release the advise sink object before the registration
is canceled, but they must not release the connection number until Unadvise has been called.

After a call to Advise has succeeded and before Unadvise has been called, providers must be
prepared for the advise sink object to be released. A provider should therefore release its advise sink
object after Advise returns unless it has a specific long-term use for it.

For more information about the notification process, see About Notification.

See Also

HrThisThreadAdviseSink function , IMAPIAdviseSink::OnNotify method , IMSLogon::Unadvise
method, NOTIFICATION structure

 IMSLogon::CompareEntryIDs

The IMSLogon::CompareEntryIDs method compares two entry identifiers to determine if they refer to
the same object. MAPI only passes this call to a service provider if the unique identifiers (UIDs) in both
entry identifiers to be compared are handled by that provider.

HRESULT CompareEntryIDs(
 ULONG cbEntryID1,
 LPENTRYID lpEntryID1,
 ULONG cbEntryID2,
 LPENTRYID lpEntryID2,
 ULONG ulFlags,
 ULONG FAR * lpulResult
)

Parameters

cbEntryID1
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID1
parameter.

lpEntryID1
Input parameter pointing to the first entry identifier to be compared.

cbEntryID2
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID2
parameter.

lpEntryID2
Input parameter pointing to the second entry identifier to be compared.

ulFlags
Reserved; must be zero.

lpulResult
Output parameter pointing to a variable where the returned result of the comparison is stored; this
variable is TRUE if the two entry identifiers refer to the same object, and FALSE otherwise.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMSLogon::CompareEntryIDs method to compare two entry
identifiers for a given entry within a message store to determine whether they refer to the same object.
If the two entry identifiers refer to the same object, then CompareEntryIDs sets the lpulResult
parameter to TRUE; if they refer to different objects, CompareEntryIDs sets lpulResult to FALSE.

CompareEntryIDs is useful because an object can have more than one valid entry identifier; such a
situation can occur, for example, after a new version of a message store provider is installed.

 IMSLogon::GetLastError

The IMSLogon::GetLastError method returns a MAPIERROR structure containing information about
the last error that occurred for the message store object.

HRESULT GetLastError(
 HRESULT hResult,
 ULONG ulFlags,
 LPMAPIERROR FAR * lppMAPIError
)

Parameters

hResult
Input parameter containing the result returned for the last call for the message store object that
returned an error.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the strings in the MAPIERROR structure returned in the lppMAPIError parameter are in
Unicode format. If the MAPI_UNICODE flag is not set, the strings are in ANSI format.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure containing version,
component, and context information for the error. The lppMAPIError parameter can be set to NULL if
there is no MAPIERROR structure to return.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Use the IMSLogon::GetLastError method to retrieve information to display in a message to the user
regarding the last error returned from a method call for the message store object.

To release all the memory allocated by MAPI for the returned MAPIERROR structure, client
applications need only call the MAPIFreeBuffer function.

The return value from GetLastError must be S_OK for an application to make use of the MAPIERROR
structure. Even if the return value is S_OK, a MAPIERROR structure might not be returned. If the
implementation cannot determine what the last error was, or if a MAPIERROR structure is not available
for that error, GetLastError returns a pointer to NULL in lppMAPIError instead.

See Also

MAPIERROR structure , MAPIFreeBuffer function

 IMSLogon::Logoff

The IMSLogon::Logoff method logs off a message store provider.

HRESULT Logoff(
 ULONG FAR * lpulFlags
)

Parameters

lpulFlags
Reserved; must be a pointer to zero.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMSLogon::Logoff method to forcibly shut down a message
store provider. IMSLogon::Logoff is called in the following situations:

· While MAPI is logging off a client after a call to the IMAPISession::Logoff method.
· While MAPI is logging off a message store provider. In this case, IMSLogon::Logoff is called as

part of MAPI's processing the IUnknown::Release method of the support object that the message
store provider creates while it is processing an IMsgStore::StoreLogoff or IUnknown::Release
method call on a message store object.

See Also

IMAPISession::Logoff method , IMAPISupport : IUnknown interface , IMsgStore::StoreLogoff
method, IMSProvider::Logon method , MAPIFreeBuffer function

 IMSLogon::OpenEntry

The IMSLogon::OpenEntry method opens a folder or message object and returns a pointer to the
object to provide further access.

HRESULT OpenEntry(
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 LPCIID lpInterface,
 ULONG ulOpenFlags,
 ULONG FAR * lpulObjType,
 LPUNKNOWN FAR * lppUnk
)

Parameters

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the address of the entry identifier of the folder or message object to
open.

lpInterface
Input parameter pointing to the interface identifier (IID) for the object. Passing NULL indicates the
object is cast to the standard interface for such an object. The lpInterface parameter can also be set
to an identifier for an appropriate interface for the object.

ulOpenFlags
Input parameter containing a bitmask of flags that controls how the object is opened. The following
flags can be set:
MAPI_BEST_ACCESS

Indicates the object should be opened with the maximum network permissions allowed for the
user and the maximum client application access. For example, if the client has read/write access,
the object is opened with read/write access; if the client has read-only access, the object is
opened with read-only access. The client can retrieve the access level by getting the
PR_ACCESS_LEVEL property.

MAPI_DEFERRED_ERRORS
Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling application. If the object is not accessible, some subsequent call to the object might return
an error.

MAPI_MODIFY
Requests read/write access. By default, objects are created with read-only access, and clients
should not work on the assumption that read/write access has been granted.

lpulObjType
Output parameter pointing to a variable where the type of the opened object is stored.

lppUnk
Output parameter pointing to a variable where the pointer to the opened object is stored.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

MAPI calls the IMSLogon::OpenEntry method to open a folder or a message in a message store.
MAPI passes in the entry identifier of the object to open; the message store provider should return a
pointer providing further access to the object in the lppUnk parameter.

Before MAPI calls IMSLogon::OpenEntry, it first determines that the given message or folder entry
identifier matches one registered by this message store provider. For more information on how store
providers register entry identifiers, see IMAPISupport::SetProviderUID.

IMSLogon::OpenEntry is identical to the IMsgStore::OpenEntry method of the message store object
but is called by MAPI when processing an IMAPISession::OpenEntry method call instead of being
called by a client. Objects opened using IMSLogon::OpenEntry should be treated exactly the same as
objects opened with the message store object; in particular, objects opened using this call should be
invalidated when the message store object is released.

See Also

IMAPISupport::SetProviderUID method , IMsgStore::OpenEntry method

 IMSLogon::OpenStatusEntry

The IMSLogon::OpenStatusEntry method opens a status object.

HRESULT OpenStatusEntry(
 LPCIID lpInterface,
 ULONG ulFlags,
 ULONG FAR * lpulObjType,
 LPVOID FAR * lppEntry
)

Parameters

lpInterface
Input parameter pointing to the interface identifier (IID) for the status object to open. Passing NULL
indicates the standard interface for the object is returned, in this case the IMAPIStatus interface.
The lpInterface parameter can also be set to an identifier for an appropriate interface for the object.

ulFlags
Input parameter containing a bitmask of flags that controls how the status object is opened. The
following flag can be set:
MAPI_MODIFY

Requests read/write access. By default, objects are created with read-only access, and client
applications should not work on the assumption that read/write access has been granted.

lpulObjType
Output parameter pointing to a variable where the type of the opened object is stored.

lppEntry
Output parameter pointing to a variable where the pointer to the opened object is stored.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMSLogon::OpenStatusEntry method to open a status
object. This status object is then used to enable clients to call IMAPIStatus methods; for example,
clients can use the IMAPIStatus::SettingsDialog method to reconfigure the message store logon
session or the IMAPIStatus::ValidateState method to validate the state of the message store logon
session.

See Also

IMAPIStatus : IMAPIProp interface , IMAPIStatus::SettingsDialog method ,
IMAPIStatus::ValidateState method

 IMSLogon::Unadvise

The IMSLogon::Unadvise method removes an object's registration for notification of message store
changes previously established with a call to the IMSLogon::Advise method.

HRESULT Unadvise(
 ULONG ulConnection
)

Parameters

ulConnection
Input parameter containing the number of the registration connection returned by a call to
IMSLogon::Advise.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Message store providers implement the IMSLogon::Unadvise method to release the pointer to the
advise sink object passed in the lpAdviseSink parameter in the previous call to IMSLogon::Advise,
thereby canceling a notification registration. As part of discarding the pointer to the advise sink object,
the object's IUnknown::Release method is called. Generally, Release is called during the Unadvise
call, but if another thread is in the process of calling the IMAPIAdviseSink::OnNotify method for the
advise sink object, the Release call is delayed until the OnNotify method returns.

See Also

IMAPIAdviseSink::OnNotify method , IMSLogon::Advise method

 IMSProvider : IUnknown

The IMSProvider interface provides access to a message store provider through a message store
provider object. This message store provider object is returned at provider logon by the message store
provider's MSProviderInit entry point function. The message store provider object is primarily used by
client applications and the MAPI spooler to open message stores.

MAPI uses one message store provider object for all the message stores opened by the store provider
implementing the object for the current MAPI session. If a second MAPI session logs onto any open
stores, MAPI calls MSProviderInit a second time to create a new message store provider object for
that session to use.

A message store provider object must contain the following to operate correctly:

· An lpMalloc memory-allocation pointer for use by all stores opened using this provider object.
· The lpfAllocateBuffer, lpfAllocateMore, and lpfFreeBuffer routine pointers to the

MAPIAllocateBuffer, MAPIAllocateMore, and MAPIFreeBuffer memory allocation functions.
· A linked list of all the stores opened using this provider object and not yet closed.

At a Glance

Specified in header file: MAPISPI.H
Object that supplies this
interface:

Message store provider object

Corresponding pointer type: LPMSPROVIDER
Implemented by: Message store providers
Called by: MAPI, the MAPI spooler

Vtable Order

Shutdown Closes down a message store provider in an orderly
fashion.

Logon Logs MAPI on to one instance of a message store
provider.

SpoolerLogon Logs the MAPI spooler on to a message store.
CompareStoreID
s

Compares two message store entry identifiers to
determine if they refer to the same store object.

 IMSProvider::CompareStoreIDs

The IMSProvider::CompareStoreIDs method compares two message store entry identifiers to
determine if they refer to the same store object.

HRESULT CompareStoreIDs(
 ULONG cbEntryID1,
 LPENTRYID lpEntryID1,
 ULONG cbEntryID2,
 LPENTRYID lpEntryID2,
 ULONG ulFlags,
 ULONG FAR * lpulResult
)

Parameters

cbEntryID1
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID1
parameter.

lpEntryID1
Input parameter pointing to the first entry identifier to be compared.

cbEntryID2
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID2
parameter.

lpEntryID2
Input parameter pointing to the second entry identifier to be compared.

ulFlags
Reserved; must be zero.

lpulResult
Output parameter pointing to a variable where the returned result of the comparison is stored; this
variable is TRUE if the two entry identifiers refer to the same object, and FALSE otherwise.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

MAPI calls the IMSProvider::CompareStoreIDs method while processing a call to the
IMAPISession::OpenMsgStore method. CompareStoreIDs is called at this point to determine which
profile section, if any, is associated with the message store being opened. A CompareStoreIDs call
can be made when no message stores are open for a particular store provider. In addition, MAPI also
calls CompareStoreIDs while processing a store provider call to the
IMAPISupport::OpenProfileSection method.

The entry identifiers compared by CompareStoreIDs are both for the current store provider's dynamic-
link library (DLL) and are both unwrapped store entry identifiers. For more information on wrapping
store entry identifiers, see IMAPISupport::WrapStoreEntryID.

Comparing entry identifiers is useful because an object can have more than one valid entry identifier;
such a situation can occur, for example, after a new version of a message store provider is installed.

See Also

IMAPISession::OpenMsgStore method , IMAPISupport::OpenProfileSection method ,
IMAPISupport::WrapStoreEntryID method

 IMSProvider::Logon

The IMSProvider::Logon method logs MAPI onto one instance of a message store provider.

HRESULT Logon(
 LPMAPISUP lpMAPISup,
 ULONG ulUIParam,
 LPTSTR lpszProfileName,
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 ULONG ulFlags,
 LPCIID lpInterface,
 ULONG FAR * lpcbSpoolSecurity,
 LPBYTE FAR * lppbSpoolSecurity,
 LPMAPIERROR FAR * lppMAPIError,
 LPMSLOGON FAR * lppMSLogon,
 LPMDB FAR * lppMDB
)

Parameters

lpMAPISup
Input parameter pointing to the current MAPI support object for the message store.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

lpszProfileName
Input parameter pointing to a string containing the name of the profile being used for store provider
logon. This string can be displayed in dialog boxes, written out to a log file, or simply ignored. It must
be in Unicode format if the MAPI_UNICODE flag is set in the ulFlags parameter.

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier for the message store. Passing NULL in lpEntryID
indicates that a message store has not yet been selected and that dialog boxes enabling the user to
select a message store can be presented.

ulFlags
Input parameter containing a bitmask of flags that controls how the logon is performed. The following
flags can be set:
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling implementation. If the object is not accessible, some subsequent call to the object might
return an error.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If MAPI_UNICODE is not set, the strings
are in ANSI format.

MDB_NO_DIALOG
Prevents display of logon dialog boxes. If this flag is set, the error value
MAPI_E_LOGON_FAILED is returned if logon is unsuccessful. If this flag is not set, the message
store provider can prompt the user to correct a name or password, to insert a disk, or to perform
other actions necessary to establish connection to the store.

MDB_NO_MAIL

Indicates the message store should not be used for sending or receiving mail. The flag signals
MAPI not to notify the MAPI spooler that this message store is being opened. If this flag is set,
and the message store is tightly coupled with a transport provider, then the provider does not
need to call the IMAPISupport::SpoolerNotify method.

MDB_TEMPORARY
Logs on the store so that information can be retrieved programmatically from the profile section,
without use of dialog boxes. This flag instructs MAPI that the store is not to be added to the
message store table and that the store cannot be made permanent. If this flag is set, message
store providers do not need to call the IMAPISupport::ModifyProfile method.

MDB_WRITE
Requests read/write access.

lpInterface
Input parameter pointing to the interface identifier (IID) for the message store to log on to. Passing
NULL indicates the MAPI interface for the message store is returned ¾ that is, the IMsgStore
interface. The lpInterface parameter can also be set to an identifier for an appropriate interface for
the message store, for example IID_IUnknown or IID_IMAPIProp.

lpcbSpoolSecurity
Output parameter pointing to the variable where the store provider returns the size, in bytes, of the
validation data in the lppbSpoolSecurity parameter.

lppbSpoolSecurity
Output parameter pointing to a variable where the pointer to the returned validation data is stored.
This validation data is provided so the IMSProvider::SpoolerLogon method can log the MAPI
spooler on to the same store as the message store provider.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure, if any, containing
version, component, and context information for an error. The lppMAPIError parameter can be set to
NULL if there is no MAPIERROR structure to return.

lppMSLogon
Output parameter pointing to a variable where the pointer to the message store logon object for
MAPI to log on to is stored.

lppMDB
Output parameter pointing to a variable where the pointer to the message store object for the MAPI
spooler and client applications to log on to is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_FAILONEPROVIDER
Indicates this provider cannot log on, but this error should not disable the service.

MAPI_E_LOGON_FAILED
A logon session could not be established.

MAPI_E_UNCONFIGURED
The profile does not contain enough information for the logon to complete. When this value is
returned, MAPI calls the message store provider's message-service entry point function.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by clicking the Cancel button in a dialog box.

MAPI_E_UNKNOWN_CPID
Indicates the server is not configured to support the client's code page.

MAPI_E_UNKNOWN_LCID
Indicates the server is not configured to support the client's locale information.

MAPI_W_ERRORS_RETURNED

The call succeeded, but the message store provider has error information available. To test for this
warning, use the HR_FAILED macro. When this warning is returned, the call should be handled as
successful. To get the error information from the provider, call the IMAPISession::GetLastError
method.

Remarks

MAPI calls the IMSProvider::Logon method to do the majority of processing necessary to obtain
access to a message store. Message store providers validate any user credentials necessary to
access a particular store and return a message store object in the lppMDB parameter that the MAPI
spooler and client applications can log onto.

In addition to the message store object returned for client and MAPI spooler use, the provider also
returns a message store logon object for MAPI's use in controlling the opened store. The message
store logon object and the message store object should be tightly linked inside the message store
provider so each can affect the other. Usage of the store object and the logon object should be
identical; there should be a one-to-one correspondence between the logon object and the store object
such that the objects act as if they are one object exposing two interfaces. The two objects should also
be created together and freed together.

The MAPI support object, created by MAPI and passed to the provider in the lpMAPISup parameter,
provides access to functions in MAPI required by the provider. These include functions that save and
retrieve profile information, access address books, and so on. The lpMAPISup pointer can be different
for each store that is opened. While processing calls for a message store after logon, the store provider
should use the lpMAPISup variable specific to that store. For any Logon call that opens a message
store and succeeds in creating a message store logon object, the provider must save a pointer to the
MAPI support object in the store logon object and must call the IUnknown::AddRef method to add a
reference for the support object.

The ulUIParam parameter should be used if the provider presents dialog boxes during the Logon call.
However, dialog boxes should not be presented if ulFlags contains the MDB_NO_DIALOG flag. If a
user interface is called but ulFlags does not allow it, or if for some other reason a user interface cannot
be displayed, the provider should return MAPI_E_LOGON_FAILED. If Logon displays a dialog box and
the user cancels logon, typically by clicking the dialog box's Cancel button, the provider should return
MAPI_E_USER_CANCEL.

The lpEntryID parameter can either be NULL or point to an unwrapped store entry identifier previously
created by this message store. If lpEntryID points to an unwrapped entry identifier, that entry identifier
can come from one of several places:

· It can be an entry identifier that the store provider previously wrapped and wrote to the profile
section as a PR_ENTRYID property.

· It can be an entry identifier that the provider previously wrapped and returned to a calling client as a
PR_STORE_ENTRYID property.

· It can be an entry identifier that the provider previously wrapped and returned to a calling client as
the PR_ENTRYID property of a message store object.

In any of these cases, it is possible that the entry identifier was created on a different computer than
the one currently being used.

When lpEntryID is not NULL, it should contain all of the information needed to identify and locate the
message store.. This information can include network volume names, phone numbers, user account
names, and so on. If the connection to the store cannot be made using the data in the entry identifier,
then the store provider should display a dialog box that enables the user to select the store to be
opened. A dialog box might be required, for example, if a server has been renamed, an account name
has changed, or portions of the network are not running.

When lpEntryID is NULL, the message store to use has not yet been selected. The provider can still
access a store without displaying a dialog box if it supports further methods to specify the store. For

example, the provider can check its initialization file, or it can look for additional properties that were
placed in its or its message service's profile section at configuration.

If a provider finds that all the required information is not in the profile, it should return
MAPI_E_UNCONFIGURED so that MAPI calls the provider's message service entry point function to
enable the user to select a store, or even to create one, and to enter an account name and password
as needed. MAPI automatically creates a new profile section for a new store; this new profile section
can be temporary or permanent, depending on how it has been added. If the store provider calls the
IMAPISupport::ModifyProfile method, the new profile section becomes permanent and the store is
added to the list of message stores returned by the IMAPISession::GetMsgStoresTable method.

The lpInterface parameter specifies the IID of the interface required for the newly opened store object.
Passing NULL in lpInterface specifies that the MAPI message store interface, IMsgStore, is required.
Passing the message store object IID, IID_IMsgStore, also specifies that IMsgStore is required. If
IID_IUnknown is passed in lpInterface, the provider should open the store using whatever interface
derived from IUnknown that is best for the provider; again, this is typically IMsgStore. When
IID_IUnknown is passed, after the store open operation succeeds the calling implementation uses the
IUnknown::QueryInterface method to select an interface.

The IMSProvider::Logon call should return sufficient information, such as a path to the store and
credentials for accessing the store, to allow the MAPI spooler to log onto the same store the store
provider does without presenting a dialog box. The parameters lpcbSpoolSecurity and
lppbSpoolSecurity are used to return this information. The provider allocates the memory for this data
by passing a pointer to a buffer in the MSProviderInit function's lpfAllocateBuffer parameter; the
provider places the size of this buffer in lpcbSpoolSecurity.

MAPI frees this buffer when appropriate. If the MAPI spooler's logon to the store can be accomplished
from the information in the profile section alone, the provider can return NULL in lppbSpoolSecurity and
zero for the information's size in lpcbSpoolSecurity. The MAPI spooler logon occurs as part of a
different process than the store logon; because the buffer holding the passed information gets copied
between processes, it might not be in memory at the same location for the MAPI spooler process as for
the store provider process. Therefore, a provider shouldn't put addresses into this buffer. For more
information on MAPI spooler logon, see IMSProvider::SpoolerLogon.

Most store providers use the IMAPISession::OpenProfileSection method of the support object
passed in the lpMAPISup parameter for saving and retrieving user credentials and options.
OpenProfileSection enables a store provider to save additional arbitrary information in a profile
section and associate it with logon for a particular resource. For example, a store provider can save the
user account name and password associated with a resource and any paths or other necessary
information needed to access that resource for its logon.

Properties with property identifiers 0x6600 through 0x67FF are secure properties available to the
provider for its own use to store private data in profile sections. For more information on the uses of
properties in profile section objects, see IProfSect : IMAPIProp.

In addition to any private data in properties with identifiers 0x6600 through 0x67FF, the store provider
should provide information for the PR_DISPLAY_NAME property in its profile section. It should place in
PR_DISPLAY_NAME the display name of the provider itself, an identifying string displayed to users so
they can distinguish this message store from others they might have access to ¾ for example,
Microsoft Personal Information Store. PR_DISPLAY_NAME commonly contains a server name, user
account name, or path.

Some profile section properties are visible in the message store table; others are visible during setup,
installation, and configuration of the MAPI subsystem. The provider typically provides information for
these visible properties both for a new profile section, which does not yet include saved credentials or
private information, and when it finds that property information has changed. For more information on
profile sections, see IMAPISupport::OpenProfileSection.

After successfully logging on a user, and before returning to MAPI, the store provider should create the

array of properties for the status row for the resource and call IMAPISupport::ModifyStatusRow.

Logon calls that open message stores already open for the current MAPI session skip much of the
processing described previously. These calls do not create status rows, do not return message store
logon objects, do not call AddRef for the MAPI support object, and do not return data for MAPI spooler
logon. These calls do return S_OK and do return a message store object with the interface requested.

To detect such calls, the provider should maintain a list in the message store provider object of stores
already open for this provider object. When processing a Logon call, the provider should scan this list
of open stores and determine if the store to be logged onto is already open. If it is, user credentials do
not need to be checked and dialog box display should be avoided if possible. If dialog boxes must be
displayed, the provider should check information returned to see whether a store has been opened a
second time. In addition, the provider should check for duplicate openings using lpEntryID at the
beginning of Logon call processing.

Standard processing for a Logon call that accesses an open store is as follows:

1. The store provider calls AddRef for the existing store object if the new interface being requested is
the same as the interface for the existing store. Otherwise, it calls QueryInterface to get the new
interface. If the new interface isn't one the store supports, the provider should return the error value
MAPI_E_INTERFACE_NOT_SUPPORTED.

2. The provider returns a pointer to the required interface of the existing store object in lppMDB.
3. The provider returns NULL in lppMSLogon.
4. The provider should not open the profile for the support object passed in the call. Neither should it

register a provider unique identifier, register a status row, nor return MAPI spooler logon data.
5. The provider should not call AddRef for the support object, because it does not require a pointer to

the object.

Whenever possible, providers should return appropriate error and warning strings for Logon calls
because doing so greatly eases the burden of users in figuring out why something did not work. To do
so, a provider sets the members in the MAPIERROR structure. MAPI looks for, uses, and releases the
MAPIERROR structure if it is returned by a provider.

Memory for this MAPIERROR should be allocated using the buffer passed in lpfAllocateBuffer on the
MSProviderInit call. Any error strings contained in the returned structure should be in Unicode format
if MAPI_UNICODE is set in the Logon ulFlags; otherwise, they should be in the ANSI character set.

For most error values returned from Logon, MAPI disables the message services to which the failing
provider belongs. MAPI will not call any providers belonging to those services for the rest of the life of
the MAPI session. In contrast, when Logon returns the MAPI_E_FAILONEPROVIDER error value from
its logon, MAPI does not disable the message service to which the provider belongs. Logon should
return MAPI_E_FAILONEPROVIDER if it encounters an error that does not warrant disabling the entire
service for the life of the session. For example, a provider might return this error when it does not allow
the display of a user interface and a required password is unavailable.

If a provider returns MAPI_E_UNCONFIGURED from its logon, MAPI will call the provider's message
service entry function and then retry the logon. MAPI passes MSG_SERVICE_CONFIGURE as the
context, to give the service a chance to configure itself. If the client has chosen to allow a user interface
on the logon, the service can present its configuration property sheet so the user can enter
configuration information.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

See Also

IMAPISession::GetMsgStoresTable method , IMAPISession::OpenMsgStore method ,
IMAPISession::OpenProfileSection method , IMAPISupport::ModifyProfile method ,
IMAPISupport::ModifyStatusRow method , IMsgStore : IMAPIProp interface ,
IMSProvider::SpoolerLogon method , IProfSect : IMAPIProp interface , MAPIERROR structure ,

MSProviderInit function

 IMSProvider::Shutdown

The IMSProvider::Shutdown method closes down a message store provider in an orderly fashion.

HRESULT Shutdown(
 ULONG FAR * lpulFlags
)

Parameters

lpulFlags
Reserved; must be a pointer to zero.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

MAPI calls the IMSProvider::Shutdown method just before releasing the message store provider
object. MAPI releases all logon objects for a provider before calling Shutdown for that provider.

 IMSProvider::SpoolerLogon

The IMSProvider::SpoolerLogon method logs the MAPI spooler onto a message store.

HRESULT SpoolerLogon(
 LPMAPISUP lpMAPISup,
 ULONG ulUIParam,
 LPTSTR lpszProfileName,
 ULONG cbEntryID,
 LPENTRYID lpEntryID,
 ULONG ulFlags,
 LPCIID lpInterface,
 ULONG cbSpoolSecurity,
 LPBYTE lpbSpoolSecurity,
 LPMAPIERROR FAR * lppMAPIError,
 LPMSLOGON FAR * lppMSLogon,
 LPMDB FAR * lppMDB
)

Parameters

lpMAPISup
Input parameter pointing to the MAPI support object for the message store.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

lpszProfileName
Input parameter pointing to a string containing the name of the profile being used for the MAPI
spooler logon. This string can be displayed in dialog boxes, written out to a log file, or simply
ignored. It must be in Unicode format if the MAPI_UNICODE flag is set in the ulFlags parameter.

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpEntryID
parameter.

lpEntryID
Input parameter pointing to the entry identifier for the message store. Passing NULL in the lpEntryID
parameter indicates that a message store has not yet been selected and that dialog boxes enabling
the user to select a message store can be presented.

ulFlags
Input parameter containing a bitmask of flags that controls how the logon is performed. The following
flags can be set:
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling implementation. If the object is not accessible, some subsequent call to the object might
return an error.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If MAPI_UNICODE is not set, the strings
are in ANSI format.

MDB_NO_DIALOG
Prevents display of logon dialog boxes. If this flag is set, the error value
MAPI_E_LOGON_FAILED is returned if logon is unsuccessful. If this flag is not set, the message
store provider can prompt the user to correct a name or password, to insert a disk, or to perform
other actions necessary to establish connection to the store.

MDB_WRITE

Requests read/write access.
lpInterface

Input parameter pointing to the interface identifier (IID) for the message store to log onto. Passing
NULL indicates the MAPI interface for the message store is returned ¾ that is, the IMsgStore
interface. The lpInterface parameter can also be set to an identifier for an appropriate interface for
the message store, for example IID_IUnknown or IID_IMAPIProp.

cbSpoolSecurity
Input parameter pointing to the variable containing the size, in bytes, of validation data in the
lppbSpoolSecurity parameter.

lpbSpoolSecurity
Input parameter pointing to a variable containing a pointer to validation data. The SpoolerLogon
method uses this data to log the MAPI spooler onto the same store as the message store provider
previously logged onto using the IMSProvider::Logon method.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure, if any, containing
version, component, and context information for an error. The lppMAPIError parameter can be set to
NULL if there is no MAPIERROR structure to return.

lppMSLogon
Output parameter pointing to a variable where the pointer to the message store logon object for
MAPI to log onto is stored.

lppMDB
Output parameter pointing to a variable where the pointer to the message store object for the MAPI
spooler and client applications to log onto is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_UNCONFIGURED
The profile does not contain enough information for the logon to complete. When this value is
returned, MAPI calls the message store provider's message service entry point function.

MAPI_W_ERRORS_RETURNED
The call succeeded, but the message store provider has error information available. To test for this
warning, use the HR_FAILED macro. When this warning is returned, the call should be handled as
successful. To get the error information from the provider, call the IMAPISession::GetLastError
method.

Remarks

The MAPI spooler calls the IMSProvider::SpoolerLogon method to log onto a message store. The
MAPI spooler should use the message store object returned by the message store provider in the
lppMDB parameter during and after logon.

For consistency with the IMSProvider::Logon method, the provider also returns a message store
logon object in the lppMSLogon parameter. Usage of the store object and the logon object are identical
for usual store logon, because there is a one-to-one correspondence between the logon object and the
store object; you can think of the logon and store objects as one object exposing two interfaces. The
two objects are created together and freed together.

The store provider should internally mark the returned message store object to indicate that the store is
being used by the MAPI spooler. Some of the methods for this store object behave differently than for
the message store object provided to client applications. Keeping this internal mark is the most
common way of triggering the behavior specific to the MAPI spooler.

For more information on using the HR_FAILED macro, see Using Macros for Error Handling.

See Also

IMSProvider::Logon method , MAPIERROR structure

 IPersistMessage : IUnknown

The IPersistMessage interface is implemented by form objects to save, initialize, and load messages
to and from forms. IPersistMessage works similarly to the OLE IPersistStorage interface; for more
information on the IPersistStorage methods, and on working with storage objects in general, see the
OLE Programmer's Reference.

At a Glance

Specified in header file: MAPIFORM.H
Object that supplies this
interface:

Persist message object

Corresponding pointer type: LPPERSISTMESSAGE
Implemented by: Form objects
Called by: Form viewers

Vtable Order

GetLastError Returns a MAPIERROR structure containing information
about the last error that occurred for a message object.

GetClassID Returns a form's message class identifier.
IsDirty Checks a form for changes made since the form was last

saved.
InitNew Provides a form with a base message on which to build

a new message.
Load Loads a form from a specified message.
Save Saves a revised form back to the message from which it

was loaded or created.
SaveComplete
d

Returns a message to a form after a save, submission,
or other operation.

HandsOffMess
age

Causes a message to release its message object.

 IPersistMessage::GetClassID

The IPersistMessage::GetClassID method returns a form's message class identifier.

HRESULT GetClassID(
 LPCLSID lpClassID
)

Parameters

lpClassID
Input parameter pointing to the returned class identifier.

Return Value

S_OK
The call succeeded and has returned the expected value or values.

Remarks

For more information on working with class identifiers of storage objects, see the documentation for the
IPersistStorage methods in the OLE Programmer's Reference.

 IPersistMessage::GetLastError

The IPersistMessage::GetLastError method returns a MAPIERROR structure containing information
about the last error that occurred in a form's message object.

HRESULT GetLastError(
 HRESULT hResult,
 ULONG ulFlags,
 LPMAPIERROR FAR * lppMAPIError
)

Parameters

hResult
Input parameter containing the result returned for the last call for the message object that returned
an error.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the strings in the MAPIERROR structure returned in the lppMAPIError parameter are in
Unicode format. If the MAPI_UNICODE flag is not set, the strings are in ANSI format.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure containing version,
component, and context information for the error. The lppMAPIError parameter can be set to NULL if
there is no MAPIERROR structure to return.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Use the IMAPITable::GetLastError method to retrieve information to display in a message to the user
regarding the last error returned from a method call for a form's message object.

To release all the memory allocated by MAPI for the MAPIERROR structure, implementations need
only call the MAPIFreeBuffer function.

The return value from GetLastError must be S_OK for an implementation to make use of the
MAPIERROR structure. Even if the return value is S_OK, a MAPIERROR structure might not be
returned. If the implementation cannot determine what the last error was, or if a MAPIERROR structure
is not available for that error, GetLastError returns a pointer to NULL in lppMAPIError instead.

See Also

MAPIERROR structure , MAPIFreeBuffer function

 IPersistMessage::HandsOffMessage

The IPersistMessage::HandsOffMessage method causes a form to release its message object.

HRESULT HandsOffMessage()

Parameters

None

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

For more information on working with the hands-off state of storage objects, see the OLE
Programmer's Reference.

 IPersistMessage::InitNew

The IPersistMessage::InitNew method provides a form with a base message on which to build a new
message.

HRESULT InitNew(
 LPMAPIMESSAGESITE pMessageSite,
 LPMESSAGE pMessage
)

Parameters

pMessageSite
Input parameter pointing to the message site the form uses to compose a new message.

pMessage
Input parameter pointing to the message the form uses to compose a new message.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IPersistMessage::InitNew method to set up a form with a message site and a
message so as to compose a new message within the form. When a message is loaded into a form
with InitNew, you can assume that the following required properties, and no others, have been set by
form server implementations:

PR_DELETE_AFTER_SUBMIT
PR_IMPORTANCE
PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED
PR_PRIORITY
PR_READ_RECEIPT_REQUESTED
PR_SENSITIVITY
PR_SENTMAIL_ENTRYID

For more information on initializing new storage objects, see the OLE Programmer's Reference.

 IPersistMessage::IsDirty

The IPersistMessage::IsDirty method checks a form for changes made since the form was last
saved.

HRESULT IsDirty()

Parameters

None

Return Values

S_OK
The form has had changes made since it was last saved.

S_FALSE
The form has not had changes made since it was last saved.

Remarks

For more information, see the documentation for the IPersistStorage methods in the OLE
Programmer's Reference.

 IPersistMessage::Load

The IPersistMessage::Load method loads a form from a specified message.

HRESULT Load(
 LPMESSAGESITE pMessageSite,
 LPMESSAGE pMessage,
 ULONG ulMessageStatus,
 ULONG ulMessageFlags
)

Parameters

pMessageSite
Input parameter pointing to the specified message to be loaded.

pMessage
Input parameter pointing to the message from which the message is loaded.

ulMessageStatus
Input parameter containing a bitmask of client-defined or provider-defined flags, copied from the
message's PR_MSG_STATUS property, that provides information on the state of the message.

ulMessageFlags
Input parameter containing a bitmask of flags, copied from the message's PR_MESSAGE_FLAGS
property, that provide further information on the state of the message.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IPersistMessage::Load method to load a form from a specified message. Load
is used to read an existing message. Flags and status bits set in the existing message's
PR_MESSAGE_FLAGS and PR_MSG_STATUS properties are preserved in the new message.

For more information on loading storage objects, see the OLE Programmer's Reference.

See Also

PR_MESSAGE_FLAGS property, PR_MSG_STATUS property

 IPersistMessage::Save

The IPersistMessage::Save method saves a revised form back to the message from which it was
loaded or created.

HRESULT Save(
 LPMESSAGE pMessage,
 ULONG fSameAsLoad
)

Parameters

pMessage
Input parameter pointing to a message.

fSameAsLoad
Input parameter containing a variable that is TRUE if the message the pMessage parameter points
to is the message from which the form was loaded or created, and FALSE otherwise.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IPersistMessage::Save method to save a revised form back to the message
from which it was loaded or created. The form must not commit changes to this message; changes are
committed by the form server implementation that calls Save.

For more information on saving storage objects, see the documentation on the IPersistStorage
methods in the OLE Programmer's Reference.

 IPersistMessage::SaveCompleted

The IPersistMessage::SaveCompleted method returns a message to a form after a save,
submission, or other operation.

HRESULT SaveCompleted(
 LPMESSAGE pMessage
)

Parameters

pMessage
Input parameter pointing to the message that was acted upon.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Form viewers call the IPersistMessage::SaveCompleted method at the end of a save request or after
the failure of a dismissive operation such as a save operation or deletion. SaveCompleted returns the
saved message to the form in which it was composed. Note that there is no reason to suppose the
IPersistMessage interface used is the same interface as held for the message at the beginning of the
save or other operation. However, the interface is for the same message object.

For more information on saving storage objects, see the documentation on the IPersistStorage
methods in the OLE Programmer's Reference.

 IProfAdmin : IUnknown

The IProfAdmin interface supports administration of profiles.

At a Glance

Specified in header file: MAPIX.H
Object that supplies this
interface:

Profile object

Corresponding pointer type: LPPROFADMIN
Implemented by: MAPI
Called by: Client applications

Vtable Order

GetLastError Returns a MAPIERROR structure containing
information about the last error that occurred for
a profile object.

GetProfileTable Returns a table listing all profiles associated with
a particular client application.

CreateProfile Creates a new profile.
DeleteProfile Deletes a profile.
ChangeProfilePasswo
rd

Changes the password for a profile.

CopyProfile Copies a profile.
RenameProfile Renames a profile.
SetDefaultProfile Sets the default profile for a client application.
AdminServices Enumerates and makes configuration changes to

the message services in a profile.

 IProfAdmin::AdminServices

The IProfAdmin::AdminServices method enumerates and makes configuration changes to the
message services in a profile.

HRESULT AdminServices(
 LPTSTR lpszProfileName,
 LPTSTR lpszPassword,
 ULONG ulUIParam,
 ULONG ulFlags,
 LPSERVICEADMIN FAR * lppServiceAdmin
)

Parameters

lpszProfileName
Input parameter pointing to a string containing name of the profile affected. The lpszProfileName
parameter must not be NULL.

lpszPassword
Input parameter pointing to a string containing the profile's password. If a client application passes
NULL in the lpszPassword parameter and the profile requires a password to open, the profile
provider displays a dialog box prompting the user for the password if the MAPI_DIALOG flag is set
in the ulFlags parameter.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

ulFlags
Input parameter containing a bitmask of flags that controls how message service configurations are
changed. The following flags can be set:
MAPI_DIALOG

Displays a dialog box prompting the user for the profile password. If this flag is not set, no dialog
box is displayed.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppServiceAdmin
Output parameter pointing to a variable where a pointer to the returned message service
administration object is stored. This message service administration object is used to change
message service settings in the profile.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_LOGON_FAILED
The specified profile doesn't exist, or the password was wrong and a dialog box could not be
displayed to the user requesting the correct password because MAPI_DIALOG was not set in
ulFlags.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by clicking the Cancel button in a dialog box.

Remarks

Client applications call the IProfAdmin::AdminServices method to obtain a message service

administration object so as to make configuration changes to the message services within a profile.
Clients that only perform configuration should use IProfAdmin::AdminServices rather than the
IMAPISession::AdminServices method because the IProfAdmin method creates no session object
and loads no service providers. To make other changes, clients should call
IMAPISession::AdminServices.

Clients calling IProfAdmin::AdminServices must specify an existing profile in lpszProfileName. If the
specified profile does not exist, the call returns MAPI_E_LOGON_FAILED.

Profile providers are required to support names and passwords up to 64 characters long. Profile
providers are required to support the following characters in profile name and password strings:

· All alphanumeric characters, including accent characters and the underscore character.
· Embedded spaces, but not leading or trailing spaces.

Profile providers can also support additional characters in profile and password names.

Profile providers are not required to implement support for profile passwords. Additionally, profile
passwords are not supported on all operating system platforms; on platforms that do not support profile
passwords, lpszPassword can be NULL or a pointer to a zero-length string. Currently, Microsoft
Windows NT and Microsoft Windows 95 do not support passwords; Microsoft Windows version 3.1
does.

See Also

IMAPISession::AdminServices method

 IProfAdmin::ChangeProfilePassword

The IProfAdmin::ChangeProfilePassword method changes the password for a profile.

HRESULT ChangeProfilePassword(
 LPTSTR lpszProfileName,
 LPTSTR lpszOldPassword,
 LPTSTR lpszNewPassword,
 ULONG ulFlags
)

Parameters

lpszProfileName
Input parameter pointing to a string containing the name of the profile whose password is to be
changed.

lpszOldPassword
Input parameter pointing to a string containing the original password.

lpszNewPassword
Input parameter pointing to a string containing the new password.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in strings. The
following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_LOGON_FAILED
The password is incorrect.

MAPI_E_NO_SUPPORT
The operating system does not support passwords.

Remarks

Client applications call the IProfAdmin::ChangeProfilePassword method to replace one profile
password with another. ChangeProfilePassword does not display a user interface.

Profile providers are not required to implement support for profile passwords.
ChangeProfilePassword returns MAPI_E_NO_SUPPORT if the operating system does not support
passwords. Currently, Windows NT Server and Windows 95 do not support passwords; Windows
version 3.1 does.

 IProfAdmin::CopyProfile

The IProfAdmin::CopyProfile method copies a profile.

HRESULT CopyProfile(
 LPTSTR lpszOldProfileName,
 LPTSTR lpszOldPassword,
 LPTSTR lpszNewProfileName,
 ULONG ulUIParam,
 ULONG ulFlags
)

Parameters

lpszOldProfileName
Input parameter pointing to a string containing the name of the profile to copy.

lpszOldPassword
Input parameter pointing to a string containing the password of the profile to copy.

lpszNewProfileName
Input parameter pointing to a string containing the name of the new profile to create.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

ulFlags
Input parameter containing a bitmask of flags that controls how the profile is copied. The following
flags can be set:
MAPI_DIALOG

Displays a dialog box prompting the user for the correct password of the profile to copy. If this flag
is not set, no dialog box is displayed.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_ACCESS_DENIED
The new profile name is the same as that of an existing profile.

MAPI_E_LOGON_FAILED
The password for the profile to copy is incorrect, and a dialog box could not be displayed to the user
requesting the correct password because MAPI_DIALOG was not set in the ulFlags parameter.

MAPI_E_NOT_FOUND
The specified profile does not exist.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by clicking the Cancel button in a dialog box.

Remarks

Client applications call the IProfAdmin::CopyProfile method to make a copy of the profile indicated in
lpszOldProfileName. CopyProfile names the copy using the string given in the lpszNewProfileName
parameter. Copying a profile leaves the copy with the same password as the original.

Profile providers are required to support names and passwords up to 64 characters long. Profile
providers are required to support the following characters in profile name and password strings:

· All alphanumeric characters, including accent characters and the underscore character.
· Embedded spaces, but not leading or trailing spaces.

Profile providers can also support additional characters in profile and password names.

Profile providers are not required to implement support for profile passwords. Additionally, profile
passwords are not supported on all operating system platforms; on platforms that do not support profile
passwords, lpszOldPassword can be NULL or a pointer to a zero-length string. Currently, Windows NT
Server and Windows 95 do not support passwords; Windows version 3.1 does.

If a client passes NULL in lpszOldPassword and the profile to copy requires a password to open, the
profile provider must display a dialog box prompting the user to provide a password. If the wrong
password is supplied in lpszOldPassword and MAPI_DIALOG is not set in ulFlags, the call returns
MAPI_E_LOGON_FAILED instead of prompting the user to provide the password.

 IProfAdmin::CreateProfile

The IProfAdmin::CreateProfile method creates a new profile.

HRESULT CreateProfile(
 LPTSTR lpszProfileName,
 LPTSTR lpszPassword,
 ULONG ulUIParam,
 ULONG ulFlags
)

Parameters

lpszProfileName
Input parameter pointing to a string containing the name of the new profile.

lpszPassword
Input parameter pointing to a string containing the password of the new profile.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

ulFlags
Input parameter containing a bitmask of flags that controls how the profile is created. The following
flags can be set:
MAPI_DEFAULT_SERVICES

Indicates MAPI should populate the new profile with message services as indicated by the
[Default Services] section in the MAPISVC.INF file.

MAPI_DIALOG
Displays each service provider's configuration property sheets. If this flag is not set, then all the
message services added by this call are unconfigured.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
The specified new profile already exists.

Remarks

Client applications call the IProfAdmin::CreateProfile method to create a new profile. CreateProfile
can be used during client installation, at which point it can read data from a configuration file to fill its
input parameters. CreateProfile is also used by clients that enable users to create new profiles; in
such a case, the parameters receive input from a dialog box displayed by the client.

If the MAPI_DEFAULT_SERVICES flag is set in the ulFlags parameter, CreateProfile calls the
message service entry point function for each message service in the [Default Services] section in the
MAPISVC.INF file. The message service entry point function is called with the ulContext parameter set
to MSG_SERVICE_CREATE. If both the MAPI_DIALOG and MAPI_DEFAULT_SERVICES flags are
set in the CreateProfile method's ulFlags parameter, then the values in the ulUIParam and ulFlags
parameters are also passed when the message service entry point function is called. The message
service entry point functions are only called after all available information from the MAPISVC.INF file
has been added to the profile. Service providers should display their configuration property sheets so

that the user can configure the message service.

Profile providers are required to support names and passwords up to 64 characters long. Profile
providers are required to support the following characters in profile name and password strings:

· All alphanumeric characters, including accent characters and the underscore character.
· Embedded spaces, but not leading or trailing spaces.

Profile providers can also support additional characters in profile and password names.

Profile providers are not required to implement support for profile passwords. Additionally, profile
passwords are not supported on all operating system platforms; on platforms that do not support profile
passwords, lpszPassword can be NULL or a pointer to a zero-length string. Currently, Windows NT
Server and Windows 95 do not support passwords; Windows version 3.1 does.

If a profile with the same name as passed in the lpszProfileName parameter already exists,
CreateProfile returns MAPI_E_NO_ACCESS.

See Also

IMsgServiceAdmin::ConfigureMsgService method , IMsgServiceAdmin::CreateMsgService
method, MSGSERVICEENTRY function prototype

 IProfAdmin::DeleteProfile

The IProfAdmin::DeleteProfile method deletes a profile.

HRESULT DeleteProfile(
 LPTSTR lpszProfileName,
 ULONG ulFlags
)

Parameters

lpszProfileName
Input parameter pointing to a string containing the name of the profile to be deleted.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in string. The
following flag can be set:
MAPI_UNICODE

Indicates the passed-in string is in Unicode format. If the MAPI_UNICODE flag is not set, the
string is in ANSI format.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The specified profile does not exist.

Remarks

Client applications call the IProfAdmin::DeleteProfile method to delete a profile. If the profile indicated
in the lpszProfileName parameter does not exist, DeleteProfile returns MAPI_E_NOT_FOUND. If the
profile to delete is in use by a client when DeleteProfile is called, DeleteProfile returns S_OK but does
not delete the profile immediately. Instead, MAPI marks the profile for deletion and deletes it after all
clients have logged off the profile.

The message service entry point function is called for each message service in the MAPISVC.INF file
before each service is removed from the profile. The message service entry point function is called with
the MSG_SERVICE_DELETE value set in its ulContext parameter . First the function deletes the
service, and then it deletes the service's profile section. The message service entry point function is not
called again after the service has been deleted.

No password is required to delete a profile.

See Also

IMsgServiceAdmin::DeleteMsgService method , MSGSERVICEENTRY function prototype

 IProfAdmin::GetLastError

The IProfAdmin::GetLastError method returns a MAPIERROR structure containing information about
the last error that occurred for a profile object.

HRESULT GetLastError(
 HRESULT hResult,
 ULONG ulFlags,
 LPMAPIERROR FAR * lppMAPIError
)

Parameters

hResult
Input parameter containing the result returned for the last call for the profile object that returned an
error.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the strings in the MAPIERROR structure returned in the lppMAPIError parameter are in
Unicode format. If the MAPI_UNICODE flag is not set, the strings are in ANSI format.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure containing version,
component, and context information for the error. The lppMAPIError parameter can be set to NULL if
there is no MAPIERROR structure to return.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Client applications call the IProfAdmin::GetLastError method to retrieve information to display in a
message to the user regarding the last error returned from a method call for the profile object.

To release all the memory allocated by MAPI for the returned MAPIERROR structure, clients need only
call the MAPIFreeBuffer function.

The return value from GetLastError must be S_OK for a client to make use of the MAPIERROR
structure. Even if the return value is S_OK, a MAPIERROR structure might not be returned. If the
implementation cannot determine what the last error was, or if a MAPIERROR structure is not available
for that error, GetLastError returns a pointer to NULL in lppMAPIError instead.

See Also

MAPIERROR structure , MAPIFreeBuffer function

 IProfAdmin::GetProfileTable

The IProfAdmin::GetProfileTable method returns a table listing all profiles associated with a particular
client application.

HRESULT GetProfileTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the strings returned in the
table's default column set. The following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Output parameter pointing to a variable where the pointer to the returned profile table object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

A client application calls the IProfAdmin::GetProfileTable method to get a table containing rows listing
information for each profile that has been created for use with that client. The columns of the profile
table contain current information for the following properties:

PR_DISPLAY_NAME
PR_DEFAULT_PROFILE

Profiles that have been deleted, or that are in use but have been marked for deletion, are not returned
in the profile table. Once a profile table has been returned, it does not reflect changes being made to
the profile, such as the addition or deletion of profiles. Calls to the IMAPITable::Advise method for the
profile table return S_OK, but no changes are made to the table.

If no profile exists, GetProfileTable does not return an error but returns a table object supporting the
IMAPITable interface. If a client calls the IMAPITable::QueryRows method on that table, zero rows
are returned.

Setting the MAPI_UNICODE flag in the ulFlags parameter:

· Sets the string type to Unicode for data returned for the initial active columns of the profile table by
the IMAPITable::QueryColumns method. The initial active columns for a profile table are those
columns QueryColumns returns before the service provider that contains the table calls the
IMAPITable::SetColumns method.

· Sets the string type to Unicode for data returned for the initial active rows of the profile table by the
IMAPITable::QueryRows method. The initial active rows for a profile table are those rows
QueryRows returns before the provider that contains the table calls SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the provider that contains the profile table calls the IMAPITable::SortTable method.

See Also

IMAPITable : IUnknown interface , MAPILogonEx function

 IProfAdmin::RenameProfile

The IProfAdmin::RenameProfile method renames a profile.

HRESULT RenameProfile(
 LPTSTR lpszOldProfileName,
 LPTSTR lpszOldPassword,
 LPTSTR lpszNewProfileName,
 ULONG ulUIParam,
 ULONG ulFlags
)

Parameters

lpszOldProfileName
Input parameter pointing to a string containing the current name of the profile to rename.

lpszOldPassword
Input parameter pointing to a string containing the password of the profile to rename. If a client
application passes NULL in the lpszOldPassword parameter, and the profile requires a password to
open, the profile provider displays a dialog box prompting the user for the password.

lpszNewProfileName
Input parameter pointing to a string containing the name of the profile to rename.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

ulFlags
Input parameter containing a bitmask of flags that controls how the renaming operation is
performed. The following flags can be set:
MAPI_DIALOG

Displays a dialog box prompting the user for the profile password. If this flag is not set, no dialog
box is displayed.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_LOGON_FAILED
The profile password is incorrect.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by clicking the Cancel button in a dialog box.

Remarks

Client applications call the IProfAdmin::RenameProfile method to rename a profile. RenameProfile
takes the profile name in the lpszOldProfileName parameter and replaces it with the profile name in the
lpszNewProfileName parameter. Renaming the profile does not change its password. If the profile to
rename is in use by a client when RenameProfile is called, RenameProfile returns S_OK but does not
rename the profile immediately. Instead, MAPI marks the profile for renaming and renames it after all
clients have logged off the profile.

Profile providers are required to support names and passwords up to 64 characters long. Profile
providers are required to support the following characters in profile name and password strings:

· All alphanumeric characters, including accent characters and the underscore character.
· Embedded spaces, but not leading or trailing spaces.

Profile providers can also support additional characters in profile and password names.

Profile providers are not required to implement support for profile passwords. Additionally, profile
passwords are not supported on all operating system platforms; on platforms that do not support profile
passwords, lpszOldPassword can be NULL or a pointer to a zero-length string. Currently, Windows NT
Server and Windows 95 do not support passwords; Windows version 3.1 does.

If a client passes NULL in lpszOldPassword and the profile to rename requires a password to open, the
profile provider must display a dialog box prompting the user to provide a password. If the wrong
password is supplied in lpszOldPassword and MAPI_DIALOG is not set in ulFlags, the call returns
MAPI_E_LOGON_FAILED instead of prompting the user to provide the password.

 IProfAdmin::SetDefaultProfile

The IProfAdmin::SetDefaultProfile method sets the default profile for a client application.

HRESULT SetDefaultProfile(
 LPTSTR lpszProfileName,
 ULONG ulFlags
)

Parameters

lpszProfileName
Input parameter pointing to a string containing the name of the new default profile. If a client
application passes either NULL or a pointer to a zero-length string in the lpszProfileName parameter,
there will be no default profile and any existing default profile setting is removed.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in string. The
following flag can be set:
MAPI_UNICODE

Indicates the passed-in string is in Unicode format. If the MAPI_UNICODE flag is not set, the
string is in ANSI format.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The specified profile does not exist.

Remarks

Client applications call the IProfAdmin::SetDefaultProfile method to set the name of the profile to use
as the default when a particular client logs on to a MAPI session. This profile is the one used when
clients pass the MAPI_USE_DEFAULT flag when calling the MAPILogonEx function.
SetDefaultProfile also changes the PR_DEFAULT_PROFILE property within the profile.

See Also

IProfAdmin::GetProfileTable method , MAPILogonEx function , PR_DEFAULT_PROFILE property

 IProfSect : IMAPIProp

The IProfSect interface is used to work with properties of profile section objects by calling methods of
the IMAPIProp interface. IProfSect does not have any unique methods of its own, but you can call the
IMAPIProp methods on a profile section object with the following considerations.

The profile section object does not support a transaction model, so all changes made to a profile
section following calls to the IMAPIProp::CopyProps and IMAPIProp::CopyTo methods occur
immediately. Calls to the IMAPIProp::SaveChanges method succeed, but don't actually save any
changes. One consequence of this implementation is that when property sheets or dialog boxes work
on a profile section object directly, changes made by the user occur instantly. Service providers should
implement their property sheets and dialog boxes with copies of their profile section objects. The
following steps describe how to provide this type of implementation:

1. Open the profile section with the IMAPISupport::OpenProfileSection or
IProviderAdmin::OpenProfileSection methods.

2. Call the API function CreateIProp to retrieve a property data object.
3. Call the profile section's IMAPIProp::CopyTo method to copy properties from the profile section to

the property data object.
4. Call IMAPISupport::DoConfigPropSheet method to display the configuration user interface,

passing a pointer to the property data object for the lpConfigData parameter.
5. When the user saves changes to configuration properties in the property sheet or dialog box, call the

IMAPIProp::CopyTo method to copy the properties from the property data object to the profile
section.

Profile section objects do not support named properties. IMAPIProp::GetIDsFromNames and
IMAPIProp::GetNamesFromIDs return MAPI_E_NO_SUPPORT if called for a profile section object
and attempts to set properties with identifiers in the range above 0x8000 with IMAPIProp::SetProps
returns PT_ERROR as the property type.

Profile sections reserve the identifier range 0X67F0 to 0X67FF for secure properties. Service providers
can use this range to store passwords and other provider-specific credentials. Properties in this range
are not returned in the complete list of properties when NULL is passed in the lpPropTag parameter of
the IMAPIProp::GetProps method, nor are they returned in the lppPropTagArray parameter of the
IMAPIProp::GetPropList method. Secure properties must be requested specifically by their identifiers.

MAPI also furnishes a hard-coded profile section named MUID_PROFILE_INSTANCE, with
PR_SEARCH_KEY as its single property. In many cases, the PR_PROFILE_NAME property found on
any profile section is sufficient, but sometimes is not adequate because a deleted profile could be
succeeded by another with the same name. To cover this situation, this key is guaranteed by MAPI to
be unique among all profiles created.

At a Glance

Specified in header file: MAPIX.H
Object that supplies this
interface:

Profile section object

Corresponding pointer type: LPPROFSECT
Implemented by: Profile providers
Transaction model: Non-transacted
Called by: Client applications and service providers

Vtable Order

No unique methods

Required Properties

PR_OBJECT_TYPE Read only
PR_PROFILE_NAME Read only

 IPropData : IMAPIProp

Service providers use the IPropData interface to add object type properties to an object and to get and
set access rights for objects and properties. The IPropData interface is derived from the IMAPIProp
interface and does not have any additional methods or object types of its own. To use an IPropData
interface, call the CreateIProp function. For more information about using the IPropData interface to
manage data, see About Object and Property Access.

At a Glance

Specified in header file: MAPIUTIL.H
Object that supplies this
interface:

Property data

Corresponding pointer type: LPPROPDATA
Implemented by: MAPI
Transaction model: Non-transacted
Called by: Client applications, service providers

Vtable Order

HrSetObjAccess Sets the access rights for an object.
HrSetPropAccess Sets the access rights or modification flags for the

specified properties.
HrGetPropAcces
s

Returns the current access rights for the specified
properties.

HrAddObjProps Adds properties of type PT_OBJECT to an object.

 IPropData::HrAddObjProps

The IPropData::HrAddObjProps method adds properties of type PT_OBJECT to an object.

HRESULT HrAddObjProps(
 LPSPropTagArray lpPropTagArray,
 LPSPropProblemArray FAR * lppProblems
)

Parameters

lpPropTagArray
Input parameter pointing to an SPropTagArray structure containing an array of property tags
indicating the properties to add.

lppProblems
Output parameter pointing to a variable where the pointer to a returned SPropProblemArray
structure is stored. This structure holds information on properties that couldn't be accessed and
should be checked when the method returns. If a pointer to NULL is passed in the lppProblems
parameter, no SPropProblemArray is returned even if some specified properties were not added to
the object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INVALID_TYPE
A property type other than PT_OBJECT was passed in the SPropTagArray structure.

MAPI_E_NO_ACCESS
The object has been set not to allow read/write access.

MAPI_W_PARTIAL_COMPLETION
Some, but not all, of the properties were added.

Remarks

Client applications and service providers call the IPropData::HrAddObjProps method to add
properties to an object. The properties being added in the SPropTagArray structure in the
lpPropTagArray parameter must be of type PT_OBJECT. If properties of types other than PT_OBJECT
are added, the call returns MAPI_E_INVALID_TYPE.

If the HrAddObjProps call returns MAPI_W_PARTIAL_COMPLETION and a pointer to an
SPropProblemArray structure in lppProblems, check the returned SPropProblemArray structure to
find out which properties were not added. The SPropProblemArray structure must be freed by calling
the MAPIFreeBuffer function.

If the object to add properties to has previously been set to disallow read/write access,
HrAddObjProps returns MAPI_E_NO_ACCESS. To obtain read/write access, a client or provider
should first call the IPropData::SetObjAccess method passing in the IPROP_READWRITE flag in the
ulAccess parameter, then call HrAddObjProps to add properties to the object.

See Also

MAPIFreeBuffer function , SPropProblemArray structure , SPropTagArray structure

 IPropData::HrGetPropAccess

The IPropData::HrGetPropAccess method returns the current access rights for the specified
properties.

HRESULT HrGetPropAccess(
 LPSPropTagArray FAR * lppPropTagArray,
 ULONG FAR * FAR * lprgulAccess
)

Parameters

lppPropTagArray
Input-output parameter that on input contains an SPropTagArray structure containing an array of
property tags indicating the properties for which to return access rights. If a pointer to NULL is
passed in the lppPropTagArray parameter, then access rights for all properties of the object are
sought. On output, lppPropTagArray points to a variable where the returned SPropTagArray
structure is stored. This returned SPropTagArray contains the access rights for the specified
properties.

lprgulAccess
Output parameter pointing to a variable where an array of bitmasks of flags is returned. Each
bitmask indicates the access rights of one of the individual properties returned in the
SPropTagArray structure. For each property tag, the following flags can be returned:
IPROP_CLEAN

Indicates the property hasn't been modified.
IPROP_DIRTY

Indicates the property has been modified.
IPROP_READONLY

Indicates the property is read-only.
IPROP_READWRITE

Indicates the property is read/write.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications and service providers call the IPropData::HrGetPropAccess method to get the
access rights for each property of an object. HrGetPropAccess is also used to check whether a
property has been modified or deleted. If a property requested has been deleted, it is not returned in
the SPropTagArray structure; zero is returned instead. If a client or provider passes a pointer to NULL
in the lppPropTagArray parameter, the deleted property is returned in the array. If a property has been
modified, its IPROP_DIRTY flag is set.

See Also

SPropTagArray structure

 IPropData::HrSetObjAccess

The IPropData::HrSetObjAccess method sets the access rights for an object.

HRESULT HrSetObjAccess(
 ULONG ulAccess
)

Parameters

ulAccess
Input parameter containing a bitmask of flags that sets the access rights of the object. One of the
following flags can be set:
IPROP_READONLY

Sets the object's properties to read-only.
IPROP_READWRITE

Sets the object's properties to read/write.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client application and service providers call the IPropData::HrSetObjAccess method to set the
access rights for an entire object. By default, all MAPI objects have read-only access set when they are
created. To set access rights on individual properties, a client or provider first sets the access rights for
the object by calling HrSetObjAccess with the IPROP_READWRITE flag set in the ulAccess
parameter. It then calls the IPropData::HrSetPropAccess method to set the access rights for
individual properties.

See Also

IPropData::HrGetPropAccess method , IPropData::HrSetPropAccess method

 IPropData::HrSetPropAccess

The IPropData::HrSetPropAccess method sets the access rights or modification flags for the
specified properties.

HRESULT HrSetPropAccess(
 LPSPropTagArray lpPropTagArray,
 ULONG FAR * rgulAccess
)

Parameters

lpPropTagArray
Input parameter pointing to an SPropTagArray structure containing an array of property tags. These
tags indicate the properties affected by the access flags in the array of bitmasks in the rgulAccess
parameter.

rgulAccess
Input parameter containing an array of bitmasks of flags used to set the access rights of the
properties listed in the SPropTagArray structure in the lpPropTagArray parameter. For each
property tag, the following flags can be set:
IPROP_CLEAN

Sets the individual property to an unmodified state.
IPROP_DIRTY

Sets the individual property to a modified state.
IPROP_READONLY

Sets the individual property to read-only.
IPROP_READWRITE

Sets the individual property to read/write.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only object or an attempt to access an object for which the
user has insufficient permissions.

Remarks

By default, all MAPI properties have read/write access set when they are created. Client applications
and service providers call the IPropData::HrSetPropAccess method to change the access rights for
each individual property in the SPropTagArray structure in the lpPropTagArray parameter. For each
property, there is a corresponding entry in the rgulAccess array that is a bitmask . There are two pairs
of valid values for these bits; each pair is mutually exclusive. The pairs of valid values are as follows:

IPROP_READONLY IPROP_CLEAN
IPROP_READWRITE IPROP_DIRTY

HrSetPropAccess returns MAPI_E_INVALID_PARAMETER when callers try to ignore the mutual
exclusivity of these values and pass IPROP_READONLY with IPROP_READWRITE or
IPROP_CLEAN with IPROP_DIRTY.

See Also

SPropTagArray structure

 IProviderAdmin : IUnknown

The IProviderAdmin interface is used to manage the service providers within a message service. A
calling process can get a pointer to an IProviderAdmin interface in two ways: by calling the
IMsgServiceAdmin::AdminProviders method or from within a provider's message service entry point
function. Client applications calling methods of the IProviderAdmin interface are not allowed to create
or delete providers; all such changes made to a message service must be made from within the
context of a message service entry point function.

Most message services do not allow providers to be added or deleted while the profile is in use. The
results are unpredictable if an implementation makes changes to the profile section of a service that
doesn't support changes.

At a Glance

Specified in header file: MAPIDEFS.H
Object that supplies this
interface:

Provider administration object

Corresponding pointer type: LPPROVIDERADMIN
Implemented by: MAPI
Called by: Client applications, service providers

Vtable Order

GetLastError Returns a MAPIERROR structure containing
information about the last error that occurred for a
provider administration object.

GetProviderTable Returns a table listing the service providers in a
message service.

CreateProvider Adds a service provider to a message service.
DeleteProvider Deletes a service provider from a message service.
OpenProfileSecti
on

Opens a section of the current profile and returns a
pointer that provides further access to the profile
object.

 IProviderAdmin::CreateProvider

The IProviderAdmin::CreateProvider method adds a service provider to a message service.

HRESULT CreateProvider(
 LPTSTR lpszProvider,
 ULONG cValues,
 LPSPropValue lpProps,
 ULONG ulUIParam,
 ULONG ulFlags,
 MAPIUID FAR * lpUID
)

Parameters

lpszProvider
Input parameter pointing to a string containing the name of the provider to add.

cValues
Input parameter containing the number of property values in the SPropValue structure pointed to by
the lpProps parameter.

lpProps
Input parameter pointing to an SPropValue structure containing the property values of the
properties associated with this provider object.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays. The ulUIParam parameter is used if the MAPI_DIALOG flag is set in the ulFlags
parameter.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the passed-in string. The
following flag can be set:
MAPI_UNICODE

Indicates the passed-in string is in Unicode format. If the MAPI_UNICODE flag is not set, the
string is in ANSI format.

lpUID
Output parameter pointing to the MAPIUID structure holding the MAPI unique identifier (MAPIUID)
for the provider to add.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by clicking the Cancel button in a dialog box.

Remarks

Client applications and message-service entry point functions call the
IProviderAdmin::CreateProvider method to add a provider to a message service. The string in the
lpszProvider parameter must name a provider that belongs to the message service. MAPI does not
verify that the name matches the name of a provider in the service; if the passed name doesn't match a
service name, the call succeeds, but the results are unpredictable. Most message services do not allow
providers to be added or deleted while the profile is in use.

The message service entry point function for the message service is called with the
MSG_SERVICE_PROVIDER_CREATE value set in its ulContext parameter. If MAPI_DIALOG is set in

the CreateProvider method's ulFlags parameter, then the values in the ulUIParam and ulFlags
parameters are also passed when the entry point function is called. Service providers should display
their configuration property sheets so the user can configure the message service.

The message service entry point function is only called after all available information from the
MAPISVC.INF file has been added to the profile.

See Also

MAPIUID structure , MSGSERVICEENTRY function prototype , SPropValue structure

 IProviderAdmin::DeleteProvider

The IProviderAdmin::DeleteProvider method deletes a service provider from a message service.

HRESULT DeleteProvider(
 LPMAPIUID lpUID
)

Parameters

lpUID
Input parameter pointing to the MAPIUID structure holding the MAPI unique identifier (MAPIUID) for
the provider to delete.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The MAPIUID was not recognized.

Remarks

Client applications and message service entry point functions call the
IProviderAdmin::DeleteProvider method to delete from a message service the provider indicated by
the unique identifier in the lpUID parameter. Most message services do not allow providers to be added
or deleted while the profile is in use.

If the provider to delete is in use by an implementation when DeleteProvider is called, DeleteProvider
returns S_OK but does not delete the provider immediately. Instead, MAPI marks the provider for
deletion and deletes it after all implementations have logged off the provider.

The message service entry point function is called for the message service before the provider is
removed from the service. The message service entry point function is called with the
MSG_SERVICE_PROVIDER_DELETE value set in its ulContext parameter. First the function deletes
the provider, and then it deletes the provider's profile section. The message service entry point function
is not called again after the provider has been deleted.

See Also

MAPIUID structure , MSGSERVICEENTRY function prototype

 IProviderAdmin::GetLastError

The IProviderAdmin::GetLastError method returns a MAPIERROR structure containing information
about the last error that occurred for a provider administration object.

HRESULT GetLastError(
 HRESULT hResult,
 ULONG ulFlags,
 LPMAPIERROR FAR * lppMAPIError
)

Parameters

hResult
Input parameter containing the result returned for the last call for the provider administration object
that returned an error.

ulFlags
Input parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the strings in the MAPIERROR structure returned in the lppMAPIError parameter are in
Unicode format. If the MAPI_UNICODE flag is not set, the strings are in ANSI format.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure containing version,
component, and context information for the error. The lppMAPIError parameter can be set to NULL if
there is no MAPIERROR structure to return.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

Client applications and message service entry point functions call the IProviderAdmin::GetLastError
method to retrieve information to display in a message to the user regarding the last error returned
from a method call for the provider administration object.

To release all the memory allocated by MAPI for the returned MAPIERROR structure, clients need only
call the MAPIFreeBuffer function.

The return value from GetLastError must be S_OK for a client to make use of the MAPIERROR
structure. Even if the return value is S_OK, a MAPIERROR structure might not be returned. If the
implementation cannot determine what the last error was, or if a MAPIERROR structure is not available
for that error, GetLastError returns a pointer to NULL in lppMAPIError instead.

See Also

MAPIERROR structure , MAPIFreeBuffer function

 IProviderAdmin::GetProviderTable

The IProviderAdmin::GetProviderTable method returns a table listing the service providers in a
message service.

HRESULT GetProviderTable(
 ULONG ulFlags,
 LPMAPITABLE FAR * lppTable
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls the type of the strings returned in the
provider table's default column set. The following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Output parameter pointing to a variable where the pointer to the returned provider table object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications and message service entry point functions call the
IProviderAdmin::GetProviderTable method to get a pointer to a table object that lists all of the
address book, message store, transport, and message hook providers currently installed as part of a
message service. The columns of the provider table contain the current information for the following
properties:

PR_DISPLAY_NAME
PR_INSTANCE_KEY
PR_PROVIDER_DISPLAY
PR_PROVIDER_DLL_NAME
PR_PROVIDER_UID
PR_RESOURCE_TYPE
PR_SERVICE_NAME
PR_SERVICE_UID

The following properties are computed only for transport providers:

PR_PROVIDER_ORDINAL
PR_RESOURCE_FLAGS

The provider table's PR_PROVIDER_ORDINAL property can be used to restrict sort operations on the
table. The first transport provider in the list has PR_PROVIDER_ORDINAL set to 0, the next provider to
1, and so on; this functionality enables a client to retrieve the table with the list of providers set to the
correct order.

Providers that have been deleted, or are in use but have been marked for deletion, are not returned in
the provider table. Once a provider table has been returned, it does not reflect changes being made to

the profile, such as the addition or deletion of providers. Calls to the IMAPITable::Advise method for
the provider table return S_OK, but no changes are made to the table.

If no provider exists, GetProviderTable does not return an error but returns a table object supporting
the IMAPITable interface. If the IMAPITable::QueryRows method is called on that table, zero rows are
returned.

Setting the MAPI_UNICODE flag in the ulFlags parameter does the following:

· Sets the string type to Unicode for data returned for the initial active columns of the provider table by
the IMAPITable::QueryColumns method. The initial active columns for a provider table are those
columns the QueryColumns method returns before the provider that contains the table calls the
IMAPITable::SetColumns method.

· Sets the string type to Unicode for data returned for the initial active rows of the provider table by
QueryRows. The initial active rows for a provider table are those rows QueryRows returns before
the provider that contains the table calls SetColumns.

· Controls the property types of the sort order returned by the IMAPITable::QuerySortOrder method
before the provider that contains the provider table calls the IMAPITable::SortTable method.

GetProviderTable may return extra sections associated with the messaging services in the table in
addition to the service providers themselves. Extra sections are those added to the profile using the
"Sections" keyword of MAPISVC.INF, or added by providers using the PR_SERVICE_EXTRA_UIDS
property of the messaging service profile section. If your application needs to process only service
providers, it can identify the extra sections by the fact that the PR_RESOURCE_TYPE column
contains a property type of PT_ERROR. This column must be present on service provider sections.
Note that this only applies to IProviderAdmin::GetProviderTable, and not
IMsgServiceAdmin::GetProviderTable, which does not include extra sections in the table.

See Also

IMAPITable::QueryColumns method , IMAPITable::QueryRows method ,
IMAPITable::QuerySortOrder method , IMAPITable::SetColumns method ,
IMsgServiceAdmin::GetProviderTable method

 IProviderAdmin::OpenProfileSection

The IProviderAdmin::OpenProfileSection method opens a section of the current profile and returns a
pointer that provides further access to the profile object.

HRESULT OpenProfileSection(
 LPMAPIUID lpUID,
 LPCIID lpInterface,
 ULONG ulFlags,
 LPPROFSECT FAR * lppProfSect
)

Parameters

lpUID
Input parameter pointing to the MAPIUID structure holding the MAPI unique identifier (MAPIUID) for
the profile section. Client applications must not pass NULL for the lpUID parameter. A service
provider can pass NULL to get the MAPIUID when calling from its message service entry point
function.

lpInterface
Input parameter pointing to the interface identifier (IID) for the profile section. Passing NULL
indicates the identifier for the profile section object interface for the object, IID_IProfSect, is used.
The lpInterface parameter can also be set to an identifier for an appropriate interface for the object,
for example IID_IMAPIProp or IID_IProfSect.

ulFlags
Input parameter containing a bitmask of flags that controls how the profile section is opened. The
following flags can be set:
MAPI_DEFERRED_ERRORS

Indicates the call is allowed to succeed even if the underlying object is not accessible to the
calling process. If the object is not accessible, some subsequent call to the object might return an
error.

MAPI_MODIFY
Requests read/write access. By default, objects are created with read-only access; providers
should not work on the assumption that read/write access has been granted. Clients are not
allowed read/write access to provider sections of the profile.

lppProfSect
Output parameter pointing to a variable where the pointer to the returned profile section object is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
An attempt was made to modify a read-only profile section or an attempt to access an object for
which the user has insufficient permissions.

MAPI_E_NOT_FOUND
The requested object does not exist.

Remarks

Client applications and message service entry point functions call the
IProviderAdmin::OpenProfileSection method to open a profile section for reading information from
and writing information to the active profile for the session. A profile section object supporting the
IProfSect interface is returned in the lppProfSect parameter. Default behavior is to open the profile

section as read-only, unless the call sets the MAPI_MODIFY flag in the ulFlags parameter. Clients
cannot open profile sections belonging to providers using the IProviderAdmin::OpenProfileSection
method.

More than one method call can open a profile section with read-only access at a time, but only one
method call can open a profile section with read/write access at a time. If any other process has the
profile section open, a read/write open operation fails and returns MAPI_E_NO_ACCESS. A read-only
open operation fails if the section is open for writing.

If an OpenProfileSection call opens a nonexistent profile section by passing MAPI_MODIFY in
ulFlags, the call creates the section. If an OpenProfileSection call attempts to open a nonexistent
section with read-only access, it returns MAPI_E_NOT_FOUND.

See Also

IMAPIProp : IUnknown interface , IProfSect : IMAPIProp interface , MAPIUID structure

 ISpoolerHook : IUnknown

The ISpoolerHook interface enables a messaging hook provider to reroute messages before they go
to their destination.

At a Glance

Specified in header file: MAPIHOOK.H
Object that supplies this
interface:

Messaging hook provider object

Corresponding pointer type: LPSPOOLERHOOK
Implemented by: Messaging hook providers
Called by: The MAPI spooler

Vtable Order

InboundMsgHook Informs the MAPI spooler it should allow the
messaging hook provider to reroute a message from
the Inbox to another folder.

OutboundMsgHoo
k

Informs the MAPI spooler it should allow the
messaging hook provider to reroute a message from
the Sent Items folder to another folder.

 ISpoolerHook::InboundMsgHook

The ISpoolerHook::InboundMsgHook method informs the MAPI spooler it should allow the
messaging hook provider to reroute a message from the Inbox to another folder.

HRESULT InboundMsgHook(
 LPMESSAGE lpMessage,
 LPMAPIFOLDER lpFolder,
 LPMDB lpMDB,
 ULONG FAR * lpulFlags,
 ULONG FAR * lpcbEntryID,
 LPBYTE FAR * lppEntryID
)

Parameters

lpMessage
Input parameter pointing to the message to reroute.

lpFolder
Input parameter pointing to the parent folder of the message in its message store.

lpMDB
Input parameter pointing to the message store containing the folder and message.

lpulFlags
Output parameter containing a bitmask of flags that controls how the MAPI spooler responds to the
hook for the message indicated in the lpMessage parameter. The following flags can be set:
HOOK_CANCEL

Indicates any subsequent hook functions should not be called for this message. If a hook closes,
moves, or deletes the message, the messaging hook provider should set this flag.

HOOK_DELETE
Indicates the message should be deleted without being moved.

lpcbEntryID
Input-output parameter pointing to a variable containing the size, in bytes, of the entry identifier
pointed to by the lppEntryID parameter.

lppEntryID
Input-output parameter pointing to a variable where is stored the pointer to the entry identifier of the
folder where the message will be moved.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Messaging hook providers implement the ISpoolerHook::InboundMsgHook method to reroute a
message from the default Inbox to another folder. Before moving a message to another folder or
message store, a messaging hook provider should call the IUnknown::QueryInterface method for the
message object to make sure the provider can get an interface for the message that is compatible with
the provider's implementation.

Before rerouting a message, a messaging hook provider must replace the passed-in entry identifier in
lppEntryID with the entry identifier of the new target folder. The MAPI spooler moves the message to
the indicated folder for the provider, unless another hook function replaces the folder entry identifier. If
a hook requires that its operation be the final action on the message, it can set the HOOK_CANCEL
flag in the lpulFlags parameter before returning.

If a provider replaces the lppEntryID entry identifier, it must call the MAPIFreeBuffer function to free
the previous one. The copy of the entry identifier the provider stores in lppEntryID should be allocated
using the MAPIAllocateBuffer function.

If a messaging hook provider's implementation must move a message to another folder itself, it should
close the message, place zero in the lpcbEntryID parameter, and free the lppEntryID entry identifier, if
lppEntryID is not already NULL. The hook then sets lppEntryID to NULL and places a pointer to the
message's new parent folder in lpFolder. Messaging hook providers that move the message must set
HOOK_CANCEL in lpulFlags.

If a hook deletes a message, it should close the message, place zero in lpcbEntryID, and place NULL
in lppEntryID after freeing the existing entry identifier if need be. It then deletes the message and
returns HOOK_CANCEL in lpulFlags. Alternatively, it can combine the HOOK_CANCEL and
HOOK_DELETE flags in lpulFlags using the logical OR operator.

The MAPI spooler calls hook providers in the order in which they are specified in the provider section of
the profile, as it does transport providers. The MAPI spooler releases the messaging hook provider
object at session shutdown. If a provider called the IUnknown::AddRef method for a session at
initialization, it should call the IUnknown::Release method to release the session and any objects,
such as message stores, it opened and maintained during the session.

 ISpoolerHook::OutboundMsgHook

The ISpoolerHook::OutboundMsgHook method informs the MAPI spooler it should allow the
messaging hook provider to reroute a message from the Sent Items folder to another folder.

HRESULT OutboundMsgHook(
 LPMESSAGE lpMessage,
 LPMAPIFOLDER lpFolder,
 LPMDB lpMDB,
 ULONG FAR * lpulFlags,
 ULONG FAR * lpcbEntryID,
 LPBYTE FAR * lppEntryID
)

Parameters

lpMessage
Input parameter pointing to the message to reroute.

lpFolder
Input parameter pointing to the parent folder of the message in its message store.

lpMDB
Input parameter pointing to the message store containing the folder and message.

lpulFlags
Output parameter containing a bitmask of flags that controls how the MAPI spooler responds to the
hook for the message indicated in the lpMessage parameter. The following flags can be set:
HOOK_CANCEL

Indicates any subsequent hook functions should not be called for this message. If a hook closes,
moves, or deletes the message, the messaging hook provider should set this flag.

HOOK_DELETE
Indicates the message should be deleted without being moved.

lpcbEntryID
Input-output parameter pointing to a variable containing the size, in bytes, of the entry identifier
pointed to by the lppEntryID parameter.

lppEntryID
Input-output parameter pointing to a variable where the pointer to the entry identifier of the folder
where the message will be moved is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Messaging hook providers implement the ISpoolerHook::OutboundMsgHook method to reroute a
message from the default Sent Items folder to another folder. Before moving a message to another
folder or message store, a messaging hook provider should call the IUnknown::QueryInterface
method for the message object to make sure the provider can get an interface for the message that is
compatible with the provider's implementation.

Before rerouting a message, a messaging hook provider must replace the passed-in entry identifier in
lppEntryID with the entry identifier of the new target folder. The MAPI spooler moves the message to
the indicated folder for the provider, unless another hook function replaces the folder entry identifier. If
a hook requires that its operation be the final action on the message, it can set the HOOK_CANCEL
flag in the lpulFlags parameter before returning.

If a provider replaces the lppEntryID entry identifier, it must call the MAPIFreeBuffer function to free
the previous one. The copy of the entry identifier the provider stores in lppEntryID should be allocated
using the MAPIAllocateBuffer function.

If a messaging hook provider's implementation must move a message to another folder itself, it should
close the message, place zero in the lpcbEntryID parameter, and free the lppEntryID entry identifier, if
lppEntryID is not already NULL. The hook then sets lppEntryID to NULL and places a pointer to the
message's new parent folder in lpFolder. Messaging hook providers that move the message must set
HOOK_CANCEL in lpulFlags.

If a hook deletes a message, it should close the message, place zero in lpcbEntryID, and place NULL
in lppEntryID after freeing the existing entry identifier if need be. It then deletes the message and
returns HOOK_CANCEL in lpulFlags. Alternatively, it can combine the HOOK_CANCEL and
HOOK_DELETE flags in lpulFlags using the logical OR operator.

The MAPI spooler calls hook providers in the order in which they are specified in the provider section of
the profile, as it does transport providers. The MAPI spooler releases the messaging hook provider
object at session shutdown. If a provider called the IUnknown::AddRef method for a session at
initialization, it should call the IUnknown::Release method to release the session and any objects,
such as message stores, it opened and maintained during the session.

 ITableData : IUnknown

The ITableData interface provides utility methods for working with tables.

At a Glance

Specified in header file: MAPIUTIL.H
Object that supplies this
interface:

Table data object

Corresponding pointer type: LPTABLEDATA
Implemented by: MAPI
Called by: Client applications, service providers

Vtable Order

HrGetView Creates a new view for a table.
HrModifyRow Modifies a row in a table, or adds a row to a table.
HrDeleteRow Deletes a row from a table.
HrQueryRow Returns all properties of a specified row in a table and its

row index in that table.
HrEnumRow Returns the properties contained in a row of a table.
HrNotify Finds a particular table row so as to send a notification

about that row.
HrInsertRow Inserts a row into a table.
HrModifyRow
s

Modifies multiple rows in a table, or adds multiple rows to
a table.

HrDeleteRow
s

Deletes multiple rows from a table.

 ITableData::HrDeleteRow

The ITableData::HrDeleteRow method deletes a row from a table.

HRESULT HrDeleteRow(
 LPSPropValue lpSPropValue
)

Parameters

lpSPropValue
Input parameter pointing to an SPropValue structure that holds the property value for the property
that indicates the index number of the row to delete. This property value must contain the same
index column value as was passed for the ulPropTagIndexColumn parameter of the call to the
CreateTable function when the table was created.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NOT_FOUND
The SPropValue structure passed does not match a corresponding row in the table.

Remarks

Client applications and service providers call the ITableData::HrDeleteRow method to delete a table
row. To perform this deletion, HrDeleteRow takes in the lpSPropValue parameter a property value
indicating the row's index number and uses this index to locate and delete the row from the underlying
table and from any open views for the table. This property value must contain the same index column
value as was passed for the CreateTable ulPropTagIndexColumn when the table was created. If no
row with that index number exists, HrDeleteRow returns MAPI_E_NOT_FOUND.

After the row is deleted, notifications are sent to all implementations that have an open view on the
table and that have registered to receive notifications for table modifications.

Deleting a row does not reduce the columns available to existing views or subsequently opened views,
even if the deleted row was the last row with a value for a specific column.

See Also

CreateTable function , ITableData::HrDeleteRows method , ITableData::HrModifyRow method ,
SPropValue structure , TABLE_NOTIFICATION structure

 ITableData::HrDeleteRows

The ITableData::HrDeleteRows method deletes multiple rows from a table.

HRESULT HrDeleteRows(
 ULONG ulFlags,
 LPSRowSet lprowsetToDelete,
 ULONG FAR * cRowsDeleted
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how table rows are deleted. The following
flag can be set:
TAD_ALL_ROWS

Deletes all rows from the underlying table data and all corresponding table views and sends a
single TABLE_RELOAD notification to all table views registered for notifications.

lprowsetToDelete
Input parameter pointing to an SRowSet structure containing a counted array of index properties,
each of which indicates a row to delete. To be deleted, each row must have an index property that is
unique among all rows for this table. The lprowsetToDelete parameter can be NULL if the
TAD_ALL_ROWS flag is set in the ulFlags parameter.

cRowsDeleted
Output parameter containing a variable where the returned number of rows deleted is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications and service providers call the ITableData::HrDeleteRows method to find and delete
multiple table rows. To perform this deletion, HrDeleteRows locates and deletes each row
corresponding to an index property in the SRowSet structure passed in lprowsetToDelete. The
property values in lprowsetToDelete must contain the same index column values as passed for the
ulPropTagIndexColumn parameter of the call to the CreateTable function when the table was created.

HrDeleteRows returns in the cRowsDeleted parameter the number of rows actually deleted. It does
not return an error for rows that were not found. For example, if none of the rows requested can be
found, zero is returned in cRowsDeleted. If TAD_ALL_ROWS is set in ulFlags, all rows in the table are
deleted.

After the rows are deleted, a single notification is sent to each implementation that has an open view
on the table and that has registered to receive notifications for table modifications.

Deleting rows does not reduce the columns available to existing table views or subsequently opened
table views, even if the rows deleted were the last with values for a specific column.

See Also

CreateTable function , ITableData::HrDeleteRow method , ITableData::HrModifyRows method ,
SRowSet structure , TABLE_NOTIFICATION structure

 ITableData::HrEnumRow

The ITableData::HrEnumRow method returns the properties contained in a row of a table.

HRESULT HrEnumRow(
 ULONG ulRowNumber,
 LPSRow FAR * lppSRow
)

Parameters

ulRowNumber
Input parameter indicating the number of the row for which to return properties. The value in the
ulRowNumber parameter can be any value from 0 through n - 1, where n is the total number of rows
in the table.

lppSRow
Output parameter pointing to a variable where a pointer to the returned SRow structure holding
property information about the row is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications and service providers call the ITableData::HrEnumRow method to return the full
property set for the row indicated in ulRowNumber. Rows can be enumerated with multiple calls to this
method. The rows are returned based on the chronological order that they were added to the table.
This chronological order is maintained for the life of the table object.

If the row number indicated in ulRowNumber does not exist, NULL is returned in the SRow structure in
the lppSRow parameter and the method returns S_OK.

MAPI allocates memory for the returned SRow structure using the MAPIAllocateBuffer function when
the table is created. The calling process must release this memory by calling the MAPIFreeBuffer
function when done with the SRow.

See Also

MAPIAllocateBuffer function , MAPIFreeBuffer function , SRow structure

 ITableData::HrGetView

The ITableData::HrGetView method creates a new view for a table.

HRESULT HrGetView(
 LPSSortOrderSet lpSSortOrderSet,
 CALLERRELEASE FAR * lpfCallerRelease,
 ULONG ulCallerData,
 LPMAPITABLE FAR * lppMAPITable
)

Parameters

lpSSortOrderSet
Input parameter pointing to an SSortOrderSet structure holding the default sort order for the view. If
NULL is passed in the lpSSortOrderSet parameter, no initial sorting is done.

lpfCallerRelease
Input parameter pointing to a callback function to call when the view is released. This callback
function is passed the data contained in the ulCallerData parameter. If NULL is passed in the
lpfCallerRelease parameter, no callback is made.

ulCallerData
Input parameter containing 32-bit data that the calling process requires saved with the new view and
returned in the release callback.

lppMAPITable
Output parameter pointing to a variable where the pointer to the newly created view is stored. The
table view pointed to by the lppMAPITable parameter is the table that a service provider passes to a
client application.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications and service providers call the ITableData::HrGetView method to create a new view
for a table. All rows and columns of the table are initially visible in the view; no restriction is initially
applied to the table. When a sort order is specified in lpSSortOrderSet, the view is sorted according to
the specified order and the cursor is placed at the beginning of the first row.

When the calling process requires more complex initial conditions for a view than can be produced by
sorting, it should set a sort order, set a restriction, and then return the view to the client application.

When the table object returned by HrGetView is released, the callback function, based on the
CALLERRELEASE function prototype, that is specified in the lpfCallerRelease parameter is called with
the data contained in the ulCallerData parameter, a pointer to the table data object the view applies to,
and the pointer to the table object being released.

See Also

CALLERRELEASE function prototype , IMAPITable : IUnknown interface , SSortOrderSet structure

 ITableData::HrInsertRow

The ITableData::HrInsertRow method inserts a row into a table.

HRESULT HrInsertRow(
 ULONG uliRow,
 LPSRow lpSRow
)

Parameters

uliRow
Input parameter containing the number of the table row before which the new row is inserted. The
uliRow parameter can hold row numbers from 0 through n, where n is the total number of rows in the
table; passing n in uliRow results in the row being appended to the table's end.

lpSRow
Input parameter pointing to an SRow structure containing all properties for the row being inserted.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INVALID_PARAMETER
A row already exists with the same index column.

Remarks

Client applications and service providers call the ITableData::HrInsertRow method to insert a row into
a table. Passing a value of 0 through n - 1 in the uliRow parameter results in the new row being
inserted above the table row with the given number. Passing a value of n in uliRow results in the new
row being appended to the table's end.

One of the property columns in the SRow structure in the lpSRow parameter must be a column holding
the index property of the row to be inserted, which uniquely identifies the row within the table. If this
value for the index column already exists within the table, HrInsertRow returns
MAPI_E_INVALID_PARAMETER. If there is no current row with this index value, HrInsertRow adds
the new row. The property columns in the SRow structure do not have to be in the same order as the
property columns in the table.

After the row is inserted, notifications are sent to all implementations that have an open view on the
table and that have registered to receive notifications for table modifications. Notifications are not sent
if the rows have been restricted out of the view on the table.

See Also

SRow structure , TABLE_NOTIFICATION structure

 ITableData::HrModifyRow

The ITableData::HrModifyRow method modifies a row in a table, or adds a row to a table.

HRESULT HrModifyRow(
 LPSRow lpSRow
)

Parameters

lpSRow
Input parameter pointing to an SRow structure containing the set of properties for the row to add or
modify. The indicated row must contain the same index column as passed in the
ulPropTagIndexColumn parameter of the call to the CreateTable function when the table was
created.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INVALID_PARAMETER
The passed-in row does not have an index column.

Remarks

Client applications and service providers call the ITableData::HrModifyRow method to modify one row
of a table or add one row to a table. The SRow structure specified in the lpSRow parameter contains
the properties for the row to add or modify.

One of the property columns in the SRow structure must be a column holding the index property of the
row to modify or add; this index column must be the same as passed for ulPropTagIndexColumn in the
CreateTable call that created the table. HrModifyRow replaces with the new row any row in the table
that has the same index value as in the SRow structure. If there is no current row with this index value,
HrModifyRow adds the new row to the end of the table.

The property columns in the SRow structuredo not have to be in the same order as the property
columns in the table. The SRow structure can also include properties for which there are no current
columns in the table; MAPI adds new columns to the table as needed.

The row is modified or inserted for all views on the table object. Doing so can involve adding the row to
or removing it from a view based on a restriction in effect for the view. Columns added because the
SRow structure includes properties for which there are no current columns become available to
existing views but are not included in existing views' currently active columns. However, added
columns are active in views opened after their addition. After a row is inserted, notifications are sent to
all implementations that have an open view on the table and that have registered to receive
notifications for table modifications.

Any text or string properties placed in a client table must be in the client's character set, whether ANSI
or Unicode. MAPI's table implementation does not handle character set conversions.

See Also

SRow structure , TABLE_NOTIFICATION structure

 ITableData::HrModifyRows

The ITableData::HrModifyRows method modifies multiple rows in a table, or adds multiple rows to a
table.

HRESULT HrModifyRows(
 ULONG ulFlags,
 LPSRowSet lpSRowSet
)

Parameters

ulFlags
Reserved; must be zero.

lpSRowSet
Input parameter pointing to an SRowSet structure containing the set of rows to add or modify.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INVALID_PARAMETER
One or more of the passed-in rows does not have an index column. If this error is returned, no rows
are changed.

Remarks

Client applications and service providers call the ITableData::HrModifyRows method to modify the
table rows indicated in the SRowSet structure passed in the lpSRowSet parameter. If no current table
rows match the rows in the SRowSet, HrModifyRows adds the indicated rows to the table.
HrModifyRows replaces with the SRowSet structure rows any rows in the table that have the same
index values. If there are no current rows with the same values, HrModifyRows adds the new rows to
the table's end.

Each row in the SRowSet structure must have a property column holding the index property of that
row, which uniquely identifies the row within the table. These property columns must contain the same
index properties as passed in the ulPropTagIndexColumn parameter of the CreateTable function call
that the table was created. If one of the rows has a different index column, HrModifyRows returns
MAPI_E_INVALID PARAMETER and no rows are changed.

The property columns in the SRowSet structure do not have to be in the same order as the property
columns in the table. The SRowSet structure can also include properties for which there are no current
columns in the table; MAPI adds new columns to the table as needed.

If any views are open for the table, the added or modified rows are inserted or moved appropriately in
each view. Doing so can involve adding the rows to or removing them from a view based on a
restriction in effect for the view. Columns added because the SRowSet structure includes properties for
which there are no current columns become available to existing views but are not included in existing
views' currently active columns. However, added columns are active in views opened after their
addition. After the rows are removed, a single notification is sent to each implementation that has an
open view on the table and that has registered to receive notifications for table modifications.

Notifications to views on the table object are made in one batch, but if more than eight notifications are
to be sent a single TABLE_CHANGED notification is sent instead.

Any text or string properties placed in a client table must be in the client's character set, whether ANSI
or Unicode. MAPI's table implementation does not handle character set conversions.

See Also

SRowSet structure

 ITableData::HrNotify

The ITableData::HrNotify method finds a particular table row so as to send a notification about that
row.

HRESULT HrNotify(
 ULONG ulFlags,
 ULONG cValues,
 LPSPropValue lpSPropValue
)

Parameters

ulFlags
Reserved; must be zero.

cValues
Input parameter containing the number of property values in the SPropValue structure pointed to by
the lpSPropValue parameter.

lpSPropValue
Input parameter pointing to an SPropValue structure containing the property values of the
properties used to locate a particular row. The located row's properties must exactly match those
passed in the SPropValue structure.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications and service providers call the ITableData::HrNotify method to get a detailed
notification of type fnevTableModifed for the table row whose property values match those passed
in lpSPropValue, even when the values within that row haven't changed. If the property values for the
identified row have not changed, the existing row information is sent in the fnevTableModifed
notification. In the case of a change to a display table row for an edit control, a client should reload the
data associated with the control.

See Also

SPropValue structure , TABLE_NOTIFICATION structure

 ITableData::HrQueryRow

The ITableData::HrQueryRow method returns all properties of a specified row in a table and its row
index in that table.

HRESULT HrQueryRow(
 LPSPropValue lpSPropValue,
 LPSRow FAR * lppSRow,
 ULONG FAR * lpuliRow
)

Parameters

lpSPropValue
Input parameter pointing to an SPropValue structure that holds the property value for the index
property specifying the row for which to return properties.

lppSRow
Output parameter pointing to a variable where a pointer to the returned SRow structure holding all
properties for the specified row is stored.

lpuliRow
Output parameter pointing to the returned index number for the returned row. This number is the
index property of the row, which uniquely identifies the row within the table. If no row index number
is required, NULL should be passed in the lpuliRow parameter.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INVALID_PARAMETER
The SPropValue structure passed in does not contain an index column.

Remarks

Client applications and service providers call the ITableData::HrQueryRow method to retrieve the full
property set for the row indicated by the index property in the lpSPropValue parameter. HrQueryRow
also returns the row index for this row within the table.

MAPI uses, but does not modify, the passed-in SPropValue structure. If the calling client or provider
allocated memory for this structure, the client or provider must free this memory after the HrQueryRow
call returns.

MAPI allocates memory for the returned SRow structure using the MAPIAllocateBuffer function when
the table is created. The calling client or provider must release this memory by calling the
MAPIFreeBuffer function when done with the SRow structure.

See Also

MAPIAllocateBuffer function , MAPIFreeBuffer function , SPropValue structure , SRow structure

 ITnef : IUnknown

The ITnef interface provides methods for encapsulating those MAPI properties not supported by a
messaging system into binary streams that can accompany messages through transport provider
handling and through gateways. The format used for this encapsulation is Transport-Neutral
Encapsulation Format (TNEF). The target transport provider can then, on receiving a message
including TNEF-encapsulated properties, decode the encapsulation to retrieve all the properties of the
original message.

At a Glance

Specified in header file: TNEF.H
Object that supplies this
interface:

TNEF object

Corresponding pointer type: LPTNEF
Implemented by: MAPI
Called by: Transport providers, message store

providers, gateways

Vtable Order

AddProps Allows the calling service provider or gateway to
add properties to include in the encapsulation of a
message or an attachment.

ExtractProps Extracts the properties from a TNEF
encapsulation.

Finish Finishes processing for all TNEF operations that
are queued and waiting.

OpenTaggedBody Opens a stream interface on the text of an
encapsulated message.

SetProps Sets the value of one or more properties for an
encapsulated message or attachment without
modifying the original message or attachment.

EncodeRecips Encodes a view for a message's recipient table in
the TNEF data stream for the message.

FinishComponent Processes individual components from a message
one at a time into a TNEF stream.

 ITnef::AddProps

The ITnef::AddProps method allows the calling service provider or gateway to add properties to
include in the encapsulation of a message or an attachment.

HRESULT AddProps(
 ULONG ulFlags,
 ULONG ulElemID,
 LPVOID lpvData,
 LPSPropTagArray lpPropList
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how properties are included in or
excluded from encapsulation. The following flags can be set:
TNEF_PROP_ATTACHMENTS_ONLY

Encodes only the properties in the lpPropList parameter that are part of attachments within the
message.

TNEF_PROP_CONTAINED
Encodes only properties from the attachment specified by the ulElemID parameter. If the lpvData
parameter is non-null, then the data pointed to is written into the attachment's encapsulation in
the transport file indicated in the PR_ATTACH_TRANSPORT_NAME property.

TNEF_PROP_CONTAINED_TNEF
Encodes only properties from the message or attachment specified by ulElemID. If this flag is set,
the value in lpvData must be an ISTREAMTNEF pointer.

TNEF_PROP_EXCLUDE
Encodes all properties not specified in lpPropList.

TNEF_PROP_INCLUDE
Encodes all properties specified in lpPropList.

TNEF_PROP_MESSAGE_ONLY
Encodes only those properties specified in lpPropList that are part of the message itself.

ulElemID
Input parameter containing an attachment's PR_ATTACH_NUM property, which holds a number that
uniquely identifies the attachment within its parent message. The ulElemID parameter is used when
special handling is requested for an attachment. The ulElemID parameter should be zero unless the
TNEF_PROP_CONTAINED or TNEF_PROP_CONTAINTAINED_TNEF flag is set in the ulFlags
parameter.

lpvData
Input parameter pointing to attachment data used to replace the data of the attachment specified in
ulElemID. The lpvData parameter should be NULL unless TNEF_PROP_CONTAINED or
TNEF_PROP_CONTAINTAINED_TNEF is set in ulFlags.

lpPropList
Input parameter pointing to the list of properties to include in or exclude from encapsulation.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Transport providers, message store providers, and gateways call the ITnef::AddProps method to list

properties to be included in or excluded from the TNEF encapsulation of a message or an attachment.
Using successive calls, the provider or gateway can specify a list of properties to add and encode or to
exclude from being encoded. Providers and gateways can also use AddProps to provide information
on any special handling attachments should be given.

AddProps is only supported for TNEF objects opened with the TNEF_ENCODE flag for the
OpenTnefStream or OpenTnefStreamEx function.

Note that no actual TNEF encoding happens for AddProps until the ITnef::Finish method is called.
This functionality means that pointers passed into AddProps must remain valid until after the call to
Finish is made. At that point, all objects and data passed in with AddProps calls can be released or
freed.

See Also

ITnef::Finish method , OpenTnefStream function , OpenTnefStreamEx function ,
PR_ATTACH_TRANSPORT_NAME property

 ITnef::EncodeRecips

The ITnef::EncodeRecips method encodes a view for a message's recipient table in the TNEF data
stream for the message.

HRESULT EncodeRecips(
 ULONG ulFlags,
 LPMAPITABLE lpRecipientTable
)

Parameters

ulFlags
Reserved; must be zero.

lpRecipientTable
Input parameter pointing to the recipient table for which the view is encoded. The lpRecipientTable
parameter can be NULL.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Transport providers, message store providers, and gateways call the ITnef::EncodeRecips method to
perform TNEF encoding for a particular recipient table view. Such encoding is useful, for instance, if a
provider or gateway requires a particular column set, sort order, or restriction for the recipient table.

A provider or gateway passes the table view to be encoded in lpRecipientTable. The TNEF
implementation encodes the recipient table with the given view, using the given column set, sort order,
restriction, and position. If a provider or gateway passes NULL in lpRecipientTable, TNEF gets the
recipient table from the message being encoded, using the IMessage::GetRecipientTable method,
and processes every row of the table into the TNEF stream using the table's current settings.

Calling EncodeRecips with NULL in lpRecipientTable thus encodes all message recipients and is
equivalent to calling the ITnef::AddProps method with the TNEF_PROP_INCLUDE flag in its ulFlags
parameter and the PR_MESSAGE_RECIPIENTS property in its lpPropList parameter.

See Also

IMessage::GetRecipientTable method , ITnef::AddProps method , PR_MESSAGE_RECIPIENTS
property

 ITnef::ExtractProps

The ITnef::ExtractProps method extracts the properties from a TNEF encapsulation.

HRESULT ExtractProps(
 ULONG ulFlags,
 LPSPropTagArray lpPropList,
 LPSTnefProblemArray FAR * lpProblems
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how properties are decoded. The
following flags can be set:
TNEF_PROP_EXCLUDE

Decodes all properties not specified in the lpPropList parameter.
TNEF_PROP_INCLUDE

Decodes all properties specified in lpPropList.
lpPropList

Input parameter pointing to the list of properties to include in or exclude from the decoding
operation.

lpProblems
Output parameter pointing to a variable where a pointer to a returned STnefProblemArray structure
is stored. The STnefProblemArray indicates which properties were not encoded properly, if any. If
NULL is passed in the lpProblems parameter, no property problem array is returned.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_CORRUPT_DATA
Data being decoded into a stream is corrupted.

Remarks

Transport providers, message store providers, and gateways call the ITnef::ExtractProps method to
extract ¾ that is, decode ¾ properties from the encapsulation of a message or an attachment that was
passed to the OpenTnefStream function. The calling provider or gateway can specify a list of
properties to decode. Providers and gateways can also use ExtractProps to provide information on
any special handling attachments should be given.

Once decoding is done, the original message passed into OpenTnefStream is repopulated with the
decoded properties. Subsequent ExtractProps calls go back to the message and extract the new list
of properties.

Unlike the ITnef::AddProps method, which queues requested actions until the ITnef::Finish method
is called, properties are decoded when the ExtractProps call is made. For that reason, the target
message for encapsulation decoding should be relatively empty. Existing properties in the target
message are overwritten by encapsulated properties.

ExtractProps is only supported for objects opened with the TNEF_DECODE flag for the
OpenTnefStream or OpenTnefStreamEx function.

The TNEF implementation reports TNEF stream encoding problems without halting the ExtractProps
process. The STnefProblemArray structure returned in lpProblems indicates which TNEF attributes or
MAPI properties, if any, could not be processed. The value returned in the scode member of the

STnefProblemArray indicates the specific problem. The provider or gateway can work on the
assumption that all properties or attributes for which ExtractProps does not return a problem report
were processed successfully.

One exception is that if, during the decoding of a TNEF stream, a property in the MAPI encapsulation
block cannot be processed and leaves the stream unreliable; then decoding of the encapsulation block
is halted and a problem is reported. The problem array for this type of problem contains 0L for the
ulPropTag member, attMAPIProps or attAttachment for the ulAttribute member, and
MAPI_E_UNABLE_TO_COMPLETE for the scode member. Note that the decoding of the stream is
not halted, just the decoding of the MAPI encapsulation block. The stream decoding continues with the
next attribute block.

If a provider or gateway does not work with problem arrays, it can pass NULL in lpProblems; in this
case, no problem array is returned.

The value returned in lpProblems is only valid if the call returns S_OK. When S_OK is returned, the
provider or gateway should check the values returned in the STnefProblemArray structure. If an error
occurs on the call, then the STnefProblemArray structure is not filled in and the calling provider or
gateway should not use or free the structure. If no error occurs on the call, the calling provider or
gateway must release the memory for the STnefProblemArray by calling the MAPIFreeBuffer
function.

See Also

ITnef::AddProps method , ITnef::Finish method , ITnef::SetProps method , MAPIFreeBuffer function ,
OpenTnefStream function , OpenTnefStreamEx function , STnefProblemArray structure

 ITnef::Finish

The ITnef::Finish method finishes processing for all TNEF operations that are queued and waiting.

HRESULT Finish(
 ULONG ulFlags,
 WORD FAR * lpKey,
 LPSTnefProblemArray FAR * lpProblem
)

Parameters

ulFlags
Reserved; must be zero.

lpKey
Output parameter pointing to the PR_ATTACH_NUM key property of an attachment. The TNEF
encapsulation object uses this key to match an attachment to its attachment placement tag within a
message. This key should be unique across messages.

lpProblem
Output parameter pointing to a variable where a pointer to a returned STnefProblemArray structure
is stored. The STnefProblemArray indicates which properties were not encoded properly, if any. If
NULL is passed in the lpProblem parameter, no property problem array is returned.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Transport providers, message store providers, and gateways call the ITnef::Finish method to perform
the encoding of all properties for which encoding was requested in calls to the ITnef::AddProps and
ITnef::SetProps methods. If the TNEF object to receive encoding was opened with the
TNEF_ENCODE flag for the OpenTnefStream or OpenTnefStreamEx function, all properties
processed in the Finish call are encoded into the encapsulation stream passed to that object.

After the Finish call, the pointer to the encapsulation stream is set to the end of the TNEF data. If the
provider or gateway is to use the TNEF stream data, it must reset the stream pointer to the beginning
of the TNEF stream data.

Finish is only supported on objects opened with TNEF_ENCODE set for OpenTnefStream or
OpenTnefStreamEx.

The TNEF implementation reports TNEF stream encoding problems without halting the Finish process.
The STnefProblemArray structure returned in lpProblem indicates which TNEF attributes or MAPI
properties, if any, could not be processed. The value returned in the scode member of the
STnefProblemArray indicates the specific problem. The provider or gateway can work on the
assumption that all properties or attributes for which Finish does not return a problem report were
processed successfully.

If a provider or gateway does not work with problem arrays, it can pass NULL in lpProblem; in this
case, no problem array is returned.

The value returned in lpProblem is only valid if the call returns S_OK. When S_OK is returned, the
provider or gateway should check the values returned in the STnefProblemArray structure. If an error
occurs on the call, then the STnefProblemArray structure is not filled in and the calling provider or
gateway should not use or free the structure. If no error occurs on the call, the calling provider or
gateway must release the memory for the STnefProblemArray by calling the MAPIFreeBuffer

function.

See Also

ITnef::AddProps method , MAPIFreeBuffer function , OpenTnefStream function , OpenTnefStreamEx
function, PR_ATTACH_NUM property, STnefProblemArray structure

 ITnef::FinishComponent

The ITnef::FinishComponent method processes individual components from a message one at a
time into a TNEF stream.

HRESULT FinishComponent(
 ULONG ulFlags,
 ULONG ulComponentID,
 LPSPropTagArray lpCustomPropList,
 LPSPropValue lpCustomProps,
 LPSPropTagArray lpPropList,
 LPSTnefProblemArray FAR * lppProblems
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls which component has processing
finished. One or the other of the following flags must be set:
TNEF_COMPONENT_ATTACHMENT

Indicates an attachment object is encoded; the ulComponentID parameter contains the
PR_ATTACH_NUM property of the attachment processed.

TNEF_COMPONENT_MESSAGE
Indicates a message object is encoded.

ulComponentID
Input parameter containing either zero to indicate processing for a message or the
PR_ATTACH_NUM property of the attachment to be processed. If the
TNEF_COMPONENT_MESSAGE flag is set in the ulFlags parameter, ulComponentID must be
zero.

lpCustomPropList
Input parameter pointing to an SPropTagArray structure that holds property tags identifying the
properties passed in the lpCustomProps parameter. There must be a one-to-one correspondence
between each property value in lpCustomProps and a property tag in the lpCustomPropList
parameter.

lpCustomProps
Input parameter pointing to an SPropValue structure containing property values for the properties to
encode.

lpPropList
Input parameter pointing to an SPropTagArray structure containing property tags for the properties
to encode.

lppProblems
Output parameter pointing to a variable where a pointer to a returned STnefProblemArray structure
is stored. The STnefProblemArray structure indicates which properties were not encoded properly,
if any. If NULL is passed in the lppProblems parameter, no property problem array is returned.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Transport providers, message store providers, and gateways call the ITnef::FinishComponent
method to perform TNEF processing for one component, either a message or an attachment, as
indicated by the flag set in the ulFlags parameter.

For component processing to be enabled, the calling provider or gateway must have passed the
TNEF_COMPONENT_ENCODING flag in ulFlags for the OpenTnefStream function or
OpenTnefStreamEx function that opened the object to receive encoding.

Passing values in lpCustomPropList and lpCustomProps performs component encoding equivalent to
that done by the ITnef::SetProps method. Passing a value in the lpPropList parameter performs
component encoding equivalent to that done by the ITnef::AddProps method with the
TNEF_PROP_INCLUDE flag set in ulFlags. Passing such values enables you to perform encodings
with a single call rather than multiple calls.

The TNEF implementation reports TNEF stream encoding problems without halting the
FinishComponent process. The STnefProblemArray structure returned in lppProblems indicates
which TNEF attributes or MAPI properties, if any, could not be processed. The value returned in the
scode member of the STnefProblemArray indicates the specific problem. The provider or gateway
can work on the assumption that all properties or attributes for which FinishComponent does not
return a problem report were processed successfully.

If a provider or gateway does not work with problem arrays, it can pass NULL in lppProblems; in this
case, no problem array is returned.

The value returned in lppProblems is only valid if the call returns S_OK. When S_OK is returned, the
provider or gateway should check the values returned in the STnefProblemArray structure. If an error
occurs on the call, then the STnefProblemArray structure is not filled in and the calling provider or
gateway should not use or free the structure. If no error occurs on the call, the calling provider or
gateway must release the memory for the STnefProblemArray by calling the MAPIFreeBuffer
function.

See Also

ITnef::AddProps method , ITnef::SetProps method , MAPIFreeBuffer function , OpenTnefStream
function, OpenTnefStreamEx function , SPropTagArray structure , STnefProblemArray structure

 ITnef::OpenTaggedBody

The ITnef::OpenTaggedBody method opens a stream interface on the text of an encapsulated
message.

HRESULT OpenTaggedBody(
 LPMESSAGE lpMessage,
 ULONG ulFlags,
 LPSTREAM FAR * lppStream
)

Parameters

lpMessage
Input parameter pointing to the message the stream is associated with. This message is not required
to be the same message passed in the call to the OpenTnefStream or OpenTnefStreamEx
function beginning TNEF encoding.

ulFlags
Input parameter containing a bitmask of flags that controls how stream interface is opened. The
following flags can be set:
MAPI_CREATE

Indicates that the property does not exist, it should be created. If the property does exist, the
current data in the property should be discarded. When an implementation sets the
MAPI_CREATE flag, it should also set the MAPI_MODIFY flag.

MAPI_MODIFY
Requests read/write access. The default interface is read-only. MAPI_MODIFY must be set
whenever MAPI_CREATE is set.

lppStream
Output parameter pointing to a variable in which is stored the pointer to a stream object that
contains the text from the PR_BODY property of the passed-in encapsulated message and that
supports the IStream interface.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Transport providers, message store providers, and gateways call the ITnef::OpenTaggedBody
method to open a stream interface on the text of an encapsulated message (that is, on a TNEF object).

As part of its processing, ITnef::OpenTaggedBody either inserts or parses attachment tags that
indicate the position of any attachments or OLE objects within the message text. The attachment tags
are in the following format:

[[attachment name : n in attachment container name]]

where attachment name describes the attachment object; n is a number identifying the attachment that
is part of a sequence, incrementing from the value passed in the lpKey parameter of the
OpenTnefStream or OpenTnefStreamEx function; and attachment container name describes the
physical component where the attachment object resides.

OpenTaggedBody reads out message text and inserts an attachment tag wherever an attachment
object originally appeared in the text. The original message text is not changed.

When a message that has tags is passed to a stream, the tags are stripped out and the attachment
objects are relocated in the position of the tags in the stream.

See Also

OpenTnefStream function , OpenTnefStreamEx function , PR_BODY property

 ITnef::SetProps

The ITnef::SetProps method sets the value of one or more properties for an encapsulated message or
attachment without modifying the original message or attachment.

HRESULT SetProps(
 ULONG ulFlags,
 ULONG ulElemID,
 ULONG cValues,
 LPSPropValue lpProps
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how properties' values are set. The
following flag can be set:
TNEF_PROP_CONTAINED

Encodes only properties from the message or attachment specified by the ulElemID parameter.
ulElemID

Input parameter containing an attachment's PR_ATTACH_NUM property, which holds a number that
uniquely identifies the attachment within its parent message.

cValues
Input parameter containing the number of property values in the SPropValue structure pointed to by
the lpProps parameter.

lpProps
Input parameter pointing to an SPropValue structure containing the property values of the
properties to set.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Transport providers, message store providers, and gateways call the ITnef::SetProps method to set
properties to include in the encapsulation of a message or an attachment without modifying the original
message or attachment. Any properties set with this call override existing properties in the
encapsulated message.

SetProps is only supported for encapsulated messages (that is, TNEF objects) opened with the
TNEF_ENCODE flag for the OpenTnefStream or OpenTnefStreamEx function. Any number of
properties can be set with this call.

Note that no actual TNEF encoding for SetProps happens until after the ITnef::Finish method is
called. This functionality means that pointers passed into SetProps must remain valid until after the
call to Finish is made. At that point, all objects and data passed into SetProps calls can be released or
freed.

See Also

ITnef::Finish method , OpenTnefStream function , OpenTnefStreamEx function , PR_ATTACH_NUM
property, SPropValue structure

 IXPLogon : IUnknown

The IXPLogon interface is used to provide the MAPI spooler access within a transport provider.

At a Glance

Specified in header file: MAPISPI.H
Object that supplies this
interface:

Transport logon object

Corresponding pointer type: LXPLOGON
Implemented by: Transport providers
Called by: The MAPI spooler

Vtable Order

AddressTypes Indicates to the MAPI spooler what types of recipients
a transport provider can handle.

RegisterOptions Informs the messaging system about the options
provided by a transport provider for a messaging
address type.

TransportNotify Signals in a transport provider session the
occurrence of an event for the MAPI spooler about
which the provider requested notification.

Idle Calls a transport provider at a point when the system
is idle to perform low-priority operations.

TransportLogoff Terminates a transport provider session with the
MAPI spooler.

SubmitMessage Indicates to a transport provider the MAPI spooler
has a message for the provider to deliver.

EndMessage Informs a transport provider the MAPI spooler has
completed its sending pass for the provider.

Poll Checks whether a transport provider has one or more
incoming messages available.

StartMessage Indicates the transfer of an incoming message from
the transport provider to the MAPI spooler.

OpenStatusEntry Opens a status object.
ValidateState Has a transport provider check its external status.
FlushQueues Requests that transport operations occur quickly.

 IXPLogon::AddressTypes

The IXPLogon::AddressTypes method indicates to the MAPI spooler what types of recipients a
transport provider can handle.

HRESULT AddressTypes(
 ULONG FAR * lpulFlags,
 ULONG FAR * lpcAdrType,
 LPTSTR FAR * FAR * lpppszAdrTypeArray,
 ULONG FAR * lpcMAPIUID,
 LPUID FAR * FAR * lpppUIDArray
)

Parameters

lpulFlags
Output parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lpcAdrType
Output parameter pointing to a variable containing the number of entries in the array pointed to by
the lpppAdrTypeArray parameter.

lpppszAdrTypeArray
Output parameter pointing to a variable where the transport provider places an array of pointers to
strings that identify recipient types.

lpcMAPIUID
Output parameter pointing to a variable containing the number of entries in the array pointed to by
the lpppUIDArray parameter.

lpppUIDArray
Output parameter pointing to a variable where the transport provider places an array of pointers to
MAPIUID structures that identify recipient types.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The MAPI spooler calls the IXPLogon::AddressTypes method immediately after a transport provider
returns from a call to the IXPProvider::TransportLogon method so the transport provider can indicate
what types of recipients it can handle. To indicate this, the transport provider should pass in the
lpppszAdrTypeArray parameter a pointer to an array of pointers to strings, or pass in the lpppUIDArray
parameter a pointer to an array of pointers to MAPIUID structures, or pass values in both parameters.

These two arrays are used for different identification processes. MAPI and the MAPI spooler use the
MAPIUID structures in the lpppUIDArray array to identify those recipient entry identifiers that are
directly handled by the transport provider or by the messaging system to which the transport provider
connects. Neither MAPI nor the MAPI spooler performs expansion of addresses with entry identifiers
containing any of these MAPIUID structures; these structures are only used for recipient type
identification.

The MAPI spooler uses each of the strings in the lpppszAdrTypeArray parameter for a comparison test
when deciding which transport provider should handle which recipients for an outbound message. If a

message recipient's PR_ADDRTYPE property exactly matches a string identifying one of the
messaging address types supplied by the transport provider, the provider can handle that recipient.

In the event multiple transport providers can handle the same type of recipient, MAPI selects a
transport provider based on the transport priority order indicated in the client application's profile. To
determine which transport provider to use, the MAPI spooler scans all provider-specified MAPIUID
structures in priority order, then all provider-specified address type values in priority order. The first
transport provider to match a particular recipient in this scan gets the first opportunity to handle this
recipient. If that provider does not handle the recipient, the MAPI spooler continues the scan so as to
find a transport provider for any recipient not yet handled. The scan continues until no further matches
are found, at which point a nondelivery report is generated for any recipient that was not handled.

If the provider always supports a particular set of recipient types, the address type and MAPIUID
arrays passed by the transport provider can be static. If the transport provider dynamically constructs
these arrays, it can use the support object that was passed in the call to TransportLogon directly
previous to allocate memory, although this is not strictly necessary.

The memory used for the address type and MAPIUID arrays should remain allocated until the final call
to the IXPLogon::TransportLogoff method is performed, at which time the transport provider can free
the memory if necessary. The contents of these arrays should not be altered by the transport provider
after returning from the TransportLogoff call.

A transport provider that can handle any type of recipient can return NULL in lpppszAdrTypeArray.
LAN-based messaging systems that support a variety of gateways commonly do this. Such a transport
provider should be installed last in the MAPI and MAPI spooler priority order of transport providers
within the profile.

A transport provider that does not support outbound messages dispatched to it based on address type
should return a single zero-length string in lpppAdrTypeArray. If a transport provider supports no
recipient types, it should pass NULL for the MAPIUID and an empty string for the address type.

For more information on working with address types, see Displaying and Editing Addresses with Simple
MAPI.

See Also

IXPLogon::TransportLogoff method , IXPProvider::TransportLogon method , MAPIUID structure

 IXPLogon::EndMessage

The IXPLogon::EndMessage method informs a transport provider the MAPI spooler has completed its
sending pass for the provider.

HRESULT EndMessage(
 ULONG ulMsgRef,
 ULONG FAR * lpulFlags
)

Parameters

ulMsgRef
Input parameter containing a 32-bit reference value, specific to a message, obtained in an earlier
call to the IXPLogon::SubmitMessage method.

lpulFlags
Output parameter containing a bitmask of flags that indicates to the MAPI spooler what it should do
with the message. If no flags are set, the message has been sent. The following flags can be set:
END_DONT_RESEND

Indicates the transport provider has all the information it needs about this message for now. When
the transport provider requires more information or when it has completed sending the message,
it notifies the MAPI spooler by calling the IMAPISupport::SpoolerNotify method with the
NOTIFY_SENTDEFERRED flag and by passing the message's entry identifier.

END_RESEND_LATER
Indicates that the transport provider isn't sending the message now for reasons that are not error
conditions and that it should be called again later to send the message.

END_RESEND_NOW
Indicates the transport provider needs to restart the message passed to it in an
IMessage::SubmitMessage method call.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The MAPI spooler calls the IXPLogon::EndMessage method after completing the processing involved
in providing extended delivery or nondelivery information.

Once this call returns, the value in the ulMsgRef parameter is no longer valid for this message. The
transport provider can reuse the same value on a future message.

All objects opened by the transport provider during the transfer of a message should be released
before returning from the EndMessage call, with the exception of the message object the MAPI
spooler passes to the transport provider. The message object passed by the MAPI spooler is invalid
after the EndMessage call.

See Also

IMAPISupport::SpoolerNotify method , IMessage::SubmitMessage method ,
IXPLogon::SubmitMessage method

 IXPLogon::FlushQueues

The IXPLogon::FlushQueues method requests that transport operations occur quickly.

HRESULT FlushQueues(
 ULONG ulUIParam,
 ULONG cbTargetTransport,
 LPENTRYID lpTargetTransport,
 ULONG ulFlags
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

cbTargetTransport
Reserved; must be zero.

lpTargetTransport
Reserved; must be NULL.

ulFlags
Input parameter containing a bitmask of flags that controls how message queue flushing is done.
The following flags can be set:
FLUSH_DOWNLOAD

Indicates the inbound message queue or queues should be flushed.
FLUSH_FORCE

Indicates the transport provider should process this request if possible, even if doing so is time-
consuming.

FLUSH_NO_UI
Indicates the transport provider should not display a user interface.

FLUSH_UPLOAD
Indicates the outbound message queue or queues should be flushed.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The MAPI spooler calls the IXPLogon::FlushQueues method to advise the transport provider that the
MAPI spooler is about to begin processing messages. The transport provider should call the
IMAPISupport::ModifyStatusRow method to set an appropriate bit for its state in the
PR_STATUS_CODE property of its status row. After updating its status row, the transport provider
should return S_OK for the FlushQueues call. The MAPI spooler then starts sending messages, with
the operation being synchronous to the MAPI spooler.

To support its implementation of the IMAPIStatus::FlushQueues method, the MAPI spooler calls
IXPLogon::FlushQueues for all logon objects for active transport providers running in a profile
session. When a transport provider's FlushQueues method is called as a result of a client application
calling IMAPIStatus::FlushQueues, the message processing occurs asynchrousously to the client.

See Also

IMAPIStatus::FlushQueues method

 IXPLogon::Idle

The IXPLogon::Idle method calls a transport provider at a point when the system is idle to perform
low-priority operations.

HRESULT Idle(
 ULONG ulFlags
)

Parameters

ulFlags
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The MAPI spooler periodically calls the IXPLogon::Idle method during times when the system is idle, if
requested by passing the XP_LOGON_SP flag in the call to the IXPProvider::TransportLogon
method that opened the current session. At times when the system is idle, the transport provider can
perform background operations that are not appropriate during other calls, or that need to occur on a
regular basis.

See Also

IXPProvider::TransportLogon method

 IXPLogon::OpenStatusEntry

The IXPLogon::OpenStatusEntry method opens a status object.

HRESULT OpenStatusEntry(
 LPCIID lpInterface,
 ULONG ulFlags,
 ULONG FAR * lpulObjType,
 LPMAPISTATUS FAR * lppEntry
)

Parameters

lpInterface
Input parameter pointing to an interface identifier (IID) for the transport logon object. Passing NULL
indicates the IMAPIStatus interface is returned. The lpInterface parameter can also be set to an
identifier for an interface for the object.

ulFlags
Input parameter containing a bitmask of flags that controls how the status object is opened. The
following flag can be set:
MAPI_MODIFY

Requests read/write access. The default interface is read-only.
lpulObjType

Output parameter pointing to a variable where the type of the opened object is stored.
lppEntry

Output parameter pointing to a variable where the pointer to the opened status object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The MAPI spooler calls the IXPLogon::OpenStatusEntry method when a client application calls an
OpenEntry method for the entry identifier in the transport provider's subsystem status table row.
OpenStatusEntry opens an object with the IMAPIStatus interface associated with this particular
transport provider logon. This object is then used to enable client applications to call IMAPIStatus
methods, for example to reconfigure the logon session ¾ using the IMAPIStatus::SettingsDialog
method ¾ or to validate the state of the logon session ¾ using the IMAPIStatus::ValidateState
method.

See Also

IMAPIStatus : IMAPIProp interface

 IXPLogon::Poll

The IXPLogon::Poll method checks whether a transport provider has one or more incoming messages
available.

HRESULT Poll(
 ULONG FAR * lpulIncoming
)

Parameters

lpulIncoming
Output parameter containing a value indicating the existence of incoming messages. A nonzero
value indicates that there are incoming messages.

Returned Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The MAPI spooler periodically calls the IXPLogon::Poll method if the transport provider indicates it
must be polled for new messages; it does so by passing the LOGON_SP_POLL flag to the call to the
IXPProvider::TransportLogon method at the beginning of a session. If the transport provider
indicates in response to the Poll call that there are one or more inbound messages available for it to
process, the MAPI spooler calls the IXPLogon::StartMessage method to allow the provider to process
the first incoming message. The transport provider indicates incoming messages by setting the value in
Poll's lpulIncoming parameter to nonzero.

See Also

IXPLogon::StartMessage method , IXPProvider::TransportLogon method

 IXPLogon::RegisterOptions

The IXPLogon::RegisterOptions method informs the messaging system about the options provided
by a transport provider for a messaging address type.

HRESULT RegisterOptions(
 ULONG FAR * lpulFlags,
 ULONG FAR * lpcOptions,
 LPOPTIONDATA FAR * lppOptions
)

Parameters

lpulFlags
Output parameter containing a bitmask of flags that controls the type of the returned strings. The
following flag can be set:
MAPI_UNICODE

Indicates the returned strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lpcOptions
Output parameter pointing to a variable containing the number of options contained in the structure
returned in the lppOptions parameter.

lppOptions
Output parameter pointing to a variable where a pointer to the returned OPTIONDATA structure is
stored. The OPTIONDATA structure contains information for a particular messaging address type.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

If anything other than S_OK is returned, the provider is logged off.

Remarks

The MAPI spooler calls the IXPLogon::RegisterOptions method to get the options for messages and
recipients supported by a transport provider for a particular messaging address type. These options are
then registered with MAPI so they can be displayed in options dialog boxes.

RegisterOptions returns in the lppOptions parameter pointers to one or two OPTIONDATA structures
for each supported messaging address type, depending on whether the provider is registered for both
recipient and message options, recipient options only, or message options only. If a provider is
registered for both option types, RegisterOptions writes one structure containing option information for
recipients and one containing option information for messages. For each structure, the ulFlags
member indicates whether the options apply to a recipient or a message.

For an example of the use of OPTIONDATA, consider a transport provider that handles recipients for
both Microsoft Mail Server and Microsoft Mail Server for the Macintosh. If the provider is registered for
both recipient and message options, it provides two pairs of OPTIONDATA structures, one pair for
each platform. The MAPI spooler can use these structures to determine what options are valid for each
platform. Once it has this option information, the MAPI spooler prompts the user with a dialog box to
retrieve the setting the user wants for each option.

MAPI also uses the options registered on the RegisterOptions call to resolve message and recipient
options. MAPI does so by using a callback function that the transport provider supplies; this callback
function, declared with the OPTIONCALLBACK function prototype defined in MAPIDEFS.H, receives a
wrapped IMAPIProp interface that manages the provider's message and recipient properties.

The provider is responsible for memory management. If memory is allocated for one or more
OPTIONDATA structures during this call, the provider should free the memory upon logoff.

See Also

IXPLogon::RegisterOptions method , OPTIONCALLBACK function prototype , OPTIONDATA
structure

 IXPLogon::StartMessage

The IXPLogon::StartMessage method initiates the transfer of an incoming message from the
transport provider to the MAPI spooler.

HRESULT StartMessage(
 ULONG ulFlags,
 LPMESSAGE lpMessage,
 ULONG FAR * lpulMsgRef
)

Parameters

ulFlags
Reserved; must be zero.

lpMessage
Input parameter pointing to a message object with read/write access, representing the incoming
message, which is used by the transport provider to access and manipulate that message. This
object remains valid until after the transport provider returns from the call to the
IXPLogon::StartMessage method.

lpulMsgRef
Output parameter pointing to a variable in which the transport provider returns the 32-bit reference
value it assigned to this message. This value is initialized to 1 by the MAPI spooler before returning
it to the transport provider.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The MAPI spooler calls the IXPLogon::StartMessage method to initiate the transfer of an incoming
message from the transport provider to the MAPI spooler. Before the transport provider starts to use
the message object, it should store a message reference in the lpulMsgRef parameter for potential use
by a call to the IXPLogon::TransportNotify method.

During a StartMessage call, the MAPI spooler processes methods for objects opened during the
transfer of the message and also processes any attachments. This processing can take a long time.
Transport providers on 16-bit Windows platforms should call the IMAPISupport::SpoolerYield
callback function for the MAPI spooler frequently during this processing to release CPU time for other
system tasks.

All recipients in the recipient table created by the transport provider for the message must contain all
required addressing properties. If necessary, the provider can construct a custom recipient to represent
a particular recipient. However, if the provider can produce a recipient entry that includes more
information, it should do so. For example, in the case where a transport provider has enough
information about an address book provider's recipient format that it can build a valid entry identifier for
a recipient for that format, it should build the entry identifier.

If any nontransmittable properties are received, the transport provider should not store them in the new
message. However, the provider should store in the message all transmittable properties required for
the message.

If the incoming message is to be a delivery report or a nondelivery report and the transport provider is
unable to use the IMAPISupport::StatusRecips method to generate the report from the original
message, the provider should itself populate the passed message with the appropriate properties.

To save the incoming message in the appropriate MAPI message store after processing, the transport
provider calls the IMAPIProp::SaveChanges method. If the transport provider doesn't have any
messages to pass to the MAPI spooler, it can stop the incoming message by returning from the
StartMessage call without calling SaveChanges.

All objects opened by the transport provider during a StartMessage call should be released before
returning. However, the provider should not release the message object originally passed by the MAPI
spooler in the lpMessage parameter.

If an error is returned from StartMessage, the message in process is released without having changes
saved and is lost. The transport provider in such a case should pass the flag
NOTIFY_CRITICAL_ERROR with a call to the IMAPISupport::SpoolerNotify method and call the
IXPLogon::Poll method to notify the MAPI spooler that it is in a severe error condition.

For more information, see Interacting with the MAPI Spooler.

See Also

IMAPIProp::SaveChanges method , IMAPISupport::SpoolerNotify method ,
IMAPISupport::SpoolerYield method , IMAPISupport::StatusRecips method ,
IMessage::GetRecipientTable method , IXPLogon::Poll method , IXPLogon::TransportNotify
method

 IXPLogon::SubmitMessage

The IXPLogon::SubmitMessage method indicates to a transport provider the MAPI spooler has a
message for the provider to deliver.

HRESULT SubmitMessage(
 ULONG ulFlags,
 LPMESSAGE lpMessage,
 ULONG FAR * lpulMsgRef,
 ULONG FAR * lpulReturnParm
)

Parameters

ulFlags
Input parameter containing a bitmask of flags that controls how the message is submitted. The
following flag can be set:
BEGIN_DEFERRED

Indicates the MAPI spooler is calling a transport provider with a message whose entry identifier
was passed from the transport provider using the IMAPISupport::SpoolerNotify method's
NOTIFY_SENTDEFERRED flag.

lpMessage
Input parameter pointing to a message object with read/write access, representing the message to
deliver, which is used by the transport provider to access and manipulate that message. This object
remains valid until after the transport provider returns from a subsequent call to the
IXPLogon::EndMessage method.

lpulMsgRef
Output parameter pointing to a variable in which the transport provider returns the 32-bit reference
value it assigned to this message. The MAPI spooler passes this reference value in subsequent
calls for this message. The value is initialized to zero by the MAPI spooler before returning it to the
transport provider.

lpulReturnParm
Output parameter pointing to a variable that corresponds to the MAPI_E_WAIT or
MAPI_E_NETWORK_ERROR error value returned by the IXPLogon::SubmitMessage method.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
The transport provider can't handle the message because it is performing another operation. A
provider should use this return value to indicate that no processing occurred and that the MAPI
spooler should not call EndMessage. The MAPI spooler tries the SubmitMessage call again later.

MAPI_E_CANCEL
Indicates that although on a previous SpoolerNotify call the transport provider requested the MAPI
spooler resubmit the message, conditions have since changed and the message should not be
resent. The MAPI spooler goes on to handle something else.

MAPI_E_NETWORK_ERROR
A network error prevented successful completion of the operation. The lpulReturnParm parameter
should be set to the number of seconds before the MAPI spooler resubmits the message.

MAPI_E_NOT_ME
The transport provider cannot handle this message. The MAPI spooler should try to find another
transport provider for it. A provider should use this return value to indicate that no processing
occurred and that the MAPI spooler should not call EndMessage.

MAPI_E_WAIT
A temporary problem prevents the transport provider from handling the message. The
lpulReturnParm parameter should be set to the number of seconds before the MAPI spooler
resubmits the message.

Remarks

The MAPI spooler calls the IXPLogon::SubmitMessage method when it has a message for the
transport provider to carry. The message is passed to the transport provider using the lpMessage
parameter.

If the provider is ready to accept the message, it should return a reference value by using the
lpulMsgRef parameter, process the passed object, and return the appropriate value, usually S_OK. If
the provider is not prepared to handle the transfer, it should return an error value and, optionally,
another MAPI return value in lpulReturnParm to indicate how long the MAPI spooler should wait before
resubmitting the message.

A transport provider's implementation of this method can:

· Put the message into an internal queue to wait for transmission, possibly copying it to local storage,
and return.

· Attempt to perform the actual transmission and return when the transmission has completed, either
successfully or unsuccessfully.

· Determine whether or not to send the message after checking the resource involved. In this case, if
the resource is free, the provider can lock the resource, prepare the message, and submit it. If the
resource is busy, the provider can prepare the message and defer sending to a later time.

The preferred technique depends on the transport provider and the expected number of processes
competing for system resources.

During a SubmitMessage call, the transport provider controls the transfer of message data from the
message object. However, the transport provider should assign a 32-bit reference value to the
message, to which it returns a pointer in lpulMsgRef, before transferring data. It does so because at
any point during the process the MAPI spooler can call the IXPLogon::TransportNotify method with
the NOTIFY_CANCEL_MESSAGE flag set to signal the provider it should release any open objects
and stop message transfer.

The transport provider should not send any nontransmittable properties of the message. When it finds
such a property, it should go on to process the next one. The provider should make every effort not to
display MAPI_P1 recipient information as part of the transmitted message content, using such recipient
information only for addressing purposes. MAPI_P1 recipients are internally-generated recipients for
use in resends, they should not be transmitted. Instead, use the other recipients for transmitting
recipient information. The purpose of this arrangement is to permit resend recipients to see the exact
same recipient table as the original recipients.

During a SubmitMessage call, the MAPI spooler processes methods for objects opened during the
transfer of the message and also processes any attachments. This processing can take a long time.
Transport providers running on 16-bit Windows platforms should call the IMAPISupport::SpoolerYield
callback function for the MAPI spooler frequently during this processing to release CPU time for other
system tasks.

All message recipients are visible in the recipient table of the message originally passed by the MAPI
spooler. The transport provider should process only those recipients that it can handle based on entry
identifier, address type, or both, and that do not already have their PR_RESPONSIBILITY property set
to TRUE. If PR_RESPONSIBILITY is already set to TRUE, another transport provider handles that
recipient. When the provider has completed sufficient processing of a recipient to determine whether it
can handle messages for that recipient, it should set that recipient's PR_RESPONSIBILITY property to
TRUE in the passed message. Usually, the provider makes this determination after message delivery is
complete.

Typically, the transport provider does not return from a SubmitMessage call until it has completed the
transfer of message data. If no error is returned, the next call from the MAPI spooler to the provider is a
call to the IXPLogon::EndMessage method.

If an error is returned from SubmitMessage, the MAPI spooler releases the message in process
without saving changes. If the transport provider requires message changes be saved, it must call the
IMAPIProp::SaveChanges method on the message before returning.

In case of errors occurring because of transport problems, the MAPI spooler retains the message but
delays resubmitting it to the transport provider based on the value returned in lpulRetunParm. The
transport provider must fill in that value if its return from SubmitMessage is MAPI_E_WAIT or
MAPI_E_NETWORK_ERROR. If a severe error condition is occurring, the transport provider must call
the IMAPISupport::SpoolerNotify method with the NOTIFY_CRITICAL_ERROR flag.

See Also

IMAPIProp::SaveChanges method , IMAPISupport::SpoolerNotify method ,
IMAPISupport::SpoolerYield method , IXPLogon::EndMessage method ,
IXPLogon::TransportNotify method

 IXPLogon::TransportLogoff

The IXPLogon::TransportLogoff method terminates a transport provider session with the MAPI
spooler.

HRESULT TransportLogoff(
 ULONG ulFlags
)

Parameters

ulFlags
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Whether or not the transport provider returns a value other than S_OK, the provider's logged off.

Remarks

The MAPI spooler calls the IXPLogon::TransportLogoff method to terminate a transport provider
session for a particular user. Before calling TransportLogoff, the MAPI spooler discards any data
about supported messaging address types for this session passed in the IXPLogon::AddressTypes
method.

The transport provider should be prepared to accept a call to TransportLogoff at any time. If a
message is in process, the provider should stop the sending process.

The transport provider should release all resources allocated for its current session. If it has allocated
any memory for this session with the MAPIAllocateBuffer function, it should free the memory by using
the MAPIFreeBuffer function. Any memory allocated by the transport provider to satisfy calls to the
IXPLogon::AddressTypes, IXPLogon::RegisterOptions, and IMAPISession::MessageOptions
methods can be safely released at this time.

Usually, a provider should, on completing a TransportLogoff call, first invalidate its logon object by
calling the IMAPISupport::MakeInvalid method and then release its support object. The provider's
implementation of TransportLogoff should release the support object last, because when the support
object is released, the MAPI spooler can also release the provider object itself.

See Also

IMAPISession::MessageOptions method , IMAPISupport::MakeInvalid method ,
IMAPISupport::SpoolerYield method , IXPLogon::AddressTypes method ,
IXPLogon::RegisterOptions method , MAPIAllocateBuffer function , MAPIFreeBuffer function

 IXPLogon::TransportNotify

The IXPLogon::TransportNotify method signals in a transport provider session the occurrence of an
event for the MAPI spooler about which the provider requested notification.

HRESULT TransportNotify(
 ULONG FAR * lpulFlags,
 LPVOID FAR * lppvData
)

Parameters

lpulFlags
Input-output parameter containing a bitmask of flags that signals notification events. The following
flags can be set by the MAPI spooler on input and must be returned unchanged on output:
NOTIFY_ABORT_DEFERRED

Notifies the transport provider that a message for which it accepted responsibility is being
canceled. Only transport providers that support deferral must support this flag. The lppvData
parameter points to the entry identifier of the canceled message. Messages that have not been
processed by the MAPI spooler can still be canceled by calling the IMsgStore::AbortSubmit
method.

NOTIFY_BEGIN_INBOUND
Indicates inbound messages can now be accepted for this transport provider session. The MAPI
spooler regularly calls the IXPLogon::Poll method if the transport provider set the flag
LOGON_SP_POLL with the IXPProvider::TransportLogon call at logon. Once the
NOTIFY_BEGIN_INBOUND flag is set, the MAPI spooler honors the NOTIFY_NEWMAIL flag
passed in the call to the IMAPISupport::SpoolerNotify method. The status table row for the
transport provider session should be updated before returning by calling the
IMAPISupport::ModifyStatusRow method. NOTIFY_BEGIN_INBOUND is mutually exclusive
with the NOTIFY_END_INBOUND flag.

NOTIFY_BEGIN_INBOUND_FLUSH
Signals the transport provider to cycle through inbound messages as quickly as possible. To
comply with this notification, the transport provider should set the flag
STATUS_INBOUND_FLUSH in the PR_STATUS_CODE property of its status table row as soon
as it can, using ModifyStatusRow. Until the end of this inbound messaging cycle, which is when
the provider determines it has downloaded all it can or when it has received an
IXPLogon::TransportNotify method call with the flag NOTIFY_END_INBOUND_FLUSH set, the
provider should not call the IMAPISupport::SpoolerYield method or otherwise give up cycles to
the operating system that can be used to speed delivery of incoming messages. At the end of the
inbound flush operation, the provider should use SpoolerNotify to clear the
STATUS_INBOUND_FLUSH flag in the PR_STATUS_CODE property of its status row.

NOTIFY_BEGIN_OUTBOUND
Indicates outbound operations can now occur for this transport provider session. If there are any
messages to be sent for this provider, a call to the IXPLogon::SubmitMessage method follows.
The status table row for this session should be updated before returning. The
NOTIFY_BEGIN_OUTBOUND flag is mutually exclusive with the NOTIFY_END_OUTBOUND
flag.

NOTIFY_BEGIN_OUTBOUND_FLUSH
Works similarly to the NOTIFY_BEGIN_INBOUND_FLUSH flag but refers to outbound messages,
and the appropriate status flag is STATUS_OUTBOUND_FLUSH.

NOTIFY_CANCEL_MESSAGE
Indicates the MAPI spooler must cancel transfer of the message for which the lppvData
parameter points to the 32-bit value obtained with the IXPLogon::SubmitMessage method call.
The NOTIFY_CANCEL_MESSAGE flag can be set without the transport provider having returned

from the SubmitMessage, IXPLogon::StartMessage, or IXPLogon::EndMessage method call
associated with the message. The transport provider must return from the entry point that is
handling the canceled message as soon as possible.
For an in-process incoming message, the transport provider should retain the incoming message
wherever it is presently stored and pass it at the next convenient time. The message object data
already stored for the incoming message is discarded.
If the transport provider did not update this 32-bit value at StartMessage or SubmitMessage
time, it is 0 for outbound messages and 1 for inbound messages.

NOTIFY_END_INBOUND
Indicates inbound operations must cease for this transport provider session. The MAPI spooler
ceases to use Poll and ignores NOTIFY_NEWMAIL for this session. In-process messages should
not be aborted. The status table row for the transport session should be updated by calling
ModifyStatusRow before returning. NOTIFY_END_INBOUND is mutually exclusive with
NOTIFY_BEGIN_INBOUND.

NOTIFY_END_INBOUND_FLUSH
Notifies the transport provider to come out of flush mode. The transport provider should not stop
downloading, but downloading should be done in the background. The status table row for the
transport session should be updated by calling ModifyStatusRow when the transport provider
can comply with this notification.

NOTIFY_END_OUTBOUND
Indicates outbound operations must cease for this transport provider session. The MAPI spooler
ceases to call SubmitMessage and ignores the SpoolerNotify flag NOTIFY_READYTOSEND. If
there is an in-process message, it should not be stopped; to stop a message, use the
NOTIFY_CANCEL_MESSAGE flag. The status table row for this session should be updated by
calling ModifyStatusRow before returning. NOTIFY_END_INBOUND is mutually exclusive with
NOTIFY_BEGIN_OUTBOUND.

NOTIFY_END_OUTBOUND_FLUSH
Works similarly to NOTIFY_END_INBOUND_FLUSH but refers to outbound messages, and the
appropriate status flag is STATUS_OUTBOUND_FLUSH.

lppvData
Output parameter pointing to a variable where a pointer to event-specific data is stored. For more
information on what lppvData holds, see the description for the lpulFlags parameter.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The MAPI spooler calls the IXPLogon::TransportNotify method to signal to the transport provider the
occurrence of events about which notification has been requested. These events include the MAPI
spooler's requiring the cancellation of transfer for a message, the beginning or ending of inbound or
outbound transport operations, and the beginning or ending of an operation to clear an incoming or
outgoing message queue.

When the user tries to cancel a message that the transport provider has previously deferred, the MAPI
spooler calls TransportNotify passing in both the NOTIFY_ABORT_DEFERRED and
NOTIFY_CANCEL_MESSAGE flags in ulFlags. If the MAPI spooler is logging off and still has
messages in the queue, it passes only NOTIFY_ABORT_DEFERRED in ulFlags when it calls
TransportNotify.

The provider must synchronize access to its data on this call, because the MAPI spooler can invoke
this method from another thread of execution or from a procedure for a different window.

See Also

IMAPISupport::SpoolerNotify method , IMAPISupport::SpoolerYield method ,
IMsgStore::AbortSubmit method , IXPLogon::EndMessage method , IXPLogon::Poll method ,
IXPLogon::StartMessage method , IXPLogon::SubmitMessage method ,
IXPLogon::TransportNotify method , IXPProvider::TransportLogon method

 IXPLogon::ValidateState

The IXPLogon::ValidateState method has a transport provider check its external status.

HRESULT ValidateState(
 ULONG ulUIParam,
 ULONG ulFlags
)

Parameters

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays.

ulFlags
Input parameter containing a bitmask of flags that controls how the status check is done and its
results. The following flags can be set:
ABORT_XP_HEADER_OPERATION

Indicates the user canceled the operation, typically by clicking the Cancel button in a dialog box.
The transport provider has the option to continue working on the operation, or it can abort the
operation and return MAPI_E_USER_CANCELED.

CONFIG_CHANGED
Validates the state of currently loaded transport providers by causing the MAPI spooler to call
their IXPLogon::AddressTypes and IMAPISession::MessageOptions methods. This flag also
provides the MAPI spooler an opportunity to correct critical transport-provider failures without
forcing client applications to log off and then log on again.

FORCE_XP_CONNECT
Indicates the user selected a connect operation. When this flag is used with the
REFRESH_XP_HEADER_CACHE or PROCESS_XP_HEADER_CACHE flag, the connect action
occurs without caching.

FORCE_XP_DISCONNECT
Indicates the user selected a disconnect operation. When this flag is used with
REFRESH_XP_HEADER_CACHE or PROCESS_XP_HEADER_CACHE, the disconnect action
occurs without caching.

PROCESS_XP_HEADER_CACHE
Indicates that entries in the header cache table should be processed, that all messages marked
with the MSGSTATUS_REMOTE_DOWNLOAD flag should be downloaded, and that all
messages marked with the MSGSTATUS_REMOTE_DELETE flag should be deleted. Messages
that have both MSGSTATUS_REMOTE_DOWNLOAD and MSGSTATUS_REMOTE_DELETE set
should be moved.

REFRESH_XP_HEADER_CACHE
Indicates that a new list of message headers should be downloaded, and that all message status
marking flags should be cleared.

SUPPRESS_UI
Prevents the transport provider from displaying a user interface.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_BUSY
Another operation is in progress; it should be allowed to complete, or it should be stopped, before
this operation is attempted.

MAPI_E_NO_SUPPORT

The remote transport provider involved does not support a user interface, and the client application
should display the dialog box itself.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by choosing the Cancel button in a dialog box.

Remarks

The MAPI spooler calls the IXPLogon::ValidateState method to support calls to the
IMAPIStatus::ValidateState method for the status object. The transport provider should respond to the
IXPLogon::ValidateState call exactly as if the MAPI spooler had opened a status object for the current
logon session and then called ValidateState on that object.

To support its implementation of IMAPIStatus::ValidateState, the MAPI spooler calls
IXPLogon::ValidateState on all logon objects for all active transport providers running in a profile
session.

See Also

IMAPISession::MessageOptions method , IMAPIStatus::ValidateState method ,
IXPLogon::AddressTypes method

 IXPProvider : IUnknown

The IXPProvider interface is used to initialize a transport provider object and to shut down the object
when it is no longer needed.

At a Glance

Specified in header file: MAPISPI.H
Object that supplies this
interface:

Transport provider object

Corresponding pointer type: LPXPROVIDER
Implemented by: Transport providers
Called by: The MAPI spooler

Vtable Order

Shutdown Closes down a transport provider in an orderly fashion.
TransportLog
on

Establishes a session in which a user logs onto a
transport provider.

 IXPProvider::Shutdown

The IXPProvider::Shutdown method closes down a transport provider in an orderly fashion.

HRESULT Shutdown (
 ULONG FAR * lpulFlags
)

Parameters

lpulFlags
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The MAPI spooler calls the IXPProvider::Shutdown method just prior to releasing a transport provider
object. Before calling Shutdown, MAPI releases all logon objects for a provider.

See Also

XPProviderInit function

 IXPProvider::TransportLogon

The IXPProvider::TransportLogon method establishes a session in which a user logs on to a
transport provider.

HRESULT TransportLogon(
 LPMAPISUP lpMAPISup,
 ULONG ulUIParam,
 LPTSTR lpszProfileName,
 ULONG FAR * lpulFlags,
 LPMAPIERROR FAR * lppMAPIError,
 LPXPLOGON FAR * lppXPLogon
)

Parameters

lpMAPISup
Input parameter pointing to the transport provider's support object for callback functions within MAPI
for this session. This object remains valid until the transport provider releases it.

ulUIParam
Input parameter containing the handle of the parent window for any dialog boxes or windows this
method displays. The ulUIParam parameter can be non-null, for example when the LOGON_SETUP
flag is set in the lpulFlags parameter.

lpszProfileName
Input parameter pointing to a string containing the profile name of the user. The lpszProfileName
parameter is used primarily when a dialog box must be presented.

lpulFlags
Input-output parameter containing a bitmask of flags that controls how the logon session is
established. The following flags can be set on input by the MAPI spooler:
LOGON_NO_CONNECT

Indicates the user account is logging on to this transport provider for purposes other than
transmission and reception of messages. The transport provider should not attempt to make any
connections.

LOGON_NO_DIALOG
Indicates no dialog box should be displayed even if the currently saved user credentials are
invalid or insufficient for logon.

LOGON_NO_INBOUND
Indicates the transport provider does not need to initialize for reception of messages and should
not accept incoming messages. The MAPI spooler can use the IXPLogon::TransportNotify
method to signal the transport provider to enable inbound message processing.

LOGON_NO_OUTBOUND
Indicates the transport provider does not need to initialize for sending messages, as the MAPI
spooler does not provide any. If a client application requires a connection to a remote provider
during the composition of a message so that it can make IXPLogon::AddressTypes or
IXPLogon::RegisterOptions method calls, the transport provider should make the connection.
The MAPI spooler can use TransportNotify to signal the transport provider when outbound
operations can begin.

MAPI_UNICODE
Indicates the passed-in string for the profile name is in Unicode format. If the MAPI_UNICODE
flag is not set, the string is in ANSI format.

The following flags can be set on output by the transport provider:

LOGON_SP_IDLE

Requests that the MAPI spooler frequently call the transport provider's IXPLogon::Idle method
for idle-time processing.

LOGON_SP_POLL
Requests that the MAPI spooler frequently call the IXPLogon::Poll method on the returned logon
object to check for new messages. If this flag is not set, the MAPI spooler only checks for new
messages when the transport provider calls the IMAPISupport::SpoolerNotify method. A
transport provider effectively becomes send-only by not setting this flag and by not notifying the
MAPI spooler of message receipt.

LOGON_SP_RESOLVE
Requests that the MAPI spooler resolve to full addresses all message addresses for recipients
not supported by this transport provider, so that the transport provider can construct a reply path
for all recipients.

MAPI_UNICODE
Indicates the returned strings in the MAPIERROR structure, if any, are in Unicode format. If the
MAPI_UNICODE flag is not set, the strings are in ANSI format.

lppMAPIError
Output parameter pointing to a pointer to the returned MAPIERROR structure, if any, containing
version, component, and context information for the error. The lppMAPIError parameter can be set
to NULL if there is no MAPIERROR structure to return.

lppXPLogon
Output parameter pointing to a variable where the pointer to the returned transport-provider logon
object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_FAILONEPROVIDER
Indicates this provider cannot log on, but this error should not disable the service.

MAPI_E_UNCONFIGURED
The profile does not contain enough information for the logon to complete. MAPI calls the provider's
message service entry point function.

MAPI_E_UNKNOWN_CPID
Indicates the server is not configured to support the client's code page.

MAPI_E_UNKNOWN_LCID
Indicates the server is not configured to support the client's locale information.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by clicking the Cancel button in a dialog box.

Remarks

The MAPI spooler calls the IXPProvider::TransportLogon method to establish a logon session for a
user.

Most transport providers use the IMAPISupport::OpenProfileSection method provided with the
support object pointed to by the lpMAPISup parameter for saving and retrieving user identity
information, server addresses, and credentials. Using OpenProfileSection enables a transport
provider to save arbitrary information and associate it with a logon to a particular resource. For
example, a provider can use OpenProfileSection to save the account name and password associated
with a particular session and any server names or other necessary information needed to access
resources for that session. MAPI hides information associated with a resource from outside access.
The profile section made available through lpMAPISup is segregated by the MAPI spooler so data
related to this user context is separated from data for other contexts.

The transport provider must call the IUnknown::AddRef method for the support object and keep a
copy of the pointer to this object as part of the provider logon object.

The profile display name in lpszProfileName is provided so the transport provider can use it in error
messages or logon dialog boxes. If the provider retains this name, it must be copied to storage
allocated by the provider.

Transport providers that are tightly coupled with other service providers might need to do additional
work at logon to establish the proper credentials required for operations between companion providers.

Usually, transport providers are opened when the user first logs on to a profile. Because the first logon
to a profile thus generally precedes logon to any message store, the MAPI spooler usually calls
TransportLogon with both the LOGON_NO_INBOUND and LOGON_NO_OUTBOUND flags set in
lpulFlags. Later, when the appropriate message stores are available in the profile session, the MAPI
spooler calls TransportNotify to initiate inbound and outbound operations for the transport provider.

Passing the LOGON_NO_CONNECT flag in lpulFlags signals offline operation of the transport
provider. This flag indicates no external connection is to be made; if the transport provider cannot
establish a session without an external connection, it should return an error value for the logon.

A transport provider should set the LOGON_SP_IDLE flag in lpulFlags at initialization time to support
any scheduled connections and to handle automatic operations, such as automatic message
downloading, timed message downloading, or timed message submission. If this flag is set, the MAPI
spooler calls Idle when system idle time occurs to initiate such operations. The MAPI spooler does not
call Idle at regular intervals; rather, it is called only during true idle time, so providers should not work
on any assumption about how frequently their Idle methods will be called. Providers that support idle-
time operations should supply the correct configuration user interface in their provider property sheet.

If the transport provider logon succeeds, the provider should return in the lppXPLogon parameter a
pointer to a logon object for the MAPI spooler to use for further provider access. If TransportLogon
displays a logon dialog box and the user cancels logon, typically by clicking the Cancel button in the
dialog box, the provider should return MAPI_E_USER_CANCEL.

For most error values returned from TransportLogon, MAPI disables the message services to which
the failing provider belongs. MAPI will not call any providers belonging to that service for the rest of the
life of the MAPI session. In contrast, when TransportLogon returns the MAPI_E_FAILONEPROVIDER
error value from its logon, MAPI does not disable the message service to which the provider belongs.
TransportLogon should return MAPI_E_FAILONEPROVIDER if it encounters an error that does not
warrant disabling the entire service for the life of the session.

If a provider returns MAPI_E_UNCONFIGURED from its logon, MAPI will call the provider's message
service entry function and then retry the logon. MAPI passes MSG_SERVICE_CONFIGURE as the
context, to give the service a chance to configure itself. If the client has chosen to allow a user interface
on the logon, the service can present its configuration property sheet so the user can enter
configuration information.

If the provider finds that all the required information is not in the profile, it should return
MAPI_E_UNCONFIGURED so that MAPI calls the provider's message-service entry point function.

See Also

IMAPISupport::OpenProfileSection method , IMAPISupport::SpoolerNotify method ,
IXPLogon::AddressTypes method , IXPLogon::Idle method , IXPLogon::Poll method ,
IXPLogon::RegisterOptions method , IXPLogon::TransportNotify method , MAPIERROR structure

 MAPI Functions and Related Macros

The following alphabetic entries contain documentation for MAPI Functions. For more information on
using functions that may not be supported in future versions of MAPI, see Using Functions.

 ACCELERATEABSDI

The ACCELERATEABSDI function prototype defines a callback function that accelerates the addition
of names to an address book.

At a Glance

Specified in header file: MAPIDEFS.H
Implemented by: MAPI
Called by: Client applications

BOOL (STDMETHODCALLTYPE ACCELERATEABSDI)(
 ULONG ulUIParam,
 LPVOID lpvmsg
);

Parameters

ulUIParam
Input parameter specifying an implementation-specific 32-bit value used for passing user interface
information to a function. In Microsoft Windows applications, ulUIParam is the parent window handle
for a dialog box and is of type HWND, cast to a ULONG. A value of zero indicates there is no parent
window.

lpvmsg
Input parameter pointing to a Windows message.

Return Values

A function with the ACCELERATEABSDI prototype returns TRUE if it handles the message.

Remarks

An ACCELERATEABSDI prototype-based function is used only if the client has set the DIALOG_SDI
flag in the ulFlags member of the ADRPARM structure.

A client application calls a function based on this prototype in its Windows message loop during
execution of a modeless address book dialog box for the IAddrBook::Address method. This calling is
terminated when MAPI calls a function based on the DISMISSMODELESS function prototype .

 ABProviderInit

The ABProviderInit function initializes an address book provider for operation.

At a Glance

Specified in header file: MAPISPI.H
Implemented by: Address book providers
Called by: MAPI

HRESULT ABProviderInit(
 HINSTANCE hInstance,
 LPMALLOC lpMalloc,
 LPALLOCATEBUFFER lpAllocateBuffer,
 LPALLOCATEMORE lpAllocateMore,
 LPFREEBUFFER lpFreeBuffer,
 ULONG ulFlags,
 ULONG ulMAPIVer,
 ULONG FAR * lpulProviderVer,
 LPABPROVIDER FAR * lppABProvider
);

Parameters

hInstance
Input parameter containing the instance of the address book provider's dynamic-link library (DLL)
that MAPI used when it linked.

lpMalloc
Input parameter pointing to a memory allocator object exposing the OLE IMalloc interface. The
address book provider may need to use this allocation method when working with certain interfaces
such as IStream.

lpAllocateBuffer
Input parameter pointing to the MAPIAllocateBuffer function, to be used to allocate memory.

lpAllocateMore
Input parameter pointing to the MAPIAllocateMore function, to be used to allocate additional
memory where required.

lpFreeBuffer
Input parameter pointing to the MAPIFreeBuffer function, to be used to free memory.

ulFlags
Input parameter containing a bitmask of flags. The following flag can be set:
MAPI_NT_SERVICE

Indicates the provider is being loaded in the context of a Windows NT service, a special type of
process without access to any user interface.

ulMAPIVer
Input parameter containing the version number of the service provider interface that MAPI.DLL uses.
For the current version number, see the MAPISPI.H header file.

lpulProviderVer
Output parameter pointing to the version number of the service provider interface that this address
book provider uses.

lppABProvider
Output parameter pointing to a pointer to the initialized address book provider object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

MAPI calls the entry point function ABProviderInit to initialize a newly loaded address book provider.
The provider must implement ABProviderInit in compliance with the ABPROVIDERINIT function
prototype, also specified in MAPISPI.H. MAPI defines ABPROVIDERINIT to use the standard MAPI
initialization call type, STDMAPIINITCALLTYPE, which causes ABProviderInit to follow the CDECL
calling convention.

The address book provider should use the functions pointed to by lpAllocateBuffer, lpAllocateMore, and
lpFreeBuffer for most memory allocation and deallocation. In particular, the provider must use these
functions to allocate memory for use by client applications when calling object interfaces such as
IMAPIProp::GetProps and IMAPITable::QueryRows. If the provider expects to use the OLE memory
allocator later, it should call the IUnknown::AddRef method for the allocator object pointed to by the
lpMalloc parameter.

For more information on entry point functions, see About Provider DLL Entry Point Functions.

See Also

IABProvider : IUnknown interface , HPProviderInit function , MSProviderInit function ,
XPProviderInit function

 BuildDisplayTable

The BuildDisplayTable function creates a display table from the property page data contained in a
DTPAGE structure.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Service providers

STDAPI BuildDisplayTable(
 LPALLOCATEBUFFER lpAllocateBuffer,
 LPALLOCATEMORE lpAllocateMore,
 LPFREEBUFFER lpFreeBuffer,
 LPVOID lpvReserved,
 HINSTANCE hInstance,
 UINT cPages,
 LPDTPAGE lpPage,
 ULONG ulFlags,
 LPMAPITABLE * lppTable,
 LPTABLEDATA * lppTblData
);

Parameters

lpAllocateBuffer
Input parameter pointing to the MAPIAllocateBuffer function, to be used to allocate memory.

lpAllocateMore
Input parameter pointing to the MAPIAllocateMore function, to be used to allocate additional
memory where required.

lpFreeBuffer
Input parameter pointing to the MAPIFreeBuffer function, to be used to free memory.

lpvReserved
Reserved; must be zero.

hInstance
Input parameter containing an instance of a MAPI object from which BuildDisplayTable retrieves
resources.

cPages
Input parameter containing the number of DTPAGE structures pointed to by the lpPage parameter.

lpPage
Input parameter pointing to one or more DTPAGE structures that contain information about the
display table to be built.

ulFlags
Input parameter containing a bitmask of flags. The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppTable
Input parameter pointing to the IMAPITable interface for the display table.

lppTblData
Input-output parameter pointing to the ITableData interface for the object that contains table data for
the display table. On input, the pointer is NULL to indicate that the existing table data object has

been released. On output, the pointer indicates a display table returned by BuildDisplayTable.

Remarks

The lpAllocateBuffer, lpAllocateMore, and lpFreeBuffer input parameters point to the
MAPIAllocateBuffer, MAPIAllocateMore, and MAPIFreeBuffer functions, respectively. If a client
application calls BuildDisplayTable, it passes in these pointers to the functions named as listed. If a
service provider calls BuildDisplayTable, it passes the pointers to these functions it received in its
initialization call or retrieved by calling the IMAPISupport::GetMemAllocRoutines method.

Anything that can be read from the dialog resource, will be. This includes:

· The page title (ulbLpszLabel member of the DTBLPAGE structure), read from the dialog title in the
resource.

· All control titles (ulbLpszLabel member of other control structures), read from the control text in the
resource.

BuildDisplayTable overwrites anything passed in the input control structures with information from the
dialog resource which means the caller of BuildDisplayTable cannot dynamically specify page or
control titles. Callers who need to do that can choose to have BuildDisplayTable return to them the
table data object in lppTableData and change rows in it; but they might find it simpler to build the
display table by hand in a table data object instead.

 CALLERRELEASE

The CALLERRELEASE function prototype defines a callback function that releases a table data
object.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: Client applications and service

providers
Called by: MAPI

void CALLERRELEASE(
 ULONG ulCallerData,
 LPTABLEDATA lpTblData,
 LPMAPITABLE lpVue
);

Parameters

ulCallerData
Input parameter containing 32-bit data about the table data object to release.

lpTblData
Input parameter pointing to the ITableData : IUnknown interface for the table data object to release.

lpVue
Input parameter pointing to the IMAPITable : IUnknown interface for the table whose data is
released. This table interface is an interface for the table object passed in the lppMAPITable
parameter of the ITableData::HrGetView method that created the object to release.

Return Values

None

Remarks

Client applications use the CALLERRELEASE function prototype to create a callback function to
release a view on the underlying table data object without having to keep track of that object. After all
views on a table data object are released, implementations of ITableData::HrGetView call the
CALLERRELEASE function and then release the table data object underlying the views.

 ChangeIdleRoutine

This function may not be supported in future versions of MAPI.

The ChangeIdleRoutine function changes some or all of the characteristics of an idle function based
on the FNIDLE function prototype.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

VOID ChangeIdleRoutine(
 FTG ftg,
 PFNIDLE pfnIdle,
 LPVOID pvIdleParam,
 short priIdle,
 ULONG csecIdle,
 USHORT iroIdle,
 USHORT ircIdle
);

Parameters

ftg
Input parameter containing a function tag that identifies the idle function.

pfnIdle
Input parameter pointing to the idle function.

pvIdleParam
Input parameter pointing to a new block of memory that the calling implementation allocates for the
idle function.

priIdle
Input parameter containing a value representing a new priority for the idle function. Possible
priorities for implementation-defined functions are greater than or less than zero, but not zero. A
value of zero is reserved for a user event such as a mouse click.
Values greater than zero represent priorities for background tasks that have a higher priority than
user events and are dispatched as part of the standard message pump loop. Values less than zero
represent priorities for idle tasks that only run during message-pump idle time. Examples of priorities
are: 1 for foreground submission, -1 for power-edit character insertion, and -3 for downloading new
messages.

csecIdle
Input parameter containing a new time, in hundredths of a second, to apply to the idle function. The
meaning of the initial time value varies, depending on what is passed in the iroIdle parameter. It can
be:
· The minimum period of user inaction that must elapse before the MAPI idle engine calls the idle

function for the first time, if the FIROWAIT flag is set in iroIdle. After this time passes, the idle
engine can call the idle function as often as necessary.

· The minimum interval between calls to the idle function, if the FIROINTERVAL flag is set in
iroIdle.

iroIdle
Input parameter containing a bitmask of flags indicating new options for the idle function. The
following flags can be set:

FIRODISABLED
Indicates that the idle function is initially disabled when registered. The default action is to enable
the idle function when the FtgRegisterIdleRoutine function registers it.

FIROINTERVAL
Indicates that the time specified by the csecIdle parameter is the minimum interval between
successive calls to the idle function.

FIROWAIT
Indicates that the time specified by the csecIdle parameter is the minimum period of user inaction
that must elapse before the MAPI idle engine calls the idle function for the first time. After this
time passes, the idle engine can call the idle function as often as necessary.

ircIdle
Input parameter containing a bitmask of flags used to indicate the changes to be made to the idle
function. The following flags can be set:
FIRCCSEC

Indicates a change to the time associated with the idle function (that is, a change indicated by the
value passed in the csecIdle parameter).

FIRCIRO
Indicates a change to the options for the idle function (that is, a change indicated by the value
passed in the iroIdle parameter).

FIRCPFN
Indicates a change to the idle function pointer (that is, a change indicated by the value passed in
the pfnIdle parameter).

FIRCPRI
Indicates a change to the priority of the idle function (that is, a change indicated by the value
passed in the priIdle parameter).

FIRCPV
Indicates a change to the memory block of the idle function (that is, a change indicated by the
value passed in the pvIdleParam parameter).

 CheckParameters

The CheckParameters macro calls an internal function to check debugging parameters
on service provider methods called by MAPI.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

HRESULT CheckParameters(
 METHODS eMethod,
 LPVOID First
);

Parameters

eMethod
(Input) Specifies, by enumeration, the method to validate.

First
(Input) Pointer to the first argument on the stack.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The CheckParameters macro has been superseded by the CheckParms macro. CheckParameters
does not work correctly on RISC platforms and is now prevented from compiling on them. It still
compiles and works correctly on Intel platforms, but CheckParms is recommended on all platforms.

 CheckParms

The CheckParms macro calls an internal function to check debugging parameters on
service provider methods called by MAPI.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

HRESULT CheckParms(
 METHODS eMethod,
 LPVOID First
);

Parameters

eMethod
(Input) Specifies, by enumeration, the method to validate.

First
(Input) Pointer to the first argument on the stack.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

In contrast to the ValidateParms and UlValidateParms macros, the CheckParms macro does not
perform a full parameter validation. Parameters passed between MAPI and service providers are
assumed to be correct, so CheckParms performs a debug validation only.

For more information on parameter validation, see Validating Parameters to Interface Methods.

 CloseIMsgSession

This function may not be supported in future versions of MAPI.

The CloseIMsgSession function closes a message session.

At a Glance

Specified in header file: IMESSAGE.H
Implemented by: MAPI
Called by: Client applications and service

providers

VOID CloseIMsgSession(
 LPMSGSESS lpMsgSess
);

Parameters

lpMsgSess
Input parameter pointing to the message session object obtained using the OpenIMsgSession
function at the start of the message session.

Remarks

A client application uses the CloseIMsgSession function along with the OpenIMsgSession function to
wrap the creation of messages inside a message session. When a client application closes this
session, it also closes all messages created within the session. Using sessions obtained with the
IMessage interface is optional.

A message session keeps track of all messages opened during the session, in addition to all the tables
and attachments within the messages. When a client calls CloseIMsgSession, it closes all these
objects.

 CreateIProp

The CreateIProp function creates a property data object, that is, an IPropData object.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE CreateIProp(
 LPCIID lpInterface,
 ALLOCATEBUFFER FAR * lpAllocateBuffer,
 ALLOCATEMORE FAR * lpAllocateMore,
 FREEBUFFER FAR * lpFreeBuffer,
 LPVOID lpvReserved,
 LPPROPDATA FAR * lppPropData
);

Parameters

lpInterface
Input parameter pointing to an interface identifier (IID) for the property data object.

lpAllocateBuffer
Input parameter pointing to the MAPIAllocateBuffer function, to be used to allocate memory.

lpAllocateMore
Input parameter pointing to the MAPIAllocateMore function, to be used to allocate additional
memory where required.

lpFreeBuffer
Input parameter pointing to the MAPIFreeBuffer function, to be used to free memory.

lpvReserved
Reserved; must be zero.

lppPropData
Output parameter pointing to a variable where the returned property data object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INTERFACE_NOT_SUPPORTED
The requested interface is not supported for this object.

Remarks

The lpAllocateBuffer, lpAllocateMore, and lpFreeBuffer input parameters point to the
MAPIAllocateBuffer, MAPIAllocateMore, and MAPIFreeBuffer functions, respectively. If a client
application calls the CreateIProp function, it passes in these parameters pointers to the functions
named as listed. If a service provider calls CreateIProp, it passes the pointers to these functions it
received in its initialization call or retrieved with a call to the IMAPISupport::GetMemAllocRoutines
method.

 CreateTable

The CreateTable function creates structures and an object handle for the ITableData interface that can
be used to create table views.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE CreateTable(
 LPCIID lpInterface,
 ALLOCATEBUFFER FAR * lpAllocateBuffer,
 ALLOCATEMORE FAR * lpAllocateMore,
 FREEBUFFER FAR * lpFreeBuffer,
 LPVOID lpvReserved,
 ULONG ulTableType,
 ULONG ulPropTagIndexColumn,
 LPSPropTagArray lpSPropTagArrayColumns,
 LPTABLEDATA FAR * lppTableData
);

Parameters

lpInterface
Input parameter pointing to an interface identifier (IID) for the table data object. Passing NULL in the
lpInterface parameter indicates that the table data object returned in the lppTableData parameter is
cast to the standard interface for a table data object; the valid interface identifier is
IID_IMAPITableData.

lpAllocateBuffer
Input parameter pointing to the MAPIAllocateBuffer function, to be used to allocate memory.

lpAllocateMore
Input parameter pointing to the MAPIAllocateMore function, to be used to allocate additional
memory where required.

lpFreeBuffer
Input parameter pointing to the MAPIFreeBuffer function, to be used to free memory.

lpvReserved
Reserved; must be zero.

ulTableType
Input parameter containing a table type that is available to a client application or service provider as
part of the IMAPITable::GetStatus return data on its table views. Possible values are:
TBLTYPE_DYNAMIC

The table's contents are dynamic and can change as the underlying data changes.
TBLTYPE_KEYSET

The rows within the table are fixed, but the values within these rows are dynamic and can change
as the underlying data changes.

TBLTYPE_SNAPSHOT
The table is static and the contents do not change when the underlying data changes.

ulPropTagIndexColumn
Input parameter containing the index number of the column for use when changing table data.

lpSPropTagArrayColumns

Input parameter pointing to an SPropTagArray structure containing an array of property tags
indicating the properties required in the table for which the object holds data.

lppTableData
Output parameter pointing to a variable where the pointer to the returned table data object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The lpAllocateBuffer, lpAllocateMore, and lpFreeBuffer input parameters point to the
MAPIAllocateBuffer, MAPIAllocateMore, and MAPIFreeBuffer functions, respectively. If a client
application calls the CreateTable function, it passes in these parameters pointers to the functions
named as listed. If a service provider calls CreateTable, it passes the pointers to these functions that it
received in its initialization call or retrieved with a call to the IMAPISupport::GetMemAllocRoutines
method.

See Also

IMAPITable : IUnknown interface

 DeinitMapiUtil

The DeinitMapiUtil function releases utility functions called explicitly by the ScInitMapiUtil function or
implicitly by the MAPIInitialize function.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications

DeinitMapiUtil(VOID);

Parameters

None

Remarks

The ScInitMapiUtil and DeinitMapiUtil functions cooperate to call and release select utility functions,
as opposed to the MAPIInitialize function , which calls core as well as utility functions. When
ScInitMapiUtil calls utility functions, it also initializes the necessary memory.

When use of the functions called by ScInitMapiUtil is complete, DeinitMapiUtil must be explicitly
called to release them. In contrast, MAPIInitialize implicitly calls DeinitMapiUtil.

See Also

MAPIUninitialize function

 DeregisterIdleRoutine

This function may not be supported in future versions of MAPI.

The DeregisterIdleRoutine function removes a client application or service provider function based on
the FNIDLE function prototype from the idle table.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

VOID DeregisterIdleRoutine(
 FTG ftg
);

Parameters

ftg
Input parameter containing a function tag that identifies the idle function to be removed.

Remarks

A client application or service provider can only remove an idle function (that is, a function based on the
FNIDLE function prototype) from the idle table if the function is not active. MAPI does not verify that the
idle function is in a state from which it can be exited.

A client or provider can use the idle function itself to make the call to the DeregisterIdleRoutine
function. The idle function is deregistered when the function returns.

After the idle function is deregistered, the idle engine does not call it again. Any implementation that
calls DeregisterIdleRoutine must deallocate any memory blocks to which it passed pointers for the
idle engine to use in its original call to the FtgRegisterIdleRoutine function.

 DISMISSMODELESS

The DISMISSMODELESS function prototype defines a callback function that MAPI calls when it has
dismissed a modeless address book dialog box. This call is necessary so that the client application will
stop calling the accelerator function based on the ACCELERATEABSDI function prototype when the
modeless dialog box is not active.

At a Glance

Specified in header file: MAPIDEFS.H
Implemented by: Client applications
Called by: MAPI

void (STDMETHODCALLTYPE DISMISSMODELESS)(
 ULONG ulUIParam,
 LPVOID lpvContext
);

Parameters

ulUIParam
Input parameter specifying an implementation-specific 32-bit value typically used for passing user
interface information to a function. For example, in Microsoft Windows this parameter is the parent
window handle for the dialog box and is of type HWND (cast to a ULONG). A value of zero is always
valid.

lpvContext
Input parameter pointing to an arbitrary value passed to the callback function when MAPI calls it.
This value can represent an address of significance to the client application. Typically, for C++ code,
lpvContext is a pointer to the address of a C++ object.

See Also

ADRPARM structure

 EnableIdleRoutine

This function may not be supported in future versions of MAPI.

The EnableIdleRoutine function enables or disables an idle function based on the FNIDLE function
prototype.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

VOID EnableIdleRoutine(
 FTG ftg,
 BOOL fEnable
);

Parameters

ftg
Input parameter containing a function tag that identifies the idle function to be enabled or disabled.

fEnable
Input parameter containing TRUE if the idle engine should enable the idle function, or FALSE if the
idle engine should disable it.

See Also

FtgRegisterIdleRoutine function

 FBadColumnSet

This function may not be supported in future versions of MAPI.

The FBadColumnSet function tests the validity of one or more table column sets for use by a service
provider in a subsequent call to the IMAPITable::SetColumns method.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

ULONG FBadColumnSet(
 LPSPropTagArray lpptaCols
);

Parameters

lpptaCols
Input parameter pointing to an SPropTagArray structure containing an array of property tags
defining the table column sets to validate.

Return Values

TRUE
The specified column sets are invalid.

FALSE
The specified column sets are valid.

Remarks

A service provider calls the FBadColumnSet function. This function treats columns of type
PT_ERROR as invalid and columns of type PT_NULL as valid.

 FBadEntryList

This function may not be supported in future versions of MAPI.

The FBadEntryList function validates a list of MAPI entry identifiers.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

BOOL FBadEntryList(
 LPENTRYLIST lpEntryList
);

Parameters

lpEntryList
Input parameter pointing to an ENTRYLIST structure defining the list of entry identifiers to be
validated.

Return Values

TRUE
One or more of the listed entry identifiers are invalid.

FALSE
All of the listed entry identifiers are valid.

Remarks

The FBadEntryList function determines if the entry identifier list has been correctly generated. An
example of an invalid entry identifier is an identifier for which memory has been incorrectly allocated or
an identifier of an incorrect size.

 FBadProp

This function may not be supported in future versions of MAPI.

The FBadProp function validates a specified property.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

ULONG FBadProp(
 LPSPropValue lpprop
);

Parameters

lpprop
Input parameter containing an SPropValue structure defining the property to be validated.

Return Values

TRUE
The specified property is invalid.

FALSE
The specified property is valid.

Remarks

A service provider can call the FBadProp function for several reasons, for example to prepare for a call
to the IMAPIProp::SetProps method setting a property. FBadProp validates the specified property
depending on the property type. For example, if the property is Boolean, FBadProp ensures that its
value is either TRUE or FALSE. If the property is binary, FBadProp checks its pointer and size and
makes sure that it is allocated correctly.

See Also

FBadPropTag function

 FBadPropTag

This function may not be supported in future versions of MAPI.

The FBadPropTag function validates a specified property tag.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

ULONG FBadPropTag(
 ULONG ulPropTag
);

Parameters

ulPropTag
Input parameter containing the property tag to be validated.

Return Values

TRUE
The specified property tag is not a valid MAPI property tag.

FALSE
The specified property tag is a valid MAPI property tag.

Remarks

A service provider calls the FBadPropTag function.

See Also

FBadProp function

 FBadRestriction

This function may not be supported in future versions of MAPI.

The FBadRestriction function validates a restriction used to limit a table.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

ULONG FBadRestriction(
 LPSRestriction lpres
);

Parameters

lpres
Input parameter containing an SRestriction structure defining the restriction to be validated.

Return Values

TRUE
The specified restriction or any of its subrestrictions is invalid.

FALSE
The specified restriction and its subrestrictions are valid.

Remarks

A service provider calls the FBadRestriction function. Once validated, a restriction can be passed in
calls to the IMAPITable::Restrict method to restrict a table to certain rows, to the
IMAPITable::FindRow method to locate a table row, and to methods of the IMAPIContainer interface
to perform a restriction on a container object.

 FBadRglpNameID

This function may not be supported in future versions of MAPI.

The FBadRglpNameID function validates an array of pointers that specify name identifier structures
and verifies their allocation.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

BOOL FBadRglpNameID(
 LPMAPINAMEID FAR * lppNameId,
 ULONG cNames
);

Parameters

lppNameId
Input parameter pointing to an array of MAPINAMEID structures defining the name identifiers.

cNames
Input parameter containing the number of name identifiers in the array pointed to by the lppNameId
parameter.

Return Values

TRUE
One or more of the specified name identifiers is invalid.

FALSE
The specified name identifiers are valid.

Remarks

See Also

IMAPIProp::GetIDsFromNames method , IMAPIProp::GetNamesFromIDs method

 FBadRglpszW

This function may not be supported in future versions of MAPI.

The FBadRglpszW function validates all strings in an array of Unicode strings.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

BOOL FBadRglpszW(
 LPWSTR FAR * lppszW,
 ULONG cStrings
);

Parameters

lppszW
Input parameter pointing to an array of null-terminated Unicode strings.

cStrings
Input parameter containing the number of strings in the array pointed to by the lppszW parameter.

Return Values

TRUE
One or more of the strings in the specified array are invalid.

FALSE
The strings in the specified array are valid.

 FBadRow

This function may not be supported in future versions of MAPI.

The FBadRow function validates a row in a table.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

ULONG FBadRow(
 LPSRow lprow
);

Parameter

lprow
Input parameter pointing to an SRow structure identifying the row to be validated.

Return Values

TRUE
The specified row is invalid.

FALSE
The specified row is valid.

Remarks

A service provider calls the FBadRow function.

See Also

FBadRowSet function

 FBadRowSet

This function may not be supported in future versions of MAPI.

The FBadRowSet function validates all table rows included in a set of table rows.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

BOOL FBadRowSet(
 LPSRowSet lpRowSet
);

Parameter

lpRowSet
Input parameter pointing to an SRowSet structure identifying the row set to be validated. If the
pointer is NULL, the structure is invalid.

Return Values

TRUE
A row of the specified row set is invalid or the row set itself is invalid.

FALSE
The rows of the specified row set and the row itself are valid.

Remarks

A service provider calls the FBadRowSet function.

See Also

FBadRow function

 FBadSortOrderSet

This function may not be supported in future versions of MAPI.

The FBadSortOrderSet function validates a sort order set by verifying its memory allocation.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

ULONG FBadSortOrderSet(
 LPSSortOrderSet lpsos
);

Parameter

lpsos
Input parameter pointing to an SSortOrderSet structure identifying the sort order set to be validated.

Return Values

TRUE
The specified sort order set is invalid.

FALSE
The specified sort order set is valid.

Remarks

A service provider calls the FBadSortOrderSet function. This function can be used to prepare for a call
to a sort method such as the IMAPITable::SortTable method.

 FBinFromHex

This function may not be supported in future versions of MAPI.

The FBinFromHex function converts a string representation of a hexadecimal number to binary data.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

BOOL FBinFromHex(
 LPTSTR sz,
 LPBYTE pb
);

Parameters

sz
Input parameter pointing to the null-terminated string to be converted. Valid characters include the
hexadecimal characters zero through nine and both uppercase and lowercase characters A through
F.

pb
Output parameter pointing to a variable where the returned binary number is stored.

Return Values

TRUE
The string was successfully converted into a binary number.

FALSE
The input string contains invalid ASCII hexadecimal characters.

See Also

ScBinFromHexBounded function

 FEqualNames

This function may not be supported in future versions of MAPI.

The FEqualNames function determines whether two MAPI name identifiers are equal.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

BOOL FEqualNames(
 LPMAPINAMEID lpName1,
 LPMAPINAMEID lpName2
);

Parameters

lpName1
Input parameter pointing to a MAPINAMEID structure defining the first name to be tested.

lpName2
Input parameter pointing to a MAPINAMEID structure defining the second name to be tested.

Return Values

TRUE
The two name identifiers are equal.

FALSE
The two name identifiers are not equal.

Remarks

The FEqualNames function is useful because name identifiers are represented as structures, which
cannot be compared by simple binary methods. The testing process is case-sensitive for strings.

 FNIDLE

This function may not be supported in future versions of MAPI.

The FNIDLE function prototype defines an idle function that the MAPI idle engine calls periodically
according to priority. The specific functionality of the idle function is defined by the client or provider.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: Client applications and service

providers
Called by: MAPI

BOOL (STDAPICALLTYPE FNIDLE)(
 LPVOID lpvContext
);

Parameters

lpvContext
Input parameter specifying a pointer to a block of memory. The idle function can use this value as a
pointer to a state buffer for length operations.

Return Values

FALSE
An idle function with the FNIDLE prototype should always return FALSE.

Remarks

A client application or service provider must call the idle engine function Idle_InitDLL before it can
register its own idle function with a call to the FtgRegisterIdleRoutine function . Then the client
application or provider can use these other idle engine functions as needed during idle operations:

· EnableIdleRoutine
· ChangeIdleRoutine
· DeregisterIdleRoutine
· Idle_DeInitDLL
· FIsIdleExit
· FDoNextIdleTask

 FPropCompareProp

This function may not be supported in future versions of MAPI.

The FPropCompareProp function compares two properties using a binary relational operator.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

BOOL FPropCompareProp(
 LPSPropValue lpSPropValue1,
 ULONG ulRelOp,
 LPSPropValue lpSPropValue2
);

Parameters

lpSPropValue1
Input parameter pointing to an SPropValue structure defining the first property for comparison.

ulRelOp
Input parameter containing the relational operator to use in the comparison.

lpSPropValue2
Input parameter pointing to an SPropValue structure defining the second property for comparison.

Return Values

TRUE
The function has succeeded in comparing the input properties.

FALSE
The function has not succeeded in comparing the input properties.

Remarks

The order of comparison is lpSPropValue1, ulRelOp, lpSPropValue2. If the property types of the
properties compared do not match, the FPropCompareProp function determines that they are not
equal but that they are otherwise incomparable.

The comparison method depends on the property types included with the SPropValue property
definitions and a fuzzy level heuristic also provided by the calling implementation. The
FPropContainsProp function can be used to prepare restrictions for generating a table.

 FPropContainsProp

This function may not be supported in future versions of MAPI.

The FPropContainsProp function compares two property values, generally strings or binary arrays, to
see if one value contains the other.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

BOOL FPropContainsProp(
 LPSPropValue lpSPropValueDst,
 LPSPropValue lpSPropValueSrc,
 ULONG ulFuzzyLevel
);

Parameters

lpSPropValueDst
Input parameter pointing to an SPropValue structure defining the property value that might contain
the property value pointed to by the lpSPropValueSrc parameter.

lpSPropValueSrc
Input parameter pointing to an SPropValue structure defining the property value that
FPropContainsProp is seeking within the property value pointed to by the lpSPropValueDst
parameter.

ulFuzzyLevel
Input parameter containing the fuzzy level to use in the comparison. Possible fuzzy level values are:
FL_FULLSTRING

Works identically to TNEF_PROP_CONTAINED_TNEF; requires an exact match.
FL_IGNORECASE

Indicates the comparison deals only with properties of type PT_STRING8. When this value is set,
FPropContainsProp makes the comparison in case-insensitive fashion.

FL_IGNORENONSPACE
Indicates the comparison deals only with properties of type PT_STRING8. When this value is set,
FPropContainsProp makes the comparison so as to ignore Unicode-defined nonspacing
characters, for example diacritical marks.

FL_LOOSE
Indicates the comparison deals only with properties of type PT_STRING8. When this value is set,
a service provider performs as many fuzzy level heuristics of types FL_IGNORECASE and
FL_IGNORESPACE as it has been designed to handle.

FL_PREFIX
Indicates the comparison deals with properties of types PT_STRING8 and PT_BINARY. When
this value is set, FPropContainsProp compares the values of the two properties only through the
length of the property indicated by the lpSPropValueSrc parameter.

FL_SUBSTRING
Indicates the comparison deals with properties of types PT_STRING8 and PT_BINARY. When
this value is set, FPropContainsProp checks to see if the property value indicated by the
lpSPropValueSrc parameter is contained as a substring in the other property.

Return Values

TRUE
In the following cases:
· FL_FULLSTRING is set for the fuzzy level and the values of the source and destination properties

are equivalent.
· FL_SUBSTRING is set for the fuzzy level and the property indicated by the lpSPropValueSrc

parameter is contained as a substring in the property indicated by the lpSPropValueDst
parameter.

· For PT_BINARY properties not falling into one of the categories listed for the ulFuzzyLevel
parameter, the property indicated by lpSPropValueSrc is contained as a byte sequence in the
property indicated by lpSPropValueDst.

FL_FULLSTRING, FL_SUBSTRING and FL_PREFIX are mutually exclusive. Only one of them can
be set where anywhere from zero to all three of the other possible values can be set:
FL_IGNORECASE, FL_IGNORENONSPACE, and FL_LOOSE.

FALSE
The properties being compared are not both of the same type, one or both of the properties is not of
either the PT_STRING8 or PT_BINARY type, or the input fuzzy level is not one of those listed for
ulFuzzyLevel.

Remarks

For comparisons of properties of type PT_STRING8 not covered by one of the values for ulFuzzyLevel,
the FPropContainsProp function compares the input property values as fuzzy level one.

The comparison method FPropContainsProp uses depends on the property types included with the
SPropValue property definitions and a fuzzy level heuristic also provided by the calling
implementation. FPropContainsProp can be used to prepare restrictions for generating a table.

See Also

FPropCompareProp function

 FPropExists

This function may not be supported in future versions of MAPI.

The FPropExists function searches for a given property tag in an IMAPIProp interface or an interface
derived from IMAPIProp, such as IMessage or IMAPIFolder.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

BOOL FPropExists(
 LPMAPIPROP pobj,
 ULONG ulPropTag
);

Parameters

pobj
Input parameter pointing to the IMAPIProp interface or interface derived from IMAPIProp within
which to search for the property tag.

ulPropTag
Input parameter containing the property tag for which to search.

Return Values

TRUE
The function found a match for the given property tag.

FALSE
The function did not find a match for the given property tag.

Remarks

If the given property tag has type PT_UNSPECIFIED, the FPropExists function finds a match only for
the property identifier. Otherwise, the match is for the entire property tag, including the type.

 FreePadrlist

The FreePadrlist function destroys an ADRLIST structure and frees associated memory, including
memory allocated for all member structures.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

void FreePadrlist(
 LPADRLIST padrlist
);

Parameter

padrlist
Input parameter pointing to the ADRLIST structure to be destroyed.

Remarks

MAPI calls the MAPIFreeBuffer function to free every entry in the ADRLIST structure before freeing
the complete structure. Therefore all such entries must have been allocated using the
MAPIAllocateBuffer and MAPIAllocateMore functions.

 FreeProws

The FreeProws function destroys an SRowSet structure and frees associated memory, including
memory allocated for all structure members.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

void FreeProws(
 LPSRowSet prows
);

Parameter

prows
Input parameter pointing to the SRowSet structure to be destroyed.

Remarks

Usually, MAPI assigns the MAPIAllocateBuffer function as the function to free memory, but it can
designate any other comparable function if necessary.

 FtAddFt

This function may not be supported in future versions of MAPI.

The FtAddFt function adds one unsigned 64-bit integer to another.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

FILETIME FtAddFt(
 FILETIME Addend1,
 FILETIME Addend2
);

Parameters

Addend1
Input parameter containing a FILETIME structure defining the first unsigned 64-bit integer to be
added.

Addend2
Input parameter containing a FILETIME structure defining an unsigned 64-bit integer to be added to
the value indicated by the Addend1 parameter.

Remarks

The FtAddFt function returns a FILETIME structure containing the sum of the two integers.

 FtgRegisterIdleRoutine

This function may not be supported in future versions of MAPI.

The FtgRegisterIdleRoutine function adds a function based on the FNIDLE function prototype to the
idle table.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

FtgRegisterIdleRoutine(
 PFNIDLE pfnIdle,
 LPVOID pvIdleParam,
 short priIdle,
 ULONG csecIdle,
 USHORT iroIdle
);

Parameters

pfnIdle
Input parameter pointing to the idle function.

pvIdleParam
Input parameter pointing to a block of memory that the idle engine should use when it calls the idle
function.

priIdle
Input parameter containing the initial priority that the calling implementation requests for the idle
function. Possible priorities for implementation-defined functions are greater than or less than zero,
but not zero. The zero priority is reserved for a user event (for example, a mouse click or a
WM_PAINT message).
Priorities greater than zero represent background tasks that have a higher priority than user events
and are dispatched as part of the standard message pump loop. Priorities less than zero represent
idle tasks that only run during message-pump idle time. Examples of priorities are: 1 for foreground
submission, -1 for power-edit character insertion, and -3 for downloading new messages.

csecIdle
Input parameter containing an initial time value, in hundredths of a second, that the calling
implementation requests to be used in specifying idle function parameters. The meaning of the initial
time value varies, depending on what is passed in the iroIdle parameter. It can be:
· The minimum period of user inaction that must elapse before the MAPI idle engine calls the idle

function for the first time, if the FIROWAIT flag is set in iroIdle. After this time passes, the idle
engine can call the idle function as often as necessary.

· The minimum interval between calls to the idle function, if the FIROINTERVAL flag is set in
iroIdle.

iroIdle
Input parameter containing a bitmask of flags used to set initial options for the idle function. The
following flags can be set:
FIRODISABLED

Indicates that the idle function is initially disabled when registered. The default action is to enable
the idle function when FtgRegisterIdleRoutine registers it.

FIROINTERVAL

Indicates that the time specified by the csecIdle parameter is the minimum interval between
successive calls to the idle function.

FIROWAIT
Indicates that the time specified by the csecIdle parameter is the minimum period of user inaction
that must elapse before the MAPI idle engine calls the idle function for the first time. After this
time passes, the idle engine can call the idle function as often as necessary.

Remarks

To later make changes to a registered idle function, a client application or service provider can call the
ChangeIdleRoutine function. To remove an idle function from the idle table, a client application or
provider calls the DeregisterIdleRoutine function.

When all foreground tasks for the platform become idle, the idle engine calls the highest-priority idle
function in the idle table that is ready to execute.

The FtgRegisterIdleRoutine function returns a function tag identifying the idle function that
FtgRegisterIdleRoutine has added to the idle table. If FtgRegisterIdleRoutine cannot register the
idle function for the client or service provider, for example because of memory problems, it returns
NULL.

 FtMulDw

This function may not be supported in future versions of MAPI.

The FtMulDw function multiplies an unsigned 64-bit integer indicating a time value by an unsigned 32-
bit integer in doubleword format.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

FILETIME FtMulDw(
 DWORD Multiplier,
 FILETIME Multiplicand
);

Parameters

Multiplier
Input parameter containing an unsigned 32-bit integer in doubleword format.

Multiplicand
Input parameter containing a FILETIME structure defining a 64-bit integer time value to be multiplied
by the value in the Multiplier parameter.

Remarks

The FtMulDw function returns a FILETIME structure containing the product of the input values.

 FtMulDwDw

This function may not be supported in future versions of MAPI.

The FtMulDwDw function multiplies one unsigned 32-bit integer in doubleword format by another.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

FILETIME FtMulDwDw(
 DWORD Multiplicand,
 DWORD Multiplier
);

Parameters

Multiplicand
Input parameter containing an unsigned 32-bit integer in doubleword format to be multiplied by the
value in the Multiplier parameter.

Multiplier
Input parameter containing an unsigned 32-bit integer in doubleword format.

Remarks

The FtMulDwDw function returns a FILETIME structure containing the product of the input values.

 FtNegFt

This function may not be supported in future versions of MAPI.

The FtNegFt function computes the two's complement of an unsigned 64-bit integer indicating a time
value.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

FILETIME FtNegFt(
 FILETIME ft
);

Parameters

ft
Input parameter containing a FILETIME structure containing the unsigned 64-bit integer indicating a
time value for which to compute the two's complement.

Remarks

The FtNegFt function returns a FILETIME structure containing the two's complement of the input
value.

 FtSubFt

This function may not be supported in future versions of MAPI.

The FtSubFt function subtracts one unsigned 64-bit integer indicating a time value from another.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

FILETIME FtSubFt(
 FILETIME Minuend,
 FILETIME Subtrahend
);

Parameters

Minuend
Input parameter containing a FILETIME structure defining the unsigned 64-bit integer from which the
value in the Subtrahend parameter is subtracted.

Subtrahend
Input parameter containing a FILETIME structure defining an unsigned 64-bit integer that this
function subtracts from the value indicated by the Minuend parameter.

Remarks

The FtSubFt function returns a FILETIME structure containing the results of the subtraction.

 GetAttribIMsgOnIStg

The GetAttribIMsgOnIStg function retrieves the attributes of the properties of a particular object.

At a Glance

Specified in header file: IMESSAGE.H
Implemented by: MAPI
Called by: Client applications and message

store providers

HRESULT GetAttribIMsgOnIStg(
 LPVOID lpObject,
 LPSPropTagArray lpPropTagArray,
 LPSPropAttrArray FAR * lppPropAttrArray
);

Parameters

lpObject
Input parameter, obtained from the OpenIMsgOnIStg function , pointing to the object for which
property attributes are being retrieved.

lpPropTagArray
Input parameter pointing to an SPropTagArray structure containing an array of property tags
indicating the properties for which attributes are being retrieved.

lppPropAttrArray
Output parameter pointing to a variable where the returned SPropAttrArray structure is stored. This
SPropAttrArray structure contains the retrieved property attributes.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_W_ERRORS_RETURNED
The call succeeded overall, but one or more properties could not be accessed and were returned
with a property type of PT_ERROR.

Remarks

The GetAttribIMsgOnIStg function is used to make message properties read-only when required by
the IMessage schema. The sample message store provider uses it for this purpose. For more
information, see Messages.

In the lppPropAttrArray parameter the number and position of the attributes correspond to the number
and position of the property tags in the lpPropTagArray parameter.

See Also

IMAPIProp : IUnknown interface , SetAttribIMsgOnIStg function

 GetInstance

This function may not be supported in future versions of MAPI.

The GetInstance function copies one value within a multivalued property to a single-valued property of
the same type.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

VOID GetInstance(
 LPSPropValue pvalMv,
 LPSPropValue pvalSv,
 ULONG uliInst
);

Parameters

pvalMv
Input parameter pointing to an SPropValue structure defining a multivalued property.

pvalSv
Input parameter pointing to a single-valued property to receive data.

uliInst
Input parameter containing the instance number (that is, the array element) of the value being
copied from the structure indicated by the pvalMv parameter.

Remarks

If the value copied is too large for the allocated memory, the GetInstance function only copies pointers
rather than allocating new memory.

 HexFromBin

This function may not be supported in future versions of MAPI.

The HexFromBin function converts a binary number into a string representation of a hexadecimal
number.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

void HexFromBin(
 LPBYTE pb,
 int cb,
 LPTSTR sz
);

Parameters

pb
Input parameter pointing to the binary data to be converted.

cb
Input parameter containing the size, in bytes, of the pb parameter.

sz
Output parameter pointing to a variable where the returned null-terminated string representing the
binary data is stored.

Remarks

This function takes a pointer to a unit of binary data whose size is indicated by the cb parameter. It
returns back in the sz string, within (2*cb)+1 bytes of memory, a representation of this binary
information in hexadecimal numbers. If the byte value is 10, for example, the hexadecimal string will be
0A, so one byte becomes two bytes long in the string.

 HPProviderInit

The HPProviderInit function initializes a message hook provider for operation.

At a Glance

Specified in header file: MAPIHOOK.H
Implemented by: Messaging hook providers
Called by: MAPI

HRESULT HPProviderInit(
 LPMAPISESSION lpSession,
 HINSTANCE hInstance,
 LPALLOCATEBUFFER lpAllocateBuffer,
 LPALLOCATEMORE lpAllocateMore,
 LPFREEBUFFER lpFreeBuffer,
 LPMAPIUID lpSectionUID,
 ULONG ulFlags,
 LPSPOOLERHOOK FAR * lppSpoolerHook
);

Parameters

lpSession
Input parameter pointing to a copy of the object representing the MAPI spooler session. Because
the session object is a copy, any component installed as part of the message hook provider must be
considered "trusted code." The message hook provider should call the IUnknown::AddRef method
for the session object.

hInstance
Input parameter containing an instance of the message hook provider's dynamic-link library (DLL)
that MAPI used when it linked.

lpAllocateBuffer
Input parameter pointing to the MAPIAllocateBuffer function, to be used by the message hook
provider to allocate memory.

lpAllocateMore
Input parameter pointing to the MAPIAllocateMore function, to be used by the message hook
provider to allocate additional memory where required.

lpFreeBuffer
Input parameter pointing to the MAPIFreeBuffer function, to be used by the message hook provider
to free memory.

lpSectionUID
Input parameter pointing to the MAPI unique identifier (MAPIUID) of the message hook provider's
profile section. HPProviderInit can open this identifier using a session-level call to the
IMAPISupport::OpenProfileSection method. However, because MAPI and the MAPI spooler
control some properties in the session, the provider should use the range of provider-specific
property identifiers for storage and retrieval of profile section properties.

ulFlags
Input parameter containing a bitmask of flags used to control whether the message hook provider is
called for incoming or outgoing messages. The following flags can be set:
HOOK_INBOUND

Indicates that the message hook provider processes messages inbound to the MAPI spooler.
HOOK_OUTBOUND

Indicates that the message hook provider processes messages outbound from the MAPI spooler.

MAPI_NT_SERVICE
Indicates the provider is being loaded in the context of a Windows NT service, a special type of
process without access to any user interface.

lppSpoolerHook
Output parameter pointing to a pointer to the initialized message hook provider object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

To initialize a message hook provider, MAPI calls the function named HPProviderInit, based on the
HPPROVIDERINIT function prototype defined in MAPIHOOK.H, from the message hook provider's
DLL. The message hook provider must use its implementation of HPProviderInit to respond to the
MAPI initialization call.

The message hook provider must also define HPProviderInit using the CDECL calling convention.
CDECL definition is required for each service-provider initialization function to ensure the function can
work with the current version of the service provider interface, even if the number of function
parameters used is not the number set for that function in the current version of the interface. MAPI
provides the HPPROVIDERINIT function prototype to help define HPProviderInit as CDECL. The
HPPROVIDERINIT function prototype has a standard MAPI initialization call type,
STDMAPIINITCALLTYPE.

The lpAllocateBuffer, lpAllocateMore, and lpFreeBuffer input parameters point to the
MAPIAllocateBuffer, MAPIAllocateMore, and MAPIFreeBuffer functions, respectively, for use by the
message-hook provider DLL. The provider should use these pointers for memory allocation or
deallocation. In particular, the provider must use these pointers when allocating memory for use by
clients in calling object interfaces. For example, two provider interface methods that typically allocate
memory are IMAPIProp::GetProps and IMAPITable::QueryRows.

If the provider needs to use mutex objects or critical sections, it should set them up during initialization
using HPProviderInit. A mutex object should be owned by the message-hook provider object created
by this function.

For more information on using the OLE method IUnknown::AddRef, see Implementing the IUnknown
Interface.

For more information on using ABProviderInit, see the information on using the MSProviderInit,
ABProviderInit, and XPProviderInit functions in Initializing the Transport Provider and About Provider
DLL Entry Point Functions.

See Also

ABProviderInit function , IMAPISession : IUnknown interface , MSProviderInit function ,
XPProviderInit function

 HrAddColumnsEx

The HrAddColumnsEx function adds or moves columns to the beginning of an existing table.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

HRESULT HrAddColumnsEx(
 LPMAPITABLE lptbl,
 LPSPropTagArray lpproptagColumnsNew,
 LPALLOCATEBUFFER lpAllocateBuffer,
 LPFREEBUFFER lpFreeBuffer,
 void (FAR * lpfnFilterColumns) (LPSPropTagArray ptaga)
);

Parameters

lptbl
(Input) Pointer to the MAPI table affected.

lpproptagColumnsNew
(Input) Pointer to an SPropTagArray structure containing the array of property tags for the
properties to be added or moved to the beginning of the table.

lpAllocateBuffer
(Input) Pointer to the MAPIAllocateBuffer function, to be used to allocate memory.

lpFreeBuffer
(Input) Pointer to the MAPIFreeBuffer function, to be used to free memory.

lpfnFilterColumns
(Input) Pointer to a callback function furnished by the caller. If the lpfnFilterColumns parameter is set
to NULL, no callback is made.

ptaga
(Input parameter to the callback function pointed to by lpfnFilterColumns) Pointer to an
SPropTagArray structure containing the array of new property tags for the columns moved within or
added to the table.

Return Values

S_OK
The call succeeded and the specified columns were moved or added.

Remarks

The HrAddColumnsEx function allows the caller to furnish a callback function to filter the original
property tags. For example, the caller might want to convert strings from property type PT_UNICODE
to PT_STRING8. HrAddColumnsEx first adds or moves the specified columns, then calls the callback
function if one is furnished, and finally calls IMAPITable::SetColumns. The callback function can
change data within the property tag array but cannot add new tags.

The properties passed to HrAddColumnsEx using the lpproptagColumnsNew parameter will be the
first properties listed on subsequent calls to the IMAPITable::QueryRows method. If any table
properties are undefined when QueryRows is called, they will have the property type PT_NULL and
the property identifier zero.

The lpAllocateBuffer and lpFreeBuffer input parameters point to the MAPIAllocateBuffer and
MAPIFreeBuffer functions, respectively. If a client calls HrAddColumnsEx, it passes in these
parameters pointers to the functions named as listed. If a service provider calls HrAddColumnsEx, it
passes the pointers to these functions it received in its initialization call or retrieved by calling the
IMAPISupport::GetMemAllocRoutines method.

See Also

IMAPITable::QueryColumns method

 HrAllocAdviseSink

This function may not be supported in future versions of MAPI.

The HrAllocAdviseSink function creates an advise sink object, given a context specified by the calling
implementation and a callback function to be triggered by an event notification.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

STDAPI HrAllocAdviseSink(
 LPNOTIFCALLBACK lpfnCallback,
 LPVOID lpvContext,
 LPMAPIADVISESINK FAR * lppAdviseSink
);

Parameters

lpfnCallback
Input parameter pointing to the callback function defined by a client application or service provider
that MAPI is to call when a notification event occurs for the newly created advise sink.

lpvContext
Input parameter pointing to an arbitrary value passed to the callback function when MAPI calls it.
This value can represent an address of significance to the client or provider. Typically, for C++ code,
the lpvContext parameter represents a pointer to the address of an object.

lppAdviseSink
Output parameter pointing to a pointer to an advise sink object.

Remarks

To use the HrAllocAdviseSink function, a client application or provider creates an object to receive
notifications, creates a notification callback function based on the NOTIFCALLBACK function
prototype that goes with that object, and passes a pointer to the object in the HrAllocAdviseSink
function as the lpvContext value. Doing so performs a notification; and as part of the notification
process, MAPI calls the callback function with the object pointer as the context.

MAPI implements its notification engine asynchronously. In C++, the notification callback can be an
object method. If the object generating the notification is not present, the client or provider requesting
notification must keep a separate reference count for that object for the object's advise sink.

HrAllocAdviseSink should be used sparingly; it is safer for clients to create their own advise sinks.

 HrComposeEID

This function may not be supported in future versions of MAPI.

The HrComposeEID function creates a compound entry identifier for an object, usually a message in a
message store.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications

HrComposeEID(
 LPMAPISESSION psession,
 ULONG cbStoreRecordKey,
 LPBYTE pStoreRecordKey,
 ULONG cbMsgEID,
 LPENTRYID pMsgEID,
 ULONG FAR * pcbEID,
 LPENTRYID FAR * ppEID
);

Parameters

psession
Input parameter pointing to the session in use by the client application.

cbStoreRecordKey
Input parameter containing the size, in bytes, of the record key of the message store holding the
message or other object. If zero is passed in the cbStoreRecordKey parameter, the ppEID
parameter points to a copy of the object's entry identifier.

pStoreRecordKey
Input parameter pointing to the record key of the message store containing the message or other
object.

cbMsgEID
Input parameter containing the size, in bytes, of the entry identifier of the message or other object.

pMsgEID
Input parameter pointing to the entry identifier of the object.

pcbEID
Output parameter pointing to a variable where the size, in bytes, of the returned identifier is stored.

ppEID
Output parameter pointing to a variable where the returned data is stored. If the value of the
cbStoreRecordKey parameter is greater than zero, the ppEID parameter points to a pointer to the
compound entry identifier that is created. If cbStoreRecordKey is zero, ppEID points to a pointer to a
copy of the object's entry identifier.

Remarks

If the message or other object for which the compound entry identifier is being created resides in a
message store, the identifier is created from the object's entry identifier and the store's record key. If
the object is not in a store (that is, if the byte count for the store record key passed in
cbStoreRecordKey is zero), the object's entry identifier is simply copied.

The HrComposeEID function, primarily for use with CMC, enables CMC-based applications to work
with objects in multiple stores through the use of compound entry identifiers.

See Also

HrComposeMsgID function , HrDecomposeEID function , HrDecomposeMsgID function

 HrComposeMsgID

This function may not be supported in future versions of MAPI.

The HrComposeMsgID function creates an ASCII entry identifier string for an object, usually a
message in a message store.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications

HrComposeMsgID(
 LPMAPISESSION psession,
 ULONG cbStoreRecordKey,
 LPBYTE pStoreRecordKey,
 ULONG cbMsgEID,
 LPENTRYID pMsgEID,
 LPTSTR FAR * pszMsgID
);

Parameters

psession
Input parameter pointing to the session in use by the client application.

cbStoreRecordKey
Input parameter containing the size, in bytes, of the record key of the message store containing the
message or other object. If zero is passed in the cbStoreRecordKey parameter, the pszMsgID
parameter points to a copy of the entry identifier converted to text.

pStoreRecordKey
Input parameter pointing to the record key of the message store containing the message or other
object.

cbMsgEID
Input parameter containing the size, in bytes, of the entry identifier of the message or other object.

pMsgEID
Input parameter pointing to the entry identifier of the object.

pszMsgID
Output parameter pointing to a variable where the returned data is stored. If the cbStoreRecordKey
parameter is greater than zero, the pszMsgID parameter points to a compound entry identifier
converted to text. If cbStoreRecordKey is zero, it points to a noncompound entry identifier converted
to text.

Remarks

If the message or other object for which the compound entry identifier is being created resides in a
message store, the identifier string is created from the object's entry identifier and the store's record
key. If the object is not in a store (that is, if the byte count for the store record key passed in the
cbStoreRecordKey parameter is zero), the object's entry identifier is simply copied and converted into a
string.

The HrComposeMsgID function enables client applications based on Simple MAPI and OLE to work
with objects in multiple stores through the use of compound entry identifiers.

Calling HrComposeMsgID is essentially equivalent to calling the HrComposeEID function and then
the HrSzFromEntryID function.

See Also

HrDecomposeEID function , HrDecomposeMsgID function

 HrDecomposeEID

This function may not be supported in future versions of MAPI.

The HrDecomposeEID function takes apart the compound entry identifier of an object, usually a
message in a message store, into the entry identifier of that object within the store and that store's
entry identifier.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications

HrDecomposeEID(
 LPMAPISESSION psession,
 ULONG cbEID,
 LPENTRYID pEID,
 ULONG FAR * pcbStoreEID,
 LPENTRYID FAR * ppStoreEID ,
 ULONG FAR * pcbMsgEID,
 LPENTRYID FAR * ppMsgEID
);

Parameters

psession
Input parameter pointing to the session in use by the client application.

cbEID
Input parameter containing the size, in bytes, of the compound entry identifier to be taken apart.

pEID
Input parameter pointing to the compound entry identifier to be taken apart.

pcbStoreEID
Output parameter pointing to a variable where the returned size, in bytes, of the entry identifier of the
message store containing the object is stored. If the pEID parameter points to a noncompound entry
identifier, then the pcbStoreEID parameter points to zero.

ppStoreEID
Output parameter pointing to a variable where the returned entry identifier of the message store
containing the object is stored. If the pEID parameter points to a noncompound entry identifier, NULL
is returned in the ppStoreEID parameter.

pcbMsgEID
Output parameter pointing to a variable where the returned size, in bytes, of the entry identifier of the
object is stored. If the pEID parameter points to a noncompound entry identifier, then the
pcbMsgEID parameter is equal to the value of the cbEID parameter.

ppMsgEID
Output parameter pointing to a variable where the returned entry identifier of the object is stored. If
pEID points to a noncompound entry identifier, memory is copied so that the pointer in pEID is equal
to the pointer to the pointer in the ppMsgEID parameter.

Remarks

If the identifier specified by the pEID parameter is compound, it is split into the entry identifier of the
object within its message store and that store's entry identifier. Noncompound entry identifier strings
are simply copied. The compound identifier taken apart is usually one created by the HrComposeEID
function.

The memory that holds the pEID parameter is released upon successful completion of this function.
The calling implementation is responsible for freeing memory for the output parameters.

See Also

HrDecomposeMsgID function

 HrDecomposeMsgID

This function may not be supported in future versions of MAPI.

The HrDecomposeMsgID function takes apart the compound entry-identifier string of an object,
usually a message in a message store, into the entry identifier of that object within the store and that
store's entry identifier.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications

HrDecomposeMsgID(
 LPMAPISESSION psession,
 LPTSTR szMsgID,
 ULONG FAR * pcbStoreEID,
 LPENTRYID FAR * ppStoreEID ,
 ULONG FAR * pcbMsgEID,
 LPENTRYID FAR * ppMsgEID
);

Parameters

psession
Input parameter pointing to the session in use by the client application.

szMsgID
Input parameter containing the entry identifier string of the object.

pcbStoreEID
Output parameter pointing to a variable where the returned size, in bytes, of the entry identifier string
of the message store containing the object is stored. If the szMsgID parameter points to a
noncompound entry-identifier string, then the pcbStoreEID parameter points to zero.

ppStoreEID
Output parameter pointing a variable where the returned entry identifier of the message store
containing the object is stored. If the szMsgID parameter points to a noncompound entry identifier,
NULL is returned in the ppStoreEID parameter.

pcbMsgEID
Output parameter pointing to a variable storing the returned size, in bytes, of the entry identifier
string of the object (within its store). If the szMsgID parameter contains a noncompound entry-
identifier string, then the pcbMsgEID parameter is equal to the value of the cbEID parameter.

ppMsgEID
Output parameter pointing to a variable where the returned entry identifier string of the object (within
its store) is stored.

Remarks

Noncompound entry-identifier strings are accepted. The compound identifier string taken apart is
usually one created by the HrComposeMsgID function.

See Also

HrDecomposeEID function

 HrDispatchNotifications

The HrDispatchNotifications function forces dispatching of all queued notifications.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

HRESULT HrDispatchNotifications(
 ULONG ulFlags
);

Parameters

ulFlags
Reserved; must be zero. .

Remarks

The HrDispatchNotifications function causes MAPI to dispatch all notifications that are currently
queued in the MAPI notification engine without waiting for a message dispatch. This can have a
beneficial effect on memory utilization.

 HrEntryIDFromSz

This function may not be supported in future versions of MAPI.

The HrEntryIDFromSz function creates an entry identifier from an ASCII-encoded string, and allocates
memory for the entry identifier.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications

HrEntryIDFromSz(
 LPTSTR sz,
 ULONG FAR * pcb,
 LPENTRYID FAR * ppentry
);

Parameters

sz
Input parameter pointing to the ASCII-encoded string from which to create an entry identifier.

pcb
Output parameter pointing to the size, in bytes, of the entry identifier pointed to by the ppentry
parameter.

ppentry
Output parameter pointing to a pointer to the returned ENTRYID structure containing the new entry
identifier.

See Also

HrSzFromEntryID function

 HrGetOneProp

This function may not be supported in future versions of MAPI.

The HrGetOneProp function retrieves the value of a single property from an IMAPIProp interface or
an interface derived from IMAPIProp.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

HrGetOneProp(
 LPMAPIPROP pmp,
 ULONG ulPropTag,
 LPSPropValue FAR * ppprop
);

Parameters

pmp
Input parameter pointing to the interface from which the property value is to be retrieved.

ulPropTag
Input parameter containing the property tag of the property to be retrieved.

ppprop
Output parameter pointing to a pointer to the returned SPropValue structure defining the retrieved
property value.

Return Values

MAPI_E_NOT_FOUND
The requested object does not exist.

Remarks

Unlike the IMAPIProp::GetProps method, the HrGetOneProp function does not return any warning.
Because it retrieves only one property, it simply either succeeds or fails. To retrieve multiple properties,
a client application or service provider should call GetProps.

See Also

HrSetOneProp function

 HrIStorageFromStream

The HrIStorageFromStream function layers an IStorage interface onto an IStream object.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

HRESULT HrIStorageFromStream(
 LPUNKNOWN lpUnkIn,
 PIID lpInterface,
 ULONG ulFlags,
 LPSTORAGE FAR * lppStorageOut
);

Parameters

lpUnkIn
Input parameter pointing to the IUnknown object that implements the stream object.

lpInterface
Input parameter pointing to the interface identifier (IID) for the object that implements the stream
object. Any of the following values can be passed in the lpInterface parameter: NULL, IID_IStream,
or IID_ILockBytes. Passing NULL in lpInterface is the same as passing IID_IStream.

ulFlags
Input parameter containing a bitmask of flags that controls how the storage is to be created relative
to the stream. The default setting is that the storage has read-only access and occurs within the
stream starting at position zero. The following flags can be set:
STGSTRM_CREATE

Creates a new storage object for the stream object.
STGSTRM_CURRENT

Starts storage at the current position of the stream.
STGSTRM_MODIFY

Allows the calling service provider to write to the returned storage.
STGSTRM_RESET

Starts storage at position zero.
lppStorageOut

Output parameter pointing to a pointer to the returned IStorage object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Store providers support the HrIStorageFromStream function using the IStorage interface for
attachments. Store providers must implement the IStream interface. HrIStorageFromStream provides
the IStorage interface for the IStream object. It is possible to pass either an ILockBytes or an IStream
interface in lpUnkIn.

 HrQueryAllRows

The HrQueryAllRows function retrieves all rows of a table.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

HRESULT HrQueryAllRows(
 LPMAPITABLE ptable,
 LPSPropTagArray ptaga,
 LPSRestriction pres,
 LPSSortOrderSet psos,
 LONG crowsMax,
 LPSRowSet FAR * pprows
);

Parameters

ptable
Input parameter pointing to the MAPI table from which rows are retrieved.

ptaga
Input parameter pointing to an SPropTagArray structure containing an array of property tags
indicating the properties that identify each column in the table. These tags are used to select the
table columns to be retrieved. If the ptaga parameter is NULL, HrQueryAllRows retrieves the
column set of the current table view passed in the ptable parameter.

pres
Input parameter pointing to an SRestriction structure containing retrieval restrictions. If the pres
parameter is NULL, the calling implementation makes no restrictions.

psos
Input parameter pointing to an SSortOrderSet structure identifying the sort order of the columns to
be retrieved. If the psos parameter is NULL, the default sort order for the table is used.

crowsMax
Input parameter containing the maximum number of rows to be retrieved. If the value of the
crowsMax parameter is zero, no limit on the number of rows retrieved is set.

pprows
Output parameter pointing to the returned SRowSet structure containing the retrieved table rows.

Return Values

S_OK
The call retrieved the expected rows of a table.

MAPI_E_TABLE_TOO_BIG
The number of rows in the table is larger than the number passed for the crowsMax parameter.

Remarks

When querying all rows of a table, a client application or service provider should call HrQueryAllRows
instead of the IMAPITable::QueryRows method.

See Also

IMAPITable : IUnknown interface

 HrSetOneProp

This function may not be supported in future versions of MAPI.

The HrSetOneProp function changes one property of an object.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

HrSetOneProp(
 LPMAPIPROP pmp,
 LPSPropValue pprop
);

Parameters

pmp
Input parameter pointing to an IMAPIProp interface or an interface derived from IMAPIProp.

pprop
Input parameter pointing to the SPropValue structure defining the property to be changed.

Remarks

Unlike the IMAPIProp::SetProps method, the HrSetOneProp function does not return anyarning.
Because it sets only one property, it simply either succeeds or fails. To change multiple properties, use
the faster SetProps.

See Also

HrGetOneProp function

 HrSzFromEntryID

This function may not be supported in future versions of MAPI.

The HrSzFromEntryID function encodes an entry identifier into an ASCII string, and allocates memory
for the string.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications

HrSzFromEntryID(
 ULONG cb,
 LPENTRYID pentry,
 LPTSTR FAR * psz
);

Parameters

cb
Input parameter containing the size, in bytes, of the entry identifier pointed to by the pentry
parameter.

pentry
Input parameter pointing to an ENTRYID structure defining the entry identifier to be encoded.

psz
Output parameter pointing to a variable where the returned ASCII-encoded string is stored.

Remarks

To use Simple MAPI to look at messages in a folder other than the Inbox folder, which is the only folder
recognized by Simple MAPI, a client application or service provider must use MAPI methods. A client or
provider calls these methods to enumerate the messages in the folder by looking through the contents
table for the folder, which stores message entry identifiers. When a client or provider finds the entry
identifier for a particular required message, it can call the HrSzFromEntryID function to convert the
identifier to a string that is a Simple MAPI message identifier so the message can be manipulated in
Simple MAPI. Then the client or provider can call the Simple MAPI MAPIReadMail function to retrieve
the required information about the message.

See Also

HrComposeEID function , HrEntryIDFromSz function

 HrThisThreadAdviseSink

The HrThisThreadAdviseSink function creates an advise sink that wraps an existing advise sink for
thread safety.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications

HrThisThreadAdviseSink(
 LPMAPIADVISESINK lpAdviseSink,
 LPMAPIADVISESINK FAR * lppAdviseSink
);

Parameters

lpAdviseSink
Input parameter pointing to the advise sink to be wrapped.

lppAdviseSink
Output parameter pointing a pointer to a new advise sink that wraps the advise sink pointed to by
the lpAdviseSink parameter.

Remarks

The purpose of the wrapper is to ensure that notification is called on the same thread that called the
HrThisThreadAdviseSink function. This function is used to protect notification callbacks that must run
on a particular thread.

Client applications should use HrThisThreadAdviseSink to restrict when notifications are generated.
This happens when calls are made to the IMAPIAdviseSink::OnNotify method of the advise sink
object passed by the client in a previous Advise call. If notifications can be generated arbitrarily, a
notification implementation might make a client multithreaded when multithreading is inappropriate. For
example, this result is troublesome when an implementation has been created using a library, such as
one of the Microsoft Foundation Class Libraries, that does not support multithreaded calls. In this
situation, a client is difficult to test and is prone to error.

HrThisThreadAdviseSink ensures that the OnNotify methods calls occur at these appropriate times:

· During the processing of any call to any MAPI method.
· When window messages are being processed.

When HrThisThreadAdviseSink is implemented, any calls to the new advise sink's OnNotify method
on any thread cause the original notification method to be executed on the thread in which
HrThisThreadAdviseSink was called.

For more information on notification and advise sinks, see About Notification and Implementing an
Advise Sink Object.

 HrValidateIPMSubtree

This function may not be supported in future versions of MAPI.

The HrValidateIPMSubtree function adds one or more standard interpersonal message (IPM) folders
to a message store.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications

HrValidateIPMSubtree(
 LPMDB lpMDB,
 ULONG ulFlags,
 ULONG FAR * lpcValues,
 LPSPropValue FAR * lppProps,
 LPMAPIERROR FAR * lppMapiError
);

Parameters

lpMDB
Input parameter pointing to the message store object to which to add the folder or folders.

ulFlags
Input parameter containing a bitmask of flags used to control how the folders are created. The
following flags can be set:
MAPI_FORCE_CREATE

Indicates the folder or folders created be verified before creation, even if message store
properties indicate that they are valid. A client application or service provider typically sets this
flag when an error indicates that the structure of the created folder has been damaged.

MAPI_FULL_IPM_TREE
Indicates the following folders should be created in addition to the two folders that are always
created: a folder titled Folder and a folder titled Common Views, and under the IPM-subtree root
folder the Inbox, Outbox and Sent Items folders. The MAPI_FULL_IPM_TREE flag is typically set
when the message store in which the folders are created is the default store.

lpcValues
Output parameter pointing to the number of values in the SPropValue array in the lppProps
parameter is stored. The value of the lpcValues parameter can be zero if lppProps is NULL.

lppProps
Output parameter pointing to a pointer to an array of SPropValue structures indicating values for
PR_VALID_FOLDER_MASK and related properties is stored. The IPM Inbox's entry identifier is
included as part of this SPropValue array; this entry identifier has a special property tag coded as
PROP_TAG(PT_BINARY, PROP_ID_NULL). The lppProps parameter can be NULL, indicating that the
calling implementation does not require that a SPropValue array be returned.

lppMapiError
Output parameter pointing to a variable where the pointer to the returned MAPIERROR structure
containing version, component, and context information for an error is stored. The lppMAPIError
parameter can be set to NULL if there is no MAPIERROR structure to return.

Remarks

MAPI uses the HrValidateIPMSubtree function internally to construct the standard IPM folder tree in a
message store when the store is first opened, or when a store is made the default store. This function

can also be used by client applications to validate or repair standard message folders.

HrValidateIPMSubtree always creates a root folder in the IPM subtree, the Deleted Items folder in the
root directory of the IPM subtree, and a finder folder in the message store root directory.

HrValidateIPMSubtree sets the PR_VALID_FOLDER_MASK property to indicate whether each IPM
folder it creates has a valid entry identifier. The following entry identifier properties of the message
store are set to the entry identifiers of the corresponding folders and returned in the lppProps
parameter along with PR_VALID_FOLDER_MASK:

PR_COMMON_VIEWS_ENTRYID
PR_FINDER_ENTRYID
PR_IPM_OUTBOX_ENTRYID
PR_IPM_SENTMAIL_ENTRYID
PR_IPM_SUBTREE_ENTRYID
PR_IPM_WASTEBASKET_ENTRYID
PR_VIEWS_ENTRYID
PROP_TAG macro (PT_BINARY, PROP_ID_NULL, a placeholder tag for the IPM Inbox).

See Also

IMAPISession::OpenMsgStore method

 LAUNCHWIZARDENTRY

The LAUNCHWIZARDENTRY function prototype defines a function that starts the Profile Wizard
application.

At a Glance

Specified in header file: MAPIWZ.H
Implemented by: MAPI
Called by: Client applications

HRESULT LAUNCHWIZARDENTRY(
 HWND hParentWnd,
 ULONG ulFlags,
 LPCTSTR FAR * lppszServiceNameToAdd,
 ULONG cbBufferMax,
 LPTSTR lpszNewProfileName
);

Parameters

hParentWnd
Input parameter specifying a handle to the caller's parent window. If the caller does not have a
parent window, the hParentWnd parameter should be NULL.

ulFlags
Input parameter containing a bitmask of flags indicating options for the Profile Wizard. The following
flags can be set:
MAPI_PW_ADD_SERVICE_ONLY

Indicates that the Profile Wizard is to add a single service to the default profile and not show the
page for selecting services.

MAPI_PW_FIRST_PROFILE
Indicates that the profile to be created is the first one for this workstation.

MAPI_PW_HIDE_SERVICES_LIST
Indicates that the Profile Wizard's page for selecting services should be hidden.

MAPI_PW_LAUNCHED_BY_CONFIG
Indicates that the Profile Wizard was launched by the Control Panel configuration application.

MAPI_PW_PROVIDER_UI_ONLY
Indicates that only the provider's configuration dialog boxes should be displayed and the Profile
Wizard's pages should not appear. The MAPI_PW_PROVIDER_UI_ONLY flag can only be set if
the MAPI_PW_ADD_SERVICE_ONLY flag is set.

lppszServiceNameToAdd
Input parameter specifying a pointer to a string containing the service name to be added if the
ulFlags parameter is set to MAPI_PW_ADD_SERVICE_ONLY.

cbBufferMax
Input parameter specifying the size of the buffer pointed to by the lpszNewProfileName parameter.

lpszNewProfileName
Output parameter specifying a pointer to a buffer where the LAUNCHSERVICEENTRY function
returns the name of the created profile.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_CALL_FAILED

An error of unexpected or unknown origin prevented the operation from completing.

Remarks

The implementation of the LAUNCHWIZARDENTRY function prototype is the entry point into the MAPI
Profile Wizard application. MAPI calls this entry point LaunchWizard.

When the ulFlags parameter is set to MAPI_PW_ADD_SERVICE_ONLY, the following rules apply:

· The flag MAPI_PW_LAUNCHED_BY_CONFIG causes the welcome page to be hidden.
· The flags MAPI_PW_PROVIDER_UI_ONLY & MAPI_PW_HIDE_SERVICES_LIST are useful only

when there is no default profile. When a default profile does not exist, these flags determine the
Profile Wizard page to be shown.

· When the flag MAPI_PW_ADD_SERVICE_ONLY is set and a default profile exists, this indicates
that none of the Profile Wizard pages should be shown.

If the caller specifies MAPI_PW_ADD_SERVICE_ONLY and the service is already in the default profile
(and only one such service can be in the profile at a time), the Profile Wizard does not add the provider.
An error value is returned indicating that the provider was already in the default profile.

If the provider supports the wizard pages, it must allow programmatic configuration of the profile.

See Also

MSGSERVICEENTRY function prototype , WIZARDENTRY function prototype

 LPFNBUTTON

The LPFNBUTTON function prototype defines a callback function that MAPI calls to activate an
optional button control in an address book dialog box. This button is typically a Details button.

At a Glance

Specified in header file: MAPIDEFS.H
Implemented by: Service providers
Called by: MAPI

SCODE (
 STDMETHODCALLTYPE FAR * LPFNBUTTON)(ULONG ulUIParam,
 LPVOID lpvContext,
 ULONG cbEntryID,
 LPENTRYID lpSelection,
 ULONG ulFlags
);

Parameters

ulUIParam
Input parameter containing the handle of the parent windows for any dialog boxes or windows this
function displays.

lpvContext
Input parameter pointing to an arbitrary value passed to the callback function when MAPI calls it.
This value can represent an address of significance to the client application. Typically, for C++ code,
lpvContext represents a pointer to the address of a C++ object.

cbEntryID
Input parameter containing the size, in bytes, of the entry identifier pointed to by the lpSelection
parameter.

lpSelection
Input parameter pointing to the entry identifier defining the selection within the dialog box.

ulFlags
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

Client applications call a callback function based on the LPFNBUTTON prototype to define a button in
a details dialog box. The client passes a pointer to the callback function in calls to the
IAddrBook::Details method.

Service providers call a hook function based on the LPFNBUTTON prototype to define a button in a
details dialog box. The provider passes a pointer to this hook function in calls to the
IMAPISupport::Details method.

In both cases, when the dialog box is displayed and the user chooses the defined button, MAPI calls
LPFNBUTTON.

See Also

BuildDisplayTable function

 LPropCompareProp

This function may not be supported in future versions of MAPI.

The LPropCompareProp function compares two property values to determine if they are equal.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

LONG LPropCompareProp(
 LPSPropValue lpSPropValueA,
 LPSPropValue lpSPropValueB
);

Parameters

lpSPropValueA
Input parameter pointing to an SPropValue structure defining the first property value to be
compared.

lpSPropValueB
Input parameter pointing to an SPropValue structure defining the second property value to be
compared.

Remarks

Use the LPropCompareProp function only if the types of the two properties to be compared are the
same.

Before calling LPropCompareProp, a client application or service provider must first retrieve the
properties for comparison with a call to the IMAPIProp::GetProps method. When a client or provider
calls LPropCompareProp, the function first examines the property tags to ensure that the comparison
of property values is valid. The function then compares the property values, returning an appropriate
value.

If the property values are unequal, LPropCompareProp determines which one is the greater. The
properties that LPropCompareProp compares do not have to belong to the same object.

LPropCompareProp returns one of the following values for most property types:

· Less than zero if the value indicated by the lpSPropValueA parameter is less than that indicated by
the lpSPropValueB parameter.

· Greater than zero if the value indicated by lpSPropValueA is greater than that indicated by
lpSPropValueB.

· Zero if the value indicated by lpSPropValueA equals the value indicated by lpSPropValueB.

For property types that have no intrinsic ordering, such as Boolean or error types, the
LPropCompareProp function returns an undefined value if the two property values are not equal. This
undefined value is nonzero and consistent across calls.

 MAPIAdminProfiles

The MAPIAdminProfiles function creates a profile administration object.

At a Glance

Specified in header file: MAPIX.H
Implemented by: MAPI
Called by: Client applications

HRESULT MAPIAdminProfiles(
 ULONG ulFlags,
 LPPROFADMIN FAR * lppProfAdmin
);

Parameters

ulFlags
Input parameter containing a bitmask of flags indicating options for the service entry function. The
following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lppProfAdmin
Output parameter pointing to a a pointer to the new profile administration object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

See Also

IProfAdmin::CreateProfile method

 MAPIAllocateBuffer

The MAPIAllocateBuffer function allocates a memory buffer.

At a Glance

Specified in header file: MAPIX.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE MAPIAllocateBuffer(
 ULONG cbSize,
 LPVOID FAR * lppBuffer
);

Parameters

cbSize
Input parameter containing the size, in bytes, of the buffer to be allocated.

lppBuffer
Output parameter pointing to a variable where the returned allocated buffer is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

During MAPIAllocateBuffer call processing, the calling implementation acquires a block of memory
from the operating system. The memory buffer is allocated on an even-numbered byte address. On
platforms where long integer access is more efficient, the operating system allocates the buffer on an
address whose size in bytes is a multiple of four.

Calling the MAPIFreeBuffer function releases the memory buffer allocated by MAPIAllocateBuffer, by
calling the MAPIAllocateMore function and any buffers linked to it, when the memory is no longer
needed.

 MAPIAllocateMore

The MAPIAllocateMore function allocates a memory buffer that is linked to another buffer previously
allocated with the MAPIAllocateBuffer function.

At a Glance

Specified in header file: MAPIX.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE MAPIAllocateMore(
 ULONG cbSize,
 LPVOID lpObject,
 LPVOID FAR * lppBuffer
);

Parameters

cbSize
Input parameter containing the size, in bytes, of the new buffer to be allocated.

lpObject
Input parameter pointing to an existing MAPI buffer allocated using MAPIAllocateBuffer.

lppBuffer
Output parameter pointing to a variable where the returned, newly allocated buffer is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

During MAPIAllocateMore call processing, the calling implementation acquires a block of memory
from the operating system. The memory buffer is allocated on an even-numbered byte address. On
platforms where long integer access is more efficient, the operating system allocates the buffer on an
address whose size in bytes is a multiple of four.

The only way to release a buffer allocated with MAPIAllocateMore is to pass the buffer pointer
specified in the lpObject parameter to the MAPIFreeBuffer function. The link between the memory
buffers allocated with MAPIAllocateBuffer and MAPIAllocateMore enables MAPIFreeBuffer to
release both buffers with a single call.

 MAPIDeInitIdle

This function may not be supported in future versions of MAPI.

The MAPIDeInitIdle function shuts down the DLL for the idle engine.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

VOID MAPIDeInitIdle(void)

Parameters

None.

Remarks

A client application or service provider should call this function when it no longer needs the idle engine,
for example, when it is about to stop processing.

See Also

MAPIInitIdle, FNIDLE

 MAPIFreeBuffer

The MAPIFreeBuffer function frees a memory buffer allocated with a call to the MAPIAllocateBuffer
function or the MAPIAllocateMore function.

At a Glance

Specified in header file: MAPIX.H
Implemented by: MAPI
Called by: Client applications and service

providers

ULONG MAPIFreeBuffer(
 LPVOID lpBuffer
);

Parameters

lpBuffer
Input parameter pointing to a previously allocated memory buffer. If NULL is passed in the lpBuffer
parameter, MAPIFreeBuffer does nothing.

Return Values

S_OK
The call succeeded and freed the memory requested. MAPIFreeBuffer can also return S_OK on
already freed locations or if memory block is not allocated with MAPIAllocateBuffer and
MAPIAllocateMore.

Remarks

Usually, when a client application or service provider calls MAPIAllocateBuffer or MAPIAllocateMore,
the operating system constructs in one contiguous memory buffer one or more complex structures with
multiple levels of pointers. When a MAPI function or method creates a buffer with such contents, a
client can later free all the structures contained in the buffer by passing to MAPIFreeBuffer the pointer
to the buffer returned by the MAPI function that created the buffer. For a service provider to free a
memory buffer using MAPIFreeBuffer, it must pass the pointer to that buffer returned with the
provider's support object.

The call to MAPIFreeBuffer to free a particular buffer must be made as soon as a client or provider is
finished using this buffer. Simply calling the MAPILogoff function at the end of a MAPI session does
not automatically release memory buffers.

A client or service provider should operate on the assumption that the pointer passed in lpBuffer is
invalid after a successful return from MAPIFreeBuffer. If the pointer indicates either a memory block
not allocated by the messaging system through MAPIAllocateBuffer or MAPIAllocateMore or a free
memory block, the behavior of MAPIFreeBuffer is undefined.

Note Passing a null pointer to MAPIFreeBuffer makes application cleanup code simpler and smaller
because MAPIFreeBuffer can initialize pointers to NULL and then free them in the cleanup code
without having to test them first.

MAPIFreeBuffer is exported, with a slightly different syntax, by both Simple MAPI and MAPI. For
Simple MAPI, it is an entry point function.

See Also

IMAPISupport::GetMemAllocRoutines method

 MAPIGetDefaultMalloc

The MAPIGetDefaultMalloc function retrieves the address of the default MAPI memory allocation
function.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

LPMALLOC MAPIGetDefaultMalloc()

Parameters

None.

Remarks

The MAPIGetDefaultMalloc function returns a pointer to the default MAPI memory allocation function.

 MAPIInitialize

The MAPIInitialize function increments the MAPI subsystem reference count and initializes global data
for the MAPI DLL.

At a Glance

Specified in header file: MAPIX.H
Implemented by: MAPI
Called by: Client applications

HRESULT MAPIInitialize(
 LPVOID lpMapiInit
);

Parameters

lpMapiInit
Input parameter pointing to a MAPIINIT_0 structure. The lpMapiInit parameter can be set to NULL.

Return Values

S_OK
The MAPI subsystem was initialized successfully.

Remarks

The MAPIInitialize function increments the MAPI reference count for the MAPI subsystem, and the
MAPIUninitialize function decrements the internal reference count. Thus, the number of calls to one
function must equal the number of calls to the other. MAPIInitialize returns S_OK if MAPI has not been
previously initialized.

A client or service provider must call MAPIInitialize before making any other MAPI call. Failure to do
so causes client or service provider calls to return the MAPI_E_NOT_INITIALIZED value.

When calling MAPIInitialize from a multithreaded application, set the lpMapiInit parameter to a
MAPIINIT_0 structure that is declared as follows:

MAPIINIT_0 MAPIINIT= { 0, MAPI_MULTITHREAD_NOTIFICATIONS}

and call:

MAPIInitialize (&MAPIINIT);

When this structure is declared, MAPI creates a separate thread to handle the notification window,
which continues until the initialize reference count falls to zero. If the ulflags member is set to
MAPI_NT_SERVICE, the provider is being loaded in the context of a Windows NT service.

MAPIInitialize does not return any extended error information. Unlike most other MAPI calls, the
meanings of its return values are strictly defined to correspond to the particular step of the initialization
that failed:

Step 1 Checks parameters and flags

MAPI_E_INVALID_PARAMETER or MAPI_E_UNKNOWN_FLAGS. Caller passed invalid parameter or
flag.

Step 2 Initializes registry keys required by MAPI and confirms the type of operating system. This step
only happens if the client process is runnning as a service under Windows NT and sets the MAPI_NT
SERVICE flag in the MAPIINIT_0.

MAPI_E_TOO_COMPLEX. (Windows NT only) The calling process is an NT service and registry keys

required by MAPI could not be initalized.

Additional information may be available in the application event log.

Step 3a Checks for compatibility between the current versions of OLE and MAPI.

MAPI_E_VERSION. The version of OLE installed on the workstation is not compatible with this version
of MAPI.

Step 3b Initializes OLE.

During this step only, this function can return an error code not listed here. Any error not listed here
should be assumed to come from the OLE function CoInitialize.

Step 4 Initializes per-process global variables

MAPI_E_SESSION_LIMIT MAPI sets up context specific to the current process. Failures may occur
on Win16 if the number of processes exceeds a certain number, or on any system if available memory
is exhausted.

Step 5 Initializes shared global variables of all processes

MAPI_E_NOT_ENOUGH_RESOURCES. Not enough system resources were available to complete
the operation

Step 6 Initializes the notification engine, creates its window and its thread if requested by the
MAPI_MULTITHREAD_NOTIFICATIONS flag.

MAPI_E_INVALID_OBJECT May fail if system resources are exhausted.

Step 7 Loads and initializes the profile provider. Verifies that MAPIInitialize can access the registry
key where profile data are stored.

MAPI_E_NOT_INITIALIZED The profile provider has encountered an error. In a service running under
Windows NT version 3.51, the profile provider must first initialize the registry subtree called
HKEY_CURRENT_USER, this occurs in Step 2. This process is subject to additional failures, including
lack of access rights to the registry.

 MAPIInitIdle

This function may not be supported in future versions of MAPI.

The MAPIInitIdle function initializes the DLL for the idle engine. A client application or service provider
must call MAPIInitIdle before calling any other idle engine function.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

LONG MAPIInitIdle(
 LPVOID lpvReserved
);

Parameter

lpvReserved
Reserved; must be zero.

Remarks

The MAPIInitIdle function returns zero if initialization is successful, and -1 otherwise. When
MAPIInitIdle is called multiple times, only the first call succeeds.

See Also

MAPIDeinitIdle, FNIDLE

 MAPILogonEx

The MAPILogonEx function logs a client application onto a session with the messaging system.

At a Glance

Specified in header file: MAPIX.H
Implemented by: MAPI
Called by: Client applications

HRESULT MAPILogonEx(
 ULONG ulUIParam,
 LPTSTR lpszProfileName,
 LPTSTR lpszPassword,
 FLAGS flFlags,
 LPMAPISESSION FAR * lppSession
);

Parameters

ulUIParam
Input parameter containing the handle to the window to which the logon dialog box is modal. If no
dialog box is displayed during the call, the ulUIParam parameter is ignored. This parameter can be
zero.

lpszProfileName
Input parameter pointing to a string containing the name of the profile to use when logging on. This
string is limited to 64 characters.

lpszPassword
Input parameter pointing to a string containing the password of the profile. The lpszPassword
parameter can be NULL whether or not the lpszProfileName parameter is NULL. This string is
limited to 64 characters.

flFlags
Input parameter containing a bitmask of flags used to control how logon is performed. The following
flags can be set:
MAPI_ALLOW_OTHERS

Indicates that the shared session should be returned, allowing subsequent clients to acquire the
session without providing any user credentials.

MAPI_FORCE_DOWNLOAD
Indicates an attempt should be made to download all of the user's messages before returning. If
the MAPI_FORCE_DOWNLOAD flag is not set, messages can be downloaded in the background
after the call to MAPILogonEx returns.

MAPI_LOGON_UI
Indicates that a dialog box should be displayed to prompt the user for logon information if
required. When the MAPI_LOGON_UI flag is not set, the calling client does not display a logon
dialog box and returns an error value if the user is not logged on. MAPI_LOGON_UI and
MAPI_PASSWORD_UI are mutually exclusive.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new MAPI session rather than acquire the
shared session. If the MAPI_NEW_SESSION flag is not set, MAPILogonEx uses an existing
shared session even if the lpszprofileName parameter is not NULL.

MAPI_NO_MAIL
Indicates that MAPI should not inform the MAPI spooler of the session's existence. The result is
that no messages can be sent or received within the session except through a tightly-coupled
store and transport pair. A calling client sets this flag when either configuration work must be done

or the client is browsing the available message stores.
MAPI_PASSWORD_UI

Indicates that a dialog box should be displayed to prompt the user for the profile password.
MAPI_PASSWORD_UI cannot be set if MAPI_LOGON_UI is set because the calling client can
only present one of the two dialog boxes. This dialog box does not allow the profile name to be
changed; the lpszProfileName parameter must be non-NULL

MAPI_SERVICE_UI_ALWAYS
Indicates that MAPILogonEx should display a configuration dialog box for each message service
in the profile. The dialog boxes are displayed after the profile has been chosen but before any
message service is logged on. The MAPI common dialog box for logon also contains a check box
that requests the same operation.

MAPI_TIMEOUT_SHORT
Indicates the logon should fail if blocked for more than a few seconds.

MAPI_UNICODE
Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

MAPI_USE_DEFAULT
Indicates the messaging subsystem should substitute the profile name of the default profile for the
lpszProfileName parameter. The MAPI_EXPLICIT_PROFILE flag is ignored unless
lpszProfileName is NULL or empty.

lppSession
Output parameter pointing to a pointer to the MAPI session interface.

Return Values

S_OK
The logon succeeded.

MAPI_E_LOGON_FAILED
The logon did not succeed, either because one or more of the parameters to MAPILogonEx were
invalid or because there were too many sessions open already.

MAPI_E_TIMEOUT
MAPI serializes all logons through a mutex. This returns if the MAPI_TIMEOUT_SHORT flag was
set and another thread held the mutex.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by choosing the Cancel button in a dialog box.

Remarks

MAPI client applications call the MAPILogonEx function to log onto a session with the messaging
system. All strings passed in and returned to and from MAPI calls are null-terminated and must be
specified in the current character set or code page of the calling client or provider's operating system.

The lpszProfileName parameter is ignored if there is an existing previous session that called
MapiLogonEx with the MAPI_ALLOW_OTHERS flag set and if the flag MAPI_NEW_SESSION is not
set. If the lpszProfileName parameter is NULL or points to an empty string, and the flFlags parameter
includes the MAPI_LOGON_UI flag, the MAPILogonEx function generates a logon dialog box with an
empty field for the profile name.

When logging onto a specific profile, a client should pass the MAPI_NEW_SESSION flag into
MAPILogonEx in addition to the profile name. Otherwise, if another client has established a shared
session by logging on with MAPI_ALLOW_OTHERS, the client will be logged onto the shared session
instead of to the profile requested.

The MAPI_EXPLICIT_PROFILE flag will not cause the default profile name to be used when
lpszProfileName is NULL or empty unless the MAPI_USE_DEFAULT flag is also present.

The MAPI_NO_MAIL flag has several effects that result in the following when not using the MAPI
spooler:

· No messages can be sent or delivered by the MAPI spooler during this session.
· Server based stores might still send or deliver messages.
· Messages sent or delivered by server based stores will not be processed by any hook providers.
· Per-message and per-recipient options for transports will not be available.
· The status table will not contain entries for transport providers, and any transport functionality

dependent on status objects (such as configuration) will not be available.
· The message spooler row in the status table will contain the STATUS_FAILURE value.
· Piggybacked logons will be allowed, but those logons will not cause the previous logon to receive

status object updates.

See Also

IMAPISession::GetMsgStoresTable method , IMAPISession::OpenMsgStore method

 MAPIOpenFormMgr

The MAPIOpenFormMgr function opens an IMAPIFormMgr interface on a form library provider object
in the context of an existing session.

At a Glance

Specified in header file: MAPIFORM.H
Implemented by: MAPI
Called by: Client applications

MAPIOpenFormMgr(
 LPMAPISESSION pSession,
 LPMAPIFORMMGR FAR * ppmgr
);

Parameters

pSession
Input parameter pointing to the session in use by the client application.

ppmgr
Output parameter pointing to the returned IMAPIFormMgr interface.

Remarks

After a client application makes a call to the MAPIOpenFormMgr function, most subsequent forms-
related interactions take place through the form library provider or an interface returned by the form
library provider. Among other things, the IMAPIFormMgr interface allows the client to work with
message handlers and perform resolutions between message classes and form libraries.

 MAPIOpenLocalFormContainer

The MAPIOpenLocalFormContainer function returns an interface pointer to the local form library.

At a Glance

Specified in header file: MAPIFORM.H
Implemented by: MAPI
Called by: Client applications

MAPIOpenLocalFormContainer(
 LPMAPIFORMCONTAINER FAR * ppfcnt
);

Parameters

ppfcnt
Output parameter pointing to a pointer to the local form library interface.

Remarks

The interface to which a pointer is returned can be used by third-party installation programs to install
application-specific forms into the library without the program first having to log onto MAPI.

 MAPIUninitialize

The MAPIUninitialize function decrements the reference count, cleans up, and deletes per-instance
global data for the MAPI DLL.

At a Glance

Specified in header file: MAPIX.H
Implemented by: MAPI
Called by: Client applications

void MAPIUninitialize()
Parameters

None.

Remarks

A client application calls the MAPIUninitialize function to end its interaction with MAPI, begun with a
call to the MAPIInitialize function. After MAPIUninitialize is called, no other MAPI calls can be made
by the client.

MAPIUninitialize decrements the reference count, and the corresponding MAPIInitialize function
increments the reference count. Thus, the number of calls to one function must equal the number of
calls to the other.

 MapStorageSCode

This function may not be supported in future versions of MAPI.

The MapStorageSCode function maps an HRESULT return value from an OLE storage object to a
MAPI return value of the SCODE type.

At a Glance

Specified in header file: IMESSAGE.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE MapStorageSCode(
 SCODE StgSCode
);

Parameters

StgSCode
Input parameter containing the HRESULT return value from an OLE storage object to be mapped to
a MAPI SCODE value.

Return Values

S_OK
Indicates the call succeeded and returned the expected value.

MAPI_E_CALL_FAILED
Indicates the function cannot find a matching value.

Remarks

MAPI provides this function for the internal use of MAPI components that base their message
implementations on the message DLL. Because these components open OLE storage themselves,
they must be able to map error values returned for problems with OLE storage to MAPI SCODE
values.

For more information, see About Structured Storage.

 MSGCALLRELEASE

The MSGCALLRELEASE function prototype defines a callback function that frees the IStorage
interface after the final release of a top-level message that was opened with the OpenIMsgOnIStg
function.

At a Glance

Specified in header file: IMESSAGE.H
Implemented by: Client applications and service

providers
Called by: MAPI

void(
 ULONG ulCallerData,
 LPMESSAGE lpMessage
);

Parameters

ulCallerData
An input parameter that contains calling application information about the IMessage interface.

lpMessage
An input parameter pointing to the top-level message and attachments that have been released.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

 MSGSERVICEENTRY

The MSGSERVICEENTRY function prototype defines an optional service provider entry point to
support message service configuration.

At a Glance

Specified in header file: MAPISPI.H
Implemented by: Message services
Called by: MAPI

HRESULT MSGSERVICEENTRY(
 HINSTANCE hInstance,
 LPMALLOC lpMalloc,
 LPMAPISUP lpMAPISup,
 ULONG ulUIParam,
 ULONG ulFlags,
 ULONG ulContext,
 ULONG cValues,
 LPSPropValue lpProps,
 LPPROVIDERADMIN lpProviderAdmin,
 LPMAPIERROR FAR * lppMapiError
);

Parameters

hInstance
Input parameter specifying the handle of the instance of the service provider DLL. The handle is
typically used to retrieve resources.

lpMalloc
Input parameter pointing to a memory allocator object exposing the OLE IMalloc interface. The
message service may need to use this allocation method when working with certain interfaces such
as IStream.

lpMAPISup
Input parameter pointing to an IMAPISupport:IUnknown interface implementation.

ulUIParam
Input parameter specifying an implementation-specific 32-bit value used for passing user interface
information to a function or zero. In Microsoft Windows applications, the ulUIParam parameter is the
parent window handle for the configuration dialog box and is of type HWND (cast to a ULONG). A
value of zero indicates that there is no parent window.

ulFlags
Input parameter containing a bitmask of flags indicating options for the service entry function. The
following flags can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

MSG_SERVICE_UI_READ_ONLY
Indicates the service's configuration user interface should display the current configuration but not
allow the user to change it.

SERVICE_UI_ALLOWED
Permits a configuration dialog box to be displayed if necessary. When the
SERVICE_UI_ALLOWED flag is set, the dialog box should be displayed only if the lpProps
property value array is empty or does not contain a valid configuration. If

SERVICE_UI_ALLOWED is not set, a dialog box might still be displayed if the
UI_SERVICE_ALWAYS flag is set.

UI_CURRENT_PROVIDER_FIRST
Requests that the configuration dialog box for the active provider be displayed on top of other
dialog boxes.

UI_SERVICE_ALWAYS
Requires the message service to display a configuration dialog box. If the UI_SERVICE_ALWAYS
flag is not set, a configuration dialog box might still be displayed if the SERVICE_UI_ALLOWED
flag is set and valid configuration information is not available from the lpProps property value
array. Either SERVICE_UI_ALLOWED or UI_SERVICE_ALWAYS must be set to allow a user
interface to be displayed.

ulContext
Input parameter specifying the configuration operation that MAPI is currently performing. The
ulContext parameter will contain one of the following values:
MSG_SERVICE_CONFIGURE

Indicates that changes to the service's configuration should be made in the profile. If the
UI_SERVICE_ALWAYS flag is set, the service should display its configuration dialog box. The
dialog box should also be displayed if the SERVICE_UI_ALLOWED flag is set and the lpProps
parameter is empty or does not contain valid configuration data. If lpProps contains valid data, no
dialog box should be displayed and the service should use this data for making the configuration
change.

MSG_SERVICE_CREATE
Indicates the service is being added to a profile. If either the UI_SERVICE_ALWAYS or
SERVICE_UI_ALLOWED flag is set, the service should display its configuration dialog box. If
neither flag is set, the service should fail.

MSG_SERVICE_DELETE
Indicates the service is being removed from a profile. After receiving this event, the service should
return S_OK.

MSG_SERVICE_INSTALL
Indicates the service has been installed to the user's workstation from a network, floppy disk, or
other external medium. After receiving this event, the service usually returns S_OK.

MSG_SERVICE_PROVIDER_CREATE
Requests that the service create an additional instance of a provider. If the service supports this
operation, it should call IProviderAdmin::CreateProvider. If the service does not support this
operation, it can return MAPI_E_NO_SUPPORT.

MSG_SERVICE_PROVIDER_DELETE
Requests that the service delete a provider instance. If the service supports this operation, it
should call IProviderAdmin::DeleteProvider. If the service does not support this operation, it
can return MAPI_E_NO_SUPPORT.

MSG_SERVICE_UNINSTALL
Indicates the service is being removed. After receiving this event, the service can perform any
clean up tasks that should be done before the service ends and then return with a success value.
If the user cancels the removal, the service should return MAPI_E_USER_CANCEL.

cValues
Input parameter specifying the number of property values in the array pointed to by the lpProps
parameter. The value of the cValues parameter is zero if MAPI is passing no property values.

lpProps
Input parameter pointing to an optional array of SPropValue structures indicating values for
provider-supported properties that the function will use in configuring the message service. The
function only uses this parameter if the ulContext parameter is set to
MSG_SERVICE_CONFIGURE. This parameter is commonly used to pass the path to a file for a file-
based service, such as a personal address book service. If the MSG_SERVICE_CONFIGURE flag

is not passed in the ulFlags parameter, the lpProps parameter must be zero.
lpProviderAdmin

Input parameter pointing to an IProviderAdmin:IUnknown interface that the function can use to
locate profile sections for a specific provider in the current message service.

lppMapiError
Output parameter pointing to a MAPIERROR structure. The structure is allocated with the
MAPIAllocateBuffer function. All members are optional, although most structures will contain a
valid error message string in the lpszError member. If the lpszComponent or lpszError members of
the structure are present, their memory must eventually be freed by a single call to MAPIFreeBuffer
on the base structure.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_UNCONFIGURED
The service provider has not been configured.

MAPI_E_USER_CANCEL
The user canceled the operation, typically by choosing the Cancel button in a dialog box.

MAPI_E_NO_SUPPORT
The provider either does not support changes to its objects or does not support notification of
changes.

MAPI_E_BAD_CHARWIDTH
Either the MAPI_UNICODE flag was set and the implementation does not support Unicode, or
MAPI_UNICODE was not set and the implementation only supports Unicode.

Remarks

A function defined using the MSGSERVICEENTRY function prototype enables message services to
configure themselves or to perform other service-specific actions. The function primarily furnishes a
dialog box in which the user can change settings specific to the message service. It can also support
programmatic configuration by using the property value array passed in the lpProps parameter.
Programmatic configuration is optional unless the service supports the Profile Wizard, for which it is
required.

MAPI calls this entry point from the Control Panel application. Typically, a client or the profile provider
calls the MSGSERVICEENTRY function prototype in response to a user's request. These two
applications call IMsgServiceAdmin::CreateMsgService or
IMsgServiceAdmin::ConfigureMsgService and these methods call the service entry function.

MAPI places no restriction on the function name that a message service uses for the
MSGSERVICEENTRY prototype but prefers the name ServiceEntry. There is no restriction on the
ordinal for the function, and a single provider DLL can contain more than one function. However, only
one of the functions can be named ServiceEntry.

MAPI enables a message service to use Windows 95-style property sheets for its configuration dialog
boxes. The message service can use the BuildDisplayTable function and the
IMAPISupport::DoConfigPropsheet method to simplify configuration dialog box implementation.

It is possible for a user to cancel a MSG_SERVICE_UNINSTALL operation. In this case, the
ServiceEntry function should check with the user to verify that the service should not be removed and
return MAPI_E_USER_CANCEL if the service remains installed.

A function based on the MSGSERVICEENTRY prototype returns one of the HRESULT values listed.
MAPI forwards this value when responding to a client's call to
IMsgServiceAdmin::ConfigureMsgService.

Message services that export a service entry function must include the PR_SERVICE_DLL_NAME and
PR_SERVICE_ENTRY_NAME properties in the message service section of MAPISVC.INF.

 MSProviderInit

The MSProviderInit function initializes a message store provider for operation.

At a Glance

Specified in header file: MAPISPI.H
Implemented by: Message store providers
Called by: MAPI

HRESULT MSProviderInit(
 HINSTANCE hInstance,
 LPMALLOC lpMalloc,
 LPALLOCATEBUFFER lpAllocateBuffer,
 LPALLOCATEMORE lpAllocateMore,
 LPFREEBUFFER lpFreeBuffer,
 ULONG ulFlags,
 ULONG ulMAPIVer,
 ULONG FAR * lpulProviderVer,
 LPMSPROVIDER FAR * lppMSProvider
);

Parameters

hInstance
Input parameter containing an instance of the message store provider's dynamic-link library (DLL)
that MAPI used when it linked.

lpMalloc
Input parameter pointing to a memory allocator object exposing the OLE IMalloc interface. The
message store provider may need to use this allocation method when working with certain interfaces
such as IStream.

lpAllocateBuffer
Input parameter pointing to the MAPIAllocateBuffer function, to be used to allocate memory.

lpAllocateMore
Input parameter pointing to the MAPIAllocateMore function, to be used to allocate additional
memory where required.

lpFreeBuffer
Input parameter pointing to the MAPIFreeBuffer function, to be used to free memory.

ulFlags
Input parameter containing a bitmask of flags. The following flag can be set:
MAPI_NT_SERVICE

Indicates the provider is being loaded in the context of a Windows NT service, a special type of
process without access to any user interface.

ulMAPIVer
Input parameter containing the version number of the service provider interface that MAPI.DLL uses.
For the current version number, see the MAPISPI.H header file.

lpulProviderVer
Output parameter pointing to the version number of the service provider interface that this message
store provider uses.

lppMSProvider
Output parameter pointing to a pointer to the initialized message store provider object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

To initialize a message store provider, MAPI calls the function named MSProviderInit, based on the
MSPROVIDERINIT function prototype defined in MAPISPI.H from the message store provider's DLL.
The message store provider must use its implementation of MSProviderInit to respond to the MAPI
initialization call.

The message store provider must also define the MSProviderInit function using the CDECL calling
convention. CDECL definition is required for each service provider initialization function to ensure the
function can work with the current version of the service provider interface, even if the number of
function parameters used is not the number set for that function in the current version of the interface.
MAPI provides the MSPROVIDERINIT prototype to help define MSProviderInit as CDECL. The
MSPROVIDERINIT prototype has a standard MAPI initialization call type, STDMAPIINITCALLTYPE.

The lpAllocateBuffer, lpAllocateMore and lpFreeBuffer input parameters specify pointers to the
MAPIAllocateBuffer, MAPIAllocateMore, and MAPIFreeBuffer functions, respectively, for use by the
message-store provider DLL. The provider DLL should not be linked with MAPIX.DLL. Instead, it
should use these pointers for memory allocation or deallocation. In particular, the provider must use
these pointers when allocating memory for use by clients in calling object interfaces. For example, two
provider interface methods that typically allocate memory are IMAPIProp::GetProps and
IMAPITable::QueryRows.

The message store provider should retain information on the allocator pointers passed to it in
lpAllocateBuffer, lpAllocateMore, and lpFreeBuffer. If the provider will use a memory allocator later, it
should call the OLE method IUnknown::AddRef for the allocation object pointed to by the lpMalloc
parameter.

For more information on using MSProviderInit, see the information on using the MSProviderInit,
ABProviderInit, and XPProviderInit functions in Initializing the Transport Provider and About Provider
DLL Entry Point Functions.

See Also

ABProviderInit function , HPProviderInit function , IMSProvider : IUnknown interface ,
XPProviderInit function

 NOTIFCALLBACK

This function may not be supported in future versions of MAPI.

The NOTIFCALLBACK function prototype defines a callback function that MAPI calls to send an event
notification. This callback function can only be used when wrapped in an advise sink object created by
calling the HrAllocAdviseSink function.

At a Glance

Specified in header file: MAPIDEFS.H
Implemented by: Client applications and service

providers
Called by: MAPI

ULONG (STDAPICALLTYPE NOTIFCALLBACK) (
 LPVOID lpvContext,
 ULONG cNotification,
 LPNOTIFICATION lpNotifications
);

Parameters

lpvContext
Input parameter specifying a pointer to an arbitrary value passed to the callback function when MAPI
calls it. This value can represent an address of significance to the client application or service
provider. Typically, for C++ code, the lpvContext parameter represents a pointer to the address of a
C++ object.

cNotification
Input parameter specifying the number of event notifications in the array indicated by the
lpNotifications parameter.

lpNotifications
Output parameter specifying a pointer to the location where this function writes an array of
NOTIFICATION structures containing the event notifications.

Remarks

The set of valid return values for the NOTIFCALLBACK function prototype depends on whether the
function is implemented by a client application or a service provider. Clients should always return
S_OK. Providers should return either S_OK or NOTIFY_CANCELED. If NOTIFY_CANCELED is
returned, the caller of IMAPISupport::Notify will receive NOTIFY_CANCELED in the lpUlFlags
parameter.

See Also

IMAPIAdviseSink::OnNotify method

 OpenIMsgOnIStg

The OpenIMsgOnIStg function creates internal memory structures and an object handle for creation of
a new message object.

At a Glance

Specified in header file: IMESSAGE.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE OpenIMsgOnIStg(
 LPMSGSESS lpMsgSess,
 LPALLOCATEBUFFER lpAllocateBuffer,
 LPALLOCATEMORE lpAllocateMore,
 LPFREEBUFFER lpFreeBuffer,
 LPMALLOC lpmalloc,
 LPVOID lpMapiSup,
 LPSTORAGE lpStg,
 MSGCALLRELEASE FAR * lpfMsgCallRelease,
 ULONG ulCallerData,
 ULONG ulFlags,
 LPMESSAGE FAR * lppMsg
);

Parameters

lpMsgSess
Input parameter pointing to a message session object.

lpAllocateBuffer
Input parameter pointing to the MAPIAllocateBuffer function, to be used by the service provider to
allocate memory.

lpAllocateMore
Input parameter pointing to the MAPIAllocateMore function, to be used by the service provider to
allocate additional memory where required.

lpFreeBuffer
Input parameter pointing to the MAPIFreeBuffer function, to be used by the service provider to free
memory.

lpMalloc
Input parameter pointing to a memory allocator object exposing the OLE IMalloc interface. The
message object may need to use this allocation method when working with certain interfaces such
as IStream.

lpMapiSup
Input parameter pointing to an optional MAPI support object used when a service provider calls
OpenIMsgOnIStg.

lpStg
Input-output parameter pointing to an IStorage object that is open and has read/write access.
Because messages do not support write-only access, OpenIMsgOnIStg does not accept a storage
object opened with write-only access.

lpfMsgCallRelease
Input parameter pointing to a message-release callback function in the service provider DLL.

ulCallerData
Input parameter containing caller data to be written by the callback function indicated by the

lpfMsgCallRelease parameter.
ulFlags

Input parameter containing a bitmask of flags used to control whether the OLE IStorage::Commit
method is called when the client application calls the IMessage::SaveChanges method. The
following flag can be set:
IMSG_NO_ISTG_COMMIT

Controls whether the OLE method IStorage::Commit is called when the client calls
SaveChanges.

lppMsg
Output parameter pointing to a pointer to the opened message object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Warning The correct process for defining a message attachment is to call the
IMAPIProp::OpenProperty method with a source interface of IMessage : IMAPIProp.
IMAPIProp::OpenProperty is also supported for message attachments when the source interface is
the OLE interface IStorage. IStorage is supported to allow an easy way to put a Microsoft Word for
Windows document into an attachment without converting the attachment to or from the OLE IStream
interface. However, use of IStorage presents a danger to the predictability of IMessage when the client
application or service provider passes a new attachment data pointer to OpenIMsgOnIStg and then
releases objects in the wrong order.

Including the lpMsgSess parameter ensures that the new message is created within a session so that it
can be closed when the session is closed. If lpMsgSess is NULL, a message is created independently
of any session. If the client or service provider that created the message does not release the message
or does not release open tables within the message, memory is leaked until the external application
terminates.

The lpAllocateBuffer, lpAllocateMore, and lpFreeBuffer input parameters point to the
MAPIAllocateBuffer, MAPIAllocateMore, and MAPIFreeBuffer functions, respectively, for use by the
service provider DLL. The provider DLL should not be linked with MAPIX.DLL. Instead, it should use
these pointers for memory allocation or deallocation. In particular, the provider must use these pointers
when allocating memory for use by clients in calling object interfaces. For example, two provider
interface methods that typically allocate memory are IMAPIProp::GetProps and
IMAPITable::QueryRows. The lpAllocateBuffer, lpAllocateMore, and lpFreeBuffer pointers are optional
when the OpenIMsgOnIStg function is called with a valid lpMapiSup parameter.

If a value is supplied for lpMapiSup, IMessage supports the MAPI_DIALOG and ATTACH_DIALOG
flags by calling the IMAPISupport::DoProgressDialog method to supply a progress user interface for
the IMAPIProp::CopyTo and IMessage::DeleteAttach methods. The IMessage::ModifyRecipients
method attempts to convert short-term entry identifiers to long-term entry identifiers by calling the
support method IMAPISession::OpenAddressBook and making calls on the resulting address book
object. If zero is passed for lpMapiSup, IMessage ignores MAPI_DIALOG and ATTACH_DIALOG and
stores short-term entry identifiers without conversion.

MAPI does not define the behavior of multiple open operations performed on a message subobject,
such as an attachment, a stream, a message store, or another message. MAPI currently allows a
subobject that is already open to be opened once more, but MAPI performs the open operation by
incrementing the reference count for the existing open object and returning it to the client or provider
that called the IMessage::OpenAttach method or IMAPIProp::OpenProperty method. Thus, the
access requested for the first open operation on a subobject is the access provided for all subsequent
open operations, regardless of the access requested by the operations.

Some clients of IMessage might call the OLE method IStorage::Commit after writing data beyond

what IMessage itself writes to the storage object. To aid in this, the IMessage implementation
guarantees to name all substorages. Therefore, if the client keeps its names out of that namespace,
there will be no accidental collisions.

The callback function mentioned with the lpfMsgCallRelease parameter is optional; if provided, it
should be based on the MSGCALLRELEASE function prototype. If lpfMsgCallRelease is supplied, the
IMessage interface calls the callback function when the top-level message receives its last release
call. IMSG.DLL will not use the IStorage object pointed to by the lpStg parameter after making this call.

See Also

OpenIMsgSession function

 OpenIMsgSession

This function may not be supported in future versions of MAPI.

The OpenIMsgSession function groups the creation of messages within a session, so that closing the
session also closes all messages created within that session.

At a Glance

Specified in header file: IMESSAGE.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE OpenIMsgSession(
 LPMALLOC lpMalloc,
 ULONG ulFlags,
 LPMSGSESS FAR * lppMsgSess
);

Parameters

lpMalloc
Input parameter pointing to a memory allocator object exposing the OLE IMalloc interface. The
client application may need to use this allocation method when working with certain interfaces such
as IStream.

ulFlags
Reserved; must be zero.

lppMsgSess
Output parameter pointing to a variable where the returned message-session object is stored.

Remarks

To establish a message session, a client application should call the OpenIMsgSession function to
obtain a message session pointer before calling the OpenIMsgOnIStg function function for the first
time to create a new message object. When finished with a message session, the client should call the
CloseIMsgSession function to end it.

OpenIMsgSession is used by clients that require the ability to handle several related messages as
storage objects. If only a single message is to be open at a time, a client does not need to track
multiple messages. In this case, it has little cause to create a message session and no reason to call
OpenIMsgSession.

For more information on the use of OLE memory allocators, see Inside OLE, Second Edition, by Kraig
Brockschmidt, and the OLE Programmer's Reference.

See Also

IMAPISession : IUnknown interface ,

 OpenStreamOnFile

The OpenStreamOnFile function allocates and initializes a stream object to hold the contents of a file.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

HRESULT OpenStreamOnFile(
 LPALLOCATEBUFFER lpAllocateBuffer,
 LPFREEBUFFER lpFreeBuffer,
 ULONG ulFlags,
 LPTSTR szFileName,
 LPTSTR szPrefix,
 LPTSTREAM FAR * lppStream
);

Parameters

lpAllocateBuffer
Input parameter pointing to the MAPIAllocateBuffer function, to be used by the service provider to
allocate memory.

lpFreeBuffer
Input parameter pointing to the MAPIFreeBuffer function, to be used by the provider to free
memory.

ulFlags
Input parameter containing a bitmask of flags used to control the creation of the stream object. All of
the flags used with the OLE 2.0 methods IStream::Read and IStream::Write, in addition to the
following MAPI-defined flag, can be used:
SOF_UNIQUEFILENAME

Creates in a temporary directory a new file that is accessible with the OLE IStream interface. To
create a read-only stream interface, do not use this flag.

szFileName
Input parameter containing the filename for which this function opens a stream object.

szPrefix
Input parameter containing the prefix for the filename on which the OpenStreamOnFile function
opens a stream object.

lppStream
Output parameter pointing to a variable where the pointer to the returned stream object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_NO_ACCESS
The object could not be accessed due to insufficient user permissions or because read-only objects
cannot be modified.

MAPI_E_NOT_FOUND
The requested object does not exist.

Remarks

A client application or service provider calls the OpenStreamOnFile function to allocate and initialize a
stream object to hold the contents of a file. The stream object, and thus the file, is then accessible
through the OLE interface IStream. To free the stream object, the client or provider must call the OLE
method IStream::Release, which is inherited from the IUnknown interface.

A 32-bit Windows program should call OpenStreamOnFile strictly as defined in the preceding "Syntax"
section, using the name provided. However, a 16-bit Windows program can set its own name for this
function using the OPENSTREAMONFILE function prototype. The prototype has exactly the same
syntax as that provided for the function preceding, except that it designates a return value of HRESULT
instead of STDMETHODIMP.

The lpAllocateBuffer and lpFreeBuffer input parameters point to the MAPIAllocateBuffer and
MAPIFreeBuffer functions, respectively, for use by the service provider DLL. The provider DLL should
not be linked with MAPIX.DLL. Instead, it should use these pointers for memory allocation or
deallocation. In particular, the provider must use these pointers when allocating memory for use by
clients in calling object interfaces. For example, two provider interface methods that typically allocate
memory are IMAPIProp::GetProps and IMAPITable::QueryRows.

The SOF_UNIQUEFILENAME flag is used to create a temporary filename that is unique to the
messaging system. If this flag is set, the szFileName parameter specifes the filename, and the szPrefix
parameter contains a string that is used to designate the directory in which the file should be created.
This string is prefixed to the filename. If the value in szFileName is NULL, the unique file will be created
in the temporary directory that is returned from the Windows function GetTempDir. If the
SOF_UNIQUEFILENAME flag is not set, szPrefix is ignored and szFileName should contain the fully
qualified path to the file being opened or created. The file will be opened or created based on the other
flags that are set in ulFlags.

 OpenTnefStream

The OpenTnefStream function is called by a transport provider to initiate a MAPI Transport Neutral
Encapsulation Format (TNEF) session.

At a Glance

Specified in header file: TNEF.H
Implemented by: MAPI
Called by: Transport providers

HRESULT OpenTnefStream(
 LPVOID lpvSupport,
 LPSTREAM lpStream,
 LPTSTR lpszStreamName,
 ULONG ulFlags,
 LPMESSAGE lpMessage,
 WORD wKey,
 LPITNEF FAR * lppTNEF
);

Parameters

lpvSupport
Passes a support object or passes in NULL. If NULL, the value of the lpadrbook parameter should
be non-null.

lpStream
Input parameter specifying a pointer to a storage stream object (OLE IStream interface) providing a
source or destination for a TNEF stream message.

lpszStreamName
Input parameter pointing to the name of the data stream that the TNEF object uses. If the caller has
set the TNEF_ENCODE flag (ulFlags parameter) in its call to OpenTnefStream, the lpszName
parameter must specify a non-null pointer to a non-null string consisting of any characters
considered valid for naming a file. MAPI does not allow string names including the characters "[", "]",
or ":", even if the file system permits their use. The size of the string passed for lpszName must not
exceed the value of MAX_PATH, the maximum length of a string containing a path name.

ulFlags
Input parameter containing a bitmask of flags used to indicate the mode of the function. The
following flags can be set:
TNEF_BEST_DATA

Indicates that all possible properties are mapped into their down-level attributes, but when there is
a possible data loss due to the conversion to a down-level attribute, the property is also encoded
in the encapsulations. NOTE: this will cause the duplication of information in the TNEF stream.
TNEF_BEST_DATA is the default if no other modes are specified.

TNEF_COMPATIBILITY
Ensures backwards compatibility with the MAIL 3.0 client. TNEF streams encoded with this flag
will map all possible properties into their corresponding down-level attribute. This mode also
causes the defaulting of some properties that are required by down-level clients.

TNEF_DECODE
Indicates the TNEF object on the indicated stream is opened with read-only access. The transport
provider must set this flag if it wants the function to initialize the object for subsequent decoding.

TNEF_ENCODE
Indicates the TNEF object on the indicated stream is opened for read/write access. The transport
provider must set this flag if it wants the function to initialize the object for subsequent encoding.

TNEF_PURE
Encodes all properties into the MAPI encapsulation blocks. Therefore, a "pure" TNEF file will
consist of, at most, attMAPIProps, attAttachment, attRenddata, and attRecipTable. This mode is
ideal for use when no backwards compatibility is required.

lpMessage
Input parameter pointing to a message object as a destination for a decoded message with
attachments or a source for an encoded message with attachments. Any properties of a destination
message might be overwritten by the properties of an encoded message.

wKey
Input parameter specifying a search key that the TNEF object uses to match attachments to the text
tags inserted in the message text. This value should be relatively unique across messages.

lppTNEF
Output parameter pointing to a variable where the new TNEF object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

A TNEF object created by the OpenTnefStream function later calls the OLE method
IUnknown::AddRef to add references for the support object, the stream object, and the message
object. The transport provider can release the references for all three objects with a single call to the
OLE method IUnknown::Release on the TNEF object.

OpenTnefStream allocates and initializes a TNEF object (ITnef interface) for the provider to use in
encoding a MAPI message (IMessage interface) into a TNEF stream message. Alternatively, the
function can set up the object for the provider to use in subsequent calls to ITnef::ExtractProps to
decode a TNEF stream message into a MAPI message. To free the TNEF object and close the
session, the transport provider must call the inherited IUnknown::Release method on the object.

A 32-bit Windows program should call OpenTnefStream strictly as defined in the "Syntax" section,
using the name provided. However, a 16-bit Windows program can set its own name for this function
using the OPENTNEFSTREAM function prototype. The prototype has exactly the same syntax as the
formal function, except that it designates a return value of HRESULT instead of STDMETHODIMP.

This function is the original entry point for TNEF access and has been replaced by
OpenTnefStreamEx but is still used for compatibility for those already using TNEF.

See Also

IMAPISupport : IUnknown interface , IXPProvider::TransportLogon method

 OpenTnefStreamEx

The OpenTnefStreamEx function creates a TNEF object that can be used to encode or decode a
message object into a TNEF data stream for use by transports or gateways and message stores. This
is the entry-point for TNEF access.

At a Glance

Specified in header file: TNEF.H
Implemented by: MAPI
Called by: Transport providers

HRESULT OpenTnefStreamEx(
 LPVOID lpvSupport,
 LPSTREAM lpStreamName,
 LPTSTR lpszStreamName,
 ULONG ulFlags,
 LPMESSAGE lpMessage,
 WORD wKeyVal,
 LPADRBOOK lpAdressBook,
 LPITNEF FAR * lppTNEF
);

Parameters

lpvSupport
Passes a support object or passes in NULL. If NULL, the lpadrbook parameter should be non-null.

lpStreamName
Input parameter specifying a pointer to a storage stream object, such as an OLE IStream interface,
providing a source or destination for a TNEF stream message.

lpszStreamName
Input parameter pointing to the name of the data stream that the TNEF object uses. If the caller has
set the TNEF_ENCODE flag (ulFlags parameter) in its call to OpenTnefStream, the lpszName
parameter must specify a non-null pointer to a non-null string consisting of any characters
considered valid for naming a file. MAPI does not allow string names including the characters "[", "]",
or ":", even if the file system permits their use. The size of the string passed for the lpszName
parameter must not exceed the value of MAX_PATH, the maximum length of a string containing a
path name.

ulFlags
Input parameter containing a bitmask of flags used to indicate the mode of the function. The
following flags can be set:
TNEF_BEST_DATA

Indicates that all possible properties are mapped into their down-level attributes, but when there is
a possible data loss due to the conversion to a down-level attribute, the property is also encoded
in the encapsulations. NOTE: this will cause the duplication of information in the TNEF stream.
TNEF_BEST_DATA is the default if no other modes are specified.

TNEF_COMPATIBILITY
Ensures backwards compatibility with the MAIL 3.0 client. TNEF streams encoded with this flag
will map all possible properties into their corresponding down-level attribute. This mode also
causes the defaulting of some properties that are required by down-level clients.

TNEF_DECODE
Indicates the TNEF object on the indicated stream is opened with read-only access. The transport
provider must set this flag if it wants the function to initialize the object for subsequent decoding.

TNEF_ENCODE

Indicates the TNEF object on the indicated stream is opened for read/write access. The transport
provider must set this flag if it wants the function to initialize the object for subsequent encoding.

TNEF_PURE
Encodes all properties into the MAPI encapsulation blocks. Therefore, a "pure" TNEF file will
consist of, at most, the attributes attMAPIProps, attAttachment, attRenddata, and attRecipTable.
This mode is ideal for use when no backwards compatibility is required.

lpMessage
Input parameter pointing to a message object as a destination for a decoded message with
attachments or a source for an encoded message with attachments. Any properties of a destination
message can be overwritten by the properties of an encoded message.

wKeyVal
Input parameter specifying a search key that the TNEF object uses to match attachments to the text
tags inserted in the message text. This value should be relatively unique across messages.

lpAdressBook
Input parameter pointing to an address book object used to get addressing information for entry
identifiers.

lppTNEF
Output parameter pointing to a variable where the new TNEF object is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

OpenTnefStreamEx is the recommended replacement for OpenTnefStream, the original entry point
for TNEF access.

A TNEF object created by the OpenTnefStreamEx function later calls the OLE method
IUnknown::AddRef to add references for the support object, the stream object, and the message
object. The transport provider can release the references for all three objects with a single call to the
OLE method IUnknown::Release on the TNEF object.

OpenTnefStreamEx allocates and initializes a TNEF object for the provider to use in encoding a MAPI
message into a TNEF stream message. Alternatively, this function can set up the object for the provider
to use in subsequent calls to ITnef::ExtractProps to decode a TNEF stream message into a MAPI
message. To free the TNEF object and close the session, the transport provider must call the inherited
IUnknown::Release method on the object.

A 32-bit Windows program should call OpenTnefStreamEx strictly as defined in the syntax, using the
name provided. However, a 16-bit Windows program can set its own name for this function using the
OPENTNEFSTREAM function prototype. The prototype has exactly the same syntax as the formal
function, except that it designates a return value of HRESULT instead of STDMETHODIMP.

The base value for the wKeyVal parameter must not be zero and should not be the same for every call
to OpenTnefStreamEx. Instead, use random numbers based on the system time from the run-time
library's random number generator.

See Also

IMAPISupport : IUnknown interface , IXPProvider::TransportLogon method

 OPTIONCALLBACK

The OPTIONCALLBACK function prototype defines a callback function that MAPI calls to retrieve a
wrapped IMAPIProp interface that manages a transport provider's properties.

At a Glance

Specified in header file: MAPISPI.H
Implemented by: Transport providers
Called by: MAPI

SCODE OPTIONCALLBACK(
 HINSTANCE hInst,
 LPMALLOC lpMalloc,
 ULONG ulFlags,
 ULONG cbOptionData,
 LPBYTE lpbOptionData,
 LPMAPISUP lpMAPISup,
 LPMAPIPROP lpDataSource,
 LPMAPIPROP FAR * lppWrappedSource,
 LPMAPIERROR FAR * lppMAPIError
);

Parameters

hInst
Input parameter containing the hinstance value for this transport provider's dynamic link library (DLL)
as returned from the LoadLibrary function call made by MAPI.

lpMalloc
Input parameter pointing to a memory allocator object exposing the OLE IMalloc interface. The
transport provider may need to use this allocation method when working with certain interfaces such
as IStream.

ulFlags
Input parameter specifying a bitmask of flags that controls what options are processed. The
following flags can be set:
OPTION_TYPE_MESSAGE

Indicates message options.
OPTION_TYPE_RECIPIENT

Indicates recipient options.
cbOptionData

Input parameter containing the size, in bytes, of the data pointed to by the lpbOptionData parameter.
lpbOptionData

Input parameter pointing to an OPTIONDATA structure containing option data for the recipient or
message. This OPTIONDATA structure was passed in the call to the IXPLogon::RegisterOptions
method that registered the options.

lpMAPISup
Input parameter pointing to a MAPI support object the provider can use to call the methods of the
IMAPISupport : IUnknown interface .

lpDataSource
Input parameter pointing to an IMAPIProp : IUnknown interface that MAPI wraps for the transport
provider's use.

lppWrappedSource
Output parameter pointing to a variable where the pointer to the wrapped IMAPIProp interface

returned by the transport provider is stored.
lppMAPIError

Output parameter pointing to a pointer to the returned MAPIERROR structure , if any, containing
version, component, and context information for the error.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

MAPI calls the transport provider's OPTIONCALLBACK function if a transport provider has previously
registered message options with the IXPLogon::RegisterOptions method . Transport providers that do
not define message or recipient options do not need to implement this callback function.

MAPI passes a wrapped IMAPIProp : IUnknown interface in the lpDataSource parameter. The
transport provider should build a display table, set any properties, and then pass that display table back
to MAPI in a wrapped IMAPIProp interface in the lppWrappedSource parameter. MAPI uses this
IMAPIProp interface to display properties in the message or recipient options dialog box that is
displayed to users. When users make selections in the dialog box resulting in a call to the
IMAPIProp::OpenProperty method for the PR_DETAILS_TABLE property, the transport provider gets
the call and should display the display table. The transport provider must call the
IMAPIProp::SetProps method followed by the IMAPIProp::SaveChanges method on any changes
the user made to the display table.

For more information on how to create display tables, see About Display Tables.

 PpropFindProp

This function may not be supported in future versions of MAPI.

The PpropFindProp function searches for a specified property in a property set.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

PpropFindProp(
 LPSPropValue rgprop,
 ULONG cprop,
 ULONG ulPropTag
);

Parameters

rgprop
Input parameter containing an array of SPropValue structures that define the properties to be
searched.

cprop
Input parameter containing the number of properties in the property set indicated by the rgprop
parameter.

ulPropTag
Input parameter containing the property tag for the property to search for in the property set
indicated by the rgprop parameter.

Remarks

If the given property tag indicates a property of type PT_UNSPECIFIED, the PpropFindProp function
finds a match only for the property identifier within the tag. Otherwise, it finds a match for the entire
property tag, including the property type, and returns the property so identified.

PpropFindProp returns an SPropValue structure defining the property that matches the input property
tag, and NULL if there is no match.

 PreprocessMessage

The PreprocessMessage function prototype defines a function that preprocesses message contents
or the format of a message.

At a Glance

Specified in header file: MAPISPI.H
Implemented by: Transport providers
Called by: MAPI spooler

HRESULT PreprocessMessage(
 LPVOID lpvSession,
 LPMESSAGE lpMessage,
 LPADRBOOK lpAdrBook,
 LPMAPIFOLDER lpFolder,
 LPALLOCATEBUFFER AllocateBuffer,
 LPALLOCATEMORE AllocateMore,
 LPFREEBUFFER FreeBuffer,
 ULONG FAR * lpcOutbound,
 LPMESSAGE FAR * FAR * lpppMessage,
 LPADRLIST FAR * lppRecipList
);

Parameters

lpvSession
Input parameter pointing to the session to be used.

lpMessage
Input parameter pointing to the message to be preprocessed.

lpAdrBook
Input parameter pointing to the address book from which the user should select recipients for the
message.

lpFolder
Input-output parameter pointing to a folder. On input, the lpFolder parameter points to the folder that
contains messages to be preprocessed. On output, lpFolder points to the folder where preprocessed
messages have been placed.

lpAllocateBuffer
Input parameter pointing to the MAPIAllocateBuffer function, to be used to allocate memory.

lpAllocateMore
Input parameter pointing to the MAPIAllocateMore function, to be used to allocate additional
memory where required.

lpFreeBuffer
Input parameter pointing to the MAPIFreeBuffer function, to be used to free memory.

lpcOutbound
Output parameter pointing to a variable containing the number of messages in the array pointed to
by the lpppMessage parameter.

lpppMessage
Output parameter pointing to a pointer to an array of pointers to preprocessed or otherwise
generated messages.

lppRecipList
Output parameter pointing to a variable where a returned ADRLIST structure, listing preprocessor-
detected recipients for which the message is undeliverable, is optionally stored. For more

information on the contents of this list, see the IMAPISupport::StatusRecips method.

Remarks

A transport-provider message preprocessor can present a progress indicator during message
preprocessing. However, it should never present a dialog box requiring user interaction during
message preprocessing.

When a preprocessor adds large amounts of data to an outbound message, certain procedures should
be followed. This type of message can be stored in a server-based message store, causing the
preprocessor to access a remote store, a time-consuming procedure. To avoid having to do so, the
preprocessor should have an option that enables it to store data that takes a large amount of space in
a local message store and to provide a reference to that local store in the message.

The preprocessor should not release any of the objects originally passed to the function based on
PreprocessMessage.

Before the MAPI spooler can call a PreprocessMessage function, the transport provider must have
registered the function in a call to the IMAPISupport::RegisterPreprocessor method . After calling a
PreprocessMessage function, the spooler cannot continue submitting a message until the function
returns.

The MAPI spooler owns the task of submitting messages. This means the original message is never
placed in an array of message pointers and that a call to the SubmitMessage methods is never
required.

See Also

IAddrBook : IUnknown interface , IMAPIFolder : IMAPIContainer interface , IMAPISupport :
IUnknown interface

 PropCopyMore

This function may not be supported in future versions of MAPI.

The PropCopyMore function copies a single property value from a source location to a destination
location.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE PropCopyMore(
 LPSPropValue lpSPropValueDest,
 LPSPropValue lpSPropValueSrc,
 ALLOCATEMORE * lpfAllocMore,
 LPVOID lpvObject
);

Parameters

lpSPropValueDest
Output parameter pointing to the location to which this function writes an SPropValue structure
defining the copied property value.

lpSPropValueSrc
Input parameter pointing to the SPropValue structure containing the property value to be copied.

lpfAllocMore
Input parameter pointing to the MAPIAllocateMore function to be used to allocate additional
memory if the destination location is not large enough to hold the property to be copied.

lpvObject
Input parameter pointing to an object for which MAPIAllocateMore will allocate space if necessary.

Remarks

A client application or service provider can use the PropCopyMore function to copy a property out of a
table that is about to be freed in order to use it elsewhere.

PropCopyMore does not need to allocate memory unless the property value copied is of a type, such
as PT_STRING8, that does not fit in an SPropValue structure. For these large properties, the function
allocates memory using the MAPIAllocateMore function to which a pointer is passed in the
lpfAllocMore parameter.

Injudicious use of PropCopyMore fragments memory; consider using the ScCopyProps function
instead.

 RemovePreprocessInfo

The RemovePreprocessInfo function prototype defines a function that removes from a message
preprocessed information written by a function based on the PreprocessMessage function prototype .

At a Glance

Specified in header file: MAPISPI.H
Implemented by: Transport providers
Called by: MAPI spooler

HRESULT RemovePreprocessInfo(
 LPMESSAGE lpMessage
);

Parameters

lpMessage
Input parameter pointing to the preprocessed message from which information is to be removed.

Remarks

The MAPI spooler calls a RemovePreprocessInfo function. A transport provider registers the function
based on RemovePreprocessInfo at the same time it registers the parallel function based on
PreprocessMessage in a call to the IMAPISupport::RegisterPreprocessor method .

An image rendering suitable for fax transmission is an example of preprocessed information written by
a function defined by the PreprocessMessage function prototype . The MAPI spooler usually calls a
RemovePreprocessInfo function after sending a message containing preprocessed information.

 RTFSync

The RTFSync function ensures that the Rich Text Format (RTF) message text matches the plain text
version. It is necessary to call this function before reading the RTF version and after modifying the RTF
version.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: RTF-aware client applications

and message store providers

HRESULT RTFSync(
 LPMESSAGE lpMessage,
 ULONG ulFlags,
 BOOL FAR * lpfMessageUpdated
);

Parameters

lpMessage
Input parameter pointing to the message to be updated.

ulFlags
Input parameter containing a bitmask of flags used to indicate the RTF or plain text version of the
message has changed. The following flags can be set:
RTF_SYNC_BODY_CHANGED

Indicates the plain text version of the message has changed.
RTF_SYNC_RTF_CHANGED

Indicates the RTF version has changed.
All other bits in the ulFlags parameter are reserved for future use.

lpfMessageUpdated
Output parameter pointing to a variable indicating whether there is an updated message. TRUE if
there is an updated message, FALSE otherwise.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

If the PR_RTF_IN_SYNC property is missing or is FALSE, before reading the
PR_RTF_COMPRESSED property the RTFSync function should be called with the
RTF_SYNC_BODY_CHANGED flag set.

If the STORE_RTF_OK flag is not set in the PR_STORE_SUPPORT_MASK property, this function
should be called with the RTF_SYNC_RTF_CHANGED flag set after modifying
PR_RTF_COMPRESSED.

If both PR_BODY and PR_RTF_COMPRESSED have been changed, the RTFSync function should be
called with both flags set.

If the value of the lpfMessageUpdated parameter is set to TRUE, then the IMAPIProp::SaveChanges
method should be called for the message. If SaveChanges is not called, the modifications will not be
saved in the message.

Message store providers can use RTFSync to keep the PR_BODY and PR_RTF_COMPRESSED
properties in sync.

For more information, see About Supporting RTF Text for Message Store Providers.

See Also

WrapCompressedRTFStream function

 ScBinFromHexBounded

This function may not be supported in future versions of MAPI.

The ScBinFromHexBounded function converts the specified portion of a string representation of a
hexadecimal number into a binary number.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE ScBinFromHexBounded(
 LPTSTR sz,
 LPBYTE pb,
 ULONG cb
);

Parameters

sz
Input parameter pointing to the null-terminated string to be converted. Valid characters include the
hexadecimal characters 0 through 9 and both uppercase and lowercase characters a through f.

pb
Output parameter pointing to a variable where the returned binary number is stored.

cb
Input parameter containing the size, in bytes, of the pb parameter.

See Also

FBinFromHex function

 ScCopyNotifications

This function may not be supported in future versions of MAPI.

The ScCopyNotifications function copies a group of event notifications to a single block of memory.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE ScCopyNotifications(
 int cntf,
 LPNOTIFICATION rgntf,
 LPVOID pvDst,
 ULONG FAR * pcb
);

Parameters

cntf
Input parameter containing the number of NOTIFICATION structures in the array indicated by the
rgntf parameter.

rgntf
Input parameter pointing to an array of NOTIFICATION structures defining the event notifications to
be copied.

pvDst
Output parameter pointing to a variable where the returned notifications are stored.

pcb
Optional output parameter pointing to a variable where the size, in bytes, of the array pointed to by
the rgntf parameter is stored. If not NULL, the pcb parameter is set to the number of bytes stored in
the pvDst parameter.

Remarks

If NULL is passed in the pcb parameter, no copying is performed; if a non-null value is passed in pcb,
the ScCopyNotifications function copies the size of the array and the array itself to a single block of
memory. If pcb is not NULL, it is set to the number of bytes stored in the pvDst parameter. The pvDst
parameter must be large enough to contain the entire array.

 ScCopyProps

This function may not be supported in future versions of MAPI.

The ScCopyProps function copies the properties defined by an array of SPropValue structures to a
new destination.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE ScCopyProps(
 int cprop,
 LPSPropValue rgprop,
 LPVOID pvDst,
 ULONG FAR * pcb
);

Parameters

cprop
Input parameter containing the number of properties to be copied.

rgprop
Input parameter pointing to an array of SPropValue structures that define the properties to be
copied. The rgprop parameter need not point to the beginning of the array, but it must point to the
beginning of one of the SPropValue structures in the array.

pvDst
Input parameter pointing to the initial position in memory to which this function copies the properties.

pcb
Optional output parameter pointing to a variable where the size, in bytes, of the block of memory
pointed to by the pvDst parameter is stored.

Remarks

The new array and its data reside in a buffer created with a single allocation, and the ScRelocProps
function can be used to adjust the pointers in the individual SPropValue structures. Prior to this
adjustment, the pointers are valid.

ScCopyProps maintains the original property order for the copied property array.

The pcb parameter is optional; if it is not NULL, it is set to the number of bytes stored in the pvDst
parameter.

See Also

ScDupPropset function

 ScCountNotifications

This function may not be supported in future versions of MAPI.

The ScCountNotifications function determines the size, in bytes, of an array of event notifications,
and validates the memory associated with the array.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE ScCountNotifications(
 int cntf,
 LPNOTIFICATION rgntf,
 ULONG FAR * pcb
);

Parameters

cntf
Input parameter containing the number of NOTIFICATION structures in the array indicated by the
rgntf parameter.

rgntf
Input parameter pointing to the array of NOTIFICATION structures whose size is to be determined.

pcb
Optional output parameter pointing to a variable where the size, in bytes, of the array pointed to by
the rgntf parameter is stored. If NULL, ScCountNotifications validates the array of notifications.

Remarks

If NULL is passed in the pcb parameter, the ScCountNotifications function only validates the array of
notifications but no counting is done; if a non-null value is passed in pcb, ScCountNotifications
determines the size of the array and stores the result in pcb. The pcb parameter must be large enough
to contain the entire array.

 ScCountProps

This function may not be supported in future versions of MAPI.

The ScCountProps function determines the size, in bytes, of a property value array and validates the
memory associated with the array.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE ScCountProps(
 int cprop,
 LPSPropValue rgprop,
 ULONG FAR * pcb
);

Parameters

cprop
Input parameter containing the number of properties in the array indicated by the rgprop parameter.

rgprop
Input parameter pointing to a range in an array of SPropValue structures that defines the properties
whose size is to be determined. This range does not necessarily start at the beginning of the array.

pcb
Optional output parameter pointing to a variable where the size, in bytes, of the property array is
stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_INVALID_PARAMETER
Indicates that a property in the property value array has an identifier of PROP_ID_NULL or
PROP_ID_INVALID or that the property array contains a multivalued property with no property
values.

Remarks

If NULL is passed in the pcb parameter, the ScCountProps function validates the array of notifications
but no counting is done. If a non-null value is passed in pcb, the ScCountNotifications function
determines the size of the array and stores the result in pcb. The pcb parameter must be large enough
to contain the entire array.

As it is counting, ScCountProps validates the memory associated with the array. ScCountProps only
works with properties about which MAPI has information.

See Also

PropCopyMore function

 ScCreateConversationIndex

The ScCreateConversationIndex function indicates where in a message thread a message belongs.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE ScCreateConversationIndex(
 ULONG cbParent,
 LPBYTE lpbParent,
 ULONG FAR* lpcbIndex,
 LPBYTE FAR * lppbIndex
);

Parameters

cbParent
Indicates a count of bytes in the parent conversation index.

lpbParent
Indicates a pointer to bytes in the parent conversation index. This may be NULL if cbParent is zero.

lpcbIndex
Indicates a pointer to the count of bytes in the new conversation index returned by the call.

lppbIndex
Indicates a pointer to a pointer to the new conversation index returned by the call.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

 ScDupPropset

The ScDupPropset function duplicates a property value array in a single block of MAPI memory
combining the operations of the ScCopyProps and ScCountProps functions.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE ScDupPropset(
 int cprop,
 LPSPropValue rgprop,
 LPALLOCATEBUFFER lpAllocateBuffer,
 LPSPropValue FAR * prgprop
);

Parameters

cprop
Input parameter containing the number of property values in the array indicated by the rgprop
parameter.

rgprop
Input parameter pointing to an array of SPropValue structures defining the property values to be
duplicated.

lpAllocateBuffer
Input parameter pointing to the MAPIAllocateBuffer function, to be used to allocate memory for the
duplicated array.

prgprop
Output parameter pointing to the initial position in memory where the returned duplicated array of
SPropValue structures is stored.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

 ScInitMapiUtil

The ScInitMapiUtil function replaces MAPIInitialize when only select utility functions are being used.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications

SCODE ScInitMapiUtil(
 ULONG ulFlags
);

Parameters

ulFlags
Reserved; must be zero.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

The ScInitMapiUtil and DeinitMapiUtil functions cooperate to call and release select utility functions,
as opposed to MAPIInitialize, which calls core as well as utility functions. When ScInitMapiUtil calls
utility functions, it also initializes the necessary memory.

When use of the functions that ScInitMapiUtil has called is complete, DeinitMapiUtil must be explicitly
called to release them. In contrast, MAPIInitialize implicitly calls DeinitMapiUtil.

See Also

MapiUninitialize function

 ScLocalPathFromUNC

This function may not be supported in future versions of MAPI.

The ScLocalPathFromUNC function locates a local path counterpart to the given UNC path.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE ScLocalPathFromUNC(
 LPSTR szUNC,
 LPSTR szLocal,
 UINT cchLocal
);

Parameters

szUNC
Input parameter containing a path in the format \\[server]\[share]\[path] of a file or directory.

szLocal
Output parameter containing a path in the format [drive:]\[path] of the same file or directory as for the
szUNC parameter.

cchLocal
Input parameter containing the size of the buffer for the output string.

See Also

ScUNCFromLocalPath function

 ScMAPIXFromCMC

The ScMAPIXFromCMC function enables a client application to pass in a CMC session handle and
get back a pointer to a MAPI session object.

At a Glance

Specified in header file: MAPI.H
Implemented by: MAPI
Called by: Client applications

SCODE ScMAPIXFromCMC(
 CMC_SESSION cmcsession,
 ULONG ulFlags,
 LPCIID lpInterface,
 LPMAPISESSION FAR * lppMAPISession
);

Parameters

cmcsession
Input parameter pointing to the CMC session in use.

ulFlags
Reserved; must be zero.

lpInterface
Input parameter indicating which MAPI interface is being returned.

lppMAPISession
Output parameter pointing to a variable where the pointer to the MAPI session in use is stored.

Return Values

S_OK
The call succeeded and converted the CMC session to a MAPI session.

Remarks

There are no inverse functions for either the ScMAPIXFromCMC or ScMAPIXFromSMAPI function,
that is, a client cannot convert to a CMC session or Simple MAPI session from a MAPI session. Also, a
client cannot convert from a CMC session to a Simple MAPI session.

For more information on this function, see Using Multiple Client Interfaces and Explicit Logon with
Simple MAPI.

 ScMAPIXFromSMAPI

The ScMAPIXFromSMAPI function enables a client application to pass in a Simple MAPI session
handle and get back a pointer to a MAPI session object.

At a Glance

Specified in header file: MAPI.H
Implemented by: MAPI
Called by: Client applications

SCODE ScMAPIXFromSMAPI(
 LHANDLE lhSimpleSession,
 ULONG ulFlags,
 LPCIID lpInterface,
 LPMAPISESSION FAR * lppMAPISession
);

Parameters

lhSimpleSession
Input parameter pointing to a Simple MAPI session.

ulFlags
Reserved; must be zero.

lpInterface
Input parameter indicating which MAPI interface is to be returned.

lppMAPISession
Output parameter pointing to a variable where a pointer for a specific MAPI session is stored.

Return Values

S_OK
The call succeeded and has converted the SMAPI session to a MAPI session.

Remarks

There are no inverse functions for either the ScMAPIXFromCMC or ScMAPIXFromSMAPI function,
that is, a client cannot convert to a CMC session or Simple MAPI session from a MAPI session. Also, a
client cannot convert from a Simple MAPI session to a CMC session.

For more information on using this function, see Using Multiple Client Interfaces and Explicit Logon
with Simple MAPI.

 ScRelocNotifications

This function may not be supported in future versions of MAPI.

The ScRelocNotifications function adjusts a pointer within a specified event notification array.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE ScRelocNotifications(
 int cntf,
 LPNOTIFICATION rgntf,
 LPVOID pvBaseOld,
 LPVOID pvBaseNew,
 ULONG FAR * pcb
);

Parameters

cntf
Input parameter containing the number of NOTIFICATION structures in the array indicated by the
rgntf parameter.

rgntf
Input parameter pointing to the array of NOTIFICATION structures defining event notifications within
which a pointer is to be adjusted.

pvBaseOld
Input parameter pointing to the original base address of the array indicated by the rgntf parameter.

pvBaseNew
Input parameter containing the location to which ScRelocNotifications writes the new base
address of the array indicated by the rgntf parameter.

pcb
Output parameter pointing to a variable where the size, in bytes, of the array indicated by the
pvBaseNew parameter is stored.

Remarks

The pcb parameter to the ScRelocNotifications function is optional.

See Also

ScRelocProps function

 ScRelocProps

This function may not be supported in future versions of MAPI.

The ScRelocProps function adjusts the pointers in a SPropValue array after the array and its data
have been copied or moved to a new location.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE ScRelocProps(
 int cprop,
 LPSPropValue rgprop,
 LPVOID pvBaseOld,
 LPVOID pvBaseNew,
 ULONG FAR * pcb
);

Parameters

cprop
Input parameter containing the number of properties in the array pointed to by the rgprop parameter.

rgprop
Input parameter pointing to an array of SPropValue structures for which pointers are to be adjusted.

pvBaseOld
Input parameter pointing to the original base address of the array pointed to by the rgprop
parameter.

pvBaseNew
Input parameter pointing to the new base address of the array pointed to by the rgprop parameter.

pcb
Optional output parameter pointing to a variable where the size, in bytes, of the array indicated by
the pvBaseNew parameter is stored. If not NULL, the pcb parameter is set to the number of bytes
stored in the pvD parameter.

Remarks

The ScRelocProps function operates on the assumption that the property value array for which
pointers are adjusted was originally allocated in a single call similar to a call to the ScCopyProps
function. If a client application or service provider is working with a property value that is built from
disjointed blocks of memory, it should use ScCopyProps to copy properties instead.

ScRelocProps is used to maintain the validity of pointers in an SPropValue array. To maintain
pointers' validity when writing such an array to and reading it from a disk, perform the following
operations:

1. Before writing the array and data to a disk, call ScRelocProps on the array with the pvBaseNew
parameter pointing to some standard value (zero, for instance).

2. After reading the array and data from a disk, call ScRelocProps on the array with the pvBaseOld
parameter equal to the same standard value used in Step 1. The array and data must be read into a
buffer created with a single allocation.

3. The pcb parameter to ScRelocProps is optional.

See Also

MAPIAllocateBuffer function , ScCountProps function , ScDupPropset function ,
SCRelocNotifications function

 ScUNCFromLocalPath

This function may not be supported in future versions of MAPI.

The ScUNCFromLocalPath function locates a UNC path counterpart to the given local path.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SCODE ScUNCFromLocalPath(
 LPSTR szLocal,
 LPSTR szUNC,
 UINT cchUNC
);

Parameters

szLocal
Input parameter containing a path in the format [drive:]\[path] of a file or directory.

szUNC
Output parameter containing a path in the format \\[server]\[share]\[path] of the same file or directory
as for the szLocal parameter.

cchUNC
Input parameter containing the size of the buffer for the output string.

See Also

ScLocalPathFromUNC function

 SERVICEWIZARDDLGPROC

The SERVICEWIZARDDLGPROC prototype function defines a callback function invoked by the Profile
Wizard to allow a provider to react to user events when the provider's property sheets or pages are
shown.

At a Glance

Specified in header file: MAPIWZ.H
Implemented by: Service providers
Called by: MAPI

BOOL SERVICEWIZARDDLGPROC(
 HWND hDlg,
 UINT wMsgID,
 WPARAM wParam,
 LPARAM lParam
);

Parameters

hDlg
Input parameter containing a window handle to the Profile Wizard dialog box.

wMsgID
Input parameter indicating the message to be processed. In addition to all the regular Windows
messages expected by a modal dialog box, the following messages can be received:
WM_CLOSE

Called when the Profile Wizard has completed. The provider should do any cleanup such as
deallocating any dynamically allocated memory.

WM_COMMAND
Called for all of the provider's controls, and in addition, WM_COMMAND is called for the Next
{ ID_NEXT }, and Prev { ID_PREV } buttons. When called with ID_NEXT or ID_PREV, the
provider is responsible for hiding the old page's controls and showing the controls for the next or
previous page.

WM_INITDIALOG
Called even after the dialog box exists to allow the provider to initialize the controls that the Profile
Wizard has added to the dialog box.

WIZ_QUERYNUMPAGES
Called to ask for the number of pages that the provider needs to display. The provider should
return the number of pages instead of TRUE or FALSE. For example, use the following return
statement to indicate that three pages should to be displayed:
return (BOOL)3;

wParam
Input parameter whose contents depend on the message specified in the wMsgID parameter.

lParam
Input parameter whose contents depend on the message specified in the wMsgID parameter.

Remarks

When the user chooses the Next button, the SERVICEWIZARDDLGPROC function is called with the
WM_COMMAND message and ID_NEXT in the wParam parameter. The following steps describe what
occurs between the time the user chooses Next and the time the first provider's configuration pages
are rendered.

1. The Profile Wizard hides any controls that are on the window.
2. The Profile Wizard adds the provider's controls (hidden) to the page.
3. The Profile Wizard calls SERVICEWIZARDDLGPROC, sending the WM_INITDIALOG message, so

that the provider can initialize the controls.
4. The Profile Wizard calls SERVICEWIZARDDLGPROC, sending the WIZ_QUERYNUMPAGES

message. The provider returns the number of pages that it will be showing.
5. The Profile Wizard calls SERVICEWIZARDDLGPROC, sending the WM_COMMAND message with

the wParam parameter set to either ID_NEXT or ID_PREV. At this point, the provider either returns
FALSE {error} or reveals its controls and returns TRUE {success}. If the Profile Wizard passes in
ID_NEXT, the provider's first page is displayed. If ID_PREV is passed in, the last page is displayed.

6. The Profile Wizard calls the provider's SERVICEWIZARDDLGPROC function, sending the
WM_COMMAND message with the wParam parameter set to either ID_NEXT or ID_PREV
(depending on which button the user chose). The provider is responsible for showing or hiding its
controls and writing its data to the IMAPIProp passed to the profile wizard to step through its
sequence of pages. The provider should return TRUE if the next or previous page was successfully
shown, and FALSE if neither the next nor previous page could be shown. The provider needs to be
aware of when it is stepping outside of its sequence of pages, and respond appropriately by hiding
its controls and writing its data to the profile.

7. If the user steps outside the provider's range of pages, the Profile Wizard deletes the provider's
hidden controls from the dialog box and calls the next provider (or displays its next page if that was
the last provider).

The value returned by SERVICEWIZARDDLGPROC is dependent on the message type sent. The
recommended practice is to return TRUE if the provider processes the message and FALSE if the
provider does not process the message.

 SetAttribIMsgOnIStg

The SetAttribIMsgOnIStg function sets property attributes for properties of a particular object.

At a Glance

Specified in header file: IMESSAGE.H
Implemented by: MAPI
Called by: Client applications and message

store providers

HRESULT SetAttribIMsgOnIStg(
 LPVOID lpObject,
 LPSPropTagArray lpPropTags,
 LPSPropAttrArray lpPropAttrs,
 LPSPropProblemArray FAR * lppPropProblems
);

Parameters

lpObject
Input parameter pointing to the object for which property attributes are being set.

lpPropTags
Input parameter pointing to an SPropTagArray structure containing an array of property tags
indicating the properties for which property attributes are being set.

lpPropAttrs
Input parameter pointing to an SPropAttrArray structure listing the property attributes to set.

lppPropProblems
Output parameter pointing to a variable where the returned SPropProblemArray structure
containing a set of property problems is stored. This structure identifies problems encountered if
SetAttribIMsgOnIStg has been able to set some properties, but not all. If a pointer to NULL is
passed in the lppPropProblems parameter, no property problem array is returned even if some
properties were not set.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_W_ERRORS_RETURNED
The call succeeded overall, but one or more properties could not be accessed and were returned
with a property type of PT_ERROR.

Remarks

A message store provider usually calls the SetAttribIMsgOnIStg function.

In the lpPropAttrs parameter, the number and position of the attributes must match the number and
position of the property tags passed in the lpPropTags parameter.

The SetAttribIMsgOnIStg function is used to make message properties read-only when required by
the IMessage schema. The sample message store provider uses it for this purpose. For more
information, see Messages.

See Also

GetAttribIMsgOnIStg function

 SzFindCh

This function may not be supported in future versions of MAPI.

The SzFindCh function searches for the first occurrence of a character in a string.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SzFindCh (LPCTSTR sz, USHORT ch)

Parameters

sz
Input parameter specifying a pointer to the string to be searched.

ch
Input parameter specifying the character for which this function searches.

Return Values

If successful, this function returns a pointer to the first occurrence of the character in the string. It
returns a value of NULL otherwise.

Remarks

The SzFindCh function searches for an exact match only; it is sensitive to case and diacritical
differences.

 SzFindLastCh

This function may not be supported in future versions of MAPI.

The SzFindLastCh function searches for the last occurrence of a character in a string.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SzFindLastCh (LPCTSTR sz, USHORT ch)

Parameters

sz
Input parameter specifying a pointer to the string to be searched.

ch
Input parameter specifying the character for which this function searches.

Return Values

If successful, this function returns a pointer to the last occurrence of the character in the string. It
returns a value of NULL otherwise.

Remarks

The SzFindLastCh function searches for an exact match only; it is sensitive to case and diacritical
differences.

 SzFindSz

This function may not be supported in future versions of MAPI.

The SzFindSz function searches for the first occurrence of a substring in a string.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

SzFindSz (LPCTSTR sz, LPCTSTR szKey)

Parameters

sz
Input parameter specifying a pointer to the string to be searched.

szKey
Input parameter specifying the substring for which this function searches.

Remarks

This function searches for an exact match only; it is sensitive to case and diacritical differences.

 UFromSz

This function may not be supported in future versions of MAPI.

The UFromSz function obtains an unsigned binary value from a string of ASCII digits.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

UFromSz (LPCTSTR sz)

Parameters

sz
Input parameter specifying a pointer to an ASCII string.

Remarks

The UFromSz function stops interpreting digits when it reaches the first non numeric character.

This function returns an unsigned decimal integer value representing the ASCII string. For example,
given the string 55. UFromSz returns the number 55. Given a string such as 5ab, the function returns
the number five. Given a string that does not include a digit, such as ab, UFromSz returns zero.

 UlFromSzHex

This function may not be supported in future versions of MAPI.

The UlFromSzHex function converts a string of ASCII hexadecimal values into an unsigned long
integer.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

UlFromSzHex (LPCTSTR sz)

Parameters

sz

Input parameter specifying a pointer to an ASCII string.

Return Values

This function returns an unsigned long integer representing the string of ASCII hexadecimal values.

Remarks

The UlFromSzHex function stops converting at the first character in the string that is not a
hexadecimal digit.

 UlAddRef

This function may not be supported in future versions of MAPI.

The UlAddRef function provides an alternative way to invoke the OLE method IUnknown::AddRef.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

ULONG UlAddRef(
 LPVOID punk
);

Parameters

punk
Input parameter pointing to an interface derived from the IUnknown interface, in other words any
MAPI interface.

Remarks

The UlAddRef function generates less code than the AddRef method and can be used in situations
requiring a minimum of code.

UlAddRef returns the value returned by the IUnknown::AddRef method, which is the new value of the
reference count for the interface. The value is nonzero.

For more information on IUnknown::AddRef, see Implementing the IUnknown Interface.

 UlPropSize

This function may not be supported in future versions of MAPI.

The UlPropSize function obtains the size of a single property value.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

ULONG UlPropSize(
 LPSPropValue lpSPropValue
);

Parameters

lpSPropValue
Input parameter pointing to an SPropValue structure defining the property to be measured.

Remarks

The UlPropSize function returns the size, in bytes, of the property value for the specified property. It
disregards the size of the remainder of the SPropValue structure.

 UlRelease

This function may not be supported in future versions of MAPI.

The UlRelease function provides an alternative way to invoke the OLE method IUnknown::Release.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

ULONG UlRelease(
 LPVOID punk
);

Parameters

punk
Input parameter pointing to an interface derived from the IUnknown interface, in other words any
MAPI interface.

Remarks

The reference count is the number of existing pointers to the object to be released.

If the punk parameter is NULL, the function returns immediately without calling IUnknown::Release.
This feature can save code if an application or provider declares an interface pointer and initializes it to
NULL. Code is used in the method indication but saved in not testing for NULL.

UlRelease returns the value returned by the IUnknown::Release method, which can be equal to the
reference count for the object to be released.

For more information on IUnknown::Release, see Implementing the IUnknown Interface.

 UlValidateParameters

The UlValidateParameters macro calls an internal function to check the parameters client applications
have passed to service providers and MAPI.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

HRESULT UlValidateParameters(
 METHODS eMethod,
 LPVOID First
);

Parameters

eMethod
(Input) Specifies, by enumeration, the method to validate.

First
(Input) Pointer to the first argument on the stack.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_CALL_FAILED
An error of unexpected or unknown origin prevented the operation from completing.

Remarks

The UlValidateParameters macro has been superseded by the UlValidateParms macro.
UlValidateParameters does not work correctly on RISC platforms and is now prevented from
compiling on them. It still compiles and works correctly on Intel platforms, but UlValidateParms is
recommended on all platforms.

 UlValidateParms

The UlValidateParms macro calls an internal function to check the parameters client applications have
passed to service providers and MAPI.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

HRESULT UlValidateParms(
 METHODS eMethod,
 LPVOID First
);

Parameters

eMethod
(Input) Specifies, by enumeration, the method to validate.

First
(Input) Pointer to the first argument on the stack.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

MAPI_E_CALL_FAILED
An error of unexpected or unknown origin prevented the operation from completing.

Remarks

Parameters passed between MAPI and service providers are assumed to be correct and undergo only
debug validation with the CheckParms macro. Providers should check all parameters passed in by
client applications, but clients should assume that MAPI and provider parameters are correct. Use the
HR_FAILED macro to test return values.

The UlValidateParms macro is called differently depending on whether the calling code is C or C++.
This macro is used to validate parameters for the few IUnknown and MAPI methods that return
ULONG rather than HRESULT values; the ValidateParms macro works for all others.

For more information on parameter validation, see Validating Parameters to Interface Methods.

 ValidateParameters

The ValidateParameters macro calls an internal function to check the parameters client applications
have passed to service providers.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

HRESULT ValidateParameters(
 METHODS eMethod,
 LPVOID First
);

Parameters

eMethod
(Input) Specifies, by enumeration, the method to validate.

First
(Input) Pointer to the first argument on the stack.

Return Values

S_OK
All of the parameters are valid.

MAPI_E_CALL_FAILED
One or more of the parameters are not valid.

Remarks

The ValidateParameters macro has been superseded by the ValidateParms macro.
ValidateParameters does not work correctly on RISC platforms and is now prevented from compiling
on them. It still compiles and works correctly on Intel platforms, but ValidateParms is recommended on
all platforms.

 ValidateParms

The ValidateParms macro calls an internal function to check the parameters client applications have
passed to service providers.

At a Glance

Specified in header file: MAPIVAL.H
Implemented by: MAPI
Called by: Service providers

HRESULT ValidateParms(
 METHODS eMethod,
 LPVOID First
);

Parameters

eMethod
(Input) Specifies, by enumeration, the method to validate.

First
(Input) Pointer to the first argument on the stack.

Return Values

S_OK
All of the parameters are valid.

MAPI_E_CALL_FAILED
One or more of the parameters are not valid.

Remarks

Parameters passed between MAPI and service providers are assumed to be correct and undergo only
debug validation with the CheckParms macro. Providers should check all parameters passed in by
client applications, but clients should assume that MAPI and provider parameters are correct. Use the
HR_FAILED macro to test return values.

ValidateParms is called differently depending on whether the calling code is C or C++. C++ passes an
implicit parameter known as this to each method call, which becomes explicit in C and is the address of
the object. The first parameter, eMethod, is an enumerator made from the interface and method being
validated and tells what parameters to expect to find on the stack. The second parameter is different for
C and C++. In C++ it is called First, and it is the first parameter to the method being validated. The
second parameter for the C language, ppThis, is the address of the first parameter to the method which
is always an object pointer. In both cases, the second parameter gives the address of the beginning of
the method's parameter list, and based on eMethod, moves down the stack and validates the
parameters.

Providers implementing common interfaces such as IMAPITable and IMAPIProp should always check
parameters using the ValidateParms function in order to ensure consistency across all providers.
Additional parameter validation functions have been defined for some complex parameter types to be
used instead as appropriate. See the reference entries for the following functions: FBadColumnSet,
FBadEntryList, FBadProp, FBadPropTag, FBadRestriction, FBadRglpNameID, FBadRglpszW,
FBadRow, FBadRowSet, and FBadSortOrderSet.

Inherited methods use the same parameter validation as the interface from which they inherit. For
example, the parameter checking for IMessage and IMAPIProp should be the same.

For more information on parameter validation, see Validating Parameters to Interface Methods.

See Also

UlValidateParms

 WIZARDENTRY

The WIZARDENTRY function prototype defines a service provider entry point for the Profile Wizard.
The Profile Wizard calls this entry point function to retrieve enough information to display the provider's
configuration property sheets.

At a Glance

Specified in header file: MAPIWZ.H
Implemented by: Service providers
Called by: MAPI

ULONG WIZARDENTRY(
 HINSTANCE hProviderDLLInstance,
 LPTSTR FAR * lpcsResourceName,
 DLGPROC FAR * lppDlgProc,
 LPMAPIPROP lpMAPIProp,
 LPVOID lpMapiSupportObject
);

Parameters

hProviderDLLInstance
Input parameter containing the instance handle of the provider's DLL.

lpcsResourceName
Output parameter pointing to a string containing the full name of the dialog resource that should be
displayed by the Profile Wizard during configuration. The maximum size of the string, including the
NULL terminator, is 32 characters.

lppDlgProc
Output parameter pointing to a standard Windows dialog box procedure that will be called by the
Profile Wizard to notify the provider of various events.

lpMapiProp
Input parameter pointing to a property interface implementation that provides access to the
configuration properties. When the wizard is finished configuring all providers, it writes the properties
to the profile by calling IMsgServiceAdmin::ConfigureMsgService.

lpMapiSupportObject
Input parameter pointing to a MAPI support object.

Return Values

S_OK
The provider's WIZARDENTRY function was called successfully.

MAPI_E_CALL_FAILED
An error of unexpected or unknown origin prevented the operation from completing.

Remarks

The Profile Wizard calls the WIZARDENTRY function when it is ready to display the provider's
configuration user interface. The pointer to the property interface implementation should be stored by
the provider for future reference. This pointer allows the provider access to the profile. During
configuration, providers should add their configuration properties to this object. After all providers have
been configured, the Profile Wizard adds these properties to the profile.

The name of the WIZARDENTRY function must be placed in the
PR_SERVICE_WIZARD_ENTRY_NAME property in MAPISVC.INF.

The resource name is the same as the dialog resource that will be rendered in the pane of the Profile
Wizard. The resource that is passed back needs to contain all the pages (in a single dialog resource)
that should be displayed by the Profile Wizard. When the Profile Wizard receives this resource, it
ignores the dialog style (but not the control styles), and creates all the controls as children of the Profile
Wizard page. All controls are initially hidden. Providers should ensure that the coordinates for their
controls are zero or zero-based, and that they don't exceed a maximum width of 200 dialog units and a
maximum height of 150 dialog units. Control identifiers below 400 are reserved for the Profile Wizard.
The Profile Wizard displays the provider's title in bold text above the provider's user interface.

For more information on using this function, see About Profile Wizard Entry Point Functions.

 WrapCompressedRTFStream

The WrapCompressedRTFStream function creates a text stream in uncompressed Rich Text Format
(RTF) from the compressed format used in the PR_RTF_COMPRESSED property.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications

HRESULT WrapCompressedRTFStream(
 LPSTREAM lpCompressedRTFStream,
 ULONG ulflags,
 LPSTREAM FAR * lpUncompressedRTFStream
);

Parameters

lpCompressedRTFStream
Input parameter pointing to a stream opened on the PR_RTF_COMPRESSED property of a
message.

ulFlags
Input parameter specifying a bitmask of option flags for the function. The following flag can be set:
MAPI_MODIFY

Indicates whether the client intends to read or write the wrapped stream interface that is returned.
STORE_UNCOMPRESSED_RTF

Indicates that uncompressed RTF should be written to the stream pointed to by
lpCompressedRTFStream

lpUncompressedRTFStream
Output parameter pointing to the location where WrapCompressedRTFStream returns a stream for
the uncompressed RTF.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

If the MAPI_MODIFY flag is passed in the ulFlags parameter, the lpCompressedRTFStream parameter
must already be open for reading and writing. New, uncompressed RTF text should be written into the
stream interface returned in lpUncompressedRTFStream. Because it is not possible to append the
existing stream, the entire message text must be written.

If zero is passed in the ulFlags parameter, then lpCompressedRTFStream may be opened read-only.
Only the entire message text can be read out of the stream interface returned in
lpUncompressedRTFStream; it is not possible to search into the middle of the stream and begin
reading.

The WrapCompressedRTFStream assumes that the compressed stream's pointer is set to the
beginning of the stream. Certain OLE IStream methods are not supported by the returned
uncompressed stream. These include IStream::Clone, IStream::LockRegion, IStream::Revert,
IStream::Seek, IStream::SetSize, IStream::Stat, and IStream::UnlockRegion. In order to copy to
the entire stream, a read/write loop is needed.

Since the client writes new RTF in uncompressed format, it should use WrapCompressedRTFStream,

rather than directly writing to the stream. RTF-aware clients should search for the
STORE_UNCOMPRESSED_RTF flag in the PR_STORE_SUPPORT_MASK property and pass it to
WrapCompressed RTFStream if it is set.

See Also

RTFSync function

 WrapStoreEntryID

The WrapStoreEntryID function converts a message store's internal entry identifier to an entry
identifier more useful to the messaging system.

At a Glance

Specified in header file: MAPIUTIL.H
Implemented by: MAPI
Called by: Client applications and service

providers

WrapStoreEntryID(
 ULONG ulFlags,
 LPTSTR szDLLName,
 ULONG cbOrigEntry,
 LPENTRYID lpOrigEntry,
 ULONG * lpcbWrappedEntry,
 LPENTRYID * lppWrappedEntry
);

Parameters

ulFlags
Input parameter containing a bitmask of flags. The following flag can be set:
MAPI_UNICODE

Indicates the strings are in Unicode format. If the MAPI_UNICODE flag is not set, the strings are
in ANSI format.

szDLLName
Input parameter containing the name of the message store provider DLL.

cbOrigEntry
Input parameter containing the size, in bytes, of the original entry identifier for the message store.

lpOrigEntry
Input parameter pointing to an ENTRYID structure defining the original entry identifier.

lpcbWrappedEntry
Output parameter pointing to the size, in bytes, of the new entry identifier.

lppWrappedEntry
Output parameter pointing to a pointer to an ENTRYID structure containing the new entry identifier.

Remarks

A message store object retains an internal entry identifier which is meaningful only to service providers.
If a client application asks a provider for the PR_STORE_ENTRYID property on a message store, the
provider must call WrapStoreEntryID to generate a form of the entry identifier that is usable by clients
and by components in other messaging domains.

See Also

IMAPISession::OpenEntry interface

 XPProviderInit

The XPProviderInit function initializes a transport provider for operation.

At a Glance

Specified in header file: MAPISPI.H
Implemented by: Transport providers
Called by: MAPI

HRESULT XPProviderInit(
 HINSTANCE hInstance,
 LPMALLOC lpMalloc,
 LPALLOCATEBUFFER lpAllocateBuffer,
 LPALLOCATEMORE lpAllocateMore,
 LPFREEBUFFER lpFreeBuffer,
 ULONG ulFlags,
 ULONG ulMAPIVer,
 ULONG FAR * lpulProviderVer,
 LPXPPROVIDER FAR * lppXPProvider
);

Parameters

hInstance
Input parameter containing an instance of the transport provider's dynamic-link library (DLL) that
MAPI used when it linked.

lpMalloc
Input parameter pointing to a memory allocator object exposing the OLE IMalloc interface. The
transport provider may need to use this allocation method when working with certain interfaces such
as IStream.

lpAllocateBuffer
Input parameter pointing to the MAPIAllocateBuffer function, to be used to allocate memory.

lpAllocateMore
Input parameter pointing to the MAPIAllocateMore function, to be used to allocate additional
memory where required.

lpFreeBuffer
Input parameter pointing to the MAPIFreeBuffer function, to be used to free memory.

ulFlags
Input parameter containing a bitmask of flags. The following flag can be set:
MAPI_NT_SERVICE

Indicates the provider is being loaded in the context of a Windows NT service, a special type of
process without access to any user interface.

ulMAPIVer
Input parameter containing the version number of the service provider interface that MAPI.DLL uses.
For the current version number, see the MAPISPI.H header file.

lpulProviderVer
Output parameter pointing to the version number of the service provider interface that this transport
provider uses.

lppXPProvider
Output parameter pointing to a pointer to the initialized transport provider object.

Return Values

S_OK
The call succeeded and has returned the expected value or values.

Remarks

To initialize a transport provider, MAPI calls the function named XPProviderInit, based on the
XPPROVIDERINIT function prototype defined in MAPISPI.H, from the transport provider's DLL. The
transport provider must use its implementation of XPProviderInit to respond to the MAPI initialization
call.

The transport provider must also define the XPProviderInit function using the CDECL calling
convention. CDECL definition is required for each service provider initialization function to ensure the
function can work with the current version of the service provider interface, even if the number of
function parameters used is not the number set for that function in the current version of the interface.
MAPI provides the XPPROVIDERINIT prototype to help define XPProviderInit as CDECL. The
XPPROVIDERINIT prototype has a standard MAPI initialization call type, STDMAPIINITCALLTYPE.

The lpAllocateBuffer, lpAllocateMore, and lpFreeBuffer input parameters point to the
MAPIAllocateBuffer, MAPIAllocateMore, and MAPIFreeBuffer functions, respectively, for use by the
transport provider DLL. The provider should use these pointers for memory allocation or deallocation.
In particular, the provider must use these pointers when allocating memory for use by client
applications in calling object interfaces. For example, two provider interface methods that typically
allocate memory are IMAPIProp::GetProps and IMAPITable::QueryRows.

The transport provider should retain information on the allocator pointers passed to it in
lpAllocateBuffer, lpAllocateMore, and lpFreeBuffer. If the provider will use a memory allocator later, it
should call the IUnknown::AddRef method for the allocation object pointed to by the lpMalloc
parameter.

For more information, see Initializing the Transport Provider. For more information on entry point
functions, see About Provider DLL Entry Point Functions.

See Also

ABProviderInit function , HPProviderInit function , IXPProvider : IUnknown interface ,
MSProviderInit function

 MAPI Properties

For a general explanation of how MAPI works with properties and a list of the properties available on
each object, see Properties. For information on the property-related macros, see the SPropValue
structure.

Unlike members of OLE variant arrays, every member in a MAPI multivalued property array is of the
same type.

For a comprehensive list of MAPI properties and their mappings to X.400 attributes, see Mapping of
X.400 P2 Attributes to MAPI Properties.

 PR_7BIT_DISPLAY_NAME

The PR_7BIT_DISPLAY_NAME property contains a 7-bit ASCII version of a messaging user's name.

Usage

Optional on messaging user objects.

Details

Identifier 0x39FF; property type PT_STRING8; property tag 0x39FF001E

Remarks

The PR_7BIT_DISPLAY_NAME property can be considered a mapping of the PR_DISPLAY_NAME
property into a 7-bit character set. Some messaging systems, such as Internet and certain X.400 links,
are limited to the 128-character 7-bit ASCII code set. Gateways to such messaging systems can
improve their performance by calling the IAddrBook::PrepareRecips method directly to retrieve the
PR_7BIT_DISPLAY_NAME property to avoid extra processing for code conversion.

 PR_AB_DEFAULT_DIR

The PR_AB_DEFAULT_DIR property contains the entry identifier of the address book container that is
to be shown to the user first.

Usage

Reserved.

Details

Identifier 0x3D06; property type PT_BINARY; property tag 0x3D060102

Remarks

Do not use this property.

 PR_AB_DEFAULT_PAB

The PR_AB_DEFAULT_PAB property contains the entry identifier of the address book container that is
to be used as the personal address book.

Usage

Reserved.

Details

Identifier 0x3D07; property type PT_BINARY; property tag 0x3D070102

Remarks

Do not use this property.

 PR_AB_PROVIDER_ID

The PR_AB_PROVIDER_ID property contains an address book provider's unique identifier.

Usage

Required as a column entry in hierarchy tables.
Computed by address book providers on address book container objects.

Details

Identifier 0x3615; property type PT_BINARY; property tag 0x36150102

Remarks

The MAPIUID structure identifies which address book provider supplies this particular container in the
container hierarchy. The value is unique to each provider.

An address book provider can provide more than one identifier. For example, a provider that supplies
two very different containers can publish in PR_AB_PROVIDER_ID unique identifiers for each
container.

PR_AB_PROVIDER_ID is analogous to the PR_MDB_PROVIDER property for message stores. Client
applications can use PR_AB_PROVIDER_ID to find related rows in an address book hierarchy table.

 PR_AB_PROVIDERS

The PR_AB_PROVIDERS property contains a list of identifiers for address book providers in the
current profile.

Usage

Reserved.

Details

Identifier 0x3D01; property type PT_BINARY; property tag 0x3D010102

Remarks

Do not use this property.

 PR_AB_SEARCH_PATH

The PR_AB_SEARCH_PATH property contains a list of entry identifiers for address book containers
that are to be searched to resolve names.

Usage

Reserved.

Details

Identifier 0x3D05; property type PT_MV_BINARY; property tag 0x3D051102

Remarks

Do not use this property.

 PR_AB_SEARCH_PATH_UPDATE

The PR_AB_SEARCH_PATH_UPDATE property contains a list of entry identifiers for address book
containers explicitly configured by the user.

Usage

Reserved.

Details

Identifier 0x3D11; property type PT_BINARY; property tag 0x3D110102

Remarks

Do not use this property.

 PR_ACCESS

The PR_ACCESS property contains a bitmask of flags indicating the operations a client application can
perform on the open object.

Usage

Required on folder and message objects.

Details

Identifier 0x0FF4; property type PT_LONG; property tag 0x0FF40003

Remarks

Zero or more of the following flags can be set for the PR_ACCESS property:

MAPI_ACCESS_CREATE_ASSOCIATED
The client can create an associated contents table.

MAPI_ACCESS_CREATE_CONTENTS
The client can create a contents table.

MAPI_ACCESS_CREATE_HIERARCHY
The client can create a hierarchy table.

MAPI_ACCESS_DELETE
The client can delete the object.

MAPI_ACCESS_MODIFY
The client can write to the object.

MAPI_ACCESS_READ
The client can read the object.

The MAPI_ACCESS_DELETE, MAPI_ACCESS_MODIFY, and MAPI_ACCESS_READ flags are found
on folder and message objects and in the PR_ACCESS column in contents tables and associated
contents tables. The MAPI_ACCESS_CREATE_ASSOCIATED,
MAPI_ACCESS_CREATE_CONTENTS, and MAPI_ACCESS_CREATE_HIERARCHY flags are found
on folder objects only.

See Also

PR_ACCESS_LEVEL property

 PR_ACCESS_LEVEL

The PR_ACCESS_LEVEL property contains a bitmask of flags indicating the level at which a client
application can access the open object.

Usage

Required on address book container, distribution list, folder, messaging user, message, and message
store objects.

Details

Identifier 0x0FF7; property type PT_LONG; property tag 0x0FF70003

Remarks

The PR_ACCESS_LEVEL property is used to determine whether or not read/write access was granted.
Calls to the IMsgStore::OpenEntry method can request read/write access. By default, access is read-
only, although the access granted is defined by the service provider. A provider can grant read/write
access when the client requested read-only access.

The following flag can be set for PR_ACCESS_LEVEL:

MAPI_MODIFY
Read/write access was granted.

See Also

PR_ACCESS property

 PR_ACCOUNT

The PR_ACCOUNT property contains the recipient's account name.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A00; property type PT_TSTRING; property tag 0x3A00001E (0x3A00001F for Unicode)

Remarks

The PR_ACCOUNT property is one of the properties that provide identification and access information
for a recipient. These properties are defined by the recipient and the recipient's organization. For more
information about this group of properties, see About Messaging User Objects.

PR_ACCOUNT commonly contains the recipient's e-mail name, that is, the final component of the e-
mail address, which uniquely identifies the recipient within the local organization. The e-mail name
corresponds to the X.400 distinguished name, which is meant to be a short name guaranteed to be
unique within a certain messaging domain.

 PR_ACKNOWLEDGEMENT_MODE

The PR_ACKNOWLEDGEMENT_MODE property contains the identifier of the mode for message
acknowledgment.

Usage

Optional on message objects.

Details

Identifier 0x0001; property type PT_LONG; property tag 0x00010003

Remarks

The PR_ACKNOWLEDGEMENT_MODE property can have exactly one of the following values:

Value Description
0 Manual acknowledgment.
1 Automatic acknowledgment.

PR_ACKNOWLEDGEMENT_MODE corresponds to the X.400 attribute
IM_ACKNOWLEDGEMENT_MODE.

See Also

PR_MESSAGE_CLASS property

 PR_ADDRTYPE

The PR_ADDRTYPE property contains the messaging user's e-mail address type, such as SMTP.

Usage

Required on distribution list and messaging user objects.

Details

Identifier 0x3002; property type PT_TSTRING; property tag 0x3002001E (0x3002001F for Unicode)

Remarks

The PR_ADDRTYPE property is one of the base address properties common to all messaging users. It
specifies which messaging system MAPI uses to handle a given message.

PR_ADDRTYPE also determines the format of the address string in the PR_EMAIL_ADDRESS
property. The string provided by PR_ADDRTYPE can contain only the uppercase alphabetic characters
from A through Z and the numbers from 0 through 9.

Valid PR_ADDRTYPE examples include:

FAX
MHS
PROFS
SMTP
X400

For more information on the base address properties, see About Base Address Properties. For more
information on address types, see Address Types.

 PR_ALTERNATE_RECIPIENT

The PR_ALTERNATE_RECIPIENT property contains a list of entry identifiers for alternate recipients
designated by the originally intended recipient.

Usage

Optional on recipient subobjects.

Details

Identifier 0x3A01; property type PT_BINARY; property tag 0x3A010102

Remarks

The PR_ALTERNATE_RECIPIENT property is used in autoforwarded messages. It contains a
FLATENTRYLIST structure of alternate recipients. If autoforwarding is not permitted or if no alternate
recipient has been designated, a nondelivery report should be generated.

PR_ALTERNATE_RECIPIENT corresponds to the X.400 attribute
MH_T_ALTERNATE_RECIPIENT_NAME.

 PR_ALTERNATE_RECIPIENT_ALLOWED

The PR_ALTERNATE_RECIPIENT_ALLOWED property contains TRUE if the sender permits
autoforwarding of this message.

Usage

Optional on message objects.

Details

Identifier 0x0002; property type PT_BOOLEAN; property tag 0x0002000B

Remarks

If autoforwarding is not permitted or if no alternate recipient has been designated, a nondelivery report
should be generated.

The PR_ALTERNATE_RECIPIENT_ALLOWED property corresponds to the X.400 attribute
MH_T_ALTERNATE_RECIPIENT_ALLOWED.

 PR_ANR

The PR_ANR property contains a string value for use in a property restriction on an address book
container contents table.

Details

Identifier 0x360C; property type PT_TSTRING; property tag 0x360C001E (0x360C001F for Unicode)

Remarks

The PR_ANR property does not belong to any object; it is furnished by address book providers in
SPropertyRestriction structures. This property contains an ambiguous name resolution (ANR) string
that can be tested against an address book container's contents table to find corresponding message
recipients.

Address book providers match the value of PR_ANR against every entry in the contents table, using a
provider-defined matching algorithm. The column or columns used in this match are chosen by the
provider as part of the algorithm. The PR_DISPLAY_NAME column is the most commonly used; the
PR_ACCOUNT column is also useful when it contains the user's e-mail name.

For more information on ambiguous name resolution, see About Address Book Restrictions.

See Also

IAddrBook::ResolveName method , IABContainer::ResolveNames method

 PR_ASSISTANT

The PR_ASSISTANT property contains the name of the recipient's administrative assistant.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A30; property type PT_TSTRING; property tag 0x3A30001E (0x3A30001F for Unicode)

Remarks

The PR_ASSISTANT property is one of the properties that provide identification and access
information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

See Also

PR_ASSISTANT_TELEPHONE_NUMBER property

 PR_ASSISTANT_TELEPHONE_NUMBER

The PR_ASSISTANT_TELEPHONE_NUMBER property contains the telephone number of the
recipient's administrative assistant.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A2E; property type PT_TSTRING; property tag 0x3A2E001E (0x3A2E001F for Unicode)

Remarks

The PR_ASSISTANT_TELEPHONE_NUMBER property is one of the properties that provide
identification and access information for a recipient. These properties are defined by the recipient and
the recipient's organization. For more information on this group of properties, see About Messaging
User Objects.

The telephone number is for the assistant specified in the PR_ASSISTANT property.

 PR_ASSOC_CONTENT_COUNT

The PR_ASSOC_CONTENT_COUNT property contains the count of items in the associated contents
table of the folder.

Usage

Required on folder objects.

Details

Identifier 0x3617; property type PT_LONG; property tag 0x36170003

Remarks

The PR_FOLDER_ASSOCIATED_CONTENTS property contains the associated contents table of the
folder.

See Also

PR_ACCESS property

 PR_ATTACH_DATA_BIN

The PR_ATTACH_DATA_BIN property contains binary attachment data typically accessed through the
OLE IStream interface.

Usage

Optional on attachment subobjects.

Details

Identifier 0x3701; property type PT_BINARY; property tag 0x37010102

Remarks

The PR_ATTACH_DATA_BIN property holds the attachment when the value of the
PR_ATTACH_METHOD property is ATTACH_BY_VALUE, which is the usual attachment method and
the only one required to be supported. PR_ATTACH_DATA_BIN also holds an OLE 1.0 OLESTREAM
attachment when the value of PR_ATTACH_METHOD is ATTACH_OLE.

OLESTREAM attachments can be copied into a file by calling the OLE IStream::CopyTo method. The
OLE encoding type can be determined from the PR_ATTACH_TAG property.

For an OLE document file attachment, the message store provider must respond to an
IMAPIProp::OpenProperty call on PR_ATTACH_DATA_OBJ and may optionally respond to a call on
PR_ATTACH_DATA_BIN. Note that PR_ATTACH_DATA_BIN and PR_ATTACH_DATA_OBJ share the
same property identifier and thus are two renditions of the same property.

For a storage object, such as a compound file in OLE 2.0 docfile format, some service providers allow
it to be opened with the MAPI IStreamDocfile interface for improved performance. A provider
supporting IStreamDocfile must expose it on PR_ATTACH_DATA_OBJ and may optionally expose it
on PR_ATTACH_DATA_BIN.

For more information on OLE interfaces and formats, see the OLE Programmer's Reference.

PR_ATTACH_DATA_BIN corresponds to the X.400 attribute IM_EXTERNAL_DATA or
IM_BILATERAL_DATA, depending on the object.

 PR_ATTACH_DATA_OBJ

The PR_ATTACH_DATA_OBJ property contains an attachment object typically accessed through the
OLE IStorage interface.

Usage

Optional on attachment subobjects.

Details

Identifier 0x3701; property type PT_OBJECT; property tag 0x3701000D

Remarks

The PR_ATTACH_DATA_OBJ property holds the attachment when the value of the
PR_ATTACH_METHOD property is ATTACH_EMBEDDED_MSG or ATTACH_OLE. The OLE encoding
type can be determined from PR_ATTACH_TAG.

For an attachment associated with the ATTACH_EMBEDDED_MSG value, the IMessage:IMAPIProp
inferface can be used for faster access.

For an embedded dynamic OLE object, the PR_ATTACH_DATA_OBJ property contains its own
rendering information, and the PR_ATTACH_RENDERING property should be either nonexistent or
empty.

For an OLE document file attachment, the message store provider must respond to an
IMAPIProp::OpenProperty call on PR_ATTACH_DATA_OBJ and may optionally respond to a call on
PR_ATTACH_DATA_BIN. The PR_ATTACH_DATA_BIN and PR_ATTACH_DATA_OBJ properties
share the same property identifier and thus are two renditions of the same property.

For a storage object, such as a compound file in OLE 2.0 docfile format, some service providers allow
it to be opened with the MAPI IStreamDocfile interface, a subclass of IStream with no additional
members, designed to optimize performance. The potential saving is enough to justify attempting to
open PR_ATTACH_DATA_OBJ through IStreamDocfile. If MAPI_E_NOINTERFACE is returned, the
client can then open PR_ATTACH_DATA_BIN with IStream.

If the client application or service provider cannot open an attachment subobject using
PR_ATTACH_DATA_OBJ with the help of PR_ATTACH_METHOD, it should use
PR_ATTACH_DATA_BIN.

For more information on OLE interfaces and formats, see the OLE Programmer's Reference.

PR_ATTACH_DATA_OBJ corresponds to the X.400 attribute IM_EXTERNAL_DATA.

 PR_ATTACH_ENCODING

The PR_ATTACH_ENCODING property contains an ASN.1 object identifier specifying the encoding for
an attachment.

Usage

Optional on attachment subobjects.

Details

Identifier 0x3702; property type PT_BINARY; property tag 0x37020102

Remarks

The PR_ATTACH_ENCODING property identifies the algorithm used to transform the data in an
attachment.

Note The PR_ATTACH_ENCODING and PR_ATTACH_TAG properties should not be confused. They
are not paired or related. PR_ATTACH_TAG identifies the application that originally generated the
attachment. "Object" has a much more general meaning in the term object identifier, and in X.400, than
in object-oriented programming.

The object identifier syntax and sample object identifiers are defined in the MAPIOID.H header file.
Values for PR_ATTACH_ENCODING are not limited to those defined in MAPIOID.H.

For complete information on these object identifiers, see the documentation on ASN.1, X.208, and
X.209. The object identifier is found in the application-reference element of the FTBP (File Transfer
Body Part) environment.

 PR_ATTACH_EXTENSION

The PR_ATTACH_EXTENSION property contains a filename extension that indicates the document
type of an attachment.

Usage

Optional on attachment subobjects.

Details

Identifier 0x3703; property type PT_TSTRING; property tag 0x3703001E (0x3703001F for Unicode)

Remarks

The PR_ATTACH_EXTENSION property is set by the client application at submission time.

The messaging system uses PR_ATTACH_EXTENSION when converting message attachments (in-
route conversion) or launching applications based on attachments in received messages. If the sending
client does not provide a value for this property, the message store handling the attachment is not
obligated to generate it. The receiving client should first check for PR_ATTACH_EXTENSION, and if it
is not provided, should parse the filename extension from the attachment's PR_ATTACH_FILENAME
or PR_ATTACH_LONG_FILENAME property.

 PR_ATTACH_FILENAME

The PR_ATTACH_FILENAME property contains an attachment's base filename and extension,
excluding path.

Usage

Optional but recommended on attachment subobjects.

Details

Identifier 0x3704; property type PT_TSTRING; property tag 0x3704001E (0x3704001F for Unicode)

Remarks

The PR_ATTACH_FILENAME property pertains to the ATTACH_BY_VALUE,
ATTACH_BY_REFERENCE, ATTACH_BY_REF_RESOLVE, and ATTACH_BY_REF_ONLY values of
the PR_ATTACH_METHOD property. PR_ATTACH_FILENAME is required when any of these values is
used.

PR_ATTACH_FILENAME can be used as a suggested filename for saving the attachment and to
supply the filename extension if the PR_ATTACH_EXTENSION property is not provided.

The filename is restricted to eight characters plus a three-character extension. For a platform that
supports long filenames, set both this property and the PR_ATTACH_LONG_FILENAME property.

MAPI works only with filenames, and other strings passed to it, in the ANSI character set. Client
applications that use filenames in an OEM character set must convert them to ANSI before calling
MAPI.

PR_ATTACH_FILENAME corresponds to the X.400 attribute IM_EXTERNAL_PARAMETERS.

 PR_ATTACH_LONG_FILENAME

The PR_ATTACH_LONG_FILENAME property contains an attachment's long filename and extension,
excluding path.

Usage

Optional on attachment subobjects.

Details

Identifier 0x3707; property type PT_TSTRING; property tag 0x3707001E (0x3707001F for Unicode)

Remarks

The PR_ATTACH_LONG_FILENAME property pertains to the ATTACH_BY_VALUE,
ATTACH_BY_REFERENCE, ATTACH_BY_REF_RESOLVE, and ATTACH_BY_REF_ONLY values of
the PR_ATTACH_METHOD property. Platforms that support long filenames should set both the
PR_ATTACH_LONG_FILENAME and PR_ATTACH_FILENAME properties when sending, and should
check PR_ATTACH_LONG_FILENAME first when receiving.

The client application should set this property to a suggested long filename to be used if the host
computer receiving a message supports long filenames. PR_ATTACH_LONG_FILENAME can be used
as a filename for saving the attachment, and to supply the filename extension if the
PR_ATTACH_EXTENSION property is not provided.

Unlike the filename provided by PR_ATTACH_FILENAME, this name is not restricted to an eight-
character filename plus a three-character extension. Instead, it can be up to 256 characters long,
including the filename, extension, and separator period.

MAPI works only with filenames, and other strings passed to it, in the ANSI character set. Client
applications that use filenames in an OEM character set must convert them to ANSI before calling
MAPI.

 PR_ATTACH_LONG_PATHNAME

The PR_ATTACH_LONG_PATHNAME property contains an attachment's fully qualified long path and
filename.

Usage

Optional on attachment subobjects.

Details

Identifier 0x370D; property type PT_TSTRING; property tag 0x370D001E (0x370D001F for Unicode)

Remarks

The PR_ATTACH_LONG_PATHNAME property is applicable when you use any of the
PR_ATTACH_METHOD property's values that indicate attachment by reference:
ATTACH_BY_REFERENCE, ATTACH_BY_REF_RESOLVE, or ATTACH_BY_REF_ONLY. Platforms
that support long filenames should set both the PR_ATTACH_LONG_PATHNAME and
PR_ATTACH_PATHNAME properties when sending, and should check
PR_ATTACH_LONG_PATHNAME first when receiving.

The client application should set this property to a suggested long path and filename to be used if the
host machine receiving a message supports long filenames. Setting PR_ATTACH_LONG_PATHNAME
indicates that the attachment data is not included with the message but is available on a common file
server.

Unlike the directories and filenames provided by PR_ATTACH_PATHNAME, these directories and
filenames are not restricted to an eight-character directory or filename plus three-character extension.
Instead, each directory or filename can be up to 256 characters long, including the name, extension,
and separator period. However, the overall path is limited to 256 characters.

Clients should use a Universal Naming Convention (UNC) in most cases when the file is shared, and
should use an absolute path when the file is local and in some shared cases, such as with NetWare®.

MAPI works only with paths, filenames, and other strings passed to it in the ANSI character set. Client
applications that use paths and filenames in an OEM character set must convert them to ANSI before
calling MAPI.

 PR_ATTACH_METHOD

The PR_ATTACH_METHOD property contains a MAPI-defined constant representing the way the
contents of an attachment can be accessed.

Usage

Required on attachment subobjects.

Details

Identifier 0x3705; property type PT_LONG; property tag 0x37050003

Remarks

The PR_ATTACH_METHOD property can have exactly one of the following values:

Value Description
NO_ATTACHMENT The attachment has just been

created.
ATTACH_BY_VALUE The PR_ATTACH_DATA_BIN

property contains the
attachment data.

ATTACH_BY_REFERENCE The PR_ATTACH_PATHNAME
or
PR_ATTACH_LONG_PATHNAM
E property contains a fully
qualified path identifying the
attachment to recipients with
access to a common file server.

ATTACH_BY_REF_RESOLVE The PR_ATTACH_PATHNAME
or
PR_ATTACH_LONG_PATHNAM
E property contains a fully
qualified path identifying the
attachment.

ATTACH_BY_REF_ONLY The PR_ATTACH_PATHNAME
or
PR_ATTACH_LONG_PATHNAM
E property contains a fully
qualified path identifying the
attachment.

ATTACH_EMBEDDED_MSG The PR_ATTACH_DATA_OBJ
property contains an embedded
object that supports the
IMessage interface.

ATTACH_OLE The attachment is an embedded
OLE object.

When created, all attachment objects have an initial PR_ATTACH_METHOD value of
NO_ATTACHMENT.

Client applications and service providers are only required to support the attachment method
represented by the ATTACH_BY_VALUE value. The other attachment methods are optional. The
message store does not enforce any consistency between the value of PR_ATTACH_METHOD and
the values of the other attachment properties.

Universal Naming Convention (UNC) names are recommended for fully qualified paths, which should
be used with ATTACH_BY_REFERENCE and ATTACH_BY_REF_ONLY. With
ATTACH_BY_REF_RESOLVE, an absolute path is faster, since the MAPI spooler converts the
attachment to ATTACH_BY_VALUE.

If ATTACH_BY_REFERENCE is set, PR_ATTACH_DATA_BIN must be empty. An outbound gateway
can turn an ATTACH_BY_REFERENCE attachment into an ATTACH_BY_VALUE attachment by
copying the attachment data into the PR_ATTACH_DATA_BIN property.

If ATTACH_BY_REF_RESOLVE is set, PR_ATTACH_DATA_BIN must be empty. When the message
that contains the ATTACH_BY_REF_RESOLVE attachment is sent, the MAPI spooler copies the
attachment data into an ATTACH_BY_VALUE attachment. This resolution process places the
attachment data in PR_ATTACH_DATA_BIN.

If ATTACH_BY_REF_ONLY is set, PR_ATTACH_DATA_BIN must be empty, and the messaging
system never resolves the attachment reference. Use this value when you want to send the link but not
the data.

When the OLE object is in OLE 2.0 IStorage format, the data are accessible through
PR_ATTACH_DATA_OBJ. When the OLE object is in OLE 1.0 OLESTREAM format, the data are
accessible through PR_ATTACH_DATA_BIN as an IStream. The type of the OLE encoding can be
determined by the PR_ATTACH_TAG value.

For more information on OLE interfaces and formats, see the OLE Programmer's Reference.

See Also

PR_STORE_SUPPORT_MASK property

 PR_ATTACH_MIME_TAG

The PR_ATTACH_MIME_TAG property contains formatting information about a Multipurpose Internet
Mail Extensions (MIME) attachment.

Usage

Optional on attachment subobjects.

Details

Identifier 0x370E; property type PT_TSTRING; property tag 0x370E001E (0x370E001F for Unicode)

Remarks

If the PR_ATTACH_TAG property contains the value OID_MIMETAG, the transport provider should
look at the PR_ATTACH_MIME_TAG property to determine how the attachment is formatted.

PR_ATTACH_MIME_TAG is copied from the Content-type parameter of the inbound MIME header. The
composition of the string is defined in the RFC 1521 standard. The format is type/subtype, such as
application/binary or text/plain.

 PR_ATTACH_NUM

The PR_ATTACH_NUM property contains a number that uniquely identifies the attachment within its
parent message.

Usage

Required on attachment subobjects.

Details

Identifier 0x3706; property type PT_LONG; property tag 0x37060003

Remarks

Message stores generate and maintain the PR_ATTACH_NUM property. The attachment number is the
secondary sort key, after the rendering position, in the attachment table.

PR_ATTACH_NUM is used to open the attachment with the IMessage::OpenAttach method. Within a
client application's session, the PR_ATTACH_NUM property of a message attachment remains
constant as long as the attachment table is open.

The message store propagates changes to the table using the IMessage::CreateAttach and
IMessage::DeleteAttach methods. At its option the message store can generate table notifications on
open attachment tables so that clients can resynchronize to those changes.

 PR_ATTACH_PATHNAME

The PR_ATTACH_PATHNAME property contains an attachment's fully qualified path and filename.

Usage

Optional but recommended on attachment subobjects.

Details

Identifier 0x3708; property type PT_TSTRING; property tag 0x3708001E (0x3708001F for Unicode)

Remarks

Setting the PR_ATTACH_PATHNAME property indicates that the attachment data is not included with
the message but is available on a common file server. PR_ATTACH_PATHNAME is required in
conjunction with any of the PR_ATTACH_METHOD flags that indicate attachment by reference:
ATTACH_BY_REFERENCE, ATTACH_BY_REF_RESOLVE, or ATTACH_BY_REF_ONLY.

Each directory or filename is restricted to an eight-character name plus a three-character extension.
The overall path is restricted to 256 characters. For a platform that supports long filenames, set both
the PR_ATTACH_PATHNAME and PR_ATTACH_LONG_PATHNAME properties.

Client applications should use a Universal Naming Convention (UNC) in most cases when the file is
shared, and should use an absolute path when the file is local and in some shared cases, such as with
NetWare.

MAPI works only with paths, filenames, and other strings passed to it in the ANSI character set. Clients
that use paths and filenames in an OEM character set must convert them to ANSI before calling MAPI.

See Also

ScLocalPathFromUNC function , ScUNCFromLocalPath function

 PR_ATTACH_RENDERING

The PR_ATTACH_RENDERING property contains a Microsoft Windows metafile with rendering
information for an attachment.

Usage

Optional but recommended on attachment subobjects.

Details

Identifier 0x3709; property type PT_BINARY; property tag 0x37090102

Remarks

The purpose of the PR_ATTACH_RENDERING property is to provide an icon or other pictorial
representation that can be displayed within the parent message at the point of attachment. Such
representation typically includes the name of the attachment, if any, and the nature of the attachment,
such as a Microsoft Word document. A client application can use this representation in the display of
the message.

For an attached file, PR_ATTACH_RENDERING usually portrays an icon for the file.

For an attached message, PR_ATTACH_RENDERING is typically not set. A client application needing
to render an attached message should obtain its PR_MESSAGE_CLASS property, call
IMAPIFormMgr::ResolveMessageClass for a pointer to the corresponding form information object,
open the IMAPIFormInfo interface on that object, and use GetProps to retrieve the PR_ICON or
PR_MINI_ICON property.

For an embedded static OLE object, PR_ATTACH_RENDERING contains a Microsoft Windows
metafile that can be used to draw the attachment representation in a window.

For an embedded dynamic OLE object, the client should use the OLE data to generate the rendering
information.

In all cases, the client application should be aware that PR_ATTACH_RENDERING is usually several
hundred bytes in size and is subject to truncation in the attachment table. If a client wishes to render
the attachment from PR_ATTACH_RENDERING without opening the attachment itself, it must work
within the table truncation rule. For more information, see Working with Large Columns.

 PR_ATTACH_SIZE

The PR_ATTACH_SIZE property contains the sum, in bytes, of the sizes of all properties on an
attachment.

Usage

Optional but recommended on attachment subobjects.

Details

Identifier 0x0E20; property type PT_LONG; property tag 0x0E200003

Remarks

The sum contained in the PR_ATTACH_SIZE property includes the size of the
PR_ATTACH_DATA_BIN or PR_ATTACH_DATA_OBJ property. Accordingly, PR_ATTACH_SIZE is
usually larger than the contents of the attachment alone.

This property can be used to check the approximate size of the attachment before performing a remote
transfer by modem and to display progress indicators when saving the attachment to disk. It is
particularly useful with attached OLE objects.

See Also

PR_MESSAGE_SIZE property

 PR_ATTACH_TAG

The PR_ATTACH_TAG property contains an ASN.1 object identifier specifying the application that
supplied an attachment.

Usage

Optional on attachment subobjects.

Details

Identifier 0x370A; property type PT_BINARY; property tag 0x370A0102

Remarks

The PR_ATTACH_TAG property identifies the application that originally generated the attachment.

Note The PR_ATTACH_ENCODING and PR_ATTACH_TAG properties should not be confused. They
are not paired or related. "Object" has a much more general meaning in the term "object identifier," and
in X.400 usage, than in object-oriented programming.

The object identifier syntax and sample object identifiers are defined in the MAPIOID.H header file.
Values for PR_ATTACH_TAG are not limited to those defined in MAPIOID.H.

For complete information on these object identifiers, see the documentation on ASN.1, X.208, and
X.209. The object identifier is found in the application-reference element of the File Transfer Body Part
(FTBP) environment.

PR_ATTACH_TAG corresponds to the X.400 attribute IM_EXTERNAL_PARAMETERS.

See Also

PR_ATTACH_MIME_TAG property

 PR_ATTACH_TRANSPORT_NAME

The PR_ATTACH_TRANSPORT_NAME property contains the name of an attachment file modified so
that it can be correlated with TNEF messages.

Usage

Optional on attachment subobjects.

Details

Identifier 0x370C; property type PT_TSTRING; property tag 0x370C001E (0x370C001F for Unicode)

Remarks

TNEF and the transport provider use the PR_ATTACH_TRANSPORT_NAME property. It is usually not
available to client applications.

This property is commonly used by TNEF when the underlying messaging system doesn't support the
supplied filenames. For example, PR_ATTACH_TRANSPORT_NAME is used when the user attaches
multiple files with the same name, such as five files named CONFIG.SYS. The transport provider must
modify the names to ensure uniqueness. Each modified name appears in its attachment's
PR_ATTACH_TRANSPORT_NAME property.

MAPI works only with filenames, and other strings passed to it, in the ANSI character set. Applications
that use filenames in an OEM character set must convert them to ANSI before calling MAPI.

 PR_ATTACHMENT_X400_PARAMETERS

The PR_ATTACHMENT_X400_PARAMETERS property was originally meant to contain an ASN.1
object identifier specifying how the attachment should be handled during transmission.

Usage

Never used.

Details

Identifier 0x3700; property type PT_BINARY; property tag 0x37000102

Remarks

Do not use this property. It is not supported in MAPI 1.0.

PR_ATTACHMENT_X400_PARAMETERS corresponds to the X.400 attribute
IM_EXTERNAL_PARAMETERS.

 PR_AUTHORIZING_USERS

The PR_AUTHORIZING_USERS property contains a list of entry identifiers for users who have
authorized the sending of a message.

Usage

Optional on message objects.

Details

Identifier 0x0003; property type PT_BINARY; property tag 0x00030102

Remarks

The message store does not maintain the PR_AUTHORIZING_USERS property.

PR_AUTHORIZING_USERS corresponds to the X.400 attribute IM_AUTHORIZING_USERS.

See Also

PR_ENTRYID property

 PR_AUTO_FORWARD_COMMENT

The PR_AUTO_FORWARD_COMMENT property contains a comment added by the autoforwarding
agent.

Usage

Optional on message objects.

Details

Identifier 0x0004; property type PT_TSTRING; property tag 0x0004001E (0x0004001F for Unicode)

Remarks

The PR_AUTO_FORWARD_COMMENT property corresponds to the X.400 attribute
IM_AUTO_FORWARD_COMMENT.

 PR_AUTO_FORWARDED

The PR_AUTO_FORWARDED property contains TRUE if an automatic agent has forwarded a
message.

Usage

Optional on message objects.

Details

Identifier 0x0005; property type PT_BOOLEAN; property tag 0x0005000B

Remarks

The PR_AUTO_FORWARDED property corresponds to the X.400 attribute IM_AUTO_FORWARDED.

 PR_BODY

The PR_BODY property contains the message text.

Usage

Optional on message objects.

Details

Identifier 0x1000; property type PT_TSTRING; property tag 0x1000001E (0x1000001F for Unicode)

Remarks

The PR_BODY property is typically used only in an interpersonal message (IPM).

Message stores that support Rich Text Format (RTF) ignore any changes to white space in the
message text. When PR_BODY is stored for the first time, the message store also generates and
stores the PR_RTF_COMPRESSED property, the RTF version of the message text. If the
IMAPIProp::SaveChanges method is subsequently called and PR_BODY has been modified, the
message store calls the RTFSync function to ensure synchronization with the RTF version. If only
white space has been changed, the properties are left unchanged. This preserves any nontrivial RTF
formatting when the message travels through non-RTF-aware clients and messaging systems.

The value for PR_BODY must be expressed in the code page of the operating system that MAPI is
running on.

PR_BODY corresponds to the X.400 attributes IM_BODY and IM_TEXT.

See Also

PR_RTF_IN_SYNC property

 PR_BODY_CRC

The PR_BODY_CRC property contains a circular redundancy check (CRC) value on the message text.

Usage

Computed by message store providers on message objects.

Details

Identifier 0x0E1C; property type PT_LONG; property tag 0x0E1C0003

Remarks

The message store can use any CRC algorithm that generates a PT_LONG value. It must compute
PR_BODY_CRC as part of the IMAPIProp::SaveChanges method when the PR_BODY property has
been set for the first time and whenever it has been subsequently modified.

A client application uses PR_BODY_CRC to aid in comparing message text strings contained in
PR_BODY properties or their variants. Using this property, the client can quickly and easily detect
when the message text has changed. It can realize significant performance gains by using
PR_BODY_CRC instead of obtaining PR_BODY from the message store and comparing it with a local
version.

 PR_BUSINESS_FAX_NUMBER

The PR_BUSINESS_FAX_NUMBER property contains the telephone number of the recipient's
business fax machine.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A24; property type PT_TSTRING; property tag 0x3A24001E (0x3A24001F for Unicode)

Remarks

The PR_BUSINESS_FAX_NUMBER property is one of the properties that provide identification and
access information about a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_BUSINESS_TELEPHONE_NUMBER

The PR_BUSINESS_TELEPHONE_NUMBER property contains the primary telephone number of the
recipient's place of business.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A08; property type PT_TSTRING; property tag 0x3A08001E (0x3A08001F for Unicode)

Remarks

The PR_BUSINESS_TELEPHONE_NUMBER property is one of the properties that provide
identification and access information about a recipient. These properties are defined by the recipient
and the recipient's organization. For more information on this group of properties, see About
Messaging User Objects.

MAPI also supports the PR_OFFICE_TELEPHONE_NUMBER property, which is synonymous with
PR_BUSINESS_TELEPHONE_NUMBER.

 PR_BUSINESS2_TELEPHONE_NUMBER

The PR_BUSINESS2_TELEPHONE_NUMBER property contains a secondary telephone number at
the recipient's place of business.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A1B; property type PT_TSTRING; property tag 3A1B001E (3A1B001F for Unicode)

Remarks

The PR_BUSINESS2_TELEPHONE_NUMBER property is one of the properties that provide
identification and access information about a recipient. These properties are defined by the recipient
and the recipient's organization. For more information on this group of properties, see About
Messaging User Objects.

MAPI also supports the PR_OFFICE2_TELEPHONE_NUMBER property, which is synonymous with
PR_BUSINESS2_TELEPHONE_NUMBER.

See Also

PR_BUSINESS_TELEPHONE_NUMBER property

 PR_CALLBACK_TELEPHONE_NUMBER

The PR_CALLBACK_TELEPHONE_NUMBER property contains a telephone number that the
message recipient can use to reach the sender.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A02; property type PT_TSTRING; property tag 0x3A02001E (0x3A02001F for Unicode)

Remarks

The PR_CALLBACK_TELEPHONE_NUMBER property is one of the properties that provide
identification and access information about a recipient. These properties are defined by the recipient
and the recipient's organization. For more information on this group of properties, see About
Messaging User Objects.

 PR_CAPABILITIES_TABLE

The PR_CAPABILITIES_TABLE property was originally meant to contain an embedded table object to
provide a summary of the address book capabilities.

Usage

Never used.

Details

Identifier 0x3903; property type PT_OBJECT; property tag 0x3903000D

Remarks

Do not use this property. It is not supported in MAPI 1.0.

 PR_CAR_TELEPHONE_NUMBER

The PR_CAR_TELEPHONE_NUMBER property contains the recipient's car telephone number.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A1E; property type PT_TSTRING; property tag 0x3A1E001E (0x3A1E001F for Unicode)

Remarks

The PR_CAR_TELEPHONE_NUMBER property is one of the properties that provide identification and
access information about a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_CLIENT_SUBMIT_TIME

The PR_CLIENT_SUBMIT_TIME property contains the date and time the message sender submitted a
message.

Usage

Computed by store providers on message objects.

Details

Identifier 0x0039; property type PT_SYSTIME; property tag 0x00390040

Remarks

The store provider sets PR_CLIENT_SUBMIT_TIME to the time the client application calls
IMessage::SubmitMessage.

PR_CLIENT_SUBMIT_TIME corresponds to the X.400 attribute MH_T_SUBMISSION_TIME.

 PR_COMMENT

The PR_COMMENT property contains a comment about the purpose or content of an object.

Usage

Optional on all objects.

Details

Identifier 0x3004; property type PT_TSTRING; property tag 0x3004001E (0x3004001F for Unicode)

Remarks

The content of the string is defined by the messaging user.

 PR_COMMON_VIEWS_ENTRYID

The PR_COMMON_VIEWS_ENTRYID property contains the entry identifier of the predefined common
view folder.

Usage

Required on message store objects.

Details

Identifier 0x35E6; property type PT_BINARY; property tag 0x35E60102

Remarks

The common view folder contains a predefined set of standard view specifiers, while the view folder
contains specifiers defined by a messaging user. These folders, which are not visible in the
interpersonal message (IPM) hierarchy, can hold many view specifiers, each one stored as a message.
A client application can choose to merge the two sets of specifiers and make them both available.

For more information on views, see About View Folders.

See Also

PR_DEFAULT_VIEW_ENTRYID property, PR_VIEWS_ENTRYID property

 PR_COMPANY_NAME

The PR_COMPANY_NAME property contains the recipient's company name.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A16; property type PT_TSTRING; property tag 0x3A16001E (0x3A16001F for Unicode)

Remarks

The PR_COMPANY_NAME property is one of the properties that provide identification and access
information about a recipient. These properties are defined by the recipient and the recipient's
organization.

 PR_CONTAINER_CLASS

The PR_CONTAINER_CLASS property was originally meant to contain a text string describing the type
of a folder.

Usage

Never used.

Details

Identifier 0x3613; property type PT_TSTRING; property tag 0x3613001E (0x3613001F for Unicode)

Remarks

Do not use this property. It is not supported in MAPI 1.0.

 PR_CONTAINER_CONTENTS

The PR_CONTAINER_CONTENTS property contains an embedded contents table object that provides
information about a container.

Usage

Required on address book container and folder objects.

Details

Identifier 0x360F; property type PT_OBJECT; property tag 0x360F000D

Remarks

The PR_CONTAINER_CONTENTS property can be excluded in IMAPIProp::CopyTo operations or
included in IMAPIProp::CopyProps operations. As a property of type PT_OBJECT, it cannot be
successfully retrieved by the IMAPIProp::GetProps method; its contents should be accessed by the
IMAPIProp::OpenProperty method, requesting the IID_IMAPITable interface identifier. Service
providers must report it to the IMAPIProp::GetPropList method if it is set, but can optionally report it
or not if it is not set.

To retrieve table contents, a client application should call the IMAPIContainer::GetContentsTable
method. For more information on contents tables, see About Contents Tables.

The PR_CONTAINER_CONTENTS, PR_CONTAINER_HIERARCHY, and
PR_FOLDER_ASSOCIATED_CONTENTS properties are similar in usage. Several MAPI properties
provide access to tables:

Property Table
PR_CONTAINER_CONTENTS Contents table
PR_CONTAINER_HIERARCHY Hierarchy table
PR_FOLDER_ASSOCIATED_CONTE
NTS

Associated contents table

PR_MESSAGE_ATTACHMENTS Attachment table
PR_MESSAGE_RECIPIENTS Recipient table

 PR_CONTAINER_FLAGS

The PR_CONTAINER_FLAGS property contains a bitmask of flags describing an address book
container.

Usage

Required on address book container objects.

Details

Identifier 0x3600; property type PT_LONG; property tag 0x36000003

Remarks

One or more of the following flags can be set for the PR_CONTAINER_FLAGS bitmask:

AB_FIND_ON_OPEN
Displays a dialog box to request a restriction before displaying any contents of the container.

AB_MODIFIABLE
Entries can be added to and removed from the container. This setting does not indicate modification
of the entries, but only whether they can be placed in the container.

AB_RECIPIENTS
The contents table and the hierarchy table are both modifiable, and the container can contain
recipients. This flag does not indicate whether any recipients are present in the container.

AB_SUBCONTAINERS
The container holds child containers. This flag must be set for the container to support
IMAPIContainer::GetHierarchyTable.

AB_UNMODIFIABLE
Entries cannot be added to or removed from the container.

The flags refer to the container itself rather than to the entries within the container. For example, the
AB_MODIFIABLE flag indicates that the container allows entries to be added or removed. The flag
does not refer to whether the individual entries themselves can be modified.

The AB_FIND_ON_OPEN flag is highly recommended for containers, such as online services, where
even a partial specification for messaging users can dramatically speed up a display of the contents.

Either the AB_MODIFIABLE or AB_UNMODIFIABLE flag must be set. Both flags can be set to indicate
that the container does not know whether it can be modified or not. In this case, a client application
must attempt a call and examine the return code to determine the container's capabilities. A clients
typically starts by examining AB_MODIFIABLE. If it is set, the client makes a call that attempts to
modify the container and check the return value.

 PR_CONTAINER_HIERARCHY

The PR_CONTAINER_HIERARCHY property contains an embedded hierarchy table object that
provides information about the child containers.

Usage

Required on address book container and folder objects.

Details

Identifier 0x360E; property type PT_OBJECT; property tag 0x360E000D

Remarks

The PR_CONTAINER_HIERARCHY property can be excluded in IMAPIProp::CopyTo operations or
included in IMAPIProp::CopyProps operations. As a property of type PT_OBJECT, it cannot be
successfully retrieved by the IMAPIProp::GetProps method; its contents should be accessed by the
IMAPIProp::OpenProperty method, requesting the IID_IMAPITable interface identifier. Service
providers must report it to the IMAPIProp::GetPropList method if it is set, but can optionally report it
or not if it is not set.

To retrieve table contents, a client application should call the IMAPIContainer::GetHierarchyTable
method. For more information on hierarchy tables, see About Hierarchy Tables.

The PR_CONTAINER_CONTENTS, PR_CONTAINER_HIERARCHY, and
PR_FOLDER_ASSOCIATED_CONTENTS properties are similar in usage. Several MAPI properties
provide access to tables:

Property Table
PR_CONTAINER_CONTENTS Contents table
PR_CONTAINER_HIERARCHY Hierarchy table
PR_FOLDER_ASSOCIATED_CONTE
NTS

Associated contents table

PR_MESSAGE_ATTACHMENTS Attachment table
PR_MESSAGE_RECIPIENTS Recipient table

 PR_CONTAINER_MODIFY_VERSION

The PR_CONTAINER_MODIFY_VERSION property was originally meant to contain the current
modification version for a folder.

Usage

Never used.

Details

Identifier 0x3614; property type PT_I8; property tag 0x36140014

Remarks

Do not use this property. It is not supported in MAPI 1.0.

 PR_CONTENT_CONFIDENTIALITY_ALGORITHM_ID

The PR_CONTENT_CONFIDENTIALITY_ALGORITHM_ID property contains an identifier for the
algorithm used to confirm message content confidentiality.

Usage

Optional on message objects.

Details

Identifier 0x0006; property type PT_BINARY; property tag 0x00060102

Remarks

The PR_CONTENT_CONFIDENTIALITY_ALGORITHM_ID property corresponds to the X.400 attribute
MH_T_ALGORITHM_ID or MH_T_CONFIDENTIALITY_ALGORITHM.

See Also

PR_SECURITY property

 PR_CONTENT_CORRELATOR

The PR_CONTENT_CORRELATOR property contains a value the message sender can use to match
a report with the original message.

Usage

Optional on message objects.

Details

Identifier 0x0007; property type PT_BINARY; property tag 0x00070102

Remarks

The contents of the binary string are defined by the message originator. If set on an outgoing message,
the PR_CONTENT_CORRELATOR property should be copied onto any reports generated in response
to the message.

PR_CONTENT_CORRELATOR corresponds to the X.400 attribute MH_T_CONTENT_CORRELATOR.

 PR_CONTENT_COUNT

The PR_CONTENT_COUNT property contains the number of messages in a folder, as computed by
the message store.

Usage

Required on folder objects and as a column entry in folder hierarchy tables. Optional as a column entry
in folder contents tables.

Details

Identifier 0x3602; property type PT_LONG; property tag 0x36020003

Remarks

The number contained in the PR_CONTENT_COUNT property does not include associated entries in
the folder. PR_CONTENT_UNREAD contains the count of unread messages for the folder. A client
application can read but not change PR_CONTENT_COUNT and PR_CONTENT_UNREAD.

 PR_CONTENT_IDENTIFIER

The PR_CONTENT_IDENTIFIER property contains a key value that enables the message recipient to
identify its content.

Usage

Optional on message objects.

Details

Identifier 0x0008; property type PT_TSTRING; property tag 0x0008001E (0x0008001F for Unicode)

Remarks

The PR_CONTENT_IDENTIFIER property corresponds to the X.400 attribute
MH_T_CONTENT_IDENTIFIER.

 PR_CONTENT_INTEGRITY_CHECK

The PR_CONTENT_INTEGRITY_CHECK property contains an ASN.1 content integrity check value
that allows a message sender to protect message content from disclosure to unauthorized recipients.

Usage

Optional on message objects.

Details

Identifier 0x0C00; property type PT_BINARY; property tag 0x0C000102

Remarks

The PR_CONTENT_INTEGRITY_CHECK property provides for non-repudiation of message content.
In conjunction with PR_MESSAGE_TOKEN it insures that the content of a message arrives at its
destination unchanged.

PR_CONTENT_INTEGRITY_CHECK corresponds to the X.400 attribute MH_T_INTEGRITY_CHECK.

See Also

PR_MESSAGE_SECURITY_LABEL property

 PR_CONTENT_LENGTH

The PR_CONTENT_LENGTH property contains a message length, in bytes, passed to a client
application or service provider to determine if a message of that length can be delivered.

Usage

Optional on message objects.

Details

Identifier 0x0009; property type PT_LONG; property tag 0x00090003

Remarks

The PR_CONTENT_LENGTH property corresponds to the X.400 attribute
MH_T_CONTENT_LENGTH.

 PR_CONTENT_RETURN_REQUESTED

The PR_CONTENT_RETURN_REQUESTED property contains TRUE if a message should be
returned with a nondelivery report.

Usage

Optional on message objects.

Details

Identifier 0x000A; property type PT_BOOLEAN; property tag 0x000A000B

Remarks

If the PR_CONTENT_RETURN_REQUESTED property is not set, MAPI treats it as having a TRUE
value.

PR_CONTENT_RETURN_REQUESTED corresponds to the X.400 attribute
MH_T_CONTENT_RETURN_REQUESTED.

 PR_CONTENT_UNREAD

The PR_CONTENT_UNREAD property contains the number of unread messages in a folder, as
computed by the message store.

Usage

Required on folder objects and as a column entry in folder hierarchy tables. Optional as a column entry
in folder contents tables.

Details

Identifier 0x3603; property type PT_LONG; property tag 0x36030003

Remarks

The PR_CONTENT_UNREAD property contains the number of messages in the folder contents table
for which the MSGFLAG_READ flag is not set in the PR_MESSAGE_FLAGS property. The
PR_CONTENT_COUNT property contains the total message count for the folder.
PR_CONTENT_COUNT and PR_CONTENT_UNREAD are read-only to clients.

See Also

PR_CONTENT_IDENTIFIER property

 PR_CONTENTS_SORT_ORDER

The PR_CONTENTS_SORT_ORDER property was originally meant to contain a value specifying the
sort order for the columns of a container.

Usage

Never used.

Details

Identifier 0x360D; property type PT_MV_LONG; property tag 0x360D1003

Remarks

Do not use this property. It is not supported in MAPI 1.0.

See Also

SSortOrder structure

 PR_CONTROL_FLAGS

The PR_CONTROL_FLAGS property contains a bitmask of flags governing the behavior of a control
used in a dialog box.

Usage

Required as a column entry in display tables.

Details

Identifier 0x3F00; property type PT_LONG; property tag 0x3F000003

Remarks

One or more of the following flags can be set for PR_CONTROL_FLAGS:

DT_ACCEPT_DBCS
The control can have Double-Byte Character Set (DBCS) characters in it. This flag is used with edit
controls and combo box controls. It allows multiple-byte character sets.

DT_EDITABLE
The control can be edited; the value associated with the control can be changed. When this flag is
not set, the control is read-only. This value is ignored on label, group box, standard push button,
multivalued drop down list box and list box controls.

DT_MULTILINE
The edit control can contain multiple lines. This means a return character can be entered within the
control.

DT_PASSWORD_EDIT
Applies to edit controls. The edit control is treated like a password. The value is displayed using
asterisks instead of echoing the actual characters entered.

DT_REQUIRED
If the control allows changes (DT_EDITABLE), it must have a value before
IMAPIProp::SaveChanges is called.

DT_SET_IMMEDIATE
Enables immediate setting of a value; as soon as a value in the control changes, MAPI calls the
SetProps method for the property associated with that control. When this flag is not set, the values
are set when another control is selected.

DT_SET_SELECTION
When a selection is made within the listbox, the index column of that listbox is set as a property.
Always used with DT_SET_IMMEDIATE.

See Also

DTCTL structure

 PR_CONTROL_ID

The PR_CONTROL_ID property contains a unique identifier for a control used in a dialog box.

Usage

Required as a column entry in display tables.

Details

Identifier 0x3F07; property type PT_BINARY; property tag 0x3F070102

Remarks

The PR_CONTROL_ID property contains a unique identifier for the control. This identifier should
contain a GUID structure and a binary value of type LONG. All controls in the dialog box should use the
same GUID to identify the service provider, and each control should use a unique LONG value to
ensure that the controls do not collide.

PR_CONTROL_ID is used in notifications. For example, notifications sent on the display table must
have PR_CONTROL_ID to uniquely identify the control to update.

See Also

DTCTL structure

 PR_CONTROL_STRUCTURE

The PR_CONTROL_STRUCTURE property contains a pointer to a structure for a control used in a
dialog box.

Usage

Required as a column entry in display tables.

Details

Identifier 0x3F01; property type PT_BINARY; property tag 0x3F010102

Remarks

The PR_CONTROL_STRUCTURE property represents a long pointer that is cast to one of the control
structures. The control structures include:

DTBLBUTTON DTBLCHECKBOX
DTBLCOMBOBOX DTBLDDLBX
DTBLEDIT DTBLGROUPBOX
DTBLLABEL DTBLLBX
DTBLMVDDLBOX DTBLMVLISTBOX
DTBLPAGE DTBLRADIOBUTTON

See Also

DTCTL structure

 PR_CONTROL_TYPE

The PR_CONTROL_TYPE property contains a value indicating a control type for a control used in a
dialog box.

Usage

Required as a column entry in display tables.

Details

Identifier 0x3F02; property type PT_LONG; property tag 0x3F020003

Remarks

The PR_CONTROL_TYPE property can have exactly one of the following values:

Value Description
DTCT_BUTTON A dialog button control.
DTCT_CHECKBOX A dialog check box.
DTCT_COMBOBOX A dialog combo box.
DTCT_DDLBX A dialog drop-down list box.
DTCT_EDIT A dialog edit text box.
DTCT_GROUPBOX A dialog group box.
DTCT_LABEL A dialog label.
DTCT_LBX A dialog list box.
DTCT_LISTBOX A dialog list box.
DTCT_MVDDLBX A multivalued list box populated

by a multivalued property of type
string.

DTCT_PAGE A dialog tabbed page.
DTCT_RADIOBUTTON A dialog radio button.

See Also

DTCTL structure

 PR_CONVERSATION_INDEX

The PR_CONVERSATION_INDEX property contains an index that indicates the relative position of this
message within a conversation thread.

Usage

Optional on message objects.

Details

Identifier 0x0071; property type PT_BINARY; property tag 0x00710102

Remarks

The conversation index is usually implemented using concatenated time stamp values. A message that
represents a reply to another message concatenates a time stamp to the
PR_CONVERSATION_INDEX value of the original message. All messages that have the same value
for PR_CONVERSATION_TOPIC, can be sorted by PR_CONVERSATION_INDEX to indicate the
hierarchical relationship of the messages.

 PR_CONVERSATION_KEY

The PR_CONVERSATION_KEY property is the obsolete precursor of the
PR_CONVERSATION_INDEX and PR_CONVERSATION_TOPIC properties.

Usage

No longer used.

Details

Identifier 0x000B; property type PT_BINARY; property tag 0x000B0102

Remarks

Do not use this property. Use PR_CONVERSATION_INDEX and PR_CONVERSATION_TOPIC
instead.

 PR_CONVERSATION_TOPIC

The PR_CONVERSATION_TOPIC property represents the topic of the first message in a conversation
thread.

Usage

Optional on message objects.

Details

Identifier 0x0070; property type PT_TSTRING; property tag 0x0070001E (0x0070001F for Unicode)

Remarks

A conversation thread represents a series of messages and replies. The PR_CONVERSATION_TOPIC
property is set for the first message in a thread, usually to the same value as the message subject, with
any RE: and FW: strings removed. Subsequent messages in the conversation thread use the same
PR_CONVERSATION_TOPIC. The PR_CONVERSATION_INDEX property indicates the order
relationship between subsequent messages and replies.

 PR_CONVERSION_EITS

The PR_CONVERSION_EITS property contains the encoded information types (EITs) that are applied
to a message in transit to describe conversions.

Usage

Optional on message objects.

Details

Identifier 0x000C; property type PT_BINARY; property tag 0x000C0102

Remarks

X.400 environments use the PR_CONVERSION_EITS property for both nondelivery reports and
delivery reports.

PR_CONVERSION_EITS corresponds to the X.400 attribute IM_CONVERSION_EITS.

 PR_CONVERSION_PROHIBITED

The PR_CONVERSION_PROHIBITED property contains TRUE if message conversions are prohibited
by default for the associated messaging user.

Usage

Optional on message objects.

Details

Identifier 0x3A03; property type PT_BOOLEAN; property tag 0x3A03000B

Remarks

The PR_CONVERSION_PROHIBITED property corresponds to the X.400 attribute
MH_T_CONVERSION_PROHIBITED.

 PR_CONVERSION_WITH_LOSS_PROHIBITED

The PR_CONVERSION_WITH_LOSS_PROHIBITED property contains TRUE if a message transfer
agent (MTA) is prohibited from making message text conversions that lose information.

Usage

Optional on message objects.

Details

Identifier 0x000D; property type PT_BOOLEAN; property tag 0x000D000B

Remarks

An example of the type of conversion being prohibited is the "lossy" mapping from Unicode (two bytes
per character) to a single-byte character set.

The PR_CONVERSION_WITH_LOSS_PROHIBITED property corresponds to the X.400 attribute
MH_T_CONVERSION_LOSS_PROHIBITED.

 PR_CONVERTED_EITS

The PR_CONVERTED_EITS property contains an identifier for the types of text in a message after
conversion.

Usage

Optional on message objects.

Details

Identifier 0x000E; property type PT_BINARY; property tag 0x000E0102

Remarks

The PR_CONVERTED_EITS property indicates which encoded information types (EITs) were used to
convert the text components of the message.

PR_CONVERTED_EITS corresponds to the X.400 attribute MH_T_CONVERTED_EITS.

 PR_CORRELATE

The PR_CORRELATE property contains TRUE if the sender of a message requests the correlation
feature of the messaging system.

Usage

Optional on message objects.

Details

Identifier 0x0E0C; property type PT_BOOLEAN; property tag 0x0E0C000B

Remarks

The PR_CORRELATE property is used to request the correlation of incoming reports with the original
sent message. When a transport provider encounters a submitted message with PR_CORRELATE set
to TRUE, it sets the PR_CORRELATE_MTSID property to the message transfer system (MTS)
identifier for that message.

PR_CORRELATE should be used with messaging systems that support correlation by MTS identifier,
such as X.400.

 PR_CORRELATE_MTSID

The PR_CORRELATE_MTSID property contains the message transfer system (MTS) identifier used in
correlating reports with sent messages.

Usage

Optional on message objects.

Details

Identifier 0x0E0D; property type PT_BINARY; property tag 0x0E0D0102

Remarks

When a transport provider encounters a submitted message with the PR_CORRELATE property set to
TRUE, it sets the PR_CORRELATE_MTSID property to the MTS identifier for that message. Following
transmission, PR_CORRELATE_MTSID is stored with the message in the interpersonal message
(IPM) Sent Items folder.

Messaging systems that support correlation by MTS identifier, such as X.400, retain the identifier as
part of the transport envelope of the original message and also of any reports generated in response to
it. When a report is delivered from such a messaging system, the transport provider sets
PR_CORRELATE_MTSID to the original MTS identifier from the report's transport envelope.
PR_CORRELATE_MTSID will then be stored with the report.

A client application can maintain a search-results folder of all messages having a
PR_CORRELATE_MTSID property. When a report comes in for such a message, the client can apply
restrictions to the search-results folder, find the original version of the message, and correlate the
original message information with the new information.

 PR_COUNTRY

The PR_COUNTRY property contains the name of the recipient's country.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A26; property type PT_TSTRING; property tag 0x3A26001E (0x3A26001F for Unicode)

Remarks

The PR_COUNTRY property is one of the properties that provide identification and access information
about a recipient. These properties are defined by the recipient and the recipient's organization. For
more information on this group of properties, see About Messaging User Objects.

 PR_CREATE_TEMPLATES

The PR_CREATE_TEMPLATES property contains an embedded table object that contains dialog box
template entry identifiers.

Usage

Required on address book container objects.

Details

Identifier 0x3604; property type PT_OBJECT; property tag 0x3604000D

Remarks

To learn what template objects can be created inside a container, call the IMAPIProp::OpenProperty
method on the PR_CREATE_TEMPLATES property. The resulting object is the one-off table that gives
the entry identifiers for all the templates you can create inside the container.

To subsequently create the template objects, call the container object's CreateEntry method on the
PR_ENTRYID column values from the one-off table.

See Also

IABContainer::CreateEntry method , PR_DISPLAY_NAME property, PR_DISPLAY_TYPE property

 PR_CREATION_TIME

The PR_CREATION_TIME property contains the creation date and time for a message.

Usage

Required on message objects.

Details

Identifier 0x3007; property type PT_SYSTIME; property tag 0x30070040

Remarks

A message store sets the PR_CREATION_TIME property for each message that it creates.

See Also

PR_CREATION_VERSION property

 PR_CREATION_VERSION

The PR_CREATION_VERSION property was originally meant to contain the message store version
current at the time a message was created.

Usage

Never used.

Details

Identifier 0x0E19; property type PT_I8; property tag 0x0E190014

Remarks

Do not use this property. It is not supported in MAPI 1.0.

See Also

PR_CURRENT_VERSION property, PR_MODIFY_VERSION property

 PR_CURRENT_VERSION

The PR_CURRENT_VERSION property was originally meant to contain the current version of a
message store.

Usage

Never used.

Details

Identifier 0x0E00; property type PT_I8; property tag 0x0E000014

Remarks

Do not use this property. It is not supported in MAPI 1.0.

See Also

PR_CREATION_VERSION property, PR_MODIFY_VERSION property

 PR_DEF_CREATE_DL

The PR_DEF_CREATE_DL property contains the template entry identifier for a default distribution list
object.

Usage

Required on address book container objects.

Details

Identifier 0x3611; property type PT_BINARY; property tag 0x36110102

Remarks

Client applications use the PR_DEF_CREATE_DL property to create a distribution list within a
container. Support of entry creation is optional for address book containers; those that do not support it
are not required to expose this property.

PR_DEF_CREATE_DL specifies an entry that can appear in the PR_CREATE_TEMPLATES property
for distribution lists. After obtaining the identifier, the client uses it in a call to the
IABContainer::CreateEntry method. The entry represents the template for the default distribution list.

See Also

IABLogon::CompareEntryIDs method

 PR_DEF_CREATE_MAILUSER

The PR_DEF_CREATE_MAILUSER property contains the template entry identifier for a default
messaging user object.

Usage

Required on address book container objects.

Details

Identifier 0x3612; property type PT_BINARY; property tag 0x36120102

Remarks

Client applications use the PR_DEF_CREATE_MAILUSER property to create a messaging user object
within a container. Support of entry creation is optional for address book containers; those that do not
support it are not required to expose this property.

PR_DEF_CREATE_MAILUSER specifies an entry that can appear in the PR_CREATE_TEMPLATES
property for messaging users. After obtaining the identifier, the client uses it in a call to the
IABContainer::CreateEntry method. The entry represents the template for the default messaging
user.

See Also

IABLogon::CompareEntryIDs method

 PR_DEFAULT_PROFILE

The PR_DEFAULT_PROFILE property contains TRUE if a messaging user profile is the MAPI default
profile.

Usage

Optional on profile section objects.

Details

Identifier 0x3D04; property type PT_BOOLEAN; property tag 0x3D04000B

Remarks

The PR_DEFAULT_PROFILE property does not appear as a property of any object but only as a
column in a profile table. A client application can use the IProfAdmin::SetDefaultProfile method to
designate the default profile.

See Also

PR_DEFAULT_STORE property

 PR_DEFAULT_STORE

The PR_DEFAULT_STORE property contains TRUE if a message store is the default message store in
the message store table.

Usage

Optional on message store objects.

Details

Identifier 0x3400; property type PT_BOOLEAN; property tag 0x3400000B

Remarks

The PR_DEFAULT_STORE property appears as a column in the message store table. The value is
based on PR_RESOURCE_FLAGS.

See Also

PR_RESOURCE_FLAGS property

 PR_DEFAULT_VIEW_ENTRYID

The PR_DEFAULT_VIEW_ENTRYID property contains the entry identifier of a folder's default view.

Usage

Optional on folder objects.

Details

Identifier 0x3616; property type PT_BINARY; property tag 0x36160102

Remarks

The PR_DEFAULT_VIEW_ENTRYID property is the entry identifier of the folder view that should be set
as the initial view. The property need not be set if the "Normal" view is to be used as the initial view.

A client application can obtain PR_DEFAULT_VIEW_ENTRYID at the time it opens the folder and
realize significant performance gains. PR_DEFAULT_VIEW_ENTRYID can be used as a shortcut to
obtain the default view, instead of opening the associated contents table and submitting a restriction.

A service provider implementation of the IMAPIFolder::CopyFolder method can copy this property
when it copies folders.

See Also

PR_COMMON_VIEWS_ENTRYID property, PR_VIEWS_ENTRYID property

 PR_DEFERRED_DELIVERY_TIME

The PR_DEFERRED_DELIVERY_TIME property contains the date and time at which a message
sender wants a message delivered.

Usage

Optional on message objects.

Details

Identifier 0x000F; property type PT_SYSTIME; property tag 0x000F0040

Remarks

MAPI does not perform the deferred delivery; it is an option of the underlying messaging system to
handle deferred delivery.

The PR_DEFERRED_DELIVERY_TIME property corresponds to the X.400 attribute
MH_T_DEFERRED_DELIVERY_TIME.

 PR_DELEGATION

The PR_DELEGATION property contains the converted value of the attDelegate workgroup property.

Usage

Optional on message objects used in scheduling.

Details

Identifier 0x007E; property type PT_BINARY; property tag 0x007E0102

Remarks

The PR_DELEGATION property is used for compatibility with earlier versions of Schedule+. TNEF
computes it on messages for Schedule+ 7.0 and compatible versions. Client applications should not
use PR_DELEGATION.

In inbound messages to Schedule+ 7.0, the workgroup property attDelegate is decoded into
PR_DELEGATION. TNEF constructs PR_DELEGATION in current recipient table order. If a client
calling TNEF has provided a recipient table for use in the ITnef::EncodeRecips method, that table is
used to build the delegation properties.

PR_DELEGATION is not encoded into attDelegate in outbound messages. Instead, attDelegate is built
from the PR_RCVD_REPRESENTING_EMAIL_ADDRESS property if the message is generated by
Schedule+, and not built at all otherwise.

 PR_DELETE_AFTER_SUBMIT

The PR_DELETE_AFTER_SUBMIT property contains TRUE if a client application wants MAPI to
delete the associated message after submission.

Usage

Optional on message objects.

Details

Identifier 0x0E01; property type PT_BOOLEAN; property tag 0x0E01000B

Remarks

A client application uses the PR_DELETE_AFTER_SUBMIT property with the
PR_SENTMAIL_ENTRYID property to control what happens to a message after it is submitted. Either
one or the other should be set, but not both.

 PR_DELIVER_TIME

The PR_DELIVER_TIME property contains the date and time at which the original message was
delivered.

Usage

Required on message objects used for delivery reports.

Details

Identifier 0x0010; property type PT_SYSTIME; property tag 0x00100040

Remarks

The PR_DELIVER_TIME property is a per-recipient property on a delivery report that indicates the time
the original message was delivered to the messaging user for which the delivery report is being
generated.

The PR_DELIVER_TIME property corresponds to the X.400 attribute MH_T_DELIVERY_TIME.

See Also

IMAPISupport::StatusRecips method

 PR_DELIVERY_POINT

The PR_DELIVERY_POINT property specifies the nature of the functional entity by means of which a
message was or would have been delivered to the recipient.

Usage

Required on message objects used on reports.

Details

Identifier 0x0C07; property type PT_LONG; property tag 0x0C070003

Remarks

The PR_DELIVERY_POINT property can have exactly one of the following values:

Value Description
MAPI_MH_DP_ML Delivered to a distribution list, a

delivery point which in turn may
distribute the message to many
recipients.

MAPI_MH_DP_MS Delivered to a message store
instead of directly to a recipient.

MAPI_MH_DP_OTHER_AU Delivered to an access unit (AU)
other than a physical delivery
access unit (PDAU), such as a
FAX system.

MAPI_MH_DP_PDAU Delivered to a physical delivery
access unit, such as a human
postal carrier.

MAPI_MH_DP_PDS_PATRON Delivered to a physical delivery
system patron, such as a
conventional postal mailbox.

MAPI_MH_DP_PRIVATE_UA Delivered to a private user agent
(UA), such as a client in an in-
house messaging system.

MAPI_MH_DP_PUBLIC_UA Delivered to a public user agent,
or public service provider.

The default value is MAPI_MH_DP_PRIVATE_UA, that is, a MAPI client.

PR_DELIVERY_POINT corresponds to the X.400 attribute MH_T_DELIVERY_POINT.

 PR_DELTAX

The PR_DELTAX property contains the width of a dialog box control in standard Windows dialog units.

Usage

Required as a column entry in display tables.

Details

Identifier 0x3F03; property type PT_LONG; property tag 0x3F030003

Remarks

The PR_XPOS, PR_YPOS, PR_DELTAX, and PR_DELTAY properties position and size the dialog box
control.

 PR_DELTAY

The PR_DELTAY property contains the height of a dialog box control in standard Windows dialog units.

Usage

Required as a column entry in display tables.

Details

Identifier 0x3F04; property type PT_LONG; property tag 0x3F040003

Remarks

The PR_XPOS, PR_YPOS, PR_DELTAX, and PR_DELTAY properties position and size the dialog box
control.

 PR_DEPARTMENT_NAME

The PR_DEPARTMENT_NAME property contains a name for the department in which the recipient
works.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A18; property type PT_TSTRING; property tag 0x3A18001E (0x3A18001F for Unicode)

Remarks

The PR_DEPARTMENT_NAME property is one of the properties that provide identification and access
information about a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_DEPTH

The PR_DEPTH property represents the relative level of indentation, or depth, of an object in a
hierarchy table.

Usage

Required as a column entry in contents tables and hierarchy tables.

Details

Identifier 0x3005; property type PT_LONG; property tag 0x30050003

Remarks

The PR_DEPTH property can also specify the categorization level of a row in a contents table or the
hierarchy depth in a hierarchy table. The depth is zero-based, where zero represents the leftmost
category. In all cases, the property value represents a relative value rather than an absolute value. In
the hierarchy table, for example, the depth value is relative to the container from which the hierarchy
table was retrieved. The depth does not represent an absolute depth from the root container.

See Also

PR_OBJECT_TYPE property, PR_SELECTABLE property

 PR_DETAILS_TABLE

The PR_DETAILS_TABLE property contains an embedded display table object.

Usage

Optional on address book container, distribution list, and messaging user objects.

Details

Identifier 0x3605; property type PT_OBJECT; property tag 0x3605000D

Remarks

Passing the PR_DETAILS_TABLE property to the IMAPIProp::OpenProperty method for the object
returns an IMAPITable interface that allows creation of the display table. MAPI uses this table to
display property sheets for an address book object in response to an IAddrBook::Details call.

For more information about display tables, see About Display Tables.

See Also

IAddrBook::RecipOptions method , IMAPISession::MessageOptions method ,
PR_CREATE_TEMPLATES property, PR_SEARCH property

 PR_DISC_VAL

The PR_DISC_VAL property is the obsolete precursor of the PR_DISCRETE_VALUES property.

Usage

No longer used.

Details

Identifier 0x004A; property type PT_BOOLEAN; property tag 0x004A000B

Remarks

Do not use this property. Use PR_DISCRETE_VALUES.

See Also

PR_DISCRETE_VALUES property

 PR_DISCARD_REASON

The PR_DISCARD_REASON property contains a reason why a message transfer agent (MTA) has
discarded a message.

Usage

Optional on message objects.

Details

Identifier 0x0011; property type PT_LONG; property tag 0x00110003

Remarks

The reason contained in the PR_DISCARD_REASON property is used in a nondelivery report for the
message.

PR_DISCARD_REASON corresponds to the X.400 attribute IM_DISCARD_REASON.

See Also

PR_NDR_REASON_CODE property

 PR_DISCLOSURE_OF_RECIPIENTS

The PR_DISCLOSURE_OF_RECIPIENTS property contains TRUE if disclosure of recipients is
allowed.

Usage

Optional on message objects.

Details

Identifier 0x0012; property type PT_BOOLEAN; property tag 0x0012000B

Remarks

The PR_DISCLOSURE_OF_RECIPIENTS property corresponds to the X.400 attribute
MH_T_DISCLOSURE_ALLOWED.

 PR_DISCRETE_VALUES

The PR_DISCRETE_VALUES property contains TRUE if a nondelivery report applies only to discrete
members of a distribution list rather than the entire list.

Usage

Optional on message recipient subobjects used on nondelivery reports.

Details

Identifier 0x0E0E; property type PT_BOOLEAN; property tag 0x0E0E000B

Remarks

The PR_DISCRETE_VALUES property is used within a nondelivery report when the message could
not be delivered to one or more members of a distribution list. Its purpose is to limit retransmission
attempts to only those individual members and not the distribution list as a whole.

The recipient table of a nondelivery report contains entries for all recipients the message could not be
delivered to, and also for the distribution lists, if any, to which they belong. The transport provider
should set PR_DISCRETE_VALUES to TRUE for each distribution list entry, and it should copy
PR_DISPLAY_NAME, PR_ENTRYID, and PR_SEARCH_KEY from the distribution list to
PR_ORIGINAL_DISPLAY_NAME, PR_ORIGINAL_ENTRYID, and PR_ORIGINAL_SEARCH_KEY for
each member of that distribution list.

PR_DISCRETE_VALUES should not be set at all for any nondelivery report recipient entry other than a
distribution list.

 PR_DISPLAY_BCC

The PR_DISPLAY_BCC property contains an ASCII list of the display names of any blind carbon copy
(BCC) message recipients, separated by semicolons (;).

Usage

Computed by message stores on message objects.

Details

Identifier 0x0E02; property type PT_TSTRING; property tag 0x0E02001E (0x0E02001F for Unicode)

Remarks

The message store computes the PR_DISPLAY_BCC property on message objects using the
IMessage::ModifyRecipients method. The message store also maintains the property so that it
always reflects the last saved state of a message. The value is synchronized at the time of every call to
the IMAPIProp::SaveChanges method.

If a message has no blind carbon copy recipients, the message store should respond to an
IMAPIProp::GetProps call with a return value of S_OK and an empty string for PR_DISPLAY_BCC.

Note Semicolons cannot be used within recipient names in MAPI messaging.

PR_DISPLAY_BCC corresponds to the X.400 attribute IM_BLIND_COPY_RECIPIENTS.

 PR_DISPLAY_CC

The PR_DISPLAY_CC property contains an ASCII list of the display names of any carbon copy (CC)
message recipients, separated by semicolons (;).

Usage

Computed by message stores on message objects.

Details

Identifier 0x0E03; property type PT_TSTRING; property tag 0x0E03001E (0x0E03001F for Unicode)

Remarks

The message store computes the PR_DISPLAY_CC property on message objects using the
IMessage::ModifyRecipients method. The message store also maintains the property so that it
always reflects the last saved state of a message. The value is synchronized at the time of every call to
IMAPIProp::SaveChanges.

If a message has no carbon copy recipients, the message store should respond to an
IMAPIProp::GetProps call with a return value of S_OK and an empty string for PR_DISPLAY_CC.

Note Semicolons cannot be used within recipient names in MAPI messaging.

PR_DISPLAY_CC corresponds to the X.400 attribute IM_COPY_RECIPIENTS.

 PR_DISPLAY_NAME

The PR_DISPLAY_NAME property contains the display name for a given MAPI object.

Usage

Required on folder, messaging user, provider, and status objects.

Details

Identifier 0x3001; property type PT_TSTRING; property tag 0x3001001E (0x3001001F for Unicode)

Remarks

Folders require sibling subfolders to have unique display names. For example, if a folder contains two
subfolders, the two subfolders cannot use the same value for their PR_DISPLAY_NAME properties.
This restriction does not apply to other containers, such as address books and distribution lists.

PR_DISPLAY_NAME is one of the base address properties for all messaging users. For more
information on the base address properties, see About Base Address Properties.

Service providers should set the value of PR_DISPLAY_NAME so that it contains both the provider
type and configuration information. The additional information helps to distinguish between instances of
providers of the same type. Unconfigured providers should use a string that names the provider.
Configured providers should use the same string followed by a distinguishing string in parentheses. For
example, an unconfigured message store provider might set PR_DISPLAY_NAME to Personal
Information Store, while the configured version could set PR_DISPLAY_NAME to Personal Information
Store (April 16, 1996).

For status objects, this property contains the name of the component that can be displayed by the user
interface.

Note Semicolons cannot be used within recipient names in MAPI messaging.

PR_DISPLAY_NAME corresponds to the X.400 attribute IM_FREE_FORM_NAME.

See Also

PR_TRANSMITTABLE_DISPLAY_NAME property

 PR_DISPLAY_TO

The PR_DISPLAY_TO property contains an ASCII list of the display names of the primary (To)
message recipients, separated by semicolons (;).

Usage

Computed by message stores on message objects.

Details

Identifier 0x0E04; property type PT_TSTRING; property tag 0x0E04001E (0x0E04001F for Unicode)

Remarks

The message store computes the PR_DISPLAY_TO property on message objects using the
IMessage::ModifyRecipients method. The message store also maintains the property so that it
always reflects the last saved state of a message. The value is synchronized at the time of every call to
the IMAPIProp::SaveChanges method.

If a message has no primary recipients, the message store should respond to an
IMAPIProp::GetProps call with a return value of S_OK and an empty string for PR_DISPLAY_TO.

Note Semicolons cannot be used within recipient names in MAPI messaging.

PR_DISPLAY_TO corresponds to the X.400 attribute IM_PRIMARY_RECIPIENTS.

 PR_DISPLAY_TYPE

The PR_DISPLAY_TYPE property contains a value used to associate an icon with a particular row of a
table.

Usage

Required as a column entry in address book contents tables, address book hierarchy tables, folder
hierarchy tables, and one-off tables.

Details

Identifier 0x3900; property type PT_LONG; property tag 0x39000003

Remarks

The PR_DISPLAY_TYPE property contains a long integer that facilitates special treatment of the table
entry based on its type. This special treatment typically consists of displaying an icon, or other display
element, associated with the display type.

PR_DISPLAY_TYPE is not used in folder contents tables. Client applications should use a message's
PR_MESSAGE_CLASS property and appropriate IMAPIFormInfo interface to get the PR_ICON and
PR_MINI_ICON properties for that message.

PR_DISPLAY_TYPE can have exactly one of the following values:

Value Description
DT_AGENT An automated agent, such as

Quote-Of-The-Day or a weather
chart display.

DT_DISTLIST A distribution list.
DT_FOLDER Display default folder icon

adjacent to folder.
DT_FOLDER_LINK Display default folder link icon

adjacent to folder rather than the
default folder icon.

DT_FOLDER_SPECIAL Display icon for a folder with an
application-specific distinction,
such as a special type of public
folder.

DT_FORUM A forum, such as a bulletin
board service or a public or
shared folder.

DT_GLOBAL A global address book.
DT_LOCAL A local address book that you

share with a small workgroup.
DT_MAILUSER A typical messaging user.
DT_MODIFIABLE Modifiable; the container should

be denoted as modifiable in the
user interface.

DT_NOT_SPECIFIC Does not match any of the other
settings.

DT_ORGANIZATION A special alias defined for a
large group, such as helpdesk,
accounting, or blood-drive

coordinator.
DT_PRIVATE_DISTLIST A private, personally

administered distribution list.
DT_REMOTE_MAILUSER A recipient known to be from a

foreign or remote messaging
system.

DT_WAN A wide area network address
book.

Address book contents tables use the DT_AGENT, DT_DISTLIST, DT_FORUM, DT_MAILUSER,
DT_ORGANIZATION, DT_PRIVATE_DISTLIST, and DT_REMOTE_MAILUSER values. Address book
hierarchy tables and one-off tables use the DT_GLOBAL, DT_LOCAL, DT_MODIFIABLE,
DT_NOT_SPECIFIC, and DT_WAN values. Folder hierarchy tables use the DT_FOLDER,
DT_FOLDER_LINK, and DT_FOLDER_SPECIAL values.

If PR_DISPLAY_TYPE is not set, the client should assume the default type appropriate for the table,
typically DT_FOLDER, DT_LOCAL, or DT_MAILUSER.

Note All values not documented are reserved for MAPI. Client applications must not define any new
values and must be prepared to deal with an undocumented value.

 PR_DL_EXPANSION_HISTORY

The PR_DL_EXPANSION_HISTORY property contains a history showing how a distribution list has
been expanded during message transmission.

Usage

Optional on message objects.

Details

Identifier 0x0013; property type PT_BINARY; property tag 0x00130102

Remarks

The PR_DL_EXPANSION_HISTORY property is available to receiving client applications if the
transport provider has set it. It is also available to the sending client if the message content is returned
with a report.

PR_DL_EXPANSION_HISTORY corresponds to the X.400 attribute MH_T_EXPANSION_HISTORY.

See Also

PR_DL_EXPANSION_PROHIBITED property

 PR_DL_EXPANSION_PROHIBITED

The PR_DL_EXPANSION_PROHIBITED property contains TRUE if a message transfer agent (MTA) is
prohibited from expanding distribution lists.

Usage

Optional on message objects.

Details

Identifier 0x0014; property type PT_BOOLEAN; property tag 0x0014000B

Remarks

The PR_DL_EXPANSION_PROHIBITED property corresponds to the X.400 attribute
MH_T_EXPANSION_PROHIBITED.

See Also

PR_DL_EXPANSION_HISTORY property

 PR_EMAIL_ADDRESS

The PR_EMAIL_ADDRESS property contains the messaging user's e-mail address.

Usage

Required on distribution list and messaging user objects.

Details

Identifier 0x3003; property type PT_TSTRING; property tag 0x3003001E (0x3003001F for Unicode)

Remarks

The PR_EMAIL_ADDRESS property is one of the base address properties for all messaging users. It
is a null-terminated string whose format has meaning only for the underlying messaging system.

PR_EMAIL_ADDRESS is used in conjunction with the PR_ADDRTYPE and PR_MESSAGE_CLASS
properties in addressing messages. The string format is qualified by PR_ADDRTYPE.

Valid PR_EMAIL_ADDRESS examples include:

network/postoffice/user
Bruce@XYZZY.COM
/c=US/a=att/p=Microsoft/o=Finance/ou=Purchasing/s=Furthur/g=Joe

For more information on the base address properties, see About Base Address Properties. For more
information on address types, see Address Types.

 PR_END_DATE

The PR_END_DATE property contains the ending date and time of an appointment as managed by a
scheduling application.

Usage

Required on message objects used in scheduling.

Details

Identifier 0x0061; property type PT_SYSTIME; property tag 0x00610040

Remarks

Scheduling applications should set both the PR_START_DATE and PR_END_DATE properties when
sending meeting requests.

 PR_ENTRYID

The PR_ENTRYID property contains a MAPI entry identifier used to open and edit properties of a
particular MAPI object.

Usage

Required on address book container, distribution list, folder, messaging user, message, message store,
and status objects.

Details

Identifier 0x0FFF; property type PT_BINARY; property tag 0x0FFF0102

Remarks

The PR_ENTRYID property identifies an object for OpenEntry to instantiate and provides access to all
of its properties through the appropriate derived interface of IMAPIProp.

PR_ENTRYID is one of the base address properties for all messaging users. For more information on
the base address properties, see About Base Address Properties.

PR_ENTRYID can contain either a long-term or a short-term identifier. Short-term identifiers are easier
and faster to construct, but are limited in their scope and duration, typically to the current session and
workstation. They are commonly used for objects of a temporary nature, such as table rows or dialog
box entries, and then abandoned. Long-term identifiers are used for objects of a more wide-ranging
and long-lasting nature.

PR_ENTRYID is always available through the IMAPIProp::GetProps method following the first call to
the IMAPIProp::SaveChanges method. Some service providers can make it available immediately
after instantiation. The provider must always return a long-term entry identifier from GetProps.
Therefore, to convert a short-term identifier to long-term, simply open the object and get its
PR_ENTRYID through GetProps.

The following table summarizes important differences among PR_ENTRYID, PR_RECORD_KEY, and
PR_SEARCH_KEY.

Characteristic PR_ENTRYID PR_RECORD_K
EY

PR_SEARCH_
KEY

Required on
attachment
objects

No Yes No

Required on
folder objects

Yes Yes No

Required on
message store
objects

Yes Yes No

Required on
status objects

Yes No No

Created by
client

No No Yes

Available
before call to
SaveChanges

Maybe Maybe Messages ¾
Yes
Others ¾
Maybe

Changed in a
copy operation

Yes Yes No

Changeable by
client after a
copy

No No Yes

Unique within Entire world Provider
instance

Entire world

Binary
comparable
(as with
memcmp)

No ¾ use
IMAPISupport:
:
CompareEntryI
Ds

Yes Yes

See Also

ENTRYID structure , NOTIFICATION structure , PR_STORE_ENTRYID property

 PR_EXPIRY_TIME

The PR_EXPIRY_TIME property contains the date and time at which the messaging system can
invalidate the content of a message.

Usage

Optional on message objects.

Details

Identifier 0x0015; property type PT_SYSTIME; property tag 0x00150040

Remarks

The PR_EXPIRY_TIME property is used to direct the messaging system in handling delivered
interpersonal messages.

PR_EXPIRY_TIME corresponds to the X.400 attribute IM_EXPIRY_TIME.

 PR_EXPLICIT_CONVERSION

The PR_EXPLICIT_CONVERSION property indicates that a message sender has requested a
message content conversion for a particular recipient.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0C01; property type PT_LONG; property tag 0x0C010003

Remarks

The PR_EXPLICIT_CONVERSION property corresponds to the X.400 attribute
MH_T_EXPLICIT_CONVERSION.

 PR_FILTERING_HOOKS

The PR_FILTERING_HOOKS property was originally meant to contain hook identifiers.

Usage

Never used.

Details

Identifier 0x3D08; property type PT_BINARY; property tag 0x3D080102

Remarks

Do not use this property. It is not supported in MAPI 1.0.

 PR_FINDER_ENTRYID

The PR_FINDER_ENTRYID property contains the entry identifier for the folder in which search results
are typically created.

Usage

Required on message store objects.

Details

Identifier 0x35E7; property type PT_BINARY; property tag 0x35E70102

Remarks

The entry identifier contained in the PR_FINDER_ENTRYID property has the same format as the
ENTRYID structure .

See Also

PR_ENTRYID property

 PR_FOLDER_ASSOCIATED_CONTENTS

The PR_FOLDER_ASSOCIATED_CONTENTS property contains an embedded contents table object
that provides information about the associated contents table.

Usage

Required on folder objects.

Details

Identifier 0x3610; property type PT_OBJECT; property tag 0x3610000D

Remarks

The associated contents table represents a subfolder that does not appear in the standard contents
table. It contains the folder's associated, or hidden, messages.

The PR_FOLDER_ASSOCIATED_CONTENTS property can be excluded in IMAPIProp::CopyTo
operations or included in IMAPIProp::CopyProps operations. As a property of type PT_OBJECT, it
cannot be successfully retrieved by the IMAPIProp::GetProps method; its contents should be
accessed by the IMAPIProp::OpenProperty method, requesting the IID_IMAPITable interface
identifier. Service providers must report it to the IMAPIProp::GetPropList method if it is set, but may
optionally report it or not if it is not set.

To retrieve table contents, client applications should call the IMAPIContainer::GetContentsTable
method. For more information on folder contents tables, see About Folder Contents Tables.

The PR_CONTAINER_CONTENTS, PR_CONTAINER_HIERARCHY, and
PR_FOLDER_ASSOCIATED_CONTENTS properties are similar in usage. Several MAPI properties
provide access to tables:

Property Table
PR_CONTAINER_CONTENTS Contents table
PR_CONTAINER_HIERARCHY Hierarchy table
PR_FOLDER_ASSOCIATED_CONTE
NTS

Associated contents table

PR_MESSAGE_ATTACHMENTS Attachment table
PR_MESSAGE_RECIPIENTS Recipient table

See Also

PR_ASSOC_CONTENT_COUNT property

 PR_FOLDER_TYPE

The PR_FOLDER_TYPE property contains a constant that indicates the folder type.

Usage

Required on folder objects.

Details

Identifier 0x3601; property type PT_LONG; property tag 0x36010003

Remarks

The PR_FOLDER_TYPE property can have exactly one of the following values:

Value Description
FOLDER_GENERIC A generic folder that contains

messages and other folders.
FOLDER_ROOT The root folder of the folder

hierarchy table, that is, a folder
that has no parent folder.

FOLDER_SEARCH A folder containing the results of
a search, in the form of links to
messages that meet search
criteria.

The root of a message store should not be confused with the root of the interpersonal message (IPM)
subtree in that store. The store's root folder, which has no parent, is obtained by calling the
IMsgStore::OpenEntry method with a null entry identifier. The IPM subtree's root folder, which does
have a parent, is obtained by using the value of the PR_IPM_SUBTREE_ENTRYID property for the
OpenEntry call.

MAPI allows only one root folder per message store. This folder contains messages and other folders.
The root folder's PR_PARENT_ENTRYID property contains the folder's own entry identifier.

The information in a search-results folder is mainly stored in its contents table, which contains the
same columns as a typical contents table, as well as two extra columns identifying the folder in which
each message was found: PR_PARENT_DISPLAY (display name, required) and
PR_PARENT_ENTRYID (entry identifier, optional).

For more information on folder types, see About Types of Folders.

 PR_FORM_CATEGORY

The PR_FORM_CATEGORY property contains the category of a form.

Usage

Optional on form objects.

Details

Identifier 0x3309; property type PT_TSTRING; property tag 0x3309001E (0x3309001F for Unicode)

Remarks

The category name is defined by a client application in a way that is appropriate to the application.

 PR_FORM_CATEGORY_SUB

The PR_FORM_CATEGORY_SUB property contains the subcategory of a form, as defined by a client
application.

Usage

Optional on form objects.

Details

Identifier 0x3310; property type PT_TSTRING; property tag 0x3310001E (0x3310001F for Unicode)

Remarks

The PR_FORM_CATEGORY_SUB property is subordinate to the main form category provided in the
PR_FORM_CATEGORY property.

 PR_FORM_CLSID

The PR_FORM_CLSID property contains the 128-bit OLE globally unique identifier (GUID) of a form.

Usage

Required on form objects.

Details

Identifier 0x3307; property type PT_CLSID; property tag 0x33070048

Remarks

The MAPIUID structure contains the definition of the unique identifier.

 PR_FORM_CONTACT_NAME

The PR_FORM_CONTACT_NAME property contains the name of a contact for information concerning
a form.

Usage

Optional on form objects.

Details

Identifier 0x3308; property type PT_TSTRING; property tag 0x3308001E (0x3308001F for Unicode)

Remarks

The contact typically contains the name of a person or an alias that is responsible for maintaining the
form.

 PR_FORM_DESIGNER_GUID

The PR_FORM_DESIGNER_GUID property contains the unique identifier for the object used to design
a form.

Usage

Optional on form objects.

Details

Identifier 0x3314; property type PT_CLSID; property tag 0x33140048

Remarks

The PR_FORM_DESIGNER_GUID property usually contains the globally unique identifier of the
design program used to create the form. This property can be empty.

The MAPIUID structure contains the definition of the unique identifier.

 PR_FORM_DESIGNER_NAME

The PR_FORM_DESIGNER_NAME property contains the display name for the object used to design
the form.

Usage

Optional on form objects.

Details

Identifier 0x3313; property type PT_TSTRING; property tag 0x3313001E (0x3313001F for Unicode)

Remarks

The PR_FORM_DESIGNER_GUID property contains the unique identifier for the form designer object.

 PR_FORM_HIDDEN

The PR_FORM_HIDDEN property contains TRUE if a form is to be suppressed from display by
compose menus and dialog boxes.

Usage

Optional on form objects.

Details

Identifier 0x3312; property type PT_BOOLEAN; property tag 0x3312000B

Remarks

Form-related properties are read-only.

 PR_FORM_HOST_MAP

The PR_FORM_HOST_MAP property contains a host map of available forms.

Usage

Optional on address book container objects.

Details

Identifier 0x3311; property type PT_LONG; property tag 0x33110003

Remarks

A client application should update the PR_FORM_HOST_MAP property, along with the
PR_DISPLAY_NAME property, when changing the underlying structure in the IMAPIFormProp
interface.

 PR_FORM_MESSAGE_BEHAVIOR

The PR_FORM_MESSAGE_BEHAVIOR property contains TRUE if a message should be composed in
the current folder.

Usage

Optional on form objects.

Details

Identifier 0x3315; property type PT_BOOLEAN; property tag 0x3315000B

Remarks

A value of FALSE indicates that the message should be composed as any other interpersonal
message, that is, in the Outbox folder.

 PR_FORM_VERSION

The PR_FORM_VERSION property contains the version of a form.

Usage

Optional on form objects.

Details

Identifier 0x3306; property type PT_TSTRING; property tag 0x3306001E (0x3306001F for Unicode)

Remarks

The form version is a string indicating what design version is currently in effect for the form. The
version is defined and maintained by the form's designer and is not necessarily related to any MAPI
component version.

 PR_GENERATION

The PR_GENERATION property contains a generational abbreviation that follows the full name of the
recipient.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A05; property type PT_TSTRING; property tag 0x3A05001E (0x3A05001F for Unicode)

Remarks

The PR_GENERATION property is one of the properties that provide identification and access
information about a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

Common PR_GENERATION values include Jr., Sr., and III.

PR_GENERATION corresponds to the X.400 attribute MH_T_GENERATION.

 PR_GIVEN_NAME

The PR_GIVEN_NAME property contains the first name of the recipient.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A06; property type PT_TSTRING; property tag 0x3A06001E (0x3A06001F for Unicode)

Remarks

The PR_GIVEN_NAME property is one of the properties that provide identification and access
information about a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

PR_GIVEN_NAME corresponds to the X.400 attribute MH_T_GIVEN_NAME.

 PR_GOVERNMENT_ID_NUMBER

The PR_GOVERNMENT_ID_NUMBER property contains a government identifier for the recipient.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A07; property type PT_TSTRING; property tag 0x3A07001E (0x3A07001F for Unicode)

Remarks

The PR_GOVERNMENT_ID_NUMBER property is one of the properties that provide identification and
access information about a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

PR_GOVERNMENT_ID_NUMBER is commonly set to a passport number, citizen number, or taxpayer
number such as a Social Security number.

 PR_HASATTACH

The PR_HASATTACH property contains TRUE if a message contains at least one attachment.

Usage

Required on message objects.

Details

Identifier 0x0E1B; property type PT_BOOLEAN; property tag 0x0E1B000B

Remarks

The message store copies the PR_HASATTACH property from the MSGFLAG_HASATTACH flag of
the PR_MESSAGE_FLAGS property. A client application can then use PR_HASATTACH to sort on
message attachments in a message viewer.

The value of PR_HASATTACH is updated with the IMAPIProp::SaveChanges method.

 PR_HEADER_FOLDER_ENTRYID

The PR_HEADER_FOLDER_ENTRYID property was originally meant to contain the entry identifier
that a remote transport provider furnishes for its header folder.

Usage

Never used.

Details

Identifier 0x3E0A; property type PT_BINARY; property tag 0x3E0A0102

Remarks

Do not use this property. It is not supported in MAPI 1.0.

For information on obtaining the header folder for the purpose of viewing remote message headers,
see Implementing the IUnknown Interface for Folder Objects for Remote Transports .

See Also

PR_ENTRYID property, PR_MSG_STATUS property

 PR_HOME_FAX_NUMBER

The PR_HOME_FAX_NUMBER property contains the telephone number of the recipient's home fax
machine.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A25; property type PT_TSTRING; property tag 0x3A25001E (0x3A25001F for Unicode)

Remarks

The PR_HOME_FAX_NUMBER property is one of the properties that provide identification and access
information about a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_HOME_TELEPHONE_NUMBER

The PR_HOME_TELEPHONE_NUMBER property contains the primary telephone number of the
recipient's home.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A09; property type PT_TSTRING; property tag 0x3A09001E (0x3A09001F for Unicode)

Remarks

The PR_HOME_TELEPHONE_NUMBER property is one of the properties that provide identification
and access for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

See Also

PR_HOME2_TELEPHONE_NUMBER property

 PR_HOME2_TELEPHONE_NUMBER

The PR_HOME2_TELEPHONE_NUMBER property contains a secondary telephone number at the
recipient's home.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A2F; property type PT_TSTRING; property tag 0x3A2F001E (0x3A2F001F for Unicode)

Remarks

The PR_HOME2_TELEPHONE_NUMBER property is one of the properties that provide identification
and access information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

See Also

PR_HOME_TELEPHONE_NUMBER property

 PR_ICON

The PR_ICON property contains a bitmap of a full size icon for a form.

Usage

Required on form objects.

Details

Identifier 0x0FFD; property type PT_BINARY; property tag 0x0FFD0102

Remarks

The PR_ICON property contains a 32 ´ 32 pixel image of an icon, the same as the contents of a .ICO
file. This property is normally copied from the .ICO file specified in the LargeIcon line of the appropriate
[Description] section of the form configuration file.

See Also

PR_MINI_ICON property

 PR_IDENTITY_DISPLAY

The PR_IDENTITY_DISPLAY property contains the display name for a service provider's identity as
defined within a messaging system.

Usage

Optional as a column entry in status tables.

Details

Identifier 0x3E00; property type PT_TSTRING; property tag 0x3E00001E (0x3E00001F for Unicode)

Remarks

The PR_IDENTITY_DISPLAY property does not appear as a property on any object but only as a
column in a status table. It is part of the identity of the service provider exposing the status table row.
The provider's identity typically refers to its account on the server, but can refer to any representation
the provider defines within the messaging system.

A service provider furnishing any of the identity properties should furnish all of them. Providers that
belong to the same message service should expose the same values for the identity properties.

See Also

IMAPISession::QueryIdentity method

 PR_IDENTITY_ENTRYID

The PR_IDENTITY_ENTRYID property contains the entry identifier for a service provider's identity as
defined within a messaging system.

Usage

Optional as a column entry in status tables.

Details

Identifier 0x3E01; property type PT_BINARY; property tag 0x3E010102

Remarks

The PR_IDENTITY_ENTRYID property does not appear as a property on any object but only as a
column in a status table. It is part of the identity of the service provider exposing the status table row.
The provider's identity typically refers to its account on the server, but can refer to any representation
the provider defines within the messaging system.

PR_IDENTITY_ENTRYID is commonly set to the appropriate address book entry identifier.

A service provider furnishing any of the identity properties should furnish all of them. Providers that
belong to the same message service should expose the same values for the identity properties.

See Also

IMAPISession::QueryIdentity method

 PR_IDENTITY_SEARCH_KEY

The PR_IDENTITY_SEARCH_KEY property contains the search key for a service provider's identity as
defined within a messaging system.

Usage

Optional as a column entry in status tables.

Details

Identifier 0x3E05; property type PT_BINARY; property tag 0x3E050102

Remarks

The PR_IDENTITY_SEARCH_KEY property does not appear as a property on any object but only as a
column in a status table. It is part of the identity of the service provider exposing the status table row.
The provider's identity typically refers to its account on the server, but can refer to any representation
the provider defines within the messaging system.

A service provider furnishing any of the identity properties should furnish all of them. Providers that
belong to the same message service should expose the same values for the identity properties.

See Also

IMAPISession::QueryIdentity method

 PR_IMPLICIT_CONVERSION_PROHIBITED

The PR_IMPLICIT_CONVERSION_PROHIBITED property contains TRUE if a message transfer agent
(MTA) is prohibited from making implicit message text conversions.

Usage

Optional on message objects.

Details

Identifier 0x0016; property type PT_BOOLEAN; property tag 0x0016000B

Remarks

If the PR_IMPLICIT_CONVERSION_PROHIBITED property is TRUE, the messaging system must not
perform any content conversion on the message unless it is explicitly requested on a per-recipient
basis with with PR_EXPLICIT_CONVERSION property.

 PR_IMPORTANCE

The PR_IMPORTANCE property contains a value indicating the message sender's opinion of the
importance of a message.

Usage

Optional on message objects.

Details

Identifier 0x0017; property type PT_LONG; property tag 0x00170003

Remarks

The PR_IMPORTANCE and PR_PRIORITY properties should not be confused. Importance indicates a
value to users, while priority indicates the order or speed at which the message should be sent by the
messaging system software. Higher priority usually indicates a higher cost. Higher importance usually
is associated with a different display by the user interface.

PR_IMPORTANCE can have exactly one of the following values:

Value Description
IMPORTANCE_LOW The message has low

importance.
IMPORTANCE_HIGH The message has high

importance.
IMPORTANCE_NORMAL The message has normal

importance.

PR_IMPORTANCE corresponds to the X.400 attribute IM_IMPORTANCE.

 PR_INCOMPLETE_COPY

The PR_INCOMPLETE_COPY property contains TRUE if this message is an incomplete copy of
another message.

Usage

Optional on message objects.

Details

Identifier 0x0035; property type PT_BOOLEAN; property tag 0x0035000B

Remarks

The PR_INCOMPLETE_COPY property corresponds to the X.400 attribute IM_INCOMPLETE_COPY.

 PR_INITIAL_DETAILS_PANE

The PR_INITIAL_DETAILS_PANE property contains the property page in a property sheet to be
displayed first.

Usage

Required as a column entry in display tables.

Details

Identifier 0x3F08; property type PT_LONG; property tag 0x3F080003

Remarks

The PR_INITIAL_DETAILS_PANE property contains the zero-based index of the initial foreground
pane that appears when a client application displays a details table for an object that exposes property
sheets. The value indicates which page should be displayed first. This property appears in an object
from which a display table can be obtained.

See Also

IMAPISupport::DoConfigPropSheet method

 PR_INITIALS

The PR_INITIALS property contains the initials for parts of the full name of the recipient.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A0A; property type PT_TSTRING; property tag 0x3A0A001E (0x3A0A001F for Unicode)

Remarks

The PR_INITIALS property is one of the properties that provide identification and access information
for a recipient. These properties are defined by the recipient and the recipient's organization. For more
information on this group of properties, see About Messaging User Objects.

Examples of PR_INITIALS values are AJT, GMcD, JL, RCKJr, and WMSIII.

PR_INITIALS corresponds to the X.400 attribute MH_T_INITIALS.

 PR_INSTANCE_KEY

The PR_INSTANCE_KEY property contains a value that uniquely identifies a row in a table.

Usage

Required as a column entry in all tables.

Details

Identifier 0x0FF6; property type PT_BINARY; property tag 0x0FF60102

Remarks

When a multivalued property is expanded in a table, a row is created for each instance of the
expansion, that is, for each value of that property. Each row has a unique value for the
PR_INSTANCE_KEY property, while all the other columns retain their original values throughout the
expansion.

Use the PR_ENTRYID or PR_RECORD_KEY properties to correlate all the rows of an expansion. Use
PR_INSTANCE_KEY to locate a particular instance within the expansion.

In a categorized sort of a table, rows not corresponding to actual data can be added to the result of the
sort. Each such row, like all rows in all tables, has its own unique instance key.

PR_INSTANCE_KEY is also used in table event notifications. The propIndex and propPrior members
of the TABLE_NOTIFICATION structure are SPropValue structures holding PR_INSTANCE_KEY
values. The propIndex member indicates the row that was added or changed. The propPrior member
indicates the row before the added or changed row (PR_NULL indicates a change to the first row).

This value is not copied as part of the display table.

PR_INSTANCE_KEY is a MAPIUID structure. All instance keys can be directly compared as binary
values.

 PR_IPM_ID

The PR_IPM_ID property was originally meant to contain an X.400 identifier of an interpersonal
message.

Usage

Never used.

Details

Identifier 0x0018; property type PT_BINARY; property tag 0x00180102

Remarks

Do not use this property. It is not supported in MAPI 1.0.

 PR_IPM_OUTBOX_ENTRYID

The PR_IPM_OUTBOX_ENTRYID property contains the entry identifier of the standard interpersonal
message (IPM) Outbox folder.

Usage

Optional on message store objects.

Details

Identifier 0x35E2; property type PT_BINARY; property tag 0x35E20102

Remarks

Outbound messages are usually created in the Outbox folder. Interpersonal messages should be
placed in this folder for submission.

See Also

PR_ENTRYID property

 PR_IPM_OUTBOX_SEARCH_KEY

The PR_IPM_OUTBOX_SEARCH_KEY property was originally meant to contain the search key of the
standard Outbox folder.

Usage

Never used.

Details

Identifier 0x3411; property type PT_BINARY; property tag 0x34110102

Remarks

Do not use this property. It is not supported in MAPI 1.0.

 PR_IPM_RETURN_REQUESTED

The PR_IPM_RETURN_REQUESTED property contains TRUE if this message should be returned
with a report.

Usage

Optional on message objects.

Details

Identifier 0x0C02; property type PT_BOOLEAN; property tag 0x0C02000B

Remarks

The PR_IPM_RETURN_REQUESTED property corresponds to the X.400 attribute
IM_IPM_RETURN_REQUESTED.

 PR_IPM_SENTMAIL_ENTRYID

The PR_IPM_SENTMAIL_ENTRYID property contains the entry identifier of the standard interpersonal
message (IPM) Sent Items folder.

Usage

Optional on message store objects.

Details

Identifier 0x35E4; property type PT_BINARY; property tag 0x35E40102

Remarks

After being sent, interpersonal messages are usually placed in the Sent Items folder. A client can use
the PR_IPM_SENTMAIL_ENTRYID property to set the PR_SENTMAIL_ENTRYID property on a
submitted message.

See Also

PR_ENTRYID property

 PR_IPM_SENTMAIL_SEARCH_KEY

The PR_IPM_SENTMAIL_SEARCH_KEY property was originally meant to contain the search key of
the standard Sent Items folder.

Usage

Never used.

Details

Identifier 0x3413; property type PT_BINARY; property tag 0x34130102

Remarks

Do not use this property. It is not supported in MAPI 1.0.

 PR_IPM_SUBTREE_ENTRYID

The PR_IPM_SUBTREE_ENTRYID property contains the entry identifier of the root of the
interpersonal message (IPM) folder subtree in the message store's folder tree.

Usage

Required on message store objects.

Details

Identifier 0x35E0; property type PT_BINARY; property tag 0x35E00102

Remarks

The PR_IPM_SUBTREE_ENTRYID property represents the root of the IPM hierarchy. IPM clients
should not display any folders that are not subfolders of the folder represented by
PR_IPM_SUBTREE_ENTRYID.

See Also

PR_ENTRYID property

 PR_IPM_SUBTREE_SEARCH_KEY

The PR_IPM_SUBTREE_SEARCH_KEY property was originally meant to contain the search key of
the interpersonal message (IPM) root folder.

Usage

Never used.

Details

Identifier 0x3410; property type PT_BINARY; property tag 0x34100102

Remarks

Do not use this property. It is not supported in MAPI 1.0.

 PR_IPM_WASTEBASKET_ENTRYID

The PR_IPM_WASTEBASKET_ENTRYID property contains the entry identifier of the standard
interpersonal message (IPM) Deleted Items folder.

Usage

Required on message store objects.

Details

Identifier 0x35E3; property type PT_BINARY; property tag 0x35E30102

Remarks

A client application should move deleted interpersonal messages to the Deleted Items folder. If the
message is already in this folder, or if the PR_IPM_WASTEBASKET_ENTRYID property is not
supported, the client should delete the message.

See Also

PR_ENTRYID property

 PR_IPM_WASTEBASKET_SEARCH_KEY

The PR_IPM_WASTEBASKET_SEARCH_KEY property was originally meant to contain the search
key of the standard Deleted Items folder.

Usage

Never used.

Details

Identifier 0x3412; property type PT_BINARY; property tag 0x34120102

Remarks

Do not use this property. It is not supported in MAPI 1.0.

 PR_ISDN_NUMBER

The PR_ISDN_NUMBER property contains the recipient's ISDN-capable telephone number.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A2D; property type PT_STRING; property tag 0x3A2D001E

Remarks

The PR_ISDN_NUMBER property is one of the properties that provide identification and access
information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_KEYWORD

The PR_KEYWORD property contains a keyword identifying the recipient to the recipient's system
administrator.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A0B; property type PT_TSTRING; property tag 0x3A0B001E (0x3A0B001F for Unicode)

Remarks

The PR_KEYWORD property is one of the properties that provide identification and access information
for a recipient. These properties are defined by the recipient and the recipient's organization. For more
information on this group of properties, see About Messaging User Objects.

The contents of the keyword string property are defined based on the needs of the recipient's
organization.

 PR_LANGUAGE

The PR_LANGUAGE property contains a value indicating the language in which the messaging user is
writing messages.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A0C; property type PT_TSTRING; property tag 0x3A0C001E (0x3A0C001F for Unicode)

Remarks

The string contains a single two-character country code.

See Also

PR_LANGUAGES property

 PR_LANGUAGES

The PR_LANGUAGES property contains an ASCII list of the languages incorporated in a message.

Usage

Optional on message objects.

Details

Identifier 0x002F; property type PT_TSTRING; property tag 0x002F001E (0x002F001F for Unicode)

Remarks

The underlying string is a sequence of two-character country codes separated by commas.

The PR_LANGUAGES property corresponds to the X.400 attribute IM_LANGUAGES.

See Also

PR_LANGUAGE property

 PR_LAST_MODIFICATION_TIME

The PR_LAST_MODIFICATION_TIME property contains the date and time the object or subobject was
last modified.

Usage

Optional on all objects including attachment subobjects.

Details

Identifier 0x3008; property type PT_SYSTIME; property tag 0x30080040

Remarks

The PR_LAST_MODIFICATION_TIME property is initially set to the same value as the
PR_CREATION_TIME property. Attachment subobjects can update it as necessary by copying the last
modification time maintained by the native file system. A client applicatin can set this property until the
first call to the IMAPIProp::SaveChanges method. From then on the provider should update
PR_LAST_MODIFICATION_TIME during every SaveChanges call.

 PR_LATEST_DELIVERY_TIME

The PR_LATEST_DELIVERY_TIME property contains the latest date and time when a message
transfer agent (MTA) should deliver a message.

Usage

Optional on message objects.

Details

Identifier 0x0019; property type PT_SYSTIME; property tag 0x00190040

Remarks

If an MTA cannot deliver a message by the time the PR_LATEST_DELIVERY_TIME property specifies,
it cancels the message without delivery.

PR_LATEST_DELIVERY_TIME corresponds to the X.400 attribute MH_T_LATEST_DELIVERY_TIME.

 PR_LOCALITY

The PR_LOCALITY property contains the name of the recipient's locality, such as the town or city.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A27; property type PT_TSTRING; property tag 0x3A27001E (0x3A27001F for Unicode)

Remarks

The PR_LOCALITY property is one of the properties that provide identification and access information
for a recipient. These properties are defined by the recipient and the recipient's organization. For more
information on this group of properties, see About Messaging User Objects.

 PR_LOCATION

The PR_LOCATION property contains the location of the recipient in a format that is useful to the
recipient's organization.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A0D; property type PT_TSTRING; property tag 0x3A0D001E (0x3A0D001F for Unicode)

Remarks

The PR_LOCATION property is one of the properties that provide identification and access information
for a recipient. These properties are defined by the recipient and the recipient's organization. For more
information on this group of properties, see About Messaging User Objects.

The contents of PR_LOCATION are defined by the needs of the recipient's organization. For example,
some organizations might identify messaging users by specifying the building number and office
number.

 PR_MAIL_PERMISSION

The PR_MAIL_PERMISSION property contains TRUE if the messaging user is allowed to send and
receive messages.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A0E; property type PT_BOOLEAN; property tag 0x3A0E000B

Remarks

If the PR_MAIL_PERMISSION property is not set, MAPI treats it as having a TRUE value.

An example of PR_MAIL_PERMISSION being set to FALSE is a corporate directory where some of the
entries are not e-mail-enabled.

 PR_MAPPING_SIGNATURE

The PR_MAPPING_SIGNATURE property contains the mapping signature for named properties of a
particular MAPI object.

Usage

Optional but recommended on objects having named properties.

Details

Identifier 0x0FF8; property type PT_BINARY; property tag 0x0FF80102

Remarks

A client application should check the PR_MAPPING_SIGNATURE properties of both objects when
copying named properties from one object to another. Use of this property can minimize translating
between copied properties' names and identifiers.

If PR_MAPPING_SIGNATURE does not exist for a given MAPI object, then the object has its own
unique mapping of names and identifiers. In this case the client must call the
IMAPIProp::GetNamesFromIDs method on the source object and then the
IMAPIProp::GetIDsFromNames method on the destination object.

When two objects have the same PR_MAPPING_SIGNATURE value, the client does not need to
translate name to identifier and identifier to name. The client can simply call the IMAPIProp::GetProps
method on the source and then the IMAPIProp::SetProps method on the destination. This is
convenient for clients that perform custom copying of named properties, and for providers
implementing the IMAPIProp::CopyTo and IMAPIProp::CopyProps methods.

For more information on named properties and mapping of names and identifiers, see About Named
Properties.

See Also

MAPINAMEID structure

 PR_MDB_PROVIDER

The PR_MDB_PROVIDER property contains a provider-defined identifier that indicates the type of the
message store.

Usage

Required as a column entry in message store tables.
Computed by message store providers on message store objects.

Details

Identifier 0x3414; property type PT_BINARY; property tag 0x34140102

Remarks

The MAPIUID structure identifies the type of message store. The value is computed by message store
providers on message store objects and is unique to each provider. It is typically used for browsing
through the message store table to find a store of the desired type, such as public folders.

See Also

PR_AB_PROVIDER_ID property

 PR_MESSAGE_ATTACHMENTS

The PR_MESSAGE_ATTACHMENTS property contains a table of restrictions that can be applied to a
contents table to find all messages that contain attachment subobjects meeting the restrictions.

Usage

Optional on message objects.

Details

Identifier 0x0E13; property type PT_OBJECT; property tag 0x0E13000D

Remarks

The PR_MESSAGE_ATTACHMENTS property can be excluded in IMAPIProp::CopyTo operations or
included in IMAPIProp::CopyProps operations. As a property of type PT_OBJECT, it cannot be
successfully retrieved by the IMAPIProp::GetProps method; its contents should be accessed by the
IMAPIProp::OpenProperty method, requesting the IID_IMAPITable interface identifier. Service
providers must report it to the IMAPIProp::GetPropList method if it is set, but may optionally report it
or not if it is not set.

To retrieve table contents, a client application should call the dIMessage::GetAttachmentTable
method. For more information on attachment tables, see About Attachment Tables.

PR_MESSAGE_ATTACHMENTS can be used for subobject restriction by specifying it in the
SSubRestriction structure. This allows the client to limit the view of a container to messages with
attachments meeting given criteria. A message qualifies for viewing if at least one row in its
attachments table, that is, one attachment, satisfies the subobject restriction.

Note

Using subobject restriction results in the equivalent of an IMAPISession::OpenEntry call on every
message in the table. Depending on the client application and the number of messages to be
searched, it can affect performance.

The PR_MESSAGE_ATTACHMENTS and PR_MESSAGE_RECIPIENTS properties are similar in
usage. Several MAPI properties provide access to tables:

Property Table
PR_CONTAINER_CONTENTS Contents table
PR_CONTAINER_HIERARCHY Hierarchy table
PR_FOLDER_ASSOCIATED_CONTE
NTS

Associated contents table

PR_MESSAGE_ATTACHMENTS Attachment table
PR_MESSAGE_RECIPIENTS Recipient table

 PR_MESSAGE_CC_ME

The PR_MESSAGE_CC_ME property contains TRUE if this messaging user is specifically named as a
carbon copy (CC) recipient of this message and is not part of a group.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0058; property type PT_BOOLEAN; property tag 0x0058000B

Remarks

The PR_MESSAGE_CC_ME property provides a convenient way to determine whether the user name
explicitly appears in the recipient list, without examining all entries in the list.

This property also assists automated handling of received messages at the time of receipt. At the
transport provider's option, PR_MESSAGE_CC_ME either contains FALSE or is not included if the
messaging user is not listed directly in the recipient table.

Message delivery resulting from distribution list expansion or a blind carbon copy designation for the
message sender does not cause this property to be set. The user must be explicitly named.

Unsent messages generally do not include PR_MESSAGE_CC_ME. If it is present in messages the
user can access in public message stores, in other users' private stores, in files on disk, or embedded
inside other received messages, it generally contains the value to which it was set the last time the
transport provider delivered it.

 PR_MESSAGE_CLASS

The PR_MESSAGE_CLASS property contains a text string that identifies the sender-defined message
class, such as IPM.Note.

Usage

Required on message objects and as a column entry in folder contents tables.

Details

Identifier 0x001A; property type PT_TSTRING; property tag 0x001A001E (0x001A001F for Unicode)

Remarks

The message class specifies the type of the message. It determines the set of properties defined for
the message, the kind of information the message conveys, and how to handle the message.

The PR_MESSAGE_CLASS property contains ASCII strings concatenated with periods. Each string
represents a level of subclassing. For example, IPM.Note is a subclass of IPM and a superclass of
IPM.Note.Private.

PR_MESSAGE_CLASS must consist of the ASCII characters 32 through 127 and must not end with a
period (ASCII 46). Sort and compare operations must treat it as a case-insensitive string. The
maximum possible length is 255 characters, but in order to allow MAPI room to append qualifiers it is
recommended that the original length be kept under 128 characters. Note that these lengths are given
in characters; on platforms such as Unicode and DBCS (Double-Byte Character Set) the actual byte
count could be higher.

Every message is required to furnish the PR_MESSAGE_CLASS property. Normally the client
application creating a new message sets PR_MESSAGE_CLASS as soon as
IMAPIFolder::CreateMessage returns successfully. But if the property has not been set when the
client calls IMAPIProp::SaveChanges, the message store should set it to IPM.

The PR_MESSAGE_CLASS values defined by MAPI are:

IPM.Note for a standard interpersonal message
REPORT.<subject message class>.DR for a delivery report
REPORT.<subject message class>.NDR for a nondelivery report
REPORT.<subject message class>.IPNRN for a read report
REPORT.<subject message class>.IPNNRN for a nonread report

IPM and IPC are intended to be superclasses only, and a message should have at least one subclass
qualifier appended before being stored or submitted. For more information on message class usage,
see About Message Classes.

A custom message class can define properties in a reserved range for use with that message class
only. For more information, see About Property Identifiers.

See Also

IMAPIForm : IUnknown interface , IMsgStore::GetReceiveFolderTable method

 PR_MESSAGE_DELIVERY_ID

The PR_MESSAGE_DELIVERY_ID property contains a message transfer system (MTS) identifier for a
message delivered to a client application.

Usage

Optional on message objects.

Details

Identifier 0x001B; property type PT_BINARY; property tag 0x001B0102

Remarks

The PR_MESSAGE_DELIVERY_ID property corresponds to the X.400 attribute
MH_T_MTS_IDENTIFIER.

See Also

PR_MESSAGE_SUBMISSION_ID property

 PR_MESSAGE_DELIVERY_TIME

The PR_MESSAGE_DELIVERY_TIME property contains the date and time a message was delivered.

Usage

Required on message objects.

Details

Identifier 0x0E06; property type PT_SYSTIME; property tag 0x0E060040

Remarks

The PR_MESSAGE_DELIVERY_TIME property describes the time the message was stored at the
server, rather than the download time when the transport provider copied the message from the server
to the local store.

PR_MESSAGE_DELIVERY_TIME corresponds to the X.400 attribute MH_T_DELIVERY_TIME.

 PR_MESSAGE_DOWNLOAD_TIME

The PR_MESSAGE_DOWNLOAD_TIME property contains the estimated time to download a message
from a remote server to a local message store.

Usage

Optional as a column entry in header folder contents tables.

Details

Identifier 0x0E18; property type PT_LONG; property tag 0x0E180003

Remarks

The PR_MESSAGE_DOWNLOAD_TIME property is expressed in seconds and represents the best
estimate of the time it would take a remote transport provider to download a given message from its
current location to a message store local to the client viewing the header folder. The remote transport
provider typically calculates PR_MESSAGE_DOWNLOAD_TIME by dividing the value of the
PR_MESSAGE_SIZE property by the speed of the communications link in bytes per second. If the
provider cannot calculate the download time, for example if it does not know the link speed, it should
furnish a PT_ERROR value such as MAPI_E_NO_SUPPORT for this column in the header folder
contents table.

 PR_MESSAGE_FLAGS

The PR_MESSAGE_FLAGS property contains a bitmask of flags indicating the current state of a
message object.

Usage

Required on message objects.

Details

Identifier 0x0E07; property type PT_LONG; property tag 0x0E070003

Remarks

The PR_MESSAGE_FLAGS property is a nontransmittable message property exposed at both the
sending and receiving ends of a transmission, with different values depending upon the client
application or store provider involved. This property exists on a message both before and after
submission, and on all copies of the received message. Although it is not a recipient property, it is
exposed differently to each recipient according to whether it has been read or modified by that
recipient.

One or more of the following flags can be set for PR_MESSAGE_FLAGS:

MSGFLAG_ASSOCIATED
The message is an associated message of a folder. The client or provider has read-only access to
this flag.

MSGFLAG_FROMME
The messaging user sending was the messaging user receiving the message. The client or provider
has read/write access to this flag until the first IMAPIProp::SaveChanges call and read-only
thereafter. This flag is meant to be set by the transport provider.

MSGFLAG_HASATTACH
The message has at least one attachment. The client or provider has read-only access to this flag.

MSGFLAG_NRN_PENDING
A nonread report needs to be sent for the message. The client or provider has read-only access to
this flag.

MSGFLAG_READ
The message has been read. The flag is also set when the client creates the message. The client or
provider has read/write access to this flag until the first IMAPIProp::SaveChanges call and read-
only thereafter, but can call IMessage::SetReadFlag to change it at any time.

MSGFLAG_RESEND
The message includes a request for a resend operation with a nondelivery report. The client or
provider has read/write access to this flag until the first IMAPIProp::SaveChanges call and read-
only thereafter.

MSGFLAG_RN_PENDING
A read report needs to be sent for the message. The client or provider has read-only access to this
flag.

MSGFLAG_SUBMIT
The message is marked for sending as a result of a call to IMessage::SubmitMessage. The client
or provider has read-only access to this flag.

MSGFLAG_UNMODIFIED
The message has not been modified since reception. The client or provider has read-only access to
this flag.

MSGFLAG_UNSENT
The message is still being composed. It is saved, but has not been sent. The client or provider has

read/write access to this flag until the first IMAPIProp::SaveChanges call and read-only thereafter.
Typically, this flag is cleared after the message is sent.

A client or message store provider can check the current state of the message at any time by calling
the IMAPIProp::GetProps method to read the flag values. The client or provider can also call the
IMAPIProp::SetProps method to change any flags that currently have read/write access.

Several of the flags are always read-only. Some are read/write until the first call to the
IMAPIProp::SaveChanges method and thereafter become read-only as far as IMAPIProp::SetProps
is concerned. One of these, MSGFLAG_READ, can be changed later through the
IMessage::SetReadFlag method.

See Also

IMsgStore::AbortSubmit method

 PR_MESSAGE_RECIP_ME

The PR_MESSAGE_RECIP_ME property contains TRUE if this messaging user is specifically named
as a primary (To), carbon copy (CC), or blind carbon copy (BCC) recipient of this message and is not
part of a group.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0059; property type PT_BOOLEAN; property tag 0x0059000B

Remarks

The PR_MESSAGE_RECIP_ME property provides a convenient way to determine whether the user
name explicitly appears in the recipient list, without examining all entries in the list. The value
represents the logical OR operation of the properties PR_MESSAGE_CC_ME and
PR_MESSAGE_TO_ME, and the BCC information (which does not otherwise appear in a property).

PR_MESSAGE_RECIP_ME assists automated handling of received messages at the time of receipt.
At the transport provider's option, this property either contains FALSE or is not included if the
messaging user is not listed directly in the recipient table.

Message delivery resulting from distribution list expansion or a blind carbon copy designation for the
message sender does not cause this property to be set. The user must be explicitly named.

Unsent messages generally do not include PR_MESSAGE_RECIP_ME. If it is present in messages
the user can access in public message stores, in other users' private stores, in files on disk, or
embedded inside other received messages, it generally contains the value to which it was set the last
time the transport provider delivered it.

 PR_MESSAGE_RECIPIENTS

The PR_MESSAGE_RECIPIENTS property contains a table of restrictions that can be applied to a
contents table to find all messages that contain recipient subobjects meeting the restrictions.

Usage

Optional on message objects.

Details

Identifier 0x0E12; property type PT_OBJECT; property tag 0x0E12000D

Remarks

The PR_MESSAGE_RECIPIENTS property can be excluded in IMAPIProp::CopyTo operations or
included in IMAPIProp::CopyProps operations. As a property of type PT_OBJECT, it cannot be
successfully retrieved by the IMAPIProp::GetProps method; its contents should be accessed by the
IMAPIProp::OpenProperty method, requesting the IID_IMAPITable interface identifier. Service
providers must report it to the IMAPIProp::GetPropList method if it is set, but may optionally report it
or not if it is not set.

To retrieve table contents, a client application should call the IMessage::GetRecipientTable method.
For more information on recipient tables, see About Recipient Tables.

PR_MESSAGE_RECIPIENTS can be used for subobject restriction by specifying it in the
SSubRestriction structure. This enables a client to limit the view of a container to messages with
recipients meeting given criteria. A message qualifies for viewing if at least one row in its recipient
table, that is, one recipient satisfies the subobject restriction.

Note Using subobject restriction results is the equivalent of an IMAPISession::OpenEntry call on
every message in the table. Depending on the client application and the number of messages to be
searched, it can affect performance.

The PR_MESSAGE_ATTACHMENTS and PR_MESSAGE_RECIPIENTS properties are similar in
usage. Several MAPI properties provide access to tables:

Property Table
PR_CONTAINER_CONTENTS Contents table
PR_CONTAINER_HIERARCHY Hierarchy table
PR_FOLDER_ASSOCIATED_CONTE
NTS

Associated contents table

PR_MESSAGE_ATTACHMENTS Attachment table
PR_MESSAGE_RECIPIENTS Recipient table

 PR_MESSAGE_SECURITY_LABEL

The PR_MESSAGE_SECURITY_LABEL property contains a security label for a message.

Usage

Optional on message objects.

Details

Identifier 0x001E; property type PT_BINARY; property tag 0x001E0102

Remarks

The PR_MESSAGE_SECURITY_LABEL property provides the basis on which the
PR_MESSAGE_TOKEN property protects a message. Its association with the message content is
guaranteed by the token.

PR_MESSAGE_SECURITY_LABEL corresponds to the X.400 attribute MH_T_SECURITY_LABEL.

See Also

PR_CONTENT_INTEGRITY_CHECK property

 PR_MESSAGE_SIZE

The PR_MESSAGE_SIZE property contains the sum, in bytes, of the sizes of all properties on a
message object.

Usage

Optional but recommended on message objects.

Details

Identifier 0x0E08; property type PT_LONG; property tag 0x0E080003

Remarks

The message size indicates the approximate number of bytes transferred when the message is moved
from one message store to another. Being the sum of the sizes of all properties on the message object,
it is usually considerably greater than the message text alone.

Most message store providers compute the PR_MESSAGE_SIZE property for messages that they
handle. However, some message store providers do not support this property.

See Also

PR_ATTACH_SIZE property

 PR_MESSAGE_SUBMISSION_ID

The PR_MESSAGE_SUBMISSION_ID property contains a message transfer system (MTS) identifier
for the message transfer agent (MTA).

Usage

Optional on message objects.

Details

Identifier 0x0047; property type PT_BINARY; property tag 0x00470102

Remarks

The PR_MESSAGE_SUBMISSION_ID property is returned by the MTA upon successful completion of
message submission. Any future contact with the MTA regarding this message, such as requesting
cancellation, uses the MTS identifier in the PR_MESSAGE_SUBMISSION_ID property.

PR_MESSAGE_SUBMISSION_ID corresponds to the X.400 attribute MH_T_MTS_IDENTIFIER.

See Also

PR_MESSAGE_DELIVERY_ID property

 PR_MESSAGE_TO_ME

The PR_MESSAGE_TO_ME property contains TRUE if this messaging user is specifically named as a
primary (To) recipient of this message and is not part of a group.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0057; property type PT_BOOLEAN; property tag 0x0057000B

Remarks

The PR_MESSAGE_TO_ME property provides a convenient way to determine whether the user name
explicitly appears in the recipient list, without examining all entries in the list.

This property also assists automated handling of received messages at the time of receipt. At the
transport provider's option, PR_MESSAGE_TO_ME either contains FALSE or is not included if the
messaging user is not listed directly in the recipient table.

Message delivery resulting from distribution list expansion or a blind carbon copy designation for the
message sender does not cause this property to be set. The user must be explicitly named.

Unsent messages generally do not include PR_MESSAGE_TO_ME. If it is present in messages the
user can access in public message stores, in other users' private stores, in files on disk, or embedded
inside other received messages, it generally contains the value to which it was set the last time the
transport provider delivered it.

 PR_MESSAGE_TOKEN

The PR_MESSAGE_TOKEN property contains an ASN.1 security token for a message.

Usage

Optional on message objects.

Details

Identifier 0x0C03; property type PT_BINARY; property tag 0x0C030102

Remarks

The PR_MESSAGE_TOKEN property conveys protected security-related information from its originator
to its recipient. In conjunction with PR_MESSAGE_SECURITY_LABEL it guarantees the label's
association with the message content. In conjunction with PR_CONTENT_INTEGRITY_CHECK it
verifies that the message content is unchanged.

PR_MESSAGE_TOKEN corresponds to the X.400 attribute MH_T_TOKEN.

 PR_MHS_COMMON_NAME

The PR_MHS_COMMON_NAME property contains the common name of a messaging user for use in
a message header.

Usage

Optional on message objects.

Details

Identifier 0x3A0F; property type PT_TSTRING; property tag 0x3A0F001E (0x3A0F001F for Unicode)

Remarks

The PR_MHS_COMMON_NAME property corresponds to the X.400 attribute
MH_T_COMMON_NAME.

See Also

PR_DISPLAY_NAME property

 PR_MINI_ICON

The PR_MINI_ICON property contains a bitmap of a half-size icon for a form.

Usage

Required on form objects.

Details

Identifier 0x0FFC; property type PT_BINARY; property tag 0x0FFC0102

Remarks

The PR_MINI_ICON property contains a 32 ´ 32 pixel image of an icon, the same as the contents of
a .ICO file, but only the upper left 16 ´ 16 pixels are considered significant. This property is normally
copied from the .ICO file specified in the SmallIcon line of the appropriate [Description] section of the
form configuration file.

Note Some platforms do not support 16 ´ 16 pixel icons. The 32 ´ 32 format of PR_MINI_ICON is
usable in such a case but client applications should be aware of display inconsistencies.

See Also

PR_ICON property

 PR_MOBILE_TELEPHONE_NUMBER

The PR_MOBILE_TELEPHONE_NUMBER property contains the recipient's cellular telephone number.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A1C; property type PT_TSTRING; property tag 0x3A1C001E (0x3A1C001F for Unicode)

Remarks

The PR_MOBILE_TELEPHONE_NUMBER property is one of the properties that provide identification
and access information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

MAPI also supports the PR_CELLULAR_TELEPHONE_NUMBER property that is synonymous with
PR_MOBILE_TELEPHONE_NUMBER.

 PR_MODIFY_VERSION

The PR_MODIFY_VERSION property was originally meant to contain the message store version
current at the time the message was last modified.

Usage

Never used.

Details

Identifier 0x0E1A; property type PT_I8; property tag 0x0E1A0014

Remarks

Do not use this property. It is not supported in MAPI 1.0.

See Also

PR_CREATION_VERSION property, PR_CURRENT_VERSION property

 PR_MSG_STATUS

The PR_MSG_STATUS property contains a 32-bit bitmask of flags defining the status of a message in
a contents table.

Usage

Required as a column entry in message store contents tables.

Details

Identifier 0x0E17; property type PT_LONG; property tag 0x0E170003

Remarks

A message can exist in a contents table and in one or more search-results tables, and each instance of
the message can have a different status. The PR_MSG_STATUS property should not be considered a
property on a message but a column in a contents table.

A client application can set one or more of the following flags in PR_MSG_STATUS:

MSGSTATUS_DELMARKED
The message has been marked for subsequent deletion.

MSGSTATUS_HIDDEN
The message is to be suppressed from recipients' folder displays.

MSGSTATUS_HIGHLIGHTED
The message is to be highlighted in recipients' folder displays.

MSGSTATUS_REMOTE_DELETE
The message has been marked for deletion at the remote message store without downloading to the
local client.

MSGSTATUS_REMOTE_DOWNLOAD
The message has been marked for downloading from the remote message store to the local client.

MSGSTATUS_TAGGED
The message has been tagged for a client-defined purpose.

The MSGSTATUS_DELMARKED, MSGSTATUS_HIDDEN, MSGSTATUS_HIGHLIGHTED, and
MSGSTATUS_TAGGED flags are defined by the client. Transport and store providers pass these bits
without any action.

A remote viewer client can set MSGSTATUS_REMOTE_DELETE or
MSGSTATUS_REMOTE_DOWNLOAD on messages in the header folder presented to it by the remote
transport provider. The client application can examine each message header in this folder to determine
whether the message should be downloaded or deleted at the remote message store. It then uses the
IMAPIFolder::SetMessageStatus method to set the appropriate flag. SetMessageStatus is the only
way to set any of the PR_MSG_STATUS flags. For more information on remote viewing and remote
transport providers, see Remote Transport Architecture.

Bits 16 through 31 (0x10000 through 0x80000000) of PR_MSG_STATUS are available for use by the
interpersonal message (IPM) client application. All other bits are reserved for use by MAPI; those not
defined in the preceding table should be initially set to zero and not altered subsequently.

See Also

IMAPIFolder::GetMessageStatus method , IMAPITable::QueryRows method

 PR_NDR_DIAG_CODE

The PR_NDR_DIAG_CODE property contains a diagnostic code that forms part of a nondelivery
report.

Usage

Required on recipient subobjects within nondelivery report message objects.

Details

Identifier 0x0C05; property type PT_LONG; property tag 0x0C050003

Remarks

The PR_NDR_DIAG_CODE property can have exactly one of the following values:

Value

MAPI_DIAG_ALPHABETIC_C
HARACTER_LOST
MAPI_DIAG_CONTENT_SYN
TAX_IN_ERROR
MAPI_DIAG_CONTENT_TOO
_LONG
MAPI_DIAG_CONTENT_TYP
E_UNSUPPORTED
MAPI_DIAG_CONVERSION_L
OSS_PROHIB
MAPI_DIAG_CONVERSION_
UNSUBSCRIBED
MAPI_DIAG_CRITICAL_FUNC
_UNSUPPORTED
MAPI_DIAG_EITS_UNSUPPO
RTED
MAPI_DIAG_EXPANSION_FAI
LED
MAPI_DIAG_EXPANSION_PR
OHIBITED
MAPI_DIAG_IMPRACTICAL_T
O_CONVERT
MAPI_DIAG_LENGTH_CONS
TRAINT_VIOLATD
MAPI_DIAG_LINE_TOO_LON
G
MAPI_DIAG_LOOP_DETECT
ED
MAPI_DIAG_MAIL_ADDRESS
_INCOMPLETE
MAPI_DIAG_MAIL_ADDRESS

_INCORRECT
MAPI_DIAG_MAIL_FORWAR
DING_PROHIB
MAPI_DIAG_MAIL_FORWAR
DING_UNWANTED
MAPI_DIAG_MAIL_NEW_ADD
RESS_UNKNOWN
MAPI_DIAG_MAIL_OFFICE_I
NCOR_OR_INVD
MAPI_DIAG_MAIL_ORGANIZ
ATION_EXPIRED
MAPI_DIAG_MAIL_RECIPIEN
T_DECEASED
MAPI_DIAG_MAIL_RECIPIEN
T_DEPARTED
MAPI_DIAG_MAIL_RECIPIEN
T_MOVED
MAPI_DIAG_MAIL_RECIPIEN
T_TRAVELLING
MAPI_DIAG_MAIL_RECIPIEN
T_UNKNOWN
MAPI_DIAG_MAIL_REFUSED
MAPI_DIAG_MAIL_UNCLAIM
ED
MAPI_DIAG_MAXIMUM_TIME
_EXPIRED
MAPI_DIAG_MTS_CONGEST
ED
MAPI_DIAG_MULTIPLE_INFO
_LOSSES
MAPI_DIAG_NO_BILATERAL_
AGREEMENT
MAPI_DIAG_NO_DIAGNOSTI
C
MAPI_DIAG_NUMBER_CONS
TRAINT_VIOLATD
MAPI_DIAG_OR_NAME_AMBI
GUOUS
MAPI_DIAG_OR_NAME_UNR
ECOGNIZED
MAPI_DIAG_PAGE_TOO_LO
NG
MAPI_DIAG_PARAMETERS_I
NVALID
MAPI_DIAG_PICTORIAL_SY
MBOL_LOST
MAPI_DIAG_PROHIBITED_T
O_CONVERT
MAPI_DIAG_PUNCTUATION_

SYMBOL_LOST
MAPI_DIAG_REASSIGNMEN
T_PROHIBITED
MAPI_DIAG_RECIPIENT_UN
AVAILABLE
MAPI_DIAG_REDIRECTION_
LOOP_DETECTED
MAPI_DIAG_RENDITION_UN
SUPPORTED
MAPI_DIAG_SECURE_MESS
AGING_ERROR
MAPI_DIAG_SUBMISSION_P
ROHIBITED
MAPI_DIAG_TOO_MANY_RE
CIPIENTS

PR_NDR_DIAG_CODE corresponds to the X.400 attribute MH_T_NON_DELIVERY_DIAGNOSTIC.

See Also

PR_NDR_REASON_CODE property

 PR_NDR_REASON_CODE

The PR_NDR_REASON_CODE property contains an encoded reason for nondelivery that forms part
of a nondelivery report.

Usage

Required on recipient subobjects within nondelivery report message objects.

Details

Identifier 0x0C04, property type PT_LONG; property tag 0x0C040003

Remarks

The PR_NDR_REASON_CODE property corresponds to the X.400 attribute
MH_T_NON_DELIVERY_REASON.

See Also

PR_NDR_DIAG_CODE property

 PR_NON_RECEIPT_NOTIFICATION_REQUESTED

The PR_NON_RECEIPT_NOTIFICATION_REQUESTED property contains TRUE if a message sender
wants notification of nondelivery for a specified recipient.

Usage

Optional on message objects.

Details

Identifier 0x0C06; property type PT_BOOLEAN; property tag 0x0C06000B

Remarks

If the PR_NON_RECEIPT_NOTIFICATION_REQUESTED property contains FALSE and the
PR_READ_RECEIPT_REQUESTED property contains TRUE, the service provider can override
PR_NON_RECEIPT_NOTIFICATION_REQUESTED and generate a nondelivery report.

PR_NON_RECEIPT_NOTIFICATION_REQUESTED corresponds to the X.400 attribute
IM_NOTIFICATION_REQUEST.

 PR_NON_RECEIPT_REASON

The PR_NON_RECEIPT_REASON property contains reasons why a message was not received that
forms part of a nondelivery report.

Usage

Required on nondelivery report message objects.

Details

Identifier 0x003E; property type PT_LONG; property tag 0x003E0003

Remarks

Reasons can include, for example, that the message was discarded.

The PR_NON_RECEIPT_REASON property corresponds to the X.400 attribute
IM_NON_RECEIPT_REASON.

See Also

PR_NDR_DIAG_CODE property

 PR_NORMALIZED_SUBJECT

The PR_NORMALIZED_SUBJECT property contains the message subject with any prefix removed.

Usage

Computed by a store or transport provider on message objects.

Details

Identifier 0x0E1D, property type PT_TSTRING; property tag 0x0E1D001E (0x0E1D001F for Unicode)

Remarks

The PR_NORMALIZED_SUBJECT property is computed from the PR_SUBJECT and
PR_SUBJECT_PREFIX properties in the following manner. If PR_SUBJECT_PREFIX is set and is in
fact an initial substring of PR_SUBJECT, then PR_NORMALIZED_SUBJECT becomes PR_SUBJECT
with the prefix removed. If PR_SUBJECT_PREFIX is set but is not an initial substring of
PR_SUBJECT, then PR_SUBJECT_PREFIX is deleted and an attempt is made to compute it from the
beginning of PR_SUBJECT using the rule described under PR_SUBJECT_PREFIX. If
PR_SUBJECT_PREFIX is not set, the same attempt is made to compute it from PR_SUBJECT.

Ultimately, PR_NORMALIZED_SUBJECT should be the part of PR_SUBJECT following the prefix. If
there is no prefix, PR_NORMALIZED_SUBJECT becomes the same as PR_SUBJECT.

PR_SUBJECT_PREFIX and PR_NORMALIZED_SUBJECT should be computed as part of the
IMAPIProp::SaveChanges implementation. A client application should not prompt the
IMAPIProp::GetProps method for their values until they have been committed by an
IMAPIProp::SaveChanges call.

The subject properties are typically small strings of fewer than 256 characters, and a message store
provider is not obligated to support the OLE IStream interface on them. The client should always
attempt access through the IMAPIProp interface first, and resort to IStream only if
MAPI_E_NOT_ENOUGH_MEMORY is returned.

PR_NORMALIZED_SUBJECT corresponds to the X.400 attribute IM_SUBJECT.

 PR_NULL

The PR_NULL property represents a null value or setting of a property or reserves array space.

Details

Identifier 0x0000; property type PT_NULL; property tag 0x00000001

Remarks

The PR_NULL property is used to reserve space in arrays of SPropValue structures. It is used in an
array of SPropTag structures to tell the method to reserve space in the returned array of SPropValue
structures. This allows for computed properties to be filled in an inexpensive way.

See Also

About Property Types

 PR_OBJECT_TYPE

The PR_OBJECT_TYPE property contains the type of an object.

Usage

Required on address book container, distribution list, folder, messaging user, message, and message
store objects.

Details

Identifier 0x0FFE; property type PT_LONG; property tag 0x0FFE0003

Remarks

The object type contained in the PR_OBJECT_TYPE property corresponds to the primary interface
available for an object accessible through the OpenEntry interface. It is usually obtained by consulting
the lpulObjType parameter returned by the appropriate OpenEntry method. When the interface is
obtained in other ways, call IMAPIProp::GetProps to obtain the value for PR_OBJECT_TYPE.

PR_OBJECT_TYPE can have exactly one of the following values:

Value Description
MAPI_ABCONT Address book container object
MAPI_ADDRBOOK Address book object
MAPI_ATTACH Message attachment object
MAPI_DISTLIST Distribution list object
MAPI_FOLDER Folder object
MAPI_FORMINFO Form object
MAPI_MAILUSER Messaging user object
MAPI_MESSAGE Message object
MAPI_PROFSECT Profile section object
MAPI_STATUS Status object
MAPI_STORE Message store object

For more information on object types, see Objects and Interfaces.

 PR_OBSOLETED_IPMS

The PR_OBSOLETED_IPMS property contains the identifiers of messages that this message
supersedes.

Usage

Optional on message objects.

Details

Identifier 0x001F; property type PT_BINARY; property tag 0x001F0102

Remarks

The identifiers contained in the PR_OBSOLETED_IPMS property are standard search keys using the
format of the PR_SEARCH_KEY property.

PR_OBSOLETED_IPMS corresponds to the X.400 attribute IM_OBSOLETED_IPMS.

See Also

PR_SEARCH_KEY property

 PR_OFFICE_LOCATION

The PR_OFFICE_LOCATION property contains the recipient's office location.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A19; property type PT_TSTRING; property tag 0x3A19001E (0x3A19001F for Unicode)

Remarks

The PR_OFFICE_LOCATION property is one of the properties that provide identification and access
information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_ORGANIZATIONAL_ID_NUMBER

The PR_ORGANIZATIONAL_ID_NUMBER property contains an identifier for the recipient used within
the recipient's organization.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A10; property type PT_TSTRING; property tag 0x3A10001E (0x3A10001F for Unicode)

Remarks

The PR_ORGANIZATIONAL_ID_NUMBER property is one of the properties that provide identification
and access information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

PR_ORGANIZATIONAL_ID_NUMBER is commonly set to an employee number.

 PR_ORIG_MESSAGE_CLASS

The PR_ORIG_MESSAGE_CLASS property contains the class of the original message for use in a
report.

Usage

Optional on report message objects.

Details

Identifier 0x004B; property type PT_TSTRING; property tag 0x004B001E (0x004B001F for Unicode)

Remarks

The PR_ORIG_MESSAGE_CLASS property contains a copy of the PR_MESSAGE_CLASS property
of the message for which the report is being generated.

 PR_ORIGIN_CHECK

The PR_ORIGIN_CHECK property contains a binary verification value enabling a delivery report
recipient to verify the origin of the original message.

Usage

Optional on message objects.

Details

Identifier 0x0027; property type PT_BINARY; property tag 0x00270102

Remarks

The PR_ORIGIN_CHECK property provides a means for a third party, such as a message transfer
agent (MTA) or a messaging user receiving a delivery report, to verify the submitted message's origin.
If present on a received message, this property should be copied onto any delivery report generated in
response to the message.

PR_ORIGIN_CHECK replaces several obsolete properties supplied in pre-release versions of MAPI,
including PR_MESSAGE_ORIGIN_AUTHENTICATION_CHECK,
PR_PROBE_SUBMISSION_AUTHENTICATION_CHECK, and
PR_REPORT_ORIGIN_AUTHENTICATION_CHECK.

PR_ORIGIN_CHECK corresponds to the X.400 attribute MH_T_ORIGIN_CHECK.

See Also

PR_ORIGINATOR_CERTIFICATE property

 PR_ORIGINAL_AUTHOR_ADDRTYPE

The PR_ORIGINAL_AUTHOR_ADDRTYPE property contains the address type of the author of the
first version of a message, that is, the message before being forwarded or replied to.

Usage

Optional on message objects.

Details

Identifier 0x0079; property type PT_TSTRING; property tag 0x0079001E (0x0079001F for Unicode)

Remarks

The PR_ORIGINAL_AUTHOR_ADDRTYPE property is one of the address properties for the author of
a message. At first submission of the message, the client application should set this property to the
value of the PR_SENDER_ADDRTYPE property. It is never changed when the message is forwarded
or replied to.

The original author properties allow for preservation of information from outside the local messaging
domain. When a message arrives from another messaging domain, such as from the Internet, these
properties provide a way to ensure that original information is not lost.

For more information on the address properties, see About Base Address Properties.

See Also

PR_ADDRTYPE property

 PR_ORIGINAL_AUTHOR_EMAIL_ADDRESS

The PR_ORIGINAL_AUTHOR_EMAIL_ADDRESS property contains the e-mail address of the author
of the first version of a message, that is, the message before being forwarded or replied to.

Usage

Optional on message objects.

Details

Identifier 0x007A; property type PT_TSTRING; property tag 0x007A001E (0x007A001F for Unicode)

Remarks

The PR_ORIGINAL_AUTHOR_EMAIL_ADDRESS property is one of the address properties for the
author of a message. At first submission of the message, the client application should set this property
to the value of PR_SENDER_EMAIL_ADDRESS. It is never changed when the message is forwarded
or replied to.

The original author properties allow for preservation of information from outside the local messaging
domain. When a message arrives from another messaging domain, such as from the Internet, these
properties provide a way to ensure that original information is not lost.

For more information on the address properties, see About Base Address Properties.

See Also

PR_EMAIL_ADDRESS property

 PR_ORIGINAL_AUTHOR_ENTRYID

The PR_ORIGINAL_AUTHOR_ENTRYID property contains the entry identifier of the author of the first
version of a message, that is, the message before being forwarded or replied to.

Usage

Optional on message objects.

Details

Identifier 0x004C; property type PT_BINARY; property tag 0x004C0102

Remarks

The PR_ORIGINAL_AUTHOR_ENTRYID property is one of the address properties for the author of a
message. At first submission of the message, the client application should set this property to the value
of PR_SENDER_ENTRYID. It is never changed when the message is forwarded or replied to.

The original author properties allow for preservation of information from outside the local messaging
domain. When a message arrives from another messaging domain, such as from the Internet, these
properties provide a way to ensure that original information is not lost.

For more information on the address properties, see About Base Address Properties.

See Also

PR_ENTRYID property

 PR_ORIGINAL_AUTHOR_NAME

The PR_ORIGINAL_AUTHOR_NAME property contains the display name of the author of the first
version of a message, that is, the message before being forwarded or replied to.

Usage

Optional on message objects.

Details

Identifier 0x004D; property type PT_TSTRING; property tag 0x004D001E (0x004D001F for Unicode)

Remarks

The PR_ORIGINAL_AUTHOR_NAME property is one of the address properties for the author of a
message. At first submission of the message, the client application should set this property to the value
of PR_SENDER_NAME. It is never changed when the message is forwarded or replied to.

The original author properties allow for preservation of information from outside the local messaging
domain. When a message arrives from another messaging domain, such as from the Internet, these
properties provide a way to ensure that original information is not lost.

For more information on the address properties, see About Base Address Properties.

PR_ORIGINAL_AUTHOR_NAME corresponds to the X.400 attribute MH_T_ORIGINATOR_NAME.

See Also

PR_DISPLAY_NAME property

 PR_ORIGINAL_AUTHOR_SEARCH_KEY

The PR_ORIGINAL_AUTHOR_SEARCH_KEY property contains the search key of the author of the
first version of a message, that is, the message before being forwarded or replied to.

Usage

Optional on message objects.

Details

Identifier 0x0056; property type PT_BINARY; property tag 0x00560102

Remarks

The PR_ORIGINAL_AUTHOR_SEARCH_KEY property is one of the address properties for the author
of a message. At first submission of the message, the client application should set this property to the
value of PR_SENDER_SEARCH_KEY. It is never changed when the message is forwarded or replied
to.

The original author properties allow for preservation of information from outside the local messaging
domain. When a message arrives from another messaging domain, such as from the Internet, these
properties provide a way to ensure that original information is not lost.

For more information on the address properties, see About Base Address Properties.

See Also

PR_SEARCH_KEY property

 PR_ORIGINAL_DELIVERY_TIME

The PR_ORIGINAL_DELIVERY_TIME property contains a copy of the original message's delivery date
and time in a thread.

Usage

Required on read and nonread report objects.

Details

Identifier 0x0055; property type PT_SYSTIME; property tag 0x00550040

Remarks

The PR_ORIGINAL_DELIVERY_TIME property is copied from the original
PR_MESSAGE_DELIVERY_TIME property in subsequent reply or forward operations and used in
read and nonread reports. Delivery reports use the PR_DELIVER_TIME property instead.

 PR_ORIGINAL_DISPLAY_BCC

The PR_ORIGINAL_DISPLAY_BCC property contains the display names of any blind carbon copy
(BCC) recipients of the original message.

Usage

Furnished by MAPI on report message objects.

Details

Identifier 0x0072; property type PT_TSTRING; property tag 0x0072001E (0x0072001F for Unicode)

Remarks

The PR_ORIGINAL_DISPLAY_BCC property contains an ASCII list separated by semicolons. It is
copied directly from PR_DISPLAY_BCC when a delivery or nondelivery report or a read or nonread
report is generated. PR_ORIGINAL_DISPLAY_BCC may be present on other messages as defined by
their message classes.

 PR_ORIGINAL_DISPLAY_CC

The PR_ORIGINAL_DISPLAY_CC property contains the display names of any carbon copy (CC)
recipients of the original message.

Usage

Furnished by MAPI on report message objects.

Details

Identifier 0x0073; property type PT_TSTRING; property tag 0x0073001E (0x0073001F for Unicode)

Remarks

The PR_ORIGINAL_DISPLAY_CC property contains an ASCII list separated by semicolons. It is
copied directly from PR_DISPLAY_CC when a delivery or nondelivery report or a read or nonread
report is generated. PR_ORIGINAL_DISPLAY_CC may be present on other messages as defined by
their message classes.

 PR_ORIGINAL_DISPLAY_NAME

The PR_ORIGINAL_DISPLAY_NAME property contains the original display name for an entry copied
from an address book to a personal address book or other writable address book.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A13; property type PT_TSTRING; property tag 0x3A13001E (0x3A13001F for Unicode)

Remarks

The PR_ORIGINAL_DISPLAY_NAME property is one of the properties that contain information about
the original source of a copied entry.

For a nonread report, PR_ORIGINAL_DISPLAY_NAME contains a copy of the display name of the
original message recipient for which the report is generated. When the original recipient is part of a
distribution list, the display name of the distribution list is preserved for the report.

A client application can use PR_ORIGINAL_DISPLAY_NAME to prevent alteration or "spoofing" of
entries. An example of spoofing is displaying John Doe as John (What a Guy) Doe.

See Also

PR_TRANSMITTABLE_DISPLAY_NAME property

 PR_ORIGINAL_DISPLAY_TO

The PR_ORIGINAL_DISPLAY_TO property contains the display names of the primary (To) recipients
of the original message.

Usage

Furnished by MAPI on report message objects.

Details

Identifier 0x0074; property type PT_TSTRING; property tag 0x0074001E (0x0074001F for Unicode)

Remarks

The PR_ORIGINAL_DISPLAY_TO property contains an ASCII list separated by semicolons. It is
copied directly from PR_DISPLAY_TO when a delivery or nondelivery report or a read or nonread
report is generated. PR_ORIGINAL_DISPLAY_TO may be present on other messages as defined by
their message classes.

 PR_ORIGINAL_EITS

The PR_ORIGINAL_EITS property contains a copy of the original encoded information types (EITs) for
message text.

Usage

Optional on message objects.

Details

Identifier 0x0021; property type PT_BINARY; property tag 0x00210102

Remarks

The PR_ORIGINAL_EITS property corresponds to the X.400 attribute MH_T_ORIGINAL_EITS.

 PR_ORIGINAL_ENTRYID

The PR_ORIGINAL_ENTRYID property contains the original entry identifier for an entry copied from an
address book to a personal address book or other writeable address book.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A12; property type PT_BINARY; property tag 0x3A120102

Remarks

The PR_ORIGINAL_ENTRYID property is one of the properties that contain information about the
original source of a copied entry.

For a nonread report, PR_ORIGINAL_ENTRYID contains a copy of the entry identifier of the original
message recipient for which the report is generated. When the original recipient is part of a distribution
list, the entry identifier of the distribution list is preserved for the report.

 PR_ORIGINAL_SEARCH_KEY

The PR_ORIGINAL_SEARCH_KEY property contains the original search key for an entry copied from
an address book to a personal address book or other writeable address book.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A14; property type PT_BINARY; property tag 0x3A140102

Remarks

The PR_ORIGINAL_SEARCH_KEY property is one of the properties that contain information about the
original source of a copied entry.

For a nonread report, PR_ORIGINAL_SEARCH_KEY contains a copy of the search key of the original
message recipient for which the report is generated. When the original recipient is part of a distribution
list, the search key of the distribution list is preserved for the report.

 PR_ORIGINAL_SENDER_ADDRTYPE

The PR_ORIGINAL_SENDER_ADDRTYPE property contains the address type of the sender of the
first version of a message, that is, the message before being forwarded or replied to.

Usage

Optional on message objects.

Details

Identifier 0x0066; property type PT_TSTRING; property tag 0x0066001E (0x0066001F for Unicode)

Remarks

The PR_ORIGINAL_SENDER_ADDRTYPE property is one of the address properties for the original
sender of a message. At first submission of the message, the client application should set this property
to the value of PR_SENDER_ADDRTYPE. It is never changed when the message is forwarded or
replied to.

For more information on the address properties, see About Base Address Properties.

 PR_ORIGINAL_SENDER_EMAIL_ADDRESS

The PR_ORIGINAL_SENDER_EMAIL_ADDRESS property contains the e-mail address of the sender
of the first version of a message, that is, the message before being forwarded or replied to.

Usage

Optional on message objects.

Details

Identifier 0x0067; property type PT_TSTRING; property tag 0x0067001E (0x0067001F for Unicode)

Remarks

The PR_ORIGINAL_SENDER_EMAIL_ADDRESS property is one of the address properties for the
original sender of a message. At first submission of the message, the client application should set this
property to the value of PR_SENDER_EMAIL_ADDRESS. It is never changed when the message is
forwarded or replied to.

For more information on the address properties, see About Base Address Properties.

 PR_ORIGINAL_SENDER_ENTRYID

The PR_ORIGINAL_SENDER_ENTRYID property contains the entry identifier of the sender of the first
version of a message, that is, the message before being forwarded or replied to.

Usage

Optional on message objects.

Details

Identifier 0x005B; property type PT_BINARY; property tag 0x005B0102

Remarks

The PR_ORIGINAL_SENDER_ENTRYID property is one of the address properties for the original
sender of a message. At first submission of the message, a client application should set this property to
the value of the PR_SENDER_ENTRYID property. It is never changed when the message is forwarded
or replied to.

For more information on the address properties, see About Base Address Properties.

 PR_ORIGINAL_SENDER_NAME

The PR_ORIGINAL_SENDER_NAME property contains the display name of the sender of the first
version of a message, that is, the message before being forwarded or replied to.

Usage

Optional on message objects.

Details

Identifier 0x005A; property type PT_TSTRING; property tag 0x005A001E (0x005A001F for Unicode)

Remarks

The PR_ORIGINAL_SENDER_NAME property is one of the address properties for the original sender
of a message. At first submission of the message, a client application should set this property to the
value of the PR_SENDER_NAME property. It is never changed when the message is forwarded or
replied to.

For more information on the address properties, see About Base Address Properties.

PR_ORIGINAL_SENDER_NAME corresponds to the X.400 attribute MH_T_ORIGINATOR_NAME.

 PR_ORIGINAL_SENDER_SEARCH_KEY

The PR_ORIGINAL_SENDER_SEARCH_KEY property contains the search key for the sender of the
first version of a message, that is, the message before being forwarded or replied to.

Usage

Optional on message objects.

Details

Identifier 0x005C; property type PT_BINARY; property tag 0x005C0102

Remarks

The PR_ORIGINAL_SENDER_SEARCH_KEY property is one of the address properties for the original
sender of a message. At first submission of the message, the client application should set this property
to the value of the PR_SENDER_SEARCH_KEY property. It is never changed when the message is
forwarded or replied to.

For more information on the address properties, see About Base Address Properties.

 PR_ORIGINAL_SENSITIVITY

The PR_ORIGINAL_SENSITIVITY property contains the sensitivity value assigned by the sender of
the first version of a message that is, the message before being forwarded or replied to.

Usage

Optional on message objects.

Details

Identifier 0x002E; property type PT_LONG; property tag 0x002E0003

Remarks

A client application should set the PR_ORIGINAL_SENSITIVITY property to the same value as the
PR_SENSITIVITY property when the message is first submitted. It should never be changed
subsequently.

PR_ORIGINAL_SENSITIVITY is used by the transport provider to protect the sensitivity on copied
entries. It enables it, for example, to block modification of the original message text in a forward of or
reply to a message that was originally marked SENSITIVITY_PRIVATE.

 PR_ORIGINAL_SENT_REPRESENTING_ADDRTYPE

The PR_ORIGINAL_SENT_REPRESENTING_ADDRTYPE property contains the address type of the
messaging user on whose behalf the original message was sent.

Usage

Optional on message objects.

Details

Identifier 0x0068; property type PT_TSTRING; property tag 0x0068001E (0x0068001F for Unicode)

Remarks

The PR_ORIGINAL_SENT_REPRESENTING_ADDRTYPE property is one of the address properties
for the original represented sender of a message. It is used in a conversation thread.

A client application sending a message on behalf of another client should set this property to the value
of the PR_SENT_REPRESENTING_ADDRTYPE property at the first submission of the message.
Once set, it should never be changed.

For more information on the address properties, see About Base Address Properties.

 PR_ORIGINAL_SENT_REPRESENTING_EMAIL_ADDRESS

The PR_ORIGINAL_SENT_REPRESENTING_EMAIL_ADDRESS property contains the e-mail
address of the messaging user on whose behalf the original message was sent.

Usage

Optional on message objects.

Details

Identifier 0x0069; property type PT_TSTRING; property tag 0x0069001E (0x0069001F for Unicode)

Remarks

The PR_ORIGINAL_SENT_REPRESENTING_EMAIL_ADDRESS property is one of the address
properties for the original represented sender of a message. It is used in a conversation thread.

A client application sending a message on behalf of another client should set this property to the value
of the PR_SENT_REPRESENTING_EMAIL_ADDRESS property at the first submission of the
message. Once set, it should never be changed.

For more information on the address properties, see About Base Address Properties.

 PR_ORIGINAL_SENT_REPRESENTING_ENTRYID

The PR_ORIGINAL_SENT_REPRESENTING_ENTRYID property contains the entry identifier of the
messaging user on whose behalf the original message was sent.

Usage

Optional on message objects.

Details

Identifier 0x005E; property type PT_BINARY; property tag 0x005E0102

Remarks

The PR_ORIGINAL_SENT_REPRESENTING_ENTRYID property is one of the address properties for
the original represented sender of a message. It is used in a conversation thread.

A client application sending a message on behalf of another client should set this property to the value
of the PR_SENT_REPRESENTING_ENTRYID property at the first submission of the message. Once
set, it should never be changed.

For more information on the address properties, see About Base Address Properties.

 PR_ORIGINAL_SENT_REPRESENTING_NAME

The PR_ORIGINAL_SENT_REPRESENTING_NAME property contains the display name of the
messaging user on whose behalf the original message was sent.

Usage

Optional on message objects.

Details

Identifier 0x005D; property type PT_TSTRING; property tag 0x005D001E (0x005D001F for Unicode)

Remarks

The PR_ORIGINAL_SENT_REPRESENTING_NAME property is one of the address properties for the
original represented sender of a message. It is used in a conversation thread.

A client application sending a message on behalf of another client should set this property to the value
of the PR_SENT_REPRESENTING_NAME property at the first submission of the message. Once set,
it should never be changed.

For more information on the address properties, see About Base Address Properties.

 PR_ORIGINAL_SENT_REPRESENTING_SEARCH_KEY

The PR_ORIGINAL_SENT_REPRESENTING_SEARCH_KEY property contains the search key of the
messaging user on whose behalf the original message was sent.

Usage

Optional on message objects.

Details

Identifier 0x005F; property type PT_BINARY; property tag 0x005F0102

Remarks

The PR_ORIGINAL_SENT_REPRESENTING_SEARCH_KEY property is one of the address
properties for the original represented sender of a message. It is used in a conversation thread.

A client application sending a message on behalf of another client should set this property to the value
of the PR_SENT_REPRESENTING_SEARCH_KEY property at the first submission of the message.
Once set, it should never be changed.

For more information on the address properties, see About Base Address Properties.

 PR_ORIGINAL_SUBJECT

The PR_ORIGINAL_SUBJECT property contains the subject of an original message for use in a report
about the message.

Usage

Optional on message objects.

Details

Identifier 0x0049; property type PT_TSTRING; property tag 0x0049001E (0x0049001F for Unicode)

Remarks

The PR_ORIGINAL_SUBJECT property is originally set to the same value as the PR_SUBJECT
property.

The subject properties are typically small strings of fewer than 256 characters, and a message store
provider is not obligated to support the OLE IStream interface on them. The client should always
attempt access through the IMAPIProp interface first, and resort to IStream only if
MAPI_E_NOT_ENOUGH_MEMORY is returned.

PR_ORIGINAL_SUBJECT corresponds to the X.400 attribute IM_SUBJECT.

 PR_ORIGINAL_SUBMIT_TIME

The PR_ORIGINAL_SUBMIT_TIME property contains the original submission date and time of the
message in the report.

Usage

Optional on report message objects.

Details

Identifier 0x004E; property type PT_SYSTIME; property tag 0x004E0040

Remarks

At first submission of a message, a client application should set the PR_ORIGINAL_SUBMIT_TIME
property to the value of the PR_CLIENT_SUBMIT_TIME property. It is not changed when the message
is forwarded. This is used in reports only.

 PR_ORIGINALLY_INTENDED_RECIP_ADDRTYPE

The PR_ORIGINALLY_INTENDED_RECIP_ADDRTYPE property contains the address type of the
originally intended recipient of an autoforwarded message.

Usage

Optional on message objects.

Details

Identifier 0x007B; property type PT_TSTRING; property tag 0x007B001E (0x007B001F for Unicode)

Remarks

The PR_ORIGINALLY_INTENDED_RECIP_ADDRTYPE property is one of the address properties for
the originally intended message recipient. It must be set by the automatic agent that has forwarded the
message.

For more information on the address properties, see About Base Address Properties.

PR_ORIGINALLY_INTENDED_RECIP_ADDRTYPE corresponds to the X.400 attribute
IM_IPM_INTENDED_RECIPIENT.

See Also

PR_ADDRTYPE property

 PR_ORIGINALLY_INTENDED_RECIP_EMAIL_ADDRESS

The PR_ORIGINALLY_INTENDED_RECIP_EMAIL_ADDRESS property contains the e-mail address
of the originally intended recipient of an autoforwarded message.

Usage

Optional on message objects.

Details

Identifier 0x007C; property type PT_TSTRING; property tag 0x007C001E (0x007C001F for Unicode)

Remarks

The PR_ORIGINALLY_INTENDED_RECIP_EMAIL_ADDRESS property is one of the address
properties for the originally intended message recipient. It must be set by the automatic agent that has
forwarded the message.

For more information on the address properties, see About Base Address Properties.

PR_ORIGINALLY_INTENDED_RECIP_EMAIL_ADDRESS corresponds to the X.400 report per-
recipient attribute.

See Also

PR_EMAIL_ADDRESS property

 PR_ORIGINALLY_INTENDED_RECIP_ENTRYID

The PR_ORIGINALLY_INTENDED_RECIP_ENTRYID property contains the entry identifier of the
originally intended recipient of an autoforwarded message.

Usage

Optional on message objects.

Details

Identifier 0x1012; property type PT_BINARY; property tag 0x10120102

Remarks

The PR_ORIGINALLY_INTENDED_RECIP_ENTRYID property is one of the address properties for the
originally intended message recipient. It must be set by the automatic agent that has forwarded the
message.

For more information on the address properties, see About Base Address Properties.

PR_ORIGINALLY_INTENDED_RECIP_ENTRYID corresponds to the X.400 report per-recipient
attribute.

See Also

PR_ENTRYID property

 PR_ORIGINALLY_INTENDED_RECIPIENT_NAME

The PR_ORIGINALLY_INTENDED_RECIPIENT_NAME property contains the encoded name of the
originally intended recipient of an autoforwarded message.

Usage

Optional on message objects.

Details

Identifier 0x0020; property type PT_BINARY; property tag 0x00200102

Remarks

The PR_ORIGINALLY_INTENDED_RECIPIENT_NAME property must be set by the automatic agent
that has forwarded the message.

This property is not one of the address properties.

PR_ORIGINALLY_INTENDED_RECIPIENT_NAME corresponds to the X.400 attribute
MH_T_ORIGINALLY_INTENDED_RECIP.

 PR_ORIGINATING_MTA_CERTIFICATE

The PR_ORIGINATING_MTA_CERTIFICATE property contains an identifier for the message transfer
agent (MTA) that originated the message.

Usage

Optional on message objects.

Details

Identifier 0x0E25; property type PT_BINARY; property tag 0x0E250102

Remarks

The PR_ORIGINATING_MTA_CERTIFICATE property, if set, is available on sent messages in the Sent
Items folder.

PR_ORIGINATING_MTA_CERTIFICATE corresponds to the X.400 report per-message attribute.

See Also

PR_REPORTING_MTA_CERTIFICATE property

 PR_ORIGINATOR_AND_DL_EXPANSION_HISTORY

The PR_ORIGINATOR_AND_DL_EXPANSION_HISTORY property contains information about a
message originator and a distribution list expansion history.

Usage

Optional on message objects.

Details

Identifier 0x1002; property type PT_BINARY; property tag 0x10020102

Remarks

The PR_ORIGINATOR_AND_DL_EXPANSION_HISTORY property is used in report generation.

PR_ORIGINATOR_AND_DL_EXPANSION_HISTORY corresponds to the X.400 attribute
MH_T_ORIG_AND_EXPANSION_HISTORY.

 PR_ORIGINATOR_CERTIFICATE

The PR_ORIGINATOR_CERTIFICATE property contains an ASN.1 certificate for the message
originator.

Usage

Optional on message objects.

Details

Identifier 0x0022; property type PT_BINARY; property tag 0x00220102

Remarks

The PR_ORIGINATOR_CERTIFICATE property is a copy of the originator's PR_USER_CERTIFICATE
property.

PR_ORIGINATOR_CERTIFICATE corresponds to the X.400 attribute
MH_T_ORIGINATOR_CERTIFICATE.

 PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED

The PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED property contains TRUE if a message
sender requests a delivery report for a particular recipient from the messaging system before the
message is placed in the message store.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0023; property type PT_BOOLEAN; property tag 0x0023000B

Remarks

The PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED property is used to direct the messaging
system in handling delivered messages. In this case, the message must also furnish the
PR_ORIGINATOR_NON_DELIVERY_REPORT_REQUESTED property set to FALSE.

PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED corresponds to the X.400 attribute
MH_T_ORIGINATOR_REPORT_REQUEST.

 PR_ORIGINATOR_NON_DELIVERY_REPORT_REQUESTED

The PR_ORIGINATOR_NON_DELIVERY_REPORT_REQUESTED property contains TRUE if a
message sender requests a nondelivery report for a particular recipient.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0C08; property type PT_BOOLEAN; property tag 0x0C08000B

Remarks

The PR_ORIGINATOR_NON_DELIVERY_REPORT_REQUESTED property is used to direct the
messaging system in handling undelivered messages. In this case, the message must also furnish the
PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED property set to FALSE.

PR_ORIGINATOR_NON_DELIVERY_REPORT_REQUESTED corresponds to the X.400 attribute
MH_T_ORIGINATOR_REPORT_REQUEST.

 PR_ORIGINATOR_REQUESTED_ALTERNATE_RECIPIENT

The PR_ORIGINATOR_REQUESTED_ALTERNATE_RECIPIENT property contains an entry identifier
for an alternate recipient designated by the sender.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0C09; property type PT_BINARY; property tag 0x0C090102

Remarks

The PR_ORIGINATOR_REQUESTED_ALTERNATE_RECIPIENT property is used in autoforwarded
messages. If autoforwarding is not permitted or if no alternate recipient has been designated, a
nondelivery report should be generated.

 PR_ORIGINATOR_RETURN_ADDRESS

The PR_ORIGINATOR_RETURN_ADDRESS property contains the binary-encoded return address of
the message originator.

Usage

Optional on message objects.

Details

Identifier 0x0024; property type PT_BINARY; property tag 0x00240102

Remarks

The PR_ORIGINATOR_RETURN_ADDRESS property corresponds to the X.400 attribute
MH_T_ORIGINATOR_RETURN_ADDRESS.

 PR_OTHER_TELEPHONE_NUMBER

The PR_OTHER_TELEPHONE_NUMBER property contains an alternate telephone number for the
recipient.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A1F; property type PT_TSTRING; property tag 0x3A1F001E (0x3A1F001F for Unicode)

Remarks

The PR_OTHER_TELEPHONE_NUMBER property is one of the properties that provide identification
and access information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on these properties, see About Messaging User Objects.

PR_OTHER_TELEPHONE_NUMBER is used for a telephone number other than at the recipient's
place of business, home, or office.

 PR_OWN_STORE_ENTRYID

The PR_OWN_STORE_ENTRYID property contains the entry identifier of a transport's tightly coupled
message store.

Usage

Optional on status objects and as a column entry in status tables.

Details

Identifier 0x3E06; property type PT_BINARY; property tag 0x3E060102

Remarks

The PR_OWN_STORE_ENTRYID property specifies the entry identifier for the tightly coupled store, if
one exists. For example, a transport provider can specify the private folder store entry identifier so that
the MAPI spooler can connect the transport provider to the store.

See Also

PR_STORE_ENTRYID property

 PR_OWNER_APPT_ID

The PR_OWNER_APPT_ID property contains an identifier for an appointment in the owner's schedule.

Usage

Required on message objects used for scheduling.

Details

Identifier 0x0062; property type PT_LONG; property tag 0x00620003

Remarks

The PR_OWNER_APPT_ID property is used in meeting requests. It does not represent an entry
identifier, but a long integer that uniquely identifies the appointment within the sender's schedule.

See Also

PR_ORIGINAL_AUTHOR_SEARCH_KEY property

 PR_PAGER_TELEPHONE_NUMBER

The PR_PAGER_TELEPHONE_NUMBER property contains the recipient's pager telephone number.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A21; property type PT_TSTRING; property tag 0x3A21001E (0x3A21001F for Unicode)

Remarks

The PR_PAGER_TELEPHONE_NUMBER property is one of the properties that provide identification
and access information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on these properties, see About Messaging User Objects.

MAPI also supports the PR_BEEPER_TELEPHONE_NUMBER property that is synonymous with
PR_PAGER_TELEPHONE_NUMBER.

 PR_PARENT_DISPLAY

The PR_PARENT_DISPLAY property contains the display name of the folder in which a message was
found during a search.

Usage

Required as a column entry in contents tables for search-results folders.

Details

Identifier 0x0E05; property type PT_TSTRING; property tag 0x0E05001E (0x0E05001F for Unicode)

Remarks

The PR_PARENT_DISPLAY property is not a property of any object. It can only appear in the contents
table of a search-results folder.

The PR_PARENT_DISPLAY, PR_PARENT_ENTRYID, and PR_PARENT_KEY properties are not
related to each other. They belong to entirely different contexts.

 PR_PARENT_ENTRYID

The PR_PARENT_ENTRYID property contains the entry identifier of the folder containing a folder or
message.

Usage

Required on folder and message objects.
Optional as a column entry in folder contents tables.
Computed by message stores for all folders and messages.

Details

Identifier 0x0E09; property type PT_BINARY; property tag 0x0E090102

Remarks

For a message store root folder, the PR_PARENT_ENTRYID property contains the folder's own entry
identifier.

The PR_PARENT_DISPLAY, PR_PARENT_ENTRYID, and PR_PARENT_KEY properties are not
related to each other. They belong to entirely different contexts.

See Also

PR_FOLDER_TYPE property

 PR_PARENT_KEY

The PR_PARENT_KEY property was originally meant to contain a value used in correlating
conversation threads.

Usage

Never used.

Details

Identifier 0x0025; property type PT_BINARY; property tag 0x00250102

Remarks

Do not use this property. It is not supported in MAPI 1.0.

PR_PARENT_KEY corresponds to the X.400 attribute IM_REPLIED_TO_IPM.

 PR_PHYSICAL_DELIVERY_BUREAU_FAX_DELIVERY

The PR_PHYSICAL_DELIVERY_BUREAU_FAX_DELIVERY property contains TRUE if the messaging
system should use a fax bureau for physical delivery of this message.

Usage

Optional on message objects.

Details

Identifier 0x0C0A; property type PT_BOOLEAN; property tag 0x0C0A000B

Remarks

The PR_PHYSICAL_DELIVERY_BUREAU_FAX_DELIVERY property corresponds to the X.400
attribute MH_T_BUREAU_FAX_DELIVERY.

 PR_PHYSICAL_DELIVERY_MODE

The PR_PHYSICAL_DELIVERY_MODE property contains a bitmask of flags defining the physical
delivery mode (for example, special delivery) for a message designated for a specific recipient.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0C0B; property type PT_LONG; property tag 0x0C0B0003

Remarks

The PR_PHYSICAL_DELIVERY_MODE property corresponds to the X.400 attribute
MH_T_POSTAL_MODE.

 PR_PHYSICAL_DELIVERY_REPORT_REQUEST

The PR_PHYSICAL_DELIVERY_REPORT_REQUEST property contains the mode of a report to be
delivered to a particular message recipient upon completion of physical message delivery or delivery
by the message handling system.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0C0C; property type PT_LONG; property tag 0x0C0C0003

Remarks

The PR_PHYSICAL_DELIVERY_REPORT_REQUEST property corresponds to the X.400 attribute
MH_T_POSTAL_REPORT.

 PR_PHYSICAL_FORWARDING_ADDRESS

The PR_PHYSICAL_FORWARDING_ADDRESS property contains the physical forwarding address of
a message recipient and is used only with message reports.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0C0D; property type PT_BINARY; property tag 0x0C0D0102

Remarks

The PR_PHYSICAL_FORWARDING_ADDRESS property corresponds to the X.400 attribute
MH_T_FORWARDING_ADDRESS.

 PR_PHYSICAL_FORWARDING_ADDRESS_REQUESTED

The PR_PHYSICAL_FORWARDING_ADDRESS_REQUESTED property contains TRUE if a message
sender requests the message transfer agent to attach a physical forwarding address for a message
recipient.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0C0E; property type PT_BOOLEAN; property tag 0x0C0E000B

Remarks

The PR_PHYSICAL_FORWARDING_ADDRESS_REQUESTED property corresponds to the X.400
attribute MH_T_FORWARDING_ADR_REQUESTED.

 PR_PHYSICAL_FORWARDING_PROHIBITED

The PR_PHYSICAL_FORWARDING_PROHIBITED property contains TRUE if a message sender
prohibits physical message forwarding for a specific recipient.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0C0F; property type PT_BOOLEAN; property tag 0x0C0F000B

Remarks

The PR_PHYSICAL_FORWARDING_PROHIBITED property corresponds to the X.400 attribute
MH_T_FORWARDING_PROHIBITED.

 PR_PHYSICAL_RENDITION_ATTRIBUTES

The PR_PHYSICAL_RENDITION_ATTRIBUTES property contains an ASN.1 object identifier used for
rendering message attachments.

Usage

Optional on attachment subobjects.

Details

Identifier 0x0C10; property type PT_BINARY; property tag 0x0C100102

Remarks

The PR_PHYSICAL_RENDITION_ATTRIBUTES property corresponds to the X.400 attribute
MH_T_RENDITION_ATTRIBUTES.

 PR_POST_OFFICE_BOX

The PR_POST_OFFICE_BOX property contains the number or identifier of the recipient's post office
box.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A2B; property type PT_TSTRING; property tag 0x3A2B001E (0x3A2B001F for Unicode)

Remarks

The PR_POST_OFFICE_BOX property is one of the properties that provide identification and access
information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_POSTAL_ADDRESS

The PR_POSTAL_ADDRESS property contains the recipient's postal address.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A15; property type PT_TSTRING; property tag 0x3A15001E (0x3A15001F for Unicode)

Remarks

The PR_POSTAL_ADDRESS property is one of the properties that provide identification and access
information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_POSTAL_CODE

The PR_POSTAL_CODE property contains the postal code for the recipient's postal address.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A2A; property type PT_TSTRING; property tag 0x3A2A001E (0x3A2A001F for Unicode)

Remarks

The PR_POSTAL_CODE property is one of the properties that provide identification and access
information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

The postal code is specific to the recipient's country. In the United States of America, this property
contains the ZIP code.

 PR_PREPROCESS

The PR_PREPROCESS property contains TRUE if the message requires preprocessing.

Usage

Reserved.

Details

Identifier 0x0E22; property type PT_BOOLEAN; property tag 0x0E22000B

Remarks

Do not use this property.

See Also

PR_SUBMIT_FLAGS property

 PR_PRIMARY_CAPABILITY

Obsolete address book property.

Usage

No longer used.

Details

Identifier 0x3904; property type PT_BINARY; property tag 0x39040102

Remarks

Do not use this property.

 PR_PRIMARY_FAX_NUMBER

The PR_PRIMARY_FAX_NUMBER property contains the telephone number of the recipient's primary
fax machine.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A23; property type PT_TSTRING; property tag 0x3A23001E (0x3A23001F for Unicode)

Remarks

The PR_PRIMARY_FAX_NUMBER property is one of the properties that provide identification and
access information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_PRIMARY_TELEPHONE_NUMBER

The PR_PRIMARY_TELEPHONE_NUMBER property contains the recipient's primary telephone
number.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A1A; property type PT_TSTRING; property tag 0x3A1A001E (0x3A1A001F for Unicode)

Remarks

The PR_PRIMARY_TELEPHONE_NUMBER property is one of the properties that provide
identification and access information for a recipient. These properties are defined by the recipient and
the recipient's organization. For more information on this group of properties, see About Messaging
User Objects.

PR_PRIMARY_TELEPHONE_NUMBER corresponds to the X.400 attribute
IM_TELEPHONE_NUMBER.

 PR_PRIORITY

The PR_PRIORITY property contains the relative priority of a message.

Usage

Optional on message objects.

Details

Identifier 0x0026; property type PT_LONG; property tag 0x00260003

Remarks

The PR_PRIORITY and PR_IMPORTANCE properties should not be confused. Importance indicates a
value to users, while priority indicates the order or speed at which the message should be sent by the
messaging system software. Higher priority usually indicates a higher cost. Higher importance usually
is associated with a different display by the user interface.

The priority of a report message should be the same as the priority of the original message being
reported.

PR_PRIORITY can have exactly one of the following values:

Value Description
PRIO_NONURGENT The message is not urgent.
PRIO_NORMAL The message has normal

priority.
PRIO_URGENT The message is urgent.

PR_PRIORITY corresponds to the X.400 attribute MH_T_PRIORITY.

 PR_PROFILE_NAME

The PR_PROFILE_NAME property contains the name of the profile.

Usage

Computed by providers on profile section objects

Details

Identifier 0x3D12; property type PT_TSTRING, property tag 0x3D12001E (0x3D12001F for Unicode)

Remarks

A provider's implementation of the ServiceEntry function can use the PR_PROFILE_NAME property to
discover the profile name.

Client applications can use PR_PROFILE_NAME as a convenient alternative to obtaining the profile
name by examining the PR_DISPLAY_NAME property in the MAPI subsystem's status table row.

PR_PROFILE_NAME may not be unique across time, for example where a profile is deleted and later
recreated with the same name. MAPI furnishes a totally unique PR_SEARCH_KEY property in a hard-
coded profile section called MUID_PROFILE_INSTANCE.

 PR_PROOF_OF_DELIVERY

The PR_PROOF_OF_DELIVERY property contains an ASN.1 proof of delivery value.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0C11; property type PT_BINARY; property tag 0x0C110102

Remarks

The PR_PROOF_OF_DELIVERY property corresponds to the X.400 attribute
MH_T_PROOF_OF_DELIVERY.

 PR_PROOF_OF_DELIVERY_REQUESTED

The PR_PROOF_OF_DELIVERY_REQUESTED property contains TRUE if a message sender
requests proof of delivery for a particular recipient.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0C12; property type PT_BOOLEAN; property tag 0x0C12000B

Remarks

The PR_PROOF_OF_DELIVERY_REQUESTED property corresponds to the X.400 attribute
MH_T_PROOF_OF_DELIV_REQUESTED.

 PR_PROOF_OF_SUBMISSION

The PR_PROOF_OF_SUBMISSION property contains an ASN.1 proof of submission value.

Usage

Optional on message objects.

Details

Identifier 0x0E26; property type PT_BINARY; property tag 0x0E260102

Remarks

The PR_PROOF_OF_SUBMISSION property corresponds to an X.400 submission envelope per-
message attribute.

 PR_PROOF_OF_SUBMISSION_REQUESTED

The PR_PROOF_OF_SUBMISSION_REQUESTED property contains TRUE if a message sender
requests proof that the message transfer system has submitted a message for delivery to the originally
intended recipient.

Usage

Optional on message objects.

Details

Identifier 0x0028; property type PT_BOOLEAN; property tag 0x0028000B

Remarks

The PR_PROOF_OF_SUBMISSION_REQUESTED property corresponds to the X.400 attribute
MH_T_PROOF_OF_SUBMSN_REQUESTED.

 PR_PROVIDER_DISPLAY

The PR_PROVIDER_DISPLAY property contains the vendor-defined display name for a service
provider.

Usage

Required on profile section objects.

Details

Identifier 0x3006; property type PT_TSTRING; property tag 0x3006001E (0x3006001F for Unicode)

Remarks

The PR_PROVIDER_DISPLAY and PR_PROVIDER_DLL_NAME properties are defined only on profile
sections belonging to service providers. They must be present in MAPISVC.INF.

 PR_PROVIDER_DLL_NAME

The PR_PROVIDER_DLL_NAME property contains the base filename of the MAPI service provider
DLL.

Usage

Required on profile section objects.

Details

Identifier 0x300A; property type PT_TSTRING; property tag 0x300A001E (0x300A001F for Unicode)

Remarks

MAPI uses a DLL file naming convention. The base filename contains up to six characters that uniquely
identify the DLL. MAPI appends the string 32 to the base DLL name to identify the version that runs on
32-bit platforms. For example, when the name MAPI.DLL is specified, MAPI constructs the name
MAPI32.DLL to represent the corresponding 32-bit version of the DLL.

The PR_PROVIDER_DLL_NAME property should specify the base name. MAPI appends the string 32
as appropriate. Including the string 32 as part of the PR_PROVIDER_DLL_NAME property results in
an error.

See Also

PR_SERVICE_DLL_NAME property

 PR_PROVIDER_ORDINAL

The PR_PROVIDER_ORDINAL property contains the zero-based index of a service provider's position
in the provider table.

Usage

Computed by MAPI on provider table objects.

Details

Identifier 0x300D; property type PT_LONG; property tag 0x300D0003

Remarks

Obtain the provider table by calling the IMsgServiceAdmin::GetProviderTable method. Sort the
provider table on the PR_PROVIDER_ORDINAL column to display the transport order.

 PR_PROVIDER_SUBMIT_TIME

The PR_PROVIDER_SUBMIT_TIME property contains the date and time a transport provider passed
a message to its underlying messaging system.

Usage

Optional on message objects.

Details

Identifier 0x0048; property type PT_SYSTIME; property tag 0x00480040

Remarks

The PR_PROVIDER_SUBMIT_TIME property is set by the outgoing transport provider at the time a
message is sent.

PR_PROVIDER_SUBMIT_TIME corresponds to an X.400 submission envelope per-message attribute.

 PR_PROVIDER_UID

The PR_PROVIDER_UID property contains a MAPIUID structure of the service provider that is
handling a message.

Usage

Computed by all service providers on provider table objects.

Details

Identifier 0x300C; property type PT_BINARY; property tag 0x300C0102

Remarks

The PR_PROVIDER_UID property contains a MAPIUID structure associated with, and usually hard-
coded by, the provider. It is typically used by a client application that is interested in only the address
book containers supplied by a particular provider.

PR_PROVIDER_UID appears only as a column entry in the provider table.

 PR_RADIO_TELEPHONE_NUMBER

The PR_RADIO_TELEPHONE_NUMBER property contains the recipient's radio telephone number.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A1D; property type PT_TSTRING; property tag 0x3A1D001E (0x3A1D001F for Unicode)

Remarks

The PR_RADIO_TELEPHONE_NUMBER property is one of the properties that provide identification
and access information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_RCVD_REPRESENTING_ADDRTYPE

The PR_RCVD_REPRESENTING_ADDRTYPE property contains the address type for the messaging
user represented by the user actually receiving the message.

Usage

Required on message objects.

Details

Identifier 0x0077; property type PT_TSTRING; property tag 0x0077001E (0x0077001F for Unicode)

Remarks

The PR_RCVD_REPRESENTING_ADDRTYPE property is one of the address properties for the
messaging user being represented by the receiving user. It must be set by the incoming transport
provider, which is also responsible for authorization or verification of the delegate. If no messaging user
is being represented, PR_RCVD_REPRESENTING_ADDRTYPE should be set to the address type
contained in the PR_RECEIVED_BY_ADDRTYPE property.

A client application replying to a message received on behalf of another client should copy
PR_RCVD_REPRESENTING_ADDRTYPE from the received message into the
PR_SENT_REPRESENTING_ADDRTYPE property for the reply.

For more information on the address properties, see About Base Address Properties.

See Also

PR_ADDRTYPE property

 PR_RCVD_REPRESENTING_EMAIL_ADDRESS

The PR_RCVD_REPRESENTING_EMAIL_ADDRESS property contains the e-mail address for the
messaging user represented by the receiving user.

Usage

Required on message objects.

Details

Identifier 0x0078; property type PT_TSTRING; property tag 0x0078001E (0x0078001F for Unicode)

Remarks

The PR_RCVD_REPRESENTING_EMAIL_ADDRESS property is one of the address properties for the
messaging user being represented by the receiving user. It must be set by the incoming transport
provider, which is also responsible for authorization or verification of the delegate. If no messaging user
is being represented, PR_RCVD_REPRESENTING_EMAIL_ADDRESS should be set to the e-mail
address contained in the PR_RECEIVED_BY_EMAIL_ADDRESS property.

A client application replying to a message received on behalf of another client should copy
PR_RCVD_REPRESENTING_EMAIL_ADDRESS from the received message into the
PR_SENT_REPRESENTING_EMAIL_ADDRESS property for the reply.

For more information on the address properties, see About Base Address Properties.

See Also

PR_EMAIL_ADDRESS property

 PR_RCVD_REPRESENTING_ENTRYID

The PR_RCVD_REPRESENTING_ENTRYID property contains the entry identifier for the messaging
user represented by the receiving user.

Usage

Required on message objects.

Details

Identifier 0x0043; property type PT_BINARY; property tag 0x00430102

Remarks

The PR_RCVD_REPRESENTING_ENTRYID property is one of the address properties for the
messaging user being represented by the receiving user. It must be set by the incoming transport
provider, which is also responsible for authorization or verification of the delegate. If no messaging user
is being represented, PR_RCVD_REPRESENTING_ENTRYID should be set to the entry identifier
contained in the PR_RECEIVED_BY_ENTRYID property.

A client application replying to a message received on behalf of another client should copy
PR_RCVD_REPRESENTING_ENTRYID from the received message into the
PR_SENT_REPRESENTING_ENTRYID property for the reply.

For more information on the address properties, see About Base Address Properties.

See Also

PR_ENTRYID property

 PR_RCVD_REPRESENTING_NAME

The PR_RCVD_REPRESENTING_NAME property contains the display name for the messaging user
represented by the receiving user.

Usage

Required on message objects.

Details

Identifier 0x0044; property type PT_TSTRING; property tag 0x0044001E (0x0044001F for Unicode)

Remarks

The PR_RCVD_REPRESENTING_NAME property is one of the address properties for the messaging
user being represented by the receiving user. It must be set by the incoming transport provider, which
is also responsible for authorization or verification of the delegate. If no messaging user is being
represented, PR_RCVD_REPRESENTING_NAME should be set to the display name contained in the
PR_RECEIVED_BY_NAME property.

A client application replying to a message received on behalf of another client should copy
PR_RCVD_REPRESENTING_NAME from the received message into the
PR_SENT_REPRESENTING_NAME property for the reply.

For more information on the address properties, see About Base Address Properties.

See Also

PR_DISPLAY_NAME property

 PR_RCVD_REPRESENTING_SEARCH_KEY

The PR_RCVD_REPRESENTING_SEARCH_KEY property contains the search key for the messaging
user represented by the receiving user.

Usage

Required on message objects.

Details

Identifier 0x0052; property type PT_BINARY; property tag 0x00520102

Remarks

The PR_RCVD_REPRESENTING_SEARCH_KEY is one of the address properties for the messaging
user being represented by the receiving user. It must be set by the incoming transport provider, which
is also responsible for authorization or verification of the delegate. If no messaging user is being
represented, PR_RCVD_REPRESENTING_SEARCH_KEY should be set to the search key contained
in the PR_RECEIVED_BY_SEARCH_KEY property.

A client application replying to a message received on behalf of another client should copy
PR_RCVD_REPRESENTING_SEARCH_KEY from the received message into the
PR_SENT_REPRESENTING_SEARCH_KEY property for the reply.

For more information on the address properties, see About Base Address Properties.

See Also

PR_SEARCH_KEY property

 PR_READ_RECEIPT_ENTRYID

The PR_READ_RECEIPT_ENTRYID property contains an entry identifier for the messaging user to
which the messaging system should direct a read report for this message.

Usage

Optional on message objects.

Details

Identifier 0x0046; property type PT_BINARY; property tag 0x00460102

Remarks

The PR_READ_RECEIPT_ENTRYID property is ignored unless the
PR_READ_RECEIPT_REQUESTED property is set to TRUE.

If a client application wants to receive read reports itself, it can leave PR_READ_RECEIPT_ENTRYID
unset or set it to the entry identifier contained in the PR_SENDER_ENTRYID property at message
submission time.

 PR_READ_RECEIPT_REQUESTED

The PR_READ_RECEIPT_REQUESTED property contains TRUE if a message sender wants the
messaging system to generate a read report when the recipient has read a message.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0029; property type PT_BOOLEAN; property tag 0x0029000B

Remarks

The PR_READ_RECEIPT_REQUESTED property must be set to TRUE to validate the values in the
PR_READ_RECEIPT_ENTRYID and PR_READ_RECEIPT_SEARCH_KEY properties.

If a message with PR_READ_RECEIPT_REQUESTED set is deleted or expires before the messaging
system can generate a read report, a nonread report is generated.

PR_READ_RECEIPT_REQUESTED corresponds to the X.400 attribute
IM_NOTIFICATION_REQUEST.

 PR_READ_RECEIPT_SEARCH_KEY

The PR_READ_RECEIPT_SEARCH_KEY property contains a search key for the messaging user to
which the messaging system should direct a read report for a message.

Usage

Optional on message objects.

Details

Identifier 0x0053; property type PT_BINARY; property tag 0x00530102

Remarks

The PR_READ_RECEIPT_SEARCH_KEY property is ignored unless the
PR_READ_RECEIPT_REQUESTED property is set to TRUE.

If a client application wants to receive read reports itself, it can leave
PR_READ_RECEIPT_SEARCH_KEY unset or set it to the search key contained in the
PR_SENDER_SEARCH_KEY property at message submission time.

 PR_RECEIPT_TIME

The PR_RECEIPT_TIME property contains the date and time a delivery report is generated.

Usage

Required on report message objects.

Details

Identifier 0x002A; property type PT_SYSTIME; property tag 0x002A0040

Remarks

The PR_RECEIPT_TIME property must be set by the message store provider receiving the original
message and generating the report. The report is usually generated with the
IMAPISupport::ReadReceipt method.

PR_RECEIPT_TIME corresponds to the X.400 attribute IM_RECEIPT_TIME.

See Also

PR_REPORT_ENTRYID property

 PR_RECEIVE_FOLDER_SETTINGS

The PR_RECEIVE_FOLDER_SETTINGS property contains a table of a message store's receive folder
settings.

Usage

Required on message store objects.

Details

Identifier 0x3415; property type PT_OBJECT; property tag 0x3415000D

Remarks

The PR_RECEIVE_FOLDER_SETTINGS property can be excluded in IMAPIProp::CopyTo
operations or included in IMAPIProp::CopyProps operations. As a property of type PT_OBJECT, it
cannot be successfully retrieved by the IMAPIProp::GetProps method; its contents should be
accessed by the IMAPIProp::OpenProperty method, requesting the interface with identifier
IID_IMAPITable. Service providers must report it to the IMAPIProp::GetPropList method if it is set, but
can optionally report it or not if it is not set.

To retrieve table contents, a client application should call the IMsgStore::GetReceiveFolderTable
method. For more information on receive folder tables, see About Receive Folder Tables.

PR_RECEIVE_FOLDER_SETTINGS contains a table of mappings of the receive folders for the
message store. Calling OpenProperty on this property is equivalent to calling
GetReceiveFolderTable on the message store.

 PR_RECEIVED_BY_ADDRTYPE

The PR_RECEIVED_BY_ADDRTYPE property contains the e-mail address type, such as SMTP, for
the messaging user that actually receives the message.

Usage

Required on message objects.

Details

Identifier 0x0075; property type PT_TSTRING; property tag 0x0075001E (0x0075001F for Unicode)

Remarks

The PR_RECEIVED_BY_ADDRTYPE property is one of the address properties for the messaging user
that actually receives the message. It must be set by the incoming transport provider.

The address type string can contain only the uppercase alphabetic characters A through Z and the
numbers 0 through 9. PR_RECEIVED_BY_ADDRTYPE qualifies the
PR_RECEIVED_BY_EMAIL_ADDRESS property by specifying an address type, such as SMTP,
thereby indicating how the address should be constructed.

For more information on the address properties, see About Base Address Properties.

See Also

PR_ADDRTYPE property

 PR_RECEIVED_BY_EMAIL_ADDRESS

The PR_RECEIVED_BY_EMAIL_ADDRESS property contains the e-mail address for the messaging
user that actually receives the message.

Usage

Required on message objects.

Details

Identifier 0x0076; property type PT_TSTRING; property tag 0x0076001E (0x0076001F for Unicode)

Remarks

The PR_RECEIVED_BY_EMAIL_ADDRESS property is one of the address properties for the
messaging user that actually receives the message. It must be set by the incoming transport provider.

For more information on the address properties, see About Base Address Properties.

See Also

PR_EMAIL_ADDRESS property

 PR_RECEIVED_BY_ENTRYID

The PR_RECEIVED_BY_ENTRYID property contains the entry identifier of the messaging user that
actually receives the message.

Usage

Required on message objects.

Details

Identifier 0x003F; property type PT_BINARY; property tag 0x003F0102

Remarks

The PR_RECEIVED_BY_ENTRYID property is one of the address properties for the messaging user
that actually receives the message. It must be set by the incoming transport provider.

For more information on the address properties, see About Base Address Properties.

PR_RECEIVED_BY_ENTRYID corresponds to an X.400 delivery envelope per-message MH_T_
attribute.

See Also

PR_ENTRYID property

 PR_RECEIVED_BY_NAME

The PR_RECEIVED_BY_NAME property contains the display name of the messaging user that
actually receives the message.

Usage

Required on message objects.

Details

Identifier 0x0040; property type PT_TSTRING; property tag 0x0040001E (0x0040001F for Unicode)

Remarks

The PR_RECEIVED_BY_NAME property is one of the address properties for the messaging user that
actually receives the message. It must be set by the incoming transport provider.

For more information on the address properties, see About Base Address Properties.

PR_RECEIVED_BY_NAME corresponds to the X.400 attribute MH_T_ACTUAL_RECIPIENT_NAME.

See Also

PR_DISPLAY_NAME property

 PR_RECEIVED_BY_SEARCH_KEY

The PR_RECEIVED_BY_SEARCH_KEY property contains the search key of the messaging user that
actually receives the message.

Usage

Required on message objects.

Details

Identifier 0x0051; property type PT_BINARY; property tag 0x00510102

Remarks

The PR_RECEIVED_BY_SEARCH_KEY property is one of the address properties for the messaging
user that actually receives the message. It must be set by the incoming transport provider.

For more information on the address properties, see About Base Address Properties.

See Also

PR_SEARCH_KEY property

 PR_RECIPIENT_CERTIFICATE

The PR_RECIPIENT_CERTIFICATE property contains a message recipient's ASN.1 certificate for use
in a report.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0C13; property type PT_BINARY; property tag 0x0C130102

Remarks

The PR_RECIPIENT_CERTIFICATE property is a copy of the recipient's PR_USER_CERTIFICATE
property for use in a report. It can be used to prove to the originator that the recipient actually received
the message, which a delivery report does not necessarily indicate.

PR_RECIPIENT_CERTIFICATE corresponds to the X.400 attribute MH_T_RECEIPT_CERTIFICATE.

See Also

PR_RECIPIENT_NUMBER_FOR_ADVICE property

 PR_RECIPIENT_NUMBER_FOR_ADVICE

The PR_RECIPIENT_NUMBER_FOR_ADVICE property contains a message recipient's voice
telephone number to call to advise of the physical delivery of a message.

Usage

Optional on recipient subobjects.

Details

Identifier 0x0C14; property type PT_TSTRING; property tag 0x0C14001E (0x0C14001F for Unicode)

Remarks

The PR_RECIPIENT_NUMBER_FOR_ADVICE property is meant to be used in conjunction with
delivery to a physical destination, rather than an electronic mailbox, when the human recipient is not
expected to be present at delivery. An example is the telephone number usually included on a fax
cover sheet.

The PR_RECIPIENT_NUMBER_FOR_ADVICE property corresponds to the X.400 attribute
MH_T_RECIP_NUMBER_FOR_ADVICE.

See Also

PR_RECIPIENT_REASSIGNMENT_PROHIBITED property

 PR_RECIPIENT_REASSIGNMENT_PROHIBITED

The PR_RECIPIENT_REASSIGNMENT_PROHIBITED property contains TRUE if recipient
reassignment is prohibited.

Usage

Optional on message objects.

Details

Identifier 0x002B; property type PT_BOOLEAN; property tag 0x002B000B

Remarks

The PR_RECIPIENT_REASSIGNMENT_PROHIBITED property corresponds to the X.400 attribute
MH_T_REASSIGNMENT_PROHIBITED.

 PR_RECIPIENT_STATUS

The PR_RECIPIENT_STATUS property contains a value used by the MAPI spooler in assigning
delivery responsibility among transport providers.

Usage

Reserved.

Details

Identifier 0x0E15; property type PT_LONG; property tag 0x0E150003

Remarks

Do not use this property.

 PR_RECIPIENT_TYPE

The PR_RECIPIENT_TYPE property contains the recipient type for a message recipient.

Usage

Required on recipient subobjects.

Details

Identifier 0x0C15; property type PT_LONG; property tag 0x0C150003

Remarks

The recipient type contained in the PR_RECIPIENT_TYPE property consists of one required value and
one optional flag.

PR_RECIPIENT_TYPE must contain exactly one of the following values:

Value Description
MAPI_TO The recipient is a primary (To)

recipient.
MAPI_CC The recipient is a carbon copy

(CC) recipient.
MAPI_BCC The recipient is a blind carbon

copy (BCC) recipient.
MAPI_P1 This is a resend of an earlier

transmission. The recipient did
not successfully receive the
message on the previous
attempt.

In addition, the following flag can be set:

MAPI_SUBMITTED
This is a resend of an earlier transmission. The recipient has already received the message and
does not need it to be sent again.

The MAPI_P1 value and the MAPI_SUBMITTED flag are used when a message is being retransmitted
due to nondelivery to one or more of the intended recipients. For this retransmission, the client sets
MAPI_SUBMITTED on every recipient that does not need the message again but should be displayed
in the recipient list. For every recipient that did not receive the message previously, the client retains
the original recipient with its PR_RECIPIENT_TYPE value unchanged, but additionally submits a copy
of the recipient with MAPI_P1 in place of the original value. This copy, which is discarded before actual
delivery, forces the recipient into the P1 envelope and guarantees physical retransmission to that
recipient.

In X.400, the P1, or delivery envelope, is the information needed to deliver a message, including the
recipient's address properties and any option flags controlling delivery and replies. The P2 or display
envelope is the information usually displayed to each recipient other than the message text itself. It
typically includes the subject, importance, priority, sensitivity, and submission time, as well as the
primary and copied recipient names.

See Also

PR_RECIPIENT_STATUS property

 PR_RECORD_KEY

The PR_RECORD_KEY property contains a unique binary-comparable identifier for a specific object.

Usage

Required on address book container, attachment, distribution list, folder, messaging user, message,
and message store objects.

Details

Identifier 0x0FF9; property type PT_BINARY; property tag 0x0FF90102

Remarks

The PR_RECORD_KEY property facilitates locating references to an object, such as finding its row in
a contents table. PR_RECORD_KEY cannot be used to open an object; use the entry identifier for that
purpose.

An attachment subobject should be uniquely identified within a message by PR_RECORD_KEY. This
identifier is the only attachment characteristic guaranteed to stay the same after the message is closed
and reopened. The store provider must preserve PR_RECORD_KEY across sessions to ensure this
guarantee.

For folders, this property contains a key used in the folder hierarchy table. Typically this is the same
value as that provided by the PR_ENTRYID property.

For message stores, this property is identical to the PR_STORE_RECORD_KEY property.

In a message store object, PR_RECORD_KEY should be unique across all store providers. One way
to do this is to combine the value of the PR_MDB_PROVIDER property for the store (unique to that
provider type) with a GUID structure or other value unique to the specific message store.

PR_RECORD_KEY is always available through the IMAPIProp::GetProps method following the first
call to the IMAPIProp::SaveChanges method. Some providers can make it available immediately after
instantiation.

A client or service provider can compare PR_RECORD_KEY values using memcmp. This is not
possible for entry identifier values. However, PR_RECORD_KEY is guaranteed to be unique only
within the same message store or address book container; two objects from different containers can
have the same PR_RECORD_KEY value.

One distinction between the record and search keys is that the record key is specific to the object,
whereas the search key can be copied to other objects. For example, two copies of the object can have
the same PR_SEARCH_KEY value but must have different PR_RECORD_KEY values.

The following table summarizes important differences among PR_ENTRYID, PR_RECORD_KEY, and
PR_SEARCH_KEY.

Characteristic PR_ENTRYID PR_RECORD_K
EY

PR_SEARCH_KEY

Required on
attachment objects

No Yes No

Required on
folder objects

Yes Yes No

Required on
message store
objects

Yes Yes No

Required on
status objects

Yes No No

Creatable by client No No Yes
Available before a
call to
SaveChanges

Maybe Maybe Messages ¾ Yes
Others ¾ Maybe

Changed in a
copy operation

Yes Yes No

Changeable by a
client
after a copy

No No Yes

Unique within ... Entire world Provider
instance

Entire world

Binary comparable
(as with memcmp)

No -- use
IMAPISupport
::
CompareEntr
yIDs

Yes Yes

 PR_REDIRECTION_HISTORY

The PR_REDIRECTION_HISTORY property contains information about the route covered by a
delivered message.

Usage

Optional on message objects.

Details

Identifier 0x002C; property type PT_BINARY; property tag 0x002C0102

Remarks

The PR_REDIRECTION_HISTORY property is used when a message is autoforwarded by an
automatic agent.

PR_REDIRECTION_HISTORY corresponds to the X.400 attribute MH_T_REDIRECTION_HISTORY.

 PR_REGISTERED_MAIL_TYPE

The PR_REGISTERED_MAIL_TYPE property contains the type of registration used for physical
delivery of a message.

Usage

Optional on message objects.

Details

Identifier 0x0C16; property type PT_LONG; property tag 0x0C160003

Remarks

The PR_REGISTERED_MAIL_TYPE property corresponds to the X.400 attribute
MH_T_REGISTRATION.

See Also

PR_X400_CONTENT_TYPE property

 PR_RELATED_IPMS

The PR_RELATED_IPMS property contains a list of identifiers for messages to which a message is
related.

Usage

Optional on message objects.

Details

Identifier 0x002D; property type PT_BINARY; property tag 0x002D0102

Remarks

The identifiers use the same specific construction rules as are used for the PR_SEARCH_KEY
property.

PR_RELATED_IPMS corresponds to the X.400 attribute IM_RELATED_IPMS.

 PR_REMOTE_PROGRESS

The PR_REMOTE_PROGRESS property contains a number indicating the status of a remote transfer.

Usage

Required on message objects.

Details

Identifier 0x3E0B; property type PT_LONG; property tag 0x3E0B0003

Remarks

If no transfer is in progress, the PR_REMOTE_PROGRESS property should be set to -1. If a transfer is
in progress, it should be set to a value from 0 to 100 indicating the transfer's percent of completion.

The text associated with the numeric status code appears in the PR_REMOTE_PROGRESS_TEXT
property.

The following flags can be set for PR_REMOTE_PROGRESS:

MSGSTATUS_REMOTE_DELETE
The message transfer is deleted.

MSGSTATUS_REMOTE_DOWNLOAD
The message transfer is in progress.

 PR_REMOTE_PROGRESS_TEXT

The PR_REMOTE_PROGRESS_TEXT property contains an ASCII string indicating the status of a
remote transfer.

Usage

Optional on message objects.

Details

Identifier 0x3E0C; property type PT_TSTRING; property tag 0x3E0C001E (0x3E0C001F for Unicode)

Remarks

A numeric code associated with this text is passed in the PR_REMOTE_PROGRESS property.

 PR_REMOTE_VALIDATE_OK

The PR_REMOTE_VALIDATE_OK property contains TRUE if the remote viewer is allowed to call the
IMAPIStatus::ValidateState method.

Usage

Optional as a column entry in status tables.

Details

Identifier 0x3E0D; property type PT_BOOLEAN; property tag 0x3E0D000B

Remarks

The PR_REMOTE_VALIDATE_OK property appears in the status table and offers some control over
transport performance. It can be considered as another way of directing the remote viewer to idle.
When it is set to TRUE, the remote viewer can call IMAPIStatus::ValidateState as often as desired. A
value of FALSE indicates that the remote viewer cannot make any more calls.

The transport provider usually sets this property dynamically, setting the value to FALSE to disable
additional calls when the transport provider has a sufficient amount of processing to perform. When the
transport provider is done, it then sets the value to TRUE to allow the client application to make further
IMAPIStatus::ValidateState calls.

 PR_RENDERING_POSITION

The PR_RENDERING_POSITION property contains an offset, in characters, to use in rendering an
attachment within the main message text.

Usage

Required on attachment subobjects.

Details

Identifier 0x370B; property type PT_LONG; property tag 0x370B0003

Remarks

When the supplied offset is -1 (0xFFFFFFFF), the attachment is not rendered using the
PR_RENDERING_POSITION property. All values other than -1 indicate the position within PR_BODY
at which the attachment is to be rendered.

Note The character at PR_RENDERING_POSITION in PR_BODY is replaced by the attachment.
Typically this character is a blank, although a special placeholder character can also be used.

PR_RENDERING_POSITION is expressed in characters. In some character sets this is not equivalent
to bytes. Unicode applications can compute the position based on two-byte characters. Double-Byte
Character Set (DBCS) applications must scan the text up to the PR_RENDERING_POSITION value,
since their character representation varies between one and two bytes per character.

This property should not be used with Rich Text Format (RTF) text. The rendering position is indicated
in RTF by an escape sequence called the object attachment placeholder. This sequence consists of the
string \objattph followed by a single character, normally a space, that will be replaced by the
attachment rendering.

 PR_REPLY_RECIPIENT_ENTRIES

The PR_REPLY_RECIPIENT_ENTRIES property contains a sized array of entry identifiers for
recipients that are to get a reply.

Usage

Optional on message objects.

Details

Identifier 0x004F; property type PT_BINARY; property tag 0x004F0102

Remarks

The PR_REPLY_RECIPIENT_ENTRIES property contains a FLATENTRYLIST structure and is not a
multivalued property.

When this property is not present, a reply is sent only to the user identified by
PR_SENDER_ENTRYID. When PR_REPLY_RECIPIENT_ENTRIES and
PR_REPLY_RECIPIENT_NAMES are defined, the reply is sent to all of the recipients identified by
these two properties. A transport provider uses these properties to override the usual reply logic.

If either PR_REPLY_RECIPIENT_ENTRIES or PR_REPLY_RECIPIENT_NAMES is set, the other
property must be set also. These properties must contain the same number of recipients, and they
must contain them in the same order. Failure to observe these requirements can cause unpredictable
results.

PR_REPLY_RECIPIENT_ENTRIES corresponds to the X.400 attribute IM_REPLY_RECIPIENTS.

 PR_REPLY_RECIPIENT_NAMES

The PR_REPLY_RECIPIENT_NAMES property contains a list of display names for recipients that are
to get a reply.

Usage

Optional on message objects.

Details

Identifier 0x0050; property type PT_TSTRING; property tag 0x0050001E (0x0050001F for Unicode)

Remarks

The PR_REPLY_RECIPIENT_NAMES property contains one string, with the display names separated
by semicolons.

When this property is not present, a reply is sent only to the user identified by PR_SENDER_NAME.
When PR_REPLY_RECIPIENT_ENTRIES and PR_REPLY_RECIPIENT_NAMES are defined, the
reply is sent to all of the recipients identified by these two properties. A transport provider uses these
properties to override the usual reply logic.

If either PR_REPLY_RECIPIENT_ENTRIES or PR_REPLY_RECIPIENT_NAMES is set, the other
property must be set also. These properties must contain the same number of recipients, and they
must contain them in the same order. Failure to observe these requirements can cause unpredictable
results.

 PR_REPLY_REQUESTED

The PR_REPLY_REQUESTED property contains TRUE if a message sender requests a reply from a
recipient.

Usage

Optional on message objects.

Details

Identifier 0x0C17; property type PT_BOOLEAN; property tag 0x0C17000B

Remarks

The PR_REPLY_REQUESTED property corresponds to the X.400 attribute IM_REPLY_REQUESTED.

See Also

PR_REPLY_TIME property

 PR_REPLY_TIME

The PR_REPLY_TIME property contains the date and time by which a reply is expected for a
message.

Usage

Optional on message objects.

Details

Identifier 0x0030; property type PT_SYSTIME; property tag 0x00300040

Remarks

The PR_REPLY_TIME property corresponds to the X.400 attribute IM_REPLY_TIME.

See Also

PR_REPLY_REQUESTED property

 PR_REPORT_ENTRYID

The PR_REPORT_ENTRYID property contains the entry identifier for the recipient that should get
reports for this message.

Usage

Optional on message objects.

Details

Identifier 0x0045; property type PT_BINARY; property tag 0x00450102

Remarks

The PR_REPORT_ENTRYID property is one of the address properties for the recipient that the sender
has delegated to receive any reports generated for this message.

A client application that needs to route reports to another user should set this property at message
submission time. If it is not set, the reports are sent to the message sender.

For more information on the address properties, see About Base Address Properties.

See Also

PR_SENDER_ENTRYID property

 PR_REPORT_NAME

The PR_REPORT_NAME property contains the display name for the recipient that should get reports
for this message.

Usage

Optional on message objects.

Details

Identifier 0x003A; property type PT_TSTRING; property tag 0x003A001E (0x003A001F for Unicode)

Remarks

The PR_REPORT_NAME property is one of the address properties for the recipient that the sender
has delegated to receive any reports generated for this message.

A client application that needs to route reports to another user should set this property at message
submission time. If it is not set, the reports are sent to the message sender.

For more information on the address properties, see About Base Address Properties.

See Also

PR_SENDER_NAME property

 PR_REPORT_SEARCH_KEY

The PR_REPORT_SEARCH_KEY property contains the search key for the recipient that should get
reports for this message.

Usage

Optional on message objects.

Details

Identifier 0x0054; property type PT_BINARY; property tag 0x00540102

Remarks

The PR_REPORT_SEARCH_KEY property is one of the address properties for the recipient that the
sender has delegated to receive any reports generated for this message.

A client application that needs to route reports to another user should set this property at message
submission time. If it is not set, the reports are sent to the message sender.

For more information on the address properties, see About Base Address Properties.

See Also

PR_SENDER_SEARCH_KEY property

 PR_REPORT_TAG

The PR_REPORT_TAG property contains a binary tag value that the messaging system should copy to
any report generated for the message.

Usage

Required on message objects.

Details

Identifier 0x0031; property type PT_BINARY; property tag 0x00310102

Remarks

The PR_REPORT_TAG property is used to correlate a message and its corresponding report.

See Also

PR_REPORT_NAME property

 PR_REPORT_TEXT

The PR_REPORT_TEXT property contains optional text for a report generated by the messaging
system.

Usage

Required on report message objects.

Details

Identifier 0x1001; property type PT_TSTRING; property tag 0x1001001E (0x1001001F for Unicode)

Remarks

Usually, the text contained in the PR_REPORT_TEXT property is generated in response to a delivery
or nondelivery report or a read or nonread report received from the underlying messaging system, but
is not itself text that was transferred through that system.

 PR_REPORT_TIME

The PR_REPORT_TIME property contains the date and time when the messaging system generated a
report.

Usage

Required on read and nonread report message objects.
Required on recipient subobjects within delivery and nondelivery report message objects.

Details

Identifier 0x0032; property type PT_SYSTIME; property tag 0x00320040

Remarks

The PR_REPORT_TIME property represents a per-recipient property on delivery and nondelivery
reports and a per-message property on read and nonread reports.

 PR_REPORTING_DL_NAME

The PR_REPORTING_DL_NAME property contains the display name of a distribution list for which the
messaging system is delivering a report.

Usage

Optional on report message objects.

Details

Identifier 0x1003; property type PT_BINARY; property tag 0x10030102

Remarks

The PR_REPORTING_DL_NAME property corresponds to the X.400 attribute
MH_T_REPORTING_DL_NAME.

 PR_REPORTING_MTA_CERTIFICATE

The PR_REPORTING_MTA_CERTIFICATE property contains an identifier for the message transfer
agent that generated a report.

Usage

Optional on report message objects.

Details

Identifier 0x1004; property type PT_BINARY; property tag 0x10040102

Remarks

The PR_REPORTING_MTA_CERTIFICATE property corresponds to an X.400 report per-message
attribute.

See Also

PR_ORIGINATING_MTA_CERTIFICATE property

 PR_REQUESTED_DELIVERY_METHOD

The PR_REQUESTED_DELIVERY_METHOD property contains a binary array of delivery methods
(service providers), in order of a message sender's preference.

Usage

Optional on message objects.

Details

Identifier 0x0C18; property type PT_BINARY; property tag 0x0C180102

Remarks

The array contained in the PR_REQUESTED_DELIVERY_METHOD property consists of 32-bit ASN.1
identifiers for each of the service providers. Typical identifier values are MH_DM_TELEX and
MH_DM_G3FAX.

PR_REQUESTED_DELIVERY_METHOD corresponds to the X.400 attribute
MH_T_PREFERRED_DELIVERY_MODE.

See Also

PR_PROOF_OF_DELIVERY_REQUESTED property

 PR_RESOURCE_FLAGS

The PR_RESOURCE_FLAGS property contains a bitmask of flags for message services and
providers.

Usage

Required as a column entry in message service, message store, provider, and status tables. Required
for message services and all service providers in MAPISVC.INF.

Details

Identifier 0x3009; property type PT_LONG; property tag 0x30090003

Remarks

The flags are of three classes: static, modifiable, and dynamic. Static flags are set by MAPI from data
in MAPISVC.INF and never altered. Modifiable flags are set by MAPI from MAPISVC.INF but can be
subsequently changed. Dynamic flags can be set and reset by MAPI methods.

For a message service, one or more of the following flags can be set in PR_RESOURCE_FLAGS:

SERVICE_CREATE_WITH_STORE
Reserved. Do not use.

SERVICE_DEFAULT_STORE
Dynamic. The message service contains the default store. A user interface should be displayed
prompting the user for confirmation before deleting or moving this service out of the profile.

SERVICE_NO_PRIMARY_IDENTITY
Static. The service level flag that should be set to indicate that none of the providers in the message
service can be used to supply an identity. Either this flag or SERVICE_PRIMARY_IDENTITY should
be set, but not both.

SERVICE_PRIMARY_IDENTITY
Modifiable. The corresponding message service contains the provider used for the primary identity
for this session. Use IMsgServiceAdmin::SetPrimaryIdentity to set this flag. Either this flag or
SERVICE_NO_PRIMARY_IDENTITY should be set, but not both.

SERVICE_SINGLE_COPY
Static. Any attempt to create or copy this message service into a profile where the service already
exists will fail. To create a single copy message service add the PR_RESOURCE_FLAGS property
to the service's section in MAPISVC.INF and set this flag.

For a service provider, one or more of the following flags can be set in PR_RESOURCE_FLAGS:

HOOK_INBOUND
Static. The spooler hook needs to process inbound messages.

HOOK_OUTBOUND
Static. The spooler hook needs to process outbound messages.

STATUS_DEFAULT_OUTBOUND
Modifiable. This identity should be applied to outbound messages if the profile contains multiple
instances of this transport provider.

STATUS_DEFAULT_STORE
Modifiable. This message store is the default store for the profile.

STATUS_NEED_IPM_TREE
Dynamic. The standard folders in this message store, including the interpersonal message (IPM)
root folder, have not yet been verified. MAPI sets and clears this flag.

STATUS_NO_DEFAULT_STORE
Static. This message store is incapable of becoming the default message store for the profile.

STATUS_NO_PRIMARY_IDENTITY
Static. This provider does not furnish an identity in its status row.

STATUS_OWN_STORE
Static. This transport provider is tightly coupled with a message store and furnishes the
PR_OWN_STORE_ENTRYID property in its status row.

STATUS_PRIMARY_IDENTITY
Modifiable. This provider furnishes an identity in its status row that will be returned from
IMAPISession::QueryIdentity.

STATUS_PRIMARY_STORE
Modifiable. This message store is to be used when a client application logs on. Once opened, this
store should be set as the default store for the profile.

STATUS_SECONDARY_STORE
Modifiable. This message store is to be used if the primary store is not available when a client
application logs on. Once opened, this store should be set as the default store for the profile.

STATUS_SIMPLE_STORE
Dynamic. This message store will be used by Simple MAPI or CMC as its default message store.

STATUS_TEMP_SECTION
Dynamic. This message store should not be published in the message store table and will be
deleted from the profile after logoff.

STATUS_XP_PREFER_LAST
Static. This transport expects to be tried last of all for outbound messages.

The STATUS_PRIMARY_STORE and STATUS_SECONDARY_STORE flags are available for
communication between a client and a message store. Neither implementation should use these flags
without ascertaining that the other implementation supports them.

See Also

IMsgServiceAdmin::MsgServiceTransportOrder method , PR_IDENTITY_ENTRYID property

 PR_RESOURCE_METHODS

The PR_RESOURCE_METHODS property contains a bitmask of flags indicating the status object
methods that are supported.

Usage

Required as a column entry in status tables.

Details

Identifier 0x3E02; property type PT_LONG; property tag 0x3E020003

Remarks

All system resources contain a status table for the IMAPIStatus interface and set flags in the
PR_RESOURCE_METHODS property. If a flag is set in the status table, the corresponding
IMAPIStatus method exists and can be called. If that flag is clear in the status table, the method
should not be called.

One or more of the following flags can be set in PR_RESOURCE_METHODS:

STATUS_CHANGE_PASSWORD
The IMAPIStatus::ChangePassword method is supported.

STATUS_FLUSH_QUEUES
The IMAPIStatus::FlushQueues method is supported.

STATUS_SETTINGS_DIALOG
The IMAPIStatus::SettingsDialog method is supported.

STATUS_VALIDATE_STATE
The IMAPIStatus::ValidateState method is supported.

 PR_RESOURCE_PATH

The PR_RESOURCE_PATH property contains a path to the service provider's server.

Usage

Optional on status objects and as a column entry in status tables.

Details

Identifier 0x3E07; property type PT_TSTRING; property tag 0x3E07001E (0x3E07001F for Unicode)

Remarks

The path contained in the PR_RESOURCE_PATH property represents the suggested path where the
user can find resources. The definition of the property is provider specific. For example, a scheduling
application uses this property to specify the suggested location for its scheduling application files.

The messaging user profile furnishes PR_RESOURCE_PATH as a convenience so that a client
application does not have to prompt the messaging user for a network path or network drive letter.

MAPI works only with filenames, and other strings passed to it, in the ANSI character set. Applications
that use filenames in an OEM character set must convert them to ANSI before calling MAPI.

 PR_RESOURCE_TYPE

The PR_RESOURCE_TYPE property contains a value indicating the service provider type.

Usage

Required on provider objects.

Details

Identifier 0x3E03; property type PT_LONG; property tag 0x3E030003

Remarks

The PR_RESOURCE_TYPE property can have exactly one of the following values:

Value Description
MAPI_AB Address book
MAPI_AB_PROVIDER Address book provider
MAPI_HOOK_PROVIDER Spooler hook provider
MAPI_PROFILE_PROVIDER Profile provider
MAPI_SPOOLER Message spooler
MAPI_STORE_PROVIDER Message store provider
MAPI_SUBSYSTEM Internal MAPI subsystem
MAPI_TRANSPORT_PROVID
ER

Transport provider

 PR_RESPONSE_REQUESTED

The PR_RESPONSE_REQUESTED property contains TRUE if the message sender wants a response
to a meeting request.

Usage

Optional on message objects used for scheduling.

Details

Identifier 0x0063; property type PT_BOOLEAN; property tag 0x0063000B

Remarks

The PR_RESPONSE_REQUESTED property is used for meeting requests. The receiving client
application should prompt the user to accept or decline the request and then send this response back
to the sender.

 PR_RESPONSIBILITY

The PR_RESPONSIBILITY property contains TRUE if some transport provider has already accepted
responsibility for delivering the message to this recipient, and FALSE if the MAPI spooler considers that
this transport provider should accept responsibility.

Usage

Required on recipient subobjects.

Details

Identifier 0x0E0F; property type PT_BOOLEAN; property tag 0x0E0F000B

Remarks

When the MAPI spooler presents an outbound message to a transport provider, through
IXPLogon::SubmitMessage, it sets the PR_RESPONSIBILITY property to FALSE for all recipients for
which the MAPI spooler considers that transport provider responsible, and TRUE for all other
recipients. The transport provider should attempt to handle all recipients with PR_RESPONSIBILITY
set to FALSE. After successfully sending, or conclusively failing to send, to a recipient, the transport
provider should set PR_RESPONSIBILITY to TRUE in the source message to indicate that it has
accepted responsibility for that recipient.

If, after examining a recipient, a transport provider decides that it cannot or should not handle it, the
transport provider should leave PR_RESPONSIBILITY set to FALSE. The MAPI spooler will then look
for another transport provider that can handle that recipient. The MAPI spooler ultimately creates a
nondelivery report for any recipients for which no transport provider accepts responsibility.

If the transport provider attempts and fails to deliver the message, it should call the
IMAPISupport::StatusRecips method to indicate to MAPI the reasons for the failure, so that MAPI
can generate a nondelivery report.

PR_RESPONSIBILITY corresponds to the X.400 attribute MH_T_MTA_RESPONSIBILITY.

See Also

PR_DELETE_AFTER_SUBMIT property

 PR_RETURNED_IPM

The PR_RETURNED_IPM property contains TRUE if the original message is being returned with a
nonread report.

Usage

Optional on report message objects.

Details

Identifier 0x0033; property type PT_BOOLEAN; property tag 0x0033000B

Remarks

An X.400 transport provider sets the PR_RETURNED_IPM property in the nonread report.

 PR_ROW_TYPE

The PR_ROW_TYPE property contains a value that indicates the type of a row in a table.

Usage

Required as a column entry in contents tables.

Details

Identifier 0x0FF5; property type PT_LONG; property tag 0x0FF50003

Remarks

The PR_ROW_TYPE property appears only on contents tables. A category only exists when it has
items.

PR_ROW_TYPE can have exactly one of the following values:

Value Description
TBL_LEAF_ROW Represents actual data, rather

than a category row.
TBL_EMPTY_CATEGORY Not currently used.
TBL_EXPANDED_CATEGORY The category is expanded; the

user interface usually displays
this with the minus sign ' - ' next
to it.

TBL_COLLAPSED_CATEGOR
Y

The category is collapsed; the
user interface usually displays
this with the plus sign '+' next to
it.

See Also

PR_ROWID property

 PR_ROWID

The PR_ROWID property contains a unique identifier for a recipient in a recipient table or status table.

Usage

Required as a column entry in recipient tables and status tables.

Details

Identifier 0x3000; property type PT_LONG; property tag 0x30000003

Remarks

The PR_ROWID property is a temporary value that is valid only for the life of the object that owns the
table. It appears as a column of the table but is not stored.

See Also

IMessage::GetRecipientTable method , IMessage::ModifyRecipients method

 PR_RTF_COMPRESSED

The PR_RTF_COMPRESSED property contains the Rich Text Format version of the message text,
usually in compressed form.

Usage

Optional on message objects.

Details

Identifier 0x1009; property type PT_BINARY; property tag 0x10090102

Remarks

The PR_RTF_COMPRESSED property contains the same message text as the PR_BODY property
but in Rich Text Format (RTF).

Message text in RTF is normally stored in compressed form. However, some systems do not compress
formatted text. To accommodate them, MAPI provides the dwMagicUncompressedRTF value for a
stream header to identify uncompressed RTF, and the STORE_UNCOMPRESSED_RTF in
PR_STORE_SUPPORT_MASK for the message store to indicate it can store uncompressed RTF.

To obtain the contents of PR_RTF_COMPRESSED, call OpenProperty, then call
WrapCompressedRTFStream with the MAPI_READ flag. To write into PR_RTF_COMPRESSED,
open it with the MAPI_MODIFY and MAPI_CREATE flags. This ensures that the new data completely
replace any old data and that the writes are performed using the minimum number of store updates.

Message stores that support RTF ignore any changes to white space in the message text. When
PR_BODY is stored for the first time, the message store also generates and stores
PR_RTF_COMPRESSED. If the IMAPIProp::SaveChanges method is subsequently called and
PR_BODY has been modified, the message store calls the RTFSync function to ensure
synchronization with the RTF version. If only white space has been changed, the properties are left
unchanged. This preserves any nontrivial RTF formatting when the message travels through non-RTF-
aware clients and messaging systems.

 PR_RTF_IN_SYNC

The PR_RTF_IN_SYNC property contains TRUE if PR_RTF_COMPRESSED has the same text
content as PR_BODY for this message.

Usage

Optional on message objects.

Details

Identifier 0x0E1F; property type PT_BOOLEAN; property tag 0x0E1F000B

Remarks

A value of TRUE means that the PR_BODY property, the plain text version of this message, and the
PR_RTF_COMPRESSED property, the Rich Text Format version, are identical except for white space
in PR_BODY and formatting in PR_RTF_COMPRESSED. The text in the two versions consists of the
same characters in the same sequence.

A value of FALSE means that the two versions are not synchronized for text content but are capable of
being synchronized by the RTFSync function. One version has been altered and the other version has
not.

No value, PR_RTF_IN_SYNC is not set at all, means that the two versions, if both exist or ever
existed, cannot be synchronized. One version has been deleted or altered so radically that
synchronization is no longer possible.

A client application that has modified PR_RTF_COMPRESSED should set a value of FALSE in
PR_RTF_IN_SYNC to force synchronization. RTF-aware message stores should perform the
synchronization using RTFSync during an IMAPIProp::SaveChanges call. RTF-aware clients should
check the setting of PR_RTF_IN_SYNC before reading PR_RTF_COMPRESSED, and call RTFSync
first if necessary.

If PR_BODY has had modifications to anything other than its white space, the message store must
delete PR_RTF_IN_SYNC to terminate synchronization.

 PR_RTF_SYNC_BODY_COUNT

The PR_RTF_SYNC_BODY_COUNT property contains a count of the significant characters of the
message text.

Usage

Reserved.

Details

Identifier 0x1007; property type PT_LONG; property tag 0x10070003

Remarks

The RTFSync function computes the count of characters in the text using only those that it considers
to be significant to the message. For example, some white space and other ignorable characters are
omitted from the count.

The PR_RTF_SYNC_BODY_COUNT property is an RTF auxiliary property. These properties are used
by the RTFSync function and are not intended to be used directly by client applications.

 PR_RTF_SYNC_BODY_CRC

The PR_RTF_SYNC_BODY_CRC property contains the cyclical redundancy check (CRC) computed
for the message text.

Usage

Reserved.

Details

Identifier 0x1006; property type PT_LONG; property tag 0x10060003

Remarks

The RTFSync function computes the CRC using only the characters that it considers to be significant
to the message. For example, some white space and other ignorable characters are omitted from the
CRC.

The PR_RTF_SYNC_BODY_CRC property is a Rich Text Format auxiliary property. These properties
are used by the RTFSync function and are not intended to be used directly by client applications.

 PR_RTF_SYNC_BODY_TAG

The PR_RTF_SYNC_BODY_TAG property contains significant characters that appear at the beginning
of the message text.

Usage

Reserved.

Details

Identifier 0x1008; property type PT_TSTRING; property tag 0x1008001E (0x1008001F for Unicode)

Remarks

The RTFSync function uses the text tag to indicate the beginning of the message text. When the text is
modified, the tag is used to find the beginning of the previous text.

The PR_RTF_SYNC_BODY_TAG property is a Rich Text Format auxiliary property. These properties
are used by the RTFSync function and are not intended to be used directly by client applications.

 PR_RTF_SYNC_PREFIX_COUNT

The PR_RTF_SYNC_PREFIX_COUNT property contains a count of the ignorable characters that
appear before the significant characters of the message.

Usage

Reserved.

Details

Identifier 0x1010; property type PT_LONG; property tag 0x10100003

Remarks

The count of prefix characters does not include white space.

The PR_RTF_SYNC_PREFIX_COUNT property is a Rich Text Format auxiliary property. These
properties are used by the RTFSync function and are not intended to be used directly by client
applications.

 PR_RTF_SYNC_TRAILING_COUNT

The PR_RTF_SYNC_TRAILING_COUNT property contains a count of the ignorable characters that
appear after the significant characters of the message.

Usage

Reserved.

Details

Identifier 0x1011; property type PT_LONG; property tag 0x10110003

Remarks

The PR_RTF_SYNC_TRAILING_COUNT property is a Rich Text Format auxiliary property. These
properties are used by the RTFSync function and are not intended to be used directly by client
applications.

 PR_SEARCH

The PR_SEARCH property contains a container object that is used for advanced searches.

Usage

Optional on address book container and message store objects.

Details

Identifier 0x3607; property type PT_OBJECT; property tag 0x3607000D

Remarks

A container that does not support advanced search capabilities, does not have to supply the
PR_SEARCH property.

See Also

IMAPIContainer : IMAPIProp interface

 PR_SEARCH_KEY

The PR_SEARCH_KEY property contains a binary-comparable key that identifies correlated objects for
a search.

Usage

Required on address book container, distribution list, messaging user, and message objects.

Details

Identifier 0x300B; property type PT_BINARY; property tag 0x300B0102

Remarks

The PR_SEARCH_KEY property provides a trace for related objects, such as message copies, and
facilitates finding unwanted occurrences, such as duplicate recipients.

PR_SEARCH_KEY is one of the base address properties for all messaging users. For more
information on the base address properties, see About Base Address Properties.

MAPI uses specific rules for constructing search keys for message recipients. The search key is
formed by concatenating the address type (in uppercase characters), the colon character ':', the e-mail
address in canonical form, and the terminating null character. Canonical form here means that case-
sensitive addresses appear in the correct case, and addresses that are not case-sensitive are
converted to uppercase. This is important in preserving correlations among messages.

For message objects, PR_SEARCH_KEY is available through the IMAPIProp::GetProps method
immediately following message creation. For other objects, it is available following the first call to the
IMAPIProp::SaveChanges method. Since PR_SEARCH_KEY is changeable, it is unreliable to obtain
it through GetProps until a SaveChanges call has committed any values set or changed by the
IMAPIProp::SetProps method.

For profiles, MAPI also furnishes a hard-coded profile section named MUID_PROFILE_INSTANCE,
with PR_SEARCH_KEY as its single property. This key is guaranteed to be unique among all profiles
ever created, and can be more reliable than the PR_PROFILE_NAME property, which can be, for
example, deleted and recreated with the same name.

The following table summarizes important differences among the PR_ENTRYID, PR_RECORD_KEY,
and PR_SEARCH_KEY properties.

Characteristic PR_ENTRYID PR_RECORD_KE
Y

PR_SEARCH_KEY

Required on
attachment
objects

No Yes No

Required on
folder objects

Yes Yes No

Required on
message store
objects

Yes Yes No

Required on
status objects

Yes No No

Creatable by
client

No No Yes

Available before
SaveChanges

Maybe Maybe Messages ¾ Yes
Others ¾ Maybe

Changed in a Yes Yes NO

copy operation
Changeable by
client
after a copy

No No Yes

Unique within ... Entire world Provider instance Entire world
Binary
comparable
(as with
memcmp)

No -- use
IMAPISupport:
:
CompareEntry
IDs

Yes Yes

PR_SEARCH_KEY corresponds to the X.400 attribute IM_THIS_IPM.

See Also

PR_RESPONSIBILITY property, PR_STORE_RECORD_KEY property

 PR_SECURITY

The PR_SECURITY property contains a flag that indicates the security level of a message.

Usage

Optional on message objects.

Details

Identifier 0x0034; property type PT_LONG; property tag 0x00340003

Remarks

The underlying messaging system chooses whether to use the flag contained in the PR_SECURITY
property. The PR_MESSAGE_CLASS property can determine whether the messaging system honors
the security settings.

The following flags can be set:

SECURITY_SIGNED
The message has been digitally signed. The recipient can read the digital signature to see if it is
expired or suspended, or if the contents have been altered since the digital signing.

SECURITY_ENCRYPTED
The message has been encrypted. The recipient must present a security password to read the
message text.

 PR_SELECTABLE

The PR_SELECTABLE property contains TRUE if the entry in the one-off table can be selected.

Usage

Optional as a column entry in one-off tables.

Details

Identifier 0x3609, property type PT_BOOLEAN; property tag 0x3609000B

Remarks

The PR_SELECTABLE property is used primarily for visual formatting of a one-off table. X.400 or
gateway templates can be grouped by creating an entry that indicates the heading for the group.
Setting PR_SELECTABLE to FALSE for the heading ensures that the user can select only the actual
templates in the group and not this heading entry.

This property applies only to a one-off table, not to an address book hierarchy table.

MAPI allows an address book provider to group items visually by two means. First, certain rows can
function as headings by being unselectable. Second, the selectable items can be indented relative to
their headings using the PR_DEPTH property. PR_SELECTABLE is used in such grouping to indicate
whether or not this item can be selected from a list box to create a one-off address. For example, if a
client has several templates for building FAX addresses, it can display them as follows:

FAX templates (depth 0, not selectable)
Local (depth 1, selectable)
Long-distance (depth 1, selectable)

See Also

IABLogon::GetOneOffTable method , PR_FOLDER_TYPE property

 PR_SEND_RICH_INFO

The PR_SEND_RICH_INFO property contains TRUE if the recipient can receive all message content,
including Rich Text Format and OLE objects.

Usage

Optional but recommended on distribution list and messaging user objects.

Details

Identifier 0x3A40; property type PT_BOOLEAN; property tag 0x3A40000B

Remarks

The PR_SEND_RICH_INFO property indicates whether the sender considers the recipient to be MAPI-
enabled.

When this property is set to TRUE, the transport and gateway can transmit the full content of the
message, including Rich Text Format and OLE objects. The transport provider and gateway should use
TNEF to encapsulate any properties that are not native to all the messaging systems involved.

When this property is set to FALSE, the transport provider and gateway are free to discard message
content that their native clients cannot use. For example, when the clients do not support Rich Text
Format, the transport provider can send only plain text.

When PR_SEND_RICH_INFO is not set, default behavior is determined by the implementation of the
transport provider, MTA, or gateway. Address book providers are not required to support this property.
For example, a tightly coupled address book and transport provider can choose to send TNEF but
never use Rich Text Format.

The client should not assume the transport provider and gateway will use TNEF on their own initiative.
Some transport providers and gateways that support TNEF transmit it without regard to the value of
PR_SEND_RICH_INFO, but others decline to construct or send TNEF if PR_SEND_RICH_INFO is not
set to TRUE.

Note The setting of this property, and the decisions based on its value, are on a per-recipient basis.

By default, MAPI sets the value of PR_SEND_RICH_INFO to TRUE. A client calling
IAddrBook::CreateOneOff or a provider calling IMAPISupport::CreateOneOff can set the
MAPI_SEND_NO_RICH_INFO bit in the ulFlags parameter, which causes MAPI to set
PR_SEND_RICH_INFO to FALSE. One-offs created by the user interface use the value specified by
the creating template.

On calls to the IAddrBook::ResolveName method when the name cannot be resolved but can be
interpreted as an Internet address (SMTP), PR_SEND_RICH_INFO is set to FALSE. To be construed
as an Internet address, the display name of the unresolved entry must be in the format X@Y.Z, such as
"pete@pinecone.com".

See Also

PR_ATTACH_DATA_OBJ property

 PR_SENDER_ADDRTYPE

The PR_SENDER_ADDRTYPE property contains the message sender's e-mail address type.

Usage

Required on message objects.

Details

Identifier 0x0C1E; property type PT_TSTRING; property tag 0x0C1E001E (0x0C1E001F for Unicode)

Remarks

The PR_SENDER_ADDRTYPE property is one of the address properties for the message sender. It
must be set by the outgoing transport provider, which should never propagate any previously existing
values.

If no transport provider has supplied any sender address properties, the MAPI spooler attempts to fill
them in by calling the IMAPISession::QueryIdentity method for an entry identifier. If no entry
identifiers have been provided, the MAPI spooler stores "Unknown" in all the sender address properties
of type PT_TSTRING.

For more information on the address properties, see About Base Address Properties.

See Also

PR_ADDRTYPE property, PR_SENT_REPRESENTING_ADDRTYPE property

 PR_SENDER_EMAIL_ADDRESS

The PR_SENDER_EMAIL_ADDRESS property contains the message sender's e-mail address.

Usage

Required on message objects.

Details

Identifier 0x0C1F; property type PT_TSTRING; property tag 0x0C1F001E (0x0C1F001F for Unicode)

Remarks

The PR_SENDER_EMAIL_ADDRESS property is one of the address properties for the message
sender. It must be set by the outgoing transport provider, which should never propagate any previously
existing values.

If no transport provider has supplied any sender address properties, the MAPI spooler attempts to fill
them in by calling the IMAPISession::QueryIdentity method for an entry identifier. If no entry
identifiers have been provided, the MAPI spooler stores "Unknown" in all the sender address properties
of type PT_TSTRING.

For more information on the address properties, see About Base Address Properties.

See Also

PR_EMAIL_ADDRESS property, PR_SENT_REPRESENTING_EMAIL_ADDRESS property

 PR_SENDER_ENTRYID

The PR_SENDER_ENTRYID property contains the message sender's entry identifier.

Usage

Required on message objects.

Details

Identifier 0x0C19; property type PT_BINARY; property tag 0x0C190102

Remarks

The PR_SENDER_ENTRYID property is one of the address properties for the message sender. It must
be set by the outgoing transport provider, which should never propagate any previously existing values.

If no transport provider has supplied any sender address properties, the MAPI spooler attempts to fill
them in by calling the IMAPISession::QueryIdentity method for an entry identifier. If no entry
identifiers have been provided, the MAPI spooler stores in PR_SENDER_ENTRYID an identifier
corresponding to the string "Unknown."

For more information on the address properties, see About Base Address Properties.

PR_SENDER_ENTRYID corresponds to the X.400 attribute IM_ORIGINATOR.

See Also

PR_ENTRYID property, PR_SENT_REPRESENTING_ENTRYID property

 PR_SENDER_NAME

The PR_SENDER_NAME property contains the message sender's display name.

Usage

Required on message objects.

Details

Identifier 0x0C1A; property type PT_TSTRING; property tag 0x0C1A001E (0x0C1A001F for Unicode)

Remarks

The PR_SENDER_NAME property is one of the address properties for the message sender. It must be
set by the outgoing transport provider, which should never propagate any previously existing values.

If no transport provider has supplied any sender address properties, the MAPI spooler attempts to fill
them in by calling the IMAPISession::QueryIdentity method for an entry identifier. If no entry
identifiers have been provided, the MAPI spooler stores "Unknown" in all the sender address properties
of type PT_TSTRING.

For more information on the address properties, see About Base Address Properties.

PR_SENDER_NAME corresponds to the X.400 attributes IM_FREE_FORM_NAME and
MH_T_ORIGINATOR_NAME.

See Also

PR_DISPLAY_NAME property, PR_SENT_REPRESENTING_NAME property

 PR_SENDER_SEARCH_KEY

The PR_SENDER_SEARCH_KEY property contains the message sender's search key.

Usage

Required on message objects.

Details

Identifier 0x0C1D; property type PT_BINARY; property tag 0x0C1D0102

Remarks

The PR_SENDER_SEARCH_KEY property is one of the address properties for the message sender. It
must be set by the outgoing transport provider, which should never propagate any previously existing
values.

If no transport provider has supplied any sender address properties, the MAPI spooler attempts to fill
them in by calling the IMAPISession::QueryIdentity method for an entry identifier. If no entry
identifiers have been provided, the MAPI spooler stores in PR_SENDER_SEARCH_KEY a key
corresponding to the string "Unknown."

For more information on the address properties, see About Base Address Properties.

See Also

PR_SEARCH_KEY property, PR_SENT_REPRESENTING_SEARCH_KEY property

 PR_SENSITIVITY

The PR_SENSITIVITY property contains a value indicating the message sender's opinion of the
sensitivity of a message.

Usage

Optional but recommended on message objects.

Details

Identifier 0x0036; property type PT_LONG; property tag 0x00360003

Remarks

The PR_SENSITIVITY property can have exactly one of the following values:

Value Description
SENSITIVITY_NONE The message has no special

sensitivity.
SENSITIVITY_PERSONAL The message is personal.
SENSITIVITY_PRIVATE The message is private.
SENSITIVITY_COMPANY_CO
NFIDENTIAL

The message is designated
Company Confidential.

PR_SENSITIVITY corresponds to the X.400 attribute IM_SENSITIVITY.

 PR_SENT_REPRESENTING_ADDRTYPE

The PR_SENT_REPRESENTING_ADDRTYPE property contains the address type for the messaging
user represented by the sender.

Usage

Required on message objects.

Details

Identifier 0x0068; property type PT_TSTRING; property tag 0x0068001E (0x0068001F for Unicode)

Remarks

The PR_SENT_REPRESENTING_ADDRTYPE property is one of the address properties for the
messaging user being represented by the sender. When a client application sends a message on
behalf of another client, it should set all the represented sender properties to the values for that client.
A messaging user sending on its own behalf typically leaves the represented sender properties unset.

The outgoing transport provider must always leave PR_SENT_REPRESENTING_ADDRTYPE
unchanged if it has been set by the sending client. If it is unset, the transport provider should set it to
PR_SENDER_ADDRTYPE on the outbound copy of the message, and leave it unset on the local copy.

For more information on the address properties, see About Base Address Properties.

See Also

PR_ADDRTYPE property

 PR_SENT_REPRESENTING_EMAIL_ADDRESS

The PR_SENT_REPRESENTING_EMAIL_ADDRESS property contains the e-mail address for the
messaging user represented by the sender.

Usage

Required on message objects.

Details

Identifier 0x0069; property type PT_TSTRING; property tag 0x0069001E (0x0069001F for Unicode)

Remarks

The PR_SENT_REPRESENTING_EMAIL_ADDRESS property is one of the address properties for the
messaging user being represented by the sender. When a client application sends a message on
behalf of another client, it should set all the represented sender properties to the values for that client.
A messaging user sending on its own behalf typically leaves the represented sender properties unset.

The outgoing transport provider must always leave PR_SENT_REPRESENTING_EMAIL_ADDRESS
unchanged if it has been set by the sending client. If it is unset, the transport provider should set it to
PR_SENDER_EMAIL_ADDRESS on the outbound copy of the message, and leave it unset on the
local copy.

For more information on the address properties, see About Base Address Properties.

See Also

PR_EMAIL_ADDRESS property

 PR_SENT_REPRESENTING_ENTRYID

The PR_SENT_REPRESENTING_ENTRYID property contains the entry identifier for the messaging
user represented by the sender.

Usage

Required on message objects.

Details

Identifier 0x0041; property type PT_BINARY; property tag 0x00410102

Remarks

The PR_SENT_REPRESENTING_ENTRYID property is one of the address properties for the
messaging user being represented by the sender. When a client application sends a message on
behalf of another client, it should set all the represented sender properties to the values for that client.
A messaging user sending on its own behalf typically leaves the represented sender properties unset.

The outgoing transport provider must always leave PR_SENT_REPRESENTING_ENTRYID
unchanged if it has been set by the sending client. If it is unset, the transport provider should set it to
PR_SENDER_ENTRYID on the outbound copy of the message, and leave it unset on the local copy.

For more information on the address properties, see About Base Address Properties.

See Also

PR_ENTRYID property

 PR_SENT_REPRESENTING_NAME

The PR_SENT_REPRESENTING_NAME property contains the display name for the messaging user
represented by the sender.

Usage

Required on message objects.

Details

Identifier 0x0042; property type PT_TSTRING; property tag 0x0042001E (0x0042001F for Unicode)

Remarks

The PR_SENT_REPRESENTING_NAME property is one of the address properties for the messaging
user being represented by the sender. When a client application sends a message on behalf of another
client, it should set all the represented sender properties to the values for that client. A messaging user
sending on its own behalf typically leaves the represented sender properties unset.

The outgoing transport provider must always leave PR_SENT_REPRESENTING_NAME unchanged if
it has been set by the sending client. If it is unset, the transport provider should set it to
PR_SENDER_NAME on the outbound copy of the message, and leave it unset on the local copy.

For more information on the address properties, see About Base Address Properties.

See Also

PR_DISPLAY_NAME property

 PR_SENT_REPRESENTING_SEARCH_KEY

The PR_SENT_REPRESENTING_SEARCH_KEY property contains the search key for the messaging
user represented by the sender.

Usage

Required on message objects.

Details

Identifier 0x003B; property type PT_BINARY; property tag 0x003B0102

Remarks

The PR_SENT_REPRESENTING_SEARCH_KEY property is one of the address properties for the
messaging user being represented by the sender. When a client application sends a message on
behalf of another client, it should set all the represented sender properties to the values for that client.
A messaging user sending on its own behalf typically leaves the represented sender properties unset.

The outgoing transport provider must always leave PR_SENT_REPRESENTING_SEARCH_KEY
unchanged if it has been set by the sending client. If it is unset, the transport provider should set it to
PR_SENDER_SEARCH_KEY on the outbound copy of the message, and leave it unset on the local
copy.

For more information on the address properties, see About Base Address Properties.

See Also

PR_SEARCH_KEY property

 PR_SENTMAIL_ENTRYID

The PR_SENTMAIL_ENTRYID property contains the entry identifier of the folder where the message
should be moved after submission.

Usage

Optional on message objects.

Details

Identifier 0x0E0A; property type PT_BINARY; property tag 0x0E0A0102

Remarks

The PR_SENTMAIL_ENTRYID property is often copied from the PR_IPM_SENTMAIL_ENTRYID
property, the client application's standard Sent Items folder.

The client application uses PR_SENTMAIL_ENTRYID with the PR_DELETE_AFTER_SUBMIT
property to control what happens to a message after it is submitted. Either one or the other should be
set, but not both.

 PR_SERVICE_DELETE_FILES

The PR_SERVICE_DELETE_FILES property contains a list of filenames that are to be deleted when
the message service is uninstalled.

Usage

Optional on profile section objects.

Details

Identifier 0x3D10; property type PT_MV_TSTRING; property tag 0x3D10101E

Remarks

The filenames in the list contained in the PR_SERVICE_DELETE_FILES property are deleted from the
computer when using the control panel to uninstall the message service. Do not include in the list any
DLL that supports multiple message services, or additional message services could be inadvertently
removed.

MAPI works only with filenames, and other strings passed to it, in the ANSI character set. Applications
that use filenames in an OEM character set must convert them to ANSI before calling MAPI.

 PR_SERVICE_DLL_NAME

The PR_SERVICE_DLL_NAME property contains the filename of the DLL containing the message
service provider entry point function to call for configuration.

Usage

Required on profile section objects and as a column in message service tables.

Details

Identifier 0x3D0A; property type PT_TSTRING; property tag 0x3D0A001E (0x3D0A001F for Unicode)

Remarks

When the entry point function name appears in the PR_SERVICE_ENTRY_NAME method, it indicates
that the entry point exists.

MAPI uses a DLL file naming convention. The base filename contains up to six characters that uniquely
identify the DLL. MAPI appends the string 32 to the base DLL name to identify the version that runs on
32-bit platforms. For example, when the name MAPI.DLL is specified, MAPI constructs the name
MAPI32.DLL to represent the corresponding 32-bit version of the DLL.

The PR_SERVICE_DLL_NAME property should specify the base name. MAPI appends the string 32
as appropriate. Including the string 32 as part of the PR_SERVICE_DLL_NAME property results in an
error.

See Also

PR_PROVIDER_DLL_NAME property

 PR_SERVICE_ENTRY_NAME

The PR_SERVICE_ENTRY_NAME property contains the name of the entry point function for
configuration of a message service.

Usage

Required as a column in message service tables.
Optional but recommended on profile section objects.

Details

Identifier 0x3D0B; property type PT_STRING8; property tag 0x3D0B001E

Remarks

It is recommended that message service implementors provide a message service entry point, but the
entry point is not required. However, the entry point should be supplied only if the related configuration
properties exist. If these properties do not exist, MAPI assumes that no entry point is provided.

The DLL in which the entry point function appears is named by the PR_SERVICE_DLL_NAME
property.

For more information on message service entry points, see About Message Service Entry Point
Functions.

 PR_SERVICE_EXTRA_UIDS

The PR_SERVICE_EXTRA_UIDS property contains a list of MAPIUID structures that identify
additional profile sections for the message service.

Usage

Optional on profile section objects.

Details

Identifier 0x3D0D; property type PT_BINARY; property tag 0x3D0D0102

Remarks

New profile sections can be created for each message filter. When the information about the message
service is to be copied to another profile, it is important to copy the additional profile sections for the
filters as well. A service provider that uses additional profile sections can store the MAPIUID structures
of those profile sections in PR_SERVICE_EXTRA_UIDS, allowing MAPI to copy the additional
message service information.

 PR_SERVICE_NAME

The PR_SERVICE_NAME property contains the name of a message service as set by the user in the
MAPISVC.INF file.

Usage

Required on profile section objects and as a column in message service tables.

Details

Identifier 0x3D09; property type PT_TSTRING; property tag 0x3D09001E (0x3D09001F for Unicode)

Remarks

The name contained in the PR_SERVICE_NAME property is specific to the message service. It comes
from the [Services] section in MAPISVC.INF.

PR_SERVICE_NAME appears as a column in the message service table and can be used to filter
services. Because it is used to identify and filter services, the value should not be localized.

 PR_SERVICE_SUPPORT_FILES

The PR_SERVICE_SUPPORT_FILES property contains a list of the files that belong to the message
service.

Usage

Required as a column in message service tables.
Optional on profile section objects.

Details

Identifier 0x3D0F, property type PT_MV_TSTRING; property tag 0x3D0F101E

Remarks

Using a dialog box in the control panel applet, a user can obtain the list of files that belong to the
message service. For example, the user can obtain the names of all DLLs that belong to the service.
The user can then seek additional details about the specified files, such as the names and version
numbers of all the DLLs. MAPI uses the PR_SERVICE_SUPPORT_FILES property to create a support
file list in a dialog box for messaging user selection.

MAPI works only with filenames, and other strings passed to it, in the ANSI character set. Client
applications that use filenames in an OEM character set must convert them to ANSI before calling
MAPI.

 PR_SERVICE_UID

The PR_SERVICE_UID property contains the MAPIUID structure for a message service.

Usage

Required as a column in message service tables.
Computed by MAPI on profile section objects.

Details

Identifier 0x3D0C; property type PT_BINARY; property tag 0x3D0C0102

Remarks

MAPI uses the PR_SERVICE_UID property to group all the providers that belong to the same
message service. PR_SERVICE_UID is supplied as a parameter to most of the IMsgServiceAdmin
methods. It must not appear in MAPISVC.INF.

See Also

IMsgServiceAdmin::IUnknown method

 PR_SERVICES

The PR_SERVICES property contains a list of identifiers of message services in the current profile.

Usage

Reserved.

Details

Identifier 0x3D0E: property type PT_BINARY; property tag 0x3D0E0102

Remarks

Do not use this property.

See Also

MAPIUID structure

 PR_SPOOLER_STATUS

The PR_SPOOLER_STATUS property contains the status of the message based on information
available to the MAPI spooler.

Usage

Computed by MAPI on message objects.

Details

Identifier 0x0E10; property type PT_LONG; property tag 0x0E100003

Remarks

The PR_SPOOLER_STATUS property appears on inbound messages only and is reserved in all other
cases. It indicates whether or not a message has been delivered to its final location or whether a
messaging hook provider potentially deleted the message while rerouting it.

Client applications should never set this property. For an inbound message, a client or service provider
can call the IMAPIProp::GetProps property on PR_SPOOLER_STATUS to determine the message
status. The value S_OK indicates that the message was successfully delivered to the message store.
The value MAPI_E_OBJECT_DELETED indicates that the message was deleted and was never
committed to the store.

Message store providers should support PR_SPOOLER_STATUS on messages, recipient tables, and
the outgoing queue table. Clients and providers should be able to set columns on the outgoing queue
table and restrict based on this property.

 PR_START_DATE

The PR_START_DATE property contains the starting date and time of an appointment as managed by
a scheduling application.

Usage

Required on message objects used for scheduling.

Details

Identifier 0x0060; property type PT_SYSTIME; property tag 0x00600040

Remarks

Scheduling applications should set both the PR_START_DATE and PR_END_DATE properties when
sending meeting requests.

 PR_STATE_OR_PROVINCE

The PR_STATE_OR_PROVINCE property contains the name of the recipient's state or province.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A28; property type PT_TSTRING; property tag 0x3A28001E (0x3A28001F for Unicode)

Remarks

The PR_STATE_OR_PROVINCE property is one of the properties that provide identification and
access information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_STATUS

The PR_STATUS property contains a 32-bit bitmask of flags defining folder status.

Usage

Required on folder objects and as a column entry in hierarchy tables.

Details

Identifier 0x360B; property type PT_LONG; property tag 0x360B0003

Remarks

The PR_STATUS property for folders is analogous to the PR_MSG_STATUS property for messages.
Its flags are provided for the client application only and do not affect the message store. Clients can
use or ignore these settings. The client can also define its own values for the client-definable bits of the
PR_STATUS property.

One or more of the following flags can be set for the PR_STATUS bitmask:

FLDSTATUS_DELMARKED
The folder is marked for deletion. The client application sets this flag.

FLDSTATUS_HIDDEN
The folder is hidden.

FLDSTATUS_HIGHLIGHTED
The folder is highlighted, for example, shown in reverse video.

FLDSTATUS_TAGGED
The folder is tagged.

Bits 16 through 31 (0x10000 through 0x80000000) of PR_STATUS are available for use by the IPM
client application. All other bits are reserved for use by MAPI; those not defined in the preceding list
should be initially set to zero and not altered subsequently.

 PR_STATUS_CODE

The PR_STATUS_CODE property contains a bitmask of flags indicating the current status of a service
provider.

Usage

Required on profile section and provider objects and as a column entry in status tables.

Details

Identifier 0x3E04; property type PT_LONG; property tag 0x3E040003

Remarks

The status code must appear in the MAPISVC.INF file for all providers.

One or more of the following flags can be set for the PR_STATUS_CODE bitmask:

STATUS_AVAILABLE
The message service is available for use by MAPI and client applications.

STATUS_FAILURE
The service provider is experiencing severe unexpected problems and the provider session may
soon end if the problems are not resolved.

STATUS_INBOUND_ACTIVE
The transport provider is receiving an inbound message.

STATUS_INBOUND_ENABLED
The transport provider is enabled to receive inbound messages.

STATUS_INBOUND_FLUSH
The transport provider is flushing its inbound message queue.

STATUS_OFFLINE
The message services available from the service provider are limited to those that use locally
available data.

STATUS_OUTBOUND_ACTIVE
The transport provider is receiving an outbound message.

STATUS_OUTBOUND_ENABLED
The transport provider is enabled to handle outbound messages.

STATUS_OUTBOUND_FLUSH
The transport provider is flushing its outbound message queue.

STATUS_REMOTE_ACCESS
The transport provider supports remote access.

See Also

PR_STATUS_STRING property

 PR_STATUS_STRING

The PR_STATUS_STRING property contains an ASCII message indicating the current status of a
service provider.

Usage

Optional on provider objects.

Details

Identifier 0x3E08; property type PT_TSTRING; property tag 0x3E08001E (0x3E08001F for Unicode)

Remarks

The PR_STATUS_STRING property gives service providers the opportunity to supply specific
information about the provider status, for example, whether or not it is processing a message.
PR_STATUS_STRING is optional, based on the value of the PR_STATUS_CODE property. When the
transport provider does not supply a value, the MAPI spooler supplies a default value.

The string is generated on the same side of the remote procedure call as the MAPI spooler; it travels
through shared memory rather than being marshaled across a process boundary.

See Also

PR_STATUS_CODE property

 PR_STORE_ENTRYID

The PR_STORE_ENTRYID property contains the unique entry identifier of the message store in which
an object resides.

Usage

Required on folder, message, and message store objects.

Details

Identifier 0x0FFB; property type PT_BINARY; property tag 0x0FFB0102

Remarks

The PR_STORE_ENTRYID property is used to open a message store with the
IMAPISession::OpenMsgStore method. It is also used to open any object owned by the message
store.

For a message store, this property is identical to the store's own PR_ENTRYID property. A client
application can compare the two properties using the IMAPISession::CompareEntryIDs method.

 PR_STORE_PROVIDERS

The PR_STORE_PROVIDERS property contains a list of identifiers of message store providers in the
current profile.

Usage

Reserved.

Details

Identifier 0x3D00; property type PT_BINARY; property tag 0x3D000102

Remarks

Do not use this property.

See Also

MAPIUID structure

 PR_STORE_RECORD_KEY

The PR_STORE_RECORD_KEY property contains the unique binary-comparable identifier (record
key) of the message store in which an object resides.

Usage

Required on folder, message, and message store objects.

Details

Identifier 0x0FFA; property type PT_BINARY; property tag 0x0FFA0102

Remarks

For a message store, the PR_STORE_RECORD_KEY property is identical to the store's own
PR_RECORD_KEY property.

The relationship between PR_STORE_RECORD_KEY and PR_RECORD_KEY is the same as the
relationship between PR_STORE_ENTRYID and PR_ENTRYID.

 PR_STORE_STATE

The PR_STORE_STATE property contains a flag that describes the state of the message store.

Usage

Required on message store objects.

Details

Identifier 0x340E; property type PT_LONG; property tag 0x340E0003

Remarks

The PR_STORE_STATE property is dynamic and can change based on user actions, unlike the
PR_STORE_SUPPORT_MASK property.

The following value can be set:

Value Description
STORE_HAS_SEARCHES The user has created one or

more active searches in the
store.

See Also

PR_STORE_ENTRYID property

 PR_STORE_SUPPORT_MASK

The PR_STORE_SUPPORT_MASK property contains a bitmask of flags that client applications should
query to determine the characteristics of a message store.

Usage

Required on folder, message, and message store objects.

Details

Identifier 0x3A0D; property type PT_LONG, Property tag:0x3A0D0003

Remarks

The PR_STORE_SUPPORT_MASK property discloses the capabilities of a message store to client
applications planning to send it a message. The flags can facilitate decisions by a client or another
store, such as whether to send PR_BODY or only PR_RTF_COMPRESSED. A client should never set
PR_STORE_SUPPORT_MASK; an attempt returns MAPI_E_COMPUTED.

One or more of the following flags can be set for the PR_STORE_SUPPORT_MASK bitmask:

STORE_ATTACH_OK
The message store supports attachments (OLE or non-OLE) to messages.

STORE_CATEGORIZE_OK
The message store supports categorized views of tables.

STORE_CREATE_OK
The message store supports creation of new messages.

STORE_ENTRYID_UNIQUE
Entry identifiers for the objects in the message store are unique, that is, never reused during the life
of the store.

STORE_MODIFY_OK
The message store supports modification of its existing messages.

STORE_MV_PROPS_OK
The message store supports multivalued properties, guarantees the stability of value order in a
multivalued property throughout a save operation, and supports instantiation of multivalued
properties in tables.

STORE_NOTIFY_OK
The message store supports notifications.

STORE_OLE_OK
The message store supports OLE attachments. The OLE data is accessible through an IStorage
interface, such as that available through the PR_ATTACH_DATA_OBJ property.

STORE_PUBLIC_FOLDERS
The folders in this store are public (multi-user), not private (possibly multi-instance but not multi-
user).

STORE_READONLY
All interfaces for the message store have a read-only access level.

STORE_RESTRICTION_OK
The message store supports restrictions.

STORE_RTF_OK
The message store supports Rich Text Format (RTF) messages, usually stored compressed, and
the store itself keeps PR_BODY and PR_RTF_COMPRESSED synchronized.

STORE_SEARCH_OK
The message store supports search-results folders.

STORE_SORT_OK
The message store supports sorting views of tables.

STORE_SUBMIT_OK
The message store supports marking a message for submission.

STORE_UNCOMPRESSED_RTF
The message store supports storage of Rich Text Format (RTF) messages in uncompressed form.
An uncompressed RTF stream is identified by the value dwMagicUncompressedRTF in the stream
header. The dwMagicUncompressedRTF value is defined in the RTFLIB.H file.

An RTF version of a message can always be stored, even if the message store is non-RTF-aware. If
the STORE_RTF_OK bit is not set for a particular store, a client maintaining RTF versions must itself
call the RTFSync function to keep the PR_BODY and PR_RTF_COMPRESSED versions
synchronized for text content. RTF is always stored in PR_RTF_COMPRESSED, whether it is actually
compressed or not.

 PR_STREET_ADDRESS

The PR_STREET_ADDRESS property contains the recipient's street address.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A29; property type PT_TSTRING; property tag 0x3A29001E (0x3A29001F for Unicode)

Remarks

The PR_STREET_ADDRESS property is one of the properties that provide identification and access
information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_SUBFOLDERS

The PR_SUBFOLDERS property contains TRUE if a folder contains subfolders.

Details

Identifier 0x360a; property type PT_BOOLEAN; property tag 0x360A000B

Remarks

Message stores must compute the PR_SUBFOLDERS property for all folders.

See Also

PR_FOLDER_TYPE property

 PR_SUBJECT

The PR_SUBJECT property contains the full subject of a message.

Usage

Optional but recommended on message objects.

Details

Identifier 0x0037; property type PT_TSTRING; property tag 0x0037001E (0x0037001F for Unicode)

Remarks

The PR_SUBJECT property is always the full subject text, that is, the concatenation of the prefix and
the normalized subject. If there is no prefix, the normalized subject should be the same as the subject.
A message store or transport provider uses both the PR_SUBJECT and PR_SUBJECT_PREFIX
properties to compute the normalized subject using the rule described under
PR_NORMALIZED_SUBJECT.

The subject properties are typically small strings of fewer than 256 characters, and a message store
provider is not obligated to support the OLE IStream interface on them. The client should always
attempt access through the IMAPIProp interface first, and resort to IStream only if
MAPI_E_NOT_ENOUGH_MEMORY is returned.

For a report, PR_SUBJECT contains the original message's subject preceded by a string indicating
what has happened to the message.

PR_SUBJECT corresponds to the X.400 attribute IM_SUBJECT.

 PR_SUBJECT_PREFIX

The PR_SUBJECT_PREFIX property contains a subject prefix that typically indicates some action on a
message, such as "FW: " for forwarding.

Usage

Optional but recommended on message objects.

Details

Identifier 0x003D; property type PT_TSTRING; property tag 0x003D001E (0x003D001F for Unicode)

Remarks

The subject prefix consists of one or more alphanumeric characters, followed by a colon and a space
(which are part of the prefix). It must not contain any nonalphanumeric characters before the colon.
Absence of a prefix can be represented by an empty string or by PR_SUBJECT_PREFIX not being set.

If PR_SUBJECT_PREFIX is set explicitly, it can be of any length and use any alphanumeric
characters, but it must match a substring at the beginning of the PR_SUBJECT property. If
PR_SUBJECT_PREFIX is not set by the client and is to be computed, its contents are more restricted.
The rule for computing the prefix is that PR_SUBJECT must begin with one, two, or three letters
(alphabetic only) followed by a colon and a space. If such a substring is found at the beginning of
PR_SUBJECT, it then becomes PR_SUBJECT_PREFIX (and also stays at the beginning of
PR_SUBJECT). Otherwise PR_SUBJECT_PREFIX remains unset.

PR_SUBJECT_PREFIX and PR_NORMALIZED_SUBJECT should be computed as part of the
IMAPIProp::SaveChanges implementation. A client should not prompt IMAPIProp::GetProps for their
values until they have been committed by an IMAPIProp::SaveChanges call.

The subject properties are typically small strings of fewer than 256 characters, and a message store
provider is not obligated to support the OLE IStream interface on them. A client should always attempt
access through the IMAPIProp interface first, and resort to IStream only if
MAPI_E_NOT_ENOUGH_MEMORY is returned.

 PR_SUBMIT_FLAGS

The PR_SUBMIT_FLAGS property contains a bitmask of flags indicating details about a message
submission.

Usage

Required as a column entry in outgoing queue tables.

Details

Identifier 0x0E14; property type PT_LONG; property tag 0x0E140003

Remarks

One or more of the following flags can be set for the PR_SUBMIT_FLAGS bitmask:

SUBMITFLAG_LOCKED
The MAPI spooler currently has the message locked.

SUBMITFLAG_PREPROCESS\
The message needs preprocessing. When the MAPI spooler is done preprocessing this message, it
should call the IMessage::SubmitMessage method. The message store provider recognizes that
the spooler, rather than the client application, has called SubmitMessage, clears the flag, and
continues message submission.

See Also

IMsgStore::SetLockState method

 PR_SUPPLEMENTARY_INFO

The PR_SUPPLEMENTARY_INFO property contains additional information for use in a report.

Usage

Optional on message objects used for reports.

Details

Identifier 0x0C1B; property type PT_TSTRING; property tag 0x0C1B001E (0x0C1B001F for Unicode)

Remarks

The PR_SUPPLEMENTARY_INFO property contains information generated by the message transfer
agent or transport provider related to the report. It is typically used for delivery or nondelivery report
text that originated with the underlying messaging system.

PR_SUPPLEMENTARY_INFO corresponds to the X.400 attribute IM_SUPPLEMENTARY_INFO.

 PR_SURNAME

The PR_SURNAME property contains the recipient's family name.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A11; property type PT_TSTRING; property tag 0x3A11001E (0x3A11001F for Unicode)

Remarks

The PR_SURNAME property is one of the properties that provide identification and access information
for a recipient. These properties are defined by the recipient and the recipient's organization. For more
information on this group of properties, see About Messaging User Objects.

 PR_TELEX_NUMBER

The PR_TELEX_NUMBER property contains the recipient's telex number.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A2C; property type PT_TSTRING; property tag 0x3A2C001E (0x3A2C001F for Unicode)

Remarks

The PR_TELEX_NUMBER property is one of the properties that provide identification and access
information for a recipient. These properties are defined by the recipient and the recipient's
organization. For more information on this group of properties, see About Messaging User Objects.

 PR_TEMPLATEID

The PR_TEMPLATEID property contains an entry identifier that can find the code associated with a
service provider.

Usage

Optional on address book provider objects.

Details

Identifier 0x3902; property type PT_BINARY; property tag 0x39020102

Remarks

The entry identifier can bind the code to the data.

See Also

IABLogon::OpenTemplateID method , IMAPISupport::OpenTemplateID method

 PR_TITLE

The PR_TITLE property contains the recipient's job title.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A17; property type PT_TSTRING; property tag 0x3A17001E (0x3A17001F for Unicode)

Remarks

The PR_TITLE property is one of the properties that provide identification and access information for a
recipient. These properties are defined by the recipient and the recipient's organization. For more
information on this group of properties, see About Messaging User Objects.

PR_TITLE is commonly used to indicate the recipient's formal job title, such as Senior Programmer,
rather than occupational class, such as programmer. It is not typically used for "suffix" titles such as
Esq. or DDS.

Common PR_TITLE values include: Managing Director, Programmer II, Associate Professor, and
Development Lead

 PR_TNEF_CORRELATION_KEY

The PR_TNEF_CORRELATION_KEY property contains a value used to correlate a TNEF attachment
with a message.

Usage

Optional but recommended in TNEF attachment subobjects.

Details

Identifier 0x007F; property type PT_BINARY; property tag 0x007F0102

Remarks

The PR_TNEF_CORRELATION_KEY property determines whether or not an inbound TNEF file
belongs to the message it is attached to. It is used primarily by transport providers and gateways.

On an outbound message, the transport provider should compute a binary value unique to that
message, or use an existing value that satisfies the uniqueness requirement, such as a message
identifier. The transport provider should store this value in PR_TNEF_CORRELATION_KEY and then
call the ITnef::AddProps method to encapsulate it. The same value should also be stored in the
transport envelope in a place defined by the provider, such as the message header.

On an inbound message, the transport provider should call the ITnef::ExtractProps method to
decapsulate the TNEF attachment and then compare PR_TNEF_CORRELATION_KEY with the value
stored in the transport envelope. If the values match, TNEF should be processed normally, that is, all
the properties extracted from the TNEF attachment should be used. If the values do not match, all the
properties from the TNEF attachment should be ignored. If PR_TNEF_CORRELATION_KEY is not set,
the TNEF file should be considered to belong to this message, and the other properties extracted from
it should be used.

 PR_TRANSMITTABLE_DISPLAY_NAME

The PR_TRANSMITTABLE_DISPLAY_NAME property contains a recipient's display name in a secure
form that cannot be changed.

Usage

Required on messaging user objects.

Details

Identifier 0x3a20; property type PT_TSTRING; property tag 0x3A20001E (0x3A20001F for Unicode)

Remarks

The PR_TRANSMITTABLE_DISPLAY_NAME property should be furnished by all address book
providers. It contains the version of the recipient's display name that is transmitted with the message.
For most address book providers this property has the same value as the PR_DISPLAY_NAME
property. Providers that do not have a secure display name return PT_ERROR and MAPI changes the
display name by adding quotation marks around the name.

A client application can use PR_TRANSMITTABLE_DISPLAY_NAME to prevent alteration or
"spoofing" of entries. An example of spoofing is transmitting John Doe as John (What a Guy) Doe.

This property was formerly defined as PR_TRANSMITABLE_DISPLAY_NAME.

 PR_TRANSPORT_KEY

The PR_TRANSPORT_KEY property contains a value used by the MAPI spooler to track the progress
of an outbound message through the outgoing transport providers.

Usage

Reserved.

Details

Identifier 0x0E16; property type PT_LONG; property tag 0x0E160003

Remarks

Do not use this property.

See Also

PR_TRANSPORT_PROVIDERS property

 PR_TRANSPORT_MESSAGE_HEADERS

The PR_TRANSPORT_MESSAGE_HEADERS property contains transport-specific message envelope
information.

Usage

Optional on message objects.

Details

Identifier 0x007D; property type PT_TSTRING; property tag 0x007D001E (0x007D001F for Unicode)

Remarks

The transport provider can generate the message header information for inbound messages.

The PR_TRANSPORT_MESSAGE_HEADERS property offers an alternative to either discarding the
transport message header information or prepending it to the message text. The client can choose
whether or not to display the information.

See Also

PR_BODY property

 PR_TRANSPORT_PROVIDERS

The PR_TRANSPORT_PROVIDERS property contains a list of identifiers of transport providers in the
current profile.

Usage

Reserved.

Details

Identifier 0x3D02; property type PT_BINARY; property tag 0x3D020102

Remarks

Do not use this property.

See Also

MAPIUID structure

 PR_TRANSPORT_STATUS

Obsolete MAPI spooler property.

Usage

No longer used.

Details

Identifier 0x0E11; property type PT_LONG; property tag 0x0E110003

Remarks

Do not use this property.

 PR_TYPE_OF_MTS_USER

The PR_TYPE_OF_MTS_USER property contains the type of a message recipient, for use in a report.

Usage

Optional on recipient subobjects within report message objects.

Details

Identifier 0x0C1C; property type PT_LONG; property tag 0x0C1C0003

Remarks

The PR_TYPE_OF_MTS_USER property corresponds to the X.400 attribute
MH_T_DELIVERY_POINT.

See Also

PR_CORRELATE_MTSID property

 PR_USER_CERTIFICATE

The PR_USER_CERTIFICATE property contains an ASN.1 authentication certificate for a messaging
user.

Usage

Optional on messaging user objects.

Details

Identifier 0x3A22; property type PT_BINARY; property tag 0x3A220102

Remarks

An authentication certificate is similar to a digital signature. Several MAPI properties supply ASN.1
certificates.

See Also

PR_ORIGINATOR_CERTIFICATE property, PR_RECIPIENT_CERTIFICATE property

 PR_VALID_FOLDER_MASK

The PR_VALID_FOLDER_MASK property contains a bitmask of flags that indicate the validity of the
entry identifiers of the folders in a message store.

Usage

Required on message store objects.

Details

Identifier 0x35DF; property type PT_LONG; property tag 0x35DF0003

Remarks

A folder's entry identifier can become invalid if a user deletes the folder or if the message store
becomes corrupted.

One or more of the following flags can be set for the PR_VALID_FOLDER_MASK bitmask:

FOLDER_COMMON_VIEWS_VALID
The common views folder has a valid entry identifier. See PR_COMMON_VIEWS_ENTRYID.

FOLDER_FINDER_VALID
The finder folder has a valid entry identifier. See PR_FINDER_ENTRYID.

FOLDER_IPM_INBOX_VALID
The interpersonal message (IPM) receive folder has a valid entry identifier. See
IMsgStore::GetReceiveFolder.

FOLDER_IPM_OUTBOX_VALID
The IPM Outbox folder has a valid entry identifier. See PR_IPM_OUTBOX_ENTRYID.

FOLDER_IPM_SENTMAIL_VALID
The IPM Sent Items folder has a valid entry identifier. See PR_IPM_SENTMAIL_ENTRYID.

FOLDER_IPM_SUBTREE_VALID
The IPM folder subtree has a valid entry identifier. See PR_IPM_SUBTREE_ENTRYID.

FOLDER_IPM_WASTEBASKET_VALID
The IPM Deleted Items folder has a valid entry identifier. See PR_IPM_WASTEBASKET_ENTRYID.

FOLDER_VIEWS_VALID
The views folder has a valid entry identifier. See PR_VIEWS_ENTRYID.

For more information on folder entry identifiers, see About Folder Identifiers.

See Also

PR_FOLDER_TYPE property

 PR_VIEWS_ENTRYID

The PR_VIEWS_ENTRYID property contains the entry identifier of the user-defined Views folder.

Usage

Required on message store objects.

Details

Identifier 0x35E5; property type PT_BINARY; property tag 0x35E50102

Remarks

The common view folder contains a predefined set of standard view specifiers, while the view folder
contains specifiers defined by a messaging user. These folders, which are not visible in the
interpersonal message (IPM) hierarchy, can hold many view specifiers, each one stored as a message.
The client application can choose to merge the two sets of specifiers and make them both available.

For more information on views, see About View Folders.

See Also

PR_COMMON_VIEWS_ENTRYID property, PR_DEFAULT_VIEW_ENTRYID property

 PR_X400_CONTENT_TYPE

The PR_X400_CONTENT_TYPE property contains the content type for a submitted message.

Usage

Optional on message objects.

Details

Identifier 0x003C; property type PT_BINARY; property tag 0x003C0102

Remarks

The PR_X400_CONTENT_TYPE property corresponds to the X.400 attribute
MH_T_CONTENT_TYPE.

See Also

PR_X400_DEFERRED_DELIVERY_CANCEL property

 PR_X400_DEFERRED_DELIVERY_CANCEL

The PR_X400_DEFERRED_DELIVERY_CANCEL property was originally meant to contain TRUE if
the message transfer system (MTS) allows X.400 deferred delivery cancellation.

Usage

Never used.

Details

Identifier 0x3E09; property type PT_BOOLEAN; property tag 0x3E09000B

Remarks

Do not use this property. It is not supported in MAPI 1.0.

See Also

PR_X400_CONTENT_TYPE property

 PR_XPOS

The PR_XPOS property contains the x coordinate of the starting position (the upper-left corner) of a
dialog box control, in standard Windows dialog units.

Usage

Required as a column entry in display tables.

Details

Identifier 0x3F05; property type PT_LONG; property tag 0x3F050003

Remarks

The PR_XPOS, PR_YPOS, PR_DELTAX, and PR_DELTAY properties position and size the dialog box
control.

 PR_YPOS

The PR_YPOS property contains the y coordinate of the starting position (the upper-left corner) of a
dialog box control, in standard Windows dialog units.

Usage

Required as a column entry in display tables.

Details

Identifier 0x3F06; property type PT_LONG; property tag 0x3F060003

Remarks

The PR_XPOS, PR_YPOS, PR_DELTAX, and PR_DELTAY properties position and size the control.

 MAPI Structures and Related Macros

The following alphabetized entries describe MAPI structures and related macros. For more detailed
information, cross references to other publications or to other sections of this documentation are also
included.

 ADRENTRY

The ADRENTRY structure contains properties related to a recipient.

typedef struct _ADRENTRY
{
 ULONG ulReserved1;
 ULONG cValues;
 LPSPropValue rgPropVals;
} ADRENTRY, FAR *LPADRENTRY;

Members

ulReserved1
Reserved; must be zero.

cValues
Specifies the number of properties in the property value array pointed to by the rgPropVals
member.

rgPropVals
Points to an array of SPropValue structures containing values for the properties of the recipient.

Remarks

An ADRENTRY structure describes recipient properties. The properties that are typically used to
describe a recipient include:

· The display name
· The type of messaging system
· The messaging system address
· The entry identifier

ADRENTRY structures typically exist as components of ADRLIST structures. ADRLIST structures are
used to represent collections of recipients.

Each rgPropVals member of an ADRENTRY structure must be allocated in a separate allocation from
the ADRLIST structure. This insures the validity of any pointers to recipients when the ADRLIST
structure containing them is reallocated or resized. The rgPropVals member must be deallocated prior
to deallocation of the containing ADRLIST structure so that pointers to allocated SPropValue
structures are not lost.

Use FreePAdrList to free the ADRLIST structure. In addition to resolved and unresolved recipient
entries, ADRENTRY structures can be NULL, that is, the cValues member is zero and there are no
property values. This is the case, for example, when the dialog box presented by
IAddrBook::Address is used to remove a recipient from the list.

The structure member types and allocation rules for the ADRENTRY structures and SRow structures
are identical. This means a row set retrieved from an address book contents table or a message
recipient table can be cast to an ADRLIST and used as is.

For more information on ADRENTRY allocation and deallocation issues, see
IMessage::ModifyRecipients and IAddrBook::Address.

The ADRENTRY structure is defined in MAPIDEFS.H.

See Also

IAddrBook::Address method , IMessage::ModifyRecipients method , MAPIAllocateBuffer function ,
SRow structure

 ADRLIST

The ADRLIST structure describes one or more recipients. There is one one ADRENTRY structure for
each recipient.

typedef struct _ADRLIST
{
 ULONG cEntries;
 ADRENTRY aEntries[MAPI_DIM];
} ADRLIST, FAR *LPADRLIST;

Members

cEntries
Indicates the number of entries in the array specified by the aEntries member.

aEntries
Indicates an array of ADRENTRY structures, each describing a recipient.

Remarks

An ADRLIST structure has the same format as an SRowSet structure. This means a row set retrieved
from an address book contents table or a message recipient table can be cast to an ADRLIST
structure and used as is.

An ADRLIST structure contains several ADRENTRY structures. These structures can contain both
unresolved and resolved entries. An unresolved entry is lacking an entry identifier, or PR_ENTRYID, in
its property value array. The e-mail address, or PR_EMAIL_ADDRESS, is typical but not required for
resolved entries.

In addition to resolved and unresolved recipient entries, ADRENTRY structures can be NULL, that is,
the cValues member is zero and there are no property values. This is the case, for example, when the
dialog box presented by IAddrBook::Address is used to remove a recipient from the list.

If the client deals with a recipient list that is too large to fit in memory, the client can use an ADRLIST
structure along with the IMessage::ModifyRecipients method to work with a subset of the list. The
client should not use the address book common dialog boxes in such a situation.

For information about allocation rules for ADRLIST structures, see the entry for ADRENTRY.

Use the CbADRLIST macro to compute the number of bytes of memory occupied by an existing
ADRLIST structure. The syntax for this macro is:

int CbADRLIST (LPADRLIST _lpadrlist)

The _lpadrlist parameter points to an ADRLIST structure. This macro returns the number of bytes
occupied by the ADRLIST structure pointed to by _lpadrlist.

Use the CbNewADRLIST macro to determine the memory allocation requirements of an ADRLIST
structure containing a specified number of ADRENTRY structures (recipients). The syntax is:

int CbNewADRLIST (int _centries)

The _centries parameter specifies the number of recipients. This macro returns the number of bytes of
memory that an ADRLIST structure containing the number of recipients specified by _centries would
occupy.

Use the SizedADRLIST macro to define a structure with the specified name that contains the specified
number of ADRENTRY structures. The syntax is:

SizedADRLIST (int _centries, _name)

The _centries parameter specifies the number of ADRENTRY structures. The structure type is defined

with the tag _ADRLIST_ _name and type name _name.

SizedADRLIST provides a way to define a recipient list with explicit bounds when array length
requirements are known.

To use a sized recipient list pointer lpSizedADRList in any function call or structure that expects a
LPADRLIST pointer, perform the following cast:

lpADRList = (LPADRLIST) & SizedADRList;

The ADRLIST structure is defined in MAPIDEFS.H.

See Also

ADRENTRY structure , CbNewADRLIST macro , IMessage::ModifyRecipients method , SRowSet
structure

 ADRPARM

The ADRPARM structure contains data used to control the display and behavior of an address dialog
box.

typedef struct _ADRPARM
{
 ULONG cbABContEntryID;
 LPENTRYID lpABContEntryID;
 ULONG ulFlags;
 LPVOID lpReserved;
 ULONG ulHelpContext;
 LPTSTR lpszHelpFileName;
 LPFNABSDI lpfnABSDI;
 LPFNDISMISS lpfnDismiss;
 LPVOID lpvDismissContext;
 LPTSTR lpszCaption;
 LPTSTR lpszNewEntryTitle;
 LPTSTR lpszDestWellsTitle;
 ULONG cDestFields;
 ULONG nDestFieldFocus;
 LPTSTR FAR *lppszDestTitles;
 ULONG FAR *lpulDestComps;
 LPSRestriction lpContRestriction;
 LPSRestriction lpHierRestriction;
} ADRPARM, FAR *LPADRPARM;

Members

cbABContEntryID
Specifies the number of bytes in the entry identifier pointed to by lpABContEntryID.

lpABContEntryID
Points to the entry identifier of the container that initially supplies the list of recipient addresses that
are displayed in the the address dialog box.

ulFlags
Bitmask of flags associated with various address dialog box options. The most significant four bits of
the ulFlags member contain a version number identifying the version of the ADRPARM structure.
The current version is 0 (zero), or ADRPARM_HELP_CTX. Future versions of the structure may be
completely different. The current implementation of MAPI will fail for any version of the structure
other than zero . Future versions of MAPI may or may not support the version-zero structure. The
following macros are provided for extracting the version number from the ulFlags member and for
combining it with the defined flags:
GET_ADRPARM_VERSION(ulFlags)
SET_ADRPARM_VERSION(ulFlags, ulVersion)
ADRPARM_HELP_CTX
The following flags can be set:
AB_RESOLVE

Causes all names to be resolved after the address dialog box is closed. The Resolve Name
dialog box will be displayed if there are ambiguous entries in the recipient list. This guarantees
that all the names returned by Address() are resolved.

AB_SELECTONLY
Disables the creation of one-off addresses and direct type-in entries for a recipient list. This flag is
used only if the dialog box is modal.

ADDRESS_ONE
Indicates that the user can select exactly one message recipient, instead of a number of
recipients from a recipient list. This flag is valid only when cDestFields is zero. This flag is used
only if the dialog box is modal.

DIALOG_MODAL
Causes a modal dialog box to be displayed. The client must set either this flag or DIALOG_SDI,
but not both.

DIALOG_OPTIONS
Causes the Send Options button to be displayed on the dialog box. This flag is used only if the
dialog box is modal.

DIALOG_SDI
Causes a modeless dialog box to be displayed. This call returns immediately and hence does not
modify the ADRLIST structure passed in.
This flag causes the lpfnABSDI, lpfnDismiss, and lpvDismissContext members of the
ADRPARM structure to be used in the call to the IAddrBook::Address method. The client must
set either this flag or DIALOG_MODAL, but not both.

lpReserved
Reserved, must be zero.

ulHelpContext
Specifies the context within Help that will first be shown when the user clicks the Help button in the
address dialog box.

lpszHelpFileName
Points to the name of a Help file that will be associated with the address dialog box. The
lpszHelpFileName member is used in conjunction with ulHelpContext to call the Windows
WinHelp function.

lpfnABSDI
Points to a MAPI function based on the ACCELERATEABSDI function prototype.

lpfnDismiss
Points to a client application's dismiss function, a function based on the DISMISSMODELESS
function prototype. MAPI calls a client's dismiss function when the address dialog box is modeless
and the user has dismissed it. The lpfnDismiss member is used only if the DIALOG_SDI flag is set
in ulFlags. The value of lpfnDismiss is NULL if the DIALOG_MODAL flag is set in ulFlags.

lpvDismissContext
Points to context information to be passed to the dismiss function specified by the lpfnDismiss
parameter. The lpvDismissContext member is used only if the DIALOG_SDI flag is set in ulFlags,
indicating that the address dialog box is modeless.

lpszCaption
Points to text to be used as a caption for the address dialog box.

lpszNewEntryTitle
Points to text to be used as a new entry prompt in the New Entry dialog box.

lpszDestWellsTitle
Points to text to be used as a title for the set of recipient edit controls that appear in the dialog box.
This member is used only if the address dialog box is modal.

cDestFields
Indicates the number of recipient edit boxes in the address dialog box. A number from zero through
three is typical. If the cDestFields member is zero and the ADDRESS_ONE flag is not set in
ulFlags, the address book is open for browsing only. 0XFFFFFFFF implies use of the default
number of wells; in this case lppszDestTitles and lpulDestComps must be NULL.

nDestFieldFocus
Indicates the field, specifying the button that adds to a well, in the address dialog box that should
have the initial focus when the dialog box appears. This value must be between 0 and the value of

cDestFields minus 1.
lppszDestTitles

Points to an array of button captions to be displayed in the recipient edit controls of the address
dialog box. The size of the array is the value of cDestFields. If the lppszDestTitles member is
NULL, the Address method chooses default titles.

lpulDestComps
Points to an array of recipient types, such as MAPI_TO, MAPI_CC, and MAPI_BCC, associated with
each recipient edit control. The size of the array is the value of cDestFields. If the lpulDestComps
member is NULL, the Address method chooses default recipient types.

lpContRestriction
Points to an SRestriction structure containing restrictions that the client or service provider set on
any address book container to be viewed. The Address method combines using the logical AND
operator with any restrictions the user specifies while using the address dialog box.

lpHierRestriction
Points to an SRestriction structure containing restrictions on the hierarchy table used in the
address dialog box.

Remarks

This structure is used with the IAddrBook::Address and IMAPISupport::Address methods.

If the address book is open for browsing only, IAddrBook::Address ignores its lppAdrList parameter. If
the cDestFields member has the value 0xFFFFFFFF, the Address method displays the address
dialog box in its default configuration, ignoring the lppszDestTitles and lpulDestComps members of
ADRPARM.

When a client calls IAddrBook::Address or a service provider calls IMAPISupport::Address, it
should always set the lpfnABSDI member to NULL. If the DIALOG_SDI flag is set, MAPI will fill in this
member before it returns from the Address method. The client or service provider must then call the
function pointed to by lpfnABSDI from its message loop in order for the address dialog box's
accelerators to work. When the dialog box is dismissed and MAPI calls the function pointed to by the
lpfnDismiss member, then the client or the service provider should disconnect the lpfnABSDI from its
message loop.

The ADRPARM structure is defined in MAPIDEFS.H.

See Also

ACCELERATEABSDI function prototype , DISMISSMODELESS function prototype , ENTRYID
structure, IAddrBook::Address method , IMAPISupport::Address, SRestriction structure

 DTBLBUTTON

The DTBLBUTTON structure contains information about a button control for a dialog box built from a
display table.

typedef struct _DTBLBUTTON
{
 ULONG ulbLpszLabel;
 ULONG ulFlags;
 ULONG ulPRControl;
} DTBLBUTTON, FAR *LPDTBLBUTTON;

Members

ulbLpszLabel
Indicates the offset from the beginning of the structure, in bytes, to a null-terminated string to be the
label of the button.

ulFlags
Bitmask of flags used to designate the format of the label pointed to by the ulbLpszLabel member.
The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

ulPRControl
Specifies a property of type PT_OBJECT on which MAPI can open an IMAPIControl interface using
an OpenProperty call. The client supplies the IMAPIControl interface. It is opened when the button
is clicked.

Remarks

For more information on how this structure is used, see About Display Tables.

Use the SizedDtblButton macro to create a structure similar to DTBLBUTTON but containing a label
of specified character length. The syntax is:

SizedDtblButton (int n, u)

The n parameter specifies the character length of the button's label. The u parameter specifies the
structure type is defined with the tag _DTBLBUTTON_ u and type name u.

A DTBLBUTTON structure does not explicitly give the length of the lpszLabel string, it only provides an
offset to the first character in it.

The DTBLBUTTON structure is defined in MAPIDEFS.H.

See Also

DTCTL structure , PR_CONTROL_TYPE property

 DTBLCHECKBOX

The DTBLCHECKBOX structure contains information about a check box to be used in a dialog box
built from a display table.

typedef struct _DTBLCHECKBOX
{
 ULONG ulbLpszLabel;
 ULONG ulFlags;
 ULONG ulPRPropertyName;
} DTBLCHECKBOX, FAR *LPDTBLCHECKBOX;

Members

ulbLpszLabel
Indicates the offset from the beginning of the structure, in bytes, to the label for the check box.

ulFlags
Bitmask of flags used to designate the format of the label pointed to by the ulbLpszLabel member.
The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

ulPRPropertyName
Specifies a property tag of type PT_BOOLEAN whose value is manipulated by the user changing
the state of the check box. The GetProps method is used to initalize the check box. The SetProps
method is used to manipulate this property's value as the user makes changes to the check box.

Remarks

A DTBLCHECKBOX structure does not specify the character length of the label, it only contains an
offset to the beginning of the label in memory allocated for the structure.

The SizedDtblCheckBox macro defines a structure similar to DTBLCHECKBOX but containing a
label of specified character length. The syntax is:

SizedDtblCheckBox (int n, u)

The n parameter specifies the character length of the check box's label. The structure type is defined
with the tag _DTBLCHECKBOX_ u and type name u.

SizedDtblCheckBox provides a way to define a check box when the number of label characters is
known. A DTBLCHECKBOX structure does not explicitly give the length of the lpszLabel string, it only
provides an offset to the first character in it.

To use a sized display table check box pointer lpSizedDtblCheckBox in any function call or structure
that expects a LPDTBLCHECKBOX pointer, perform the following cast:

lpDtblCheckBox = (LPDTBLCHECKBOX) lpSizedDtblCheckBox

The DTBLCHECKBOX structure is defined in MAPIDEFS.H.

For more information on how this structure is used, see About Display Tables.

See Also

DTCTL structure , PR_CONTROL_TYPE property

 DTBLCOMBOBOX

The DTBLCOMBOBOX structure contains information about a combo box that is to be part of a dialog
box.

typedef struct _DTBLCOMBOBOX
{
 ULONG ulbLpszCharsAllowed;
 ULONG ulFlags;
 ULONG ulNumCharsAllowed;
 ULONG ulPRPropertyName;
 ULONG ulPRTableName;
} DTBLCOMBOBOX, FAR *LPDTBLCOMBOBOX;

Members

ulbLpszCharsAllowed
Indicates the offset from the beginning of the structure, in bytes, to a string that lists the characters
allowed in the combo box's edit box. The same filter is applied to every character entered, it is not
interruped as a regular expression.
The format of the string is as follows:
* Any character is allowed (for example, "*").
[] Defines a set of characters (for example, "[0123456789]").
- Indicates a range of characters. Typically used like "[a-z]".
~ Indicates that these characters are not allowed. (for example, "[~0-9]").
\ Used to quote any of the above symbols (for example, "[\-\\\[\]]" means -, \, [, and] characters
are allowed).

ulFlags
Bitmask of flags used to designate the format of the text pointed to by the ulbLpszCharsAllowed
member. The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

ulNumCharsAllowed
Specifies the maximum number of characters that the user can type into the combo box's edit box.

ulPRPropertyName
Specifies a property tag whose values uniquely identify rows in the table (typically of type
PT_TSTRING) used to populate the list box. The value of this property identifies the row selected via
a choice in the list box.

ulPRTableName
Specifies a property tag of type PT_OBJECT on which an IMAPITable interface can be opened
using an OpenProperty call. The rows of the table are to be used as items in the list box. The table
must have a single column of the same type as ulPRPropName.

Remarks

A DTBLCOMBOBOX structure does not specify the character length of the allowed character string, it
only contains an offset to the beginning of it in memory allocated for the structure.

The ulPRPropertyName and ulPRTableName members work together. The ulPRTableName member
supplies the choices; ulPRPropertyName is set to the chosen item when the dialog is dismissed (or
when the combo box is exited, if the DT_SETIMMEDIATE flag is set.)

Use the SizedDtblComboBox macro to define a structure similar to DTBLCOMBOBOX, but with the

added explicit number of characters in the combo box's text edit, or static text, control.
SizedDtblComboBox provides a way to define a combo box when the length of the allowed character
string is known. The syntax is:

SizedDtblComboBox (int n, u)

The n parameter specifies the length of the allowed character string. The structure type is defined
with the tag _DTBLCOMBOBOX_ u and type name u. See the ulbLpszCharsAllowed member of
this structure for the formatting rules of this character string.

To use a sized display table combo box pointer lpSizedDtblComboBox in any function call or structure
that expects a LPDTBLCOMBOBOX pointer, perform the following cast:

lpDtblComboBox = (LPDTBLCOMBOBOX) lpSizedDtblComboBox

The DTBLCOMBOBOX structure is defined in MAPIDEFS.H.

For more information on how this structure is used, see About Display Tables.

See Also

DTCTL structure , PR_CONTROL_TYPE property

 DTBLDDLBX

The DTBLDDLBX structure contains information about a drop-down list box that will be part of a dialog
box.

typedef struct _DTBLDDLBX
{
 ULONG ulFlags;
 ULONG ulPRDisplayProperty;
 ULONG ulPRSetProperty;
 ULONG ulPRTableName;
} DTBLDDLBX, FAR *LPDTBLDDLBX;

Members

ulFlags
Reserved, must be zero.

ulPRDisplayProperty
Specifies a property name of type PT_TSTRING. The text value of this property in each row is
displayed as an item in the list box.

ulPRSetProperty
Specifies a property name whose values uniquely identify rows in the table ¾ for example,
PR_ENTRYID. The value of this property identifies the row selected from the choices in the list box.
If the property name is PR_NULL, the list box is not a single selection type.

ulPRTableName
Specifies a property of type PT_OBJECT on which an IMAPITable interface can be opened using an
OpenProperty call. The rows of the table should correspond to items in the list box. The table
should have two columns, ulPRDisplayProperty and ulPrSetProperty.

Remarks

The DTBLDDLBX structure is defined in MAPIDEFS.H.

For more information on how this structure is used, see About Display Tables.

See Also

DTCTL structure

 DTBLEDIT

The DTBLEDIT structure contains information about an edit box that will be part of a dialog box.

typedef struct _DTBLEDIT
{
 ULONG ulbLpszCharsAllowed;
 ULONG ulFlags;
 ULONG ulNumCharsAllowed;
 ULONG ulPropTag;
} DTBLEDIT, FAR *LPDTBLEDIT;

Members

ulbLpszCharsAllowed
Offset from the beginning of the structure, in bytes, to a string that lists the characters allowed in the
combo box's edit box. The same filter is applied to every character.
The allowed character string follows the formatting rules:
* Any character is allowed (for example, "*").
[] Defines a set of characters (for example, "[0123456789]").
- Indicates a range of characters. Typically used like "[a-z]".
~ Indicates that these characters are not allowed (for example, "[~0-9]").
\ Used to quote any of the above symbols (for example, "[\-\\\[\]]" means -, \, [, and] characters are
allowed).

ulFlags
Bitmask of flags used to designate the format of the text pointed to by the ulbLpszCharsAllowed
member. The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

ulNumCharsAllowed
Specifies the maximum number of characters that the user can type into the edit box.

ulPropTag
Specifies a property name of type PT_TSTRING. The text in this property is displayed and edited in
the edit box.

Remarks

A DTBLEDIT structure does not specify the character length of the allowed character string, it only
contains an offset to it in memory allocated for the structure.

Use the SizedDtblEdit macro to define a structure similar to DTBLEDIT but with the added explicit
number of characters contained in the allowed characters member. The syntax is:

SizedDtblEdit (int n, u)

The n parameter specifies the length of the allowed characters string. See ulbLpszCharsAllowed for
the formatting rules of the allowed character string.

SizedDtblEdit provides a way to define a text edit box when the number of allowed characters is
known. A DTBLEDIT structure does not explicitly give the length of the lpszCharsAllowed string, it only
provides an offset to the first character in the string.

To use lpSizedDtblEdit, which is a sized, display table edit pointer, in any function call or structure that
expects a LPDTBLEDIT pointer, perform the following cast:

lpDtblEdit = (LPDTBLEDIT) lpSizedDtblEdit

The DBTLEDIT stucture is defined in MAPIDEFS.H.

For more information on how this structure is used, see About Display Tables.

See Also

DTCTL structure , IMAPIProp::GetProps method , PR_CONTROL_TYPE property

 DTBLGROUPBOX

The DTBLGROUPBOX structure contains information about a group box that will be part of a dialog
box.

typedef struct _DTBLGROUPBOX
{
 ULONG ulbLpszLabel;
 ULONG ulFlags;
} DTBLGROUPBOX, FAR *LPDTBLGROUPBOX;

Members

ulbLpszLabel
Offset from the beginning of the structure, in bytes, to be the label of the group box.

ulFlags
Bitmask of flags used to designate the format of the text pointed to by the ulbLpszLabel member.
The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

Remarks

A DTBLGROUPBOX structure does not specify the character length of the label, it only contains an
offset to the beginning of the label in memory allocated for the structure.

Use the SizedDtblGroupBox macro to define a structure similar to DTBLGROUPBOX but containing
a label of specified character length. The syntax is:

SizedDtblGroupBox (int n, u)

The n parameter specifies the character length of the group box's label. The structure type is defined
with the tag _DTBLGROUPBOX_ u and type name u.

SizedDtblGroupBox provides a way to define a group box when the number of label characters is
known. A DTBLGROUPBOX structure does not explicitly give the length of the lpszLabel string, it only
provides an offset to the first character in it.

To use a sized display table group box pointer lpSizedDtblGroupBox in any function call or structure
that expects a LPDTBLGROUPBOX pointer, perform the following cast:

lpDtblGroupBox = (LPDTBLGROUPBOX) lpSizedDtblGroupBox

For more information on how this structure is used, see About Display Tables.

The DTBLGROUPBOX structure is defined in MAPIDEFS.H.

See Also

DTCTL structure

 DTBLLABEL

The DTBLLABEL structure contains information about a label that will be part of a dialog box.

typedef struct _DTBLLABEL
{
 ULONG ulbLpszLabelName;
 ULONG ulFlags;
} DTBLLABEL, FAR *LPDTBLLABEL;

Members

ulbLpszLabelName
Specifies the offset from the beginning of the structure, in bytes, to be the label text string.

ulFlags
Bitmask of flags used to designate the format of the label text string. The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

Remarks

Use the SizedDtblLabel macro to create a structure definition similar to DTBLLABEL but containing a
specified character length for the label. The syntax is: SizedDtblLabel (int n, u).

The n parameter specifies the character length of the label, including the terminating NULL character.
The structure type is defined with the tag _DTBLLABEL_ u and type name u.

SizedDtblLabel provides a way to define a display table label when the number of characters in the
label is known. A DTBLLABEL structure does not explicitly give the length of the lpszLabelName
string, it only provides an offset to the first character of the string.

To use a pointer to a sized label control such as lpSizedDtblLabel in any function call or structure that
expects a LPDTBLLABEL pointer, perform the following cast:

lpDtblLabel = (LPDtblLabel) lpSizedDtblLabel

For more information on how this structure is used, see About Display Tables.

The DTBLLABEL structure is defined in MAPIDEFS.H.

See Also

DTCTL structure

 DTBLLBX

The DTBLLBX structure contains information about a list box that will be part of a dialog box.

typedef struct _DTBLLBX
{
 ULONG ulFlags;
 ULONG ulPRSetProperty;
 ULONG ulPRTableName;
} DTBLLBX, FAR *LPDTBLLBX

Members

ulFlags
A bitmask of flags used to eliminate a horizontal or vertical scroll bar for a listbox. The following flags
can be set:
MAPI_NO_HBAR

Indicates that no horizontal scroll bar will be shown for the list box.
MAPI_NO_VBAR

Indicates that no vertical scroll bar will be shown for the list box.
ulPRSetProperty

Specifies a property name whose values uniquely identify rows in the table ¾ for example,
PR_ENRTYID. The value of this property identifies the row selected from the choices in the list box.
Initially, the ulPRPropertyName member contains the value of a default selection. If the property
name is PR_NULL, the list box is not a single selection type.

ulPRTableName
Specifies a property of type PT_OBJECT on which an IMAPITable interface can be opened using an
OpenProperty call. The rows of the table will correspond to items in the list box.

Remarks

The ulPRSetProperty member and ulPRTableName member work together; when one value is
chosen from the table, it is written back to ulPRSetProperty when the dialog is dismissed.

The DTBLLX structure is defined in MAPIDEFS.H.

See Also

DTCTL structure

 DTBLMVDDLBOX

The DTBLMVDDLBOX structure contains information about a multivalued property to be used in a
drop-down list box.

typedef struct _DTBLMVDDLBX
{
 ULONG ulFlags;
 ULONG ulMVPropTag;
} DTBLMVDDLBX, FAR * LPDTBLMVDDLBX;

Members

ulFlags
Reserved; must be zero.

ulMVPropTag
Specifies a property name that is a multivalued type, in this case PT_MV_TSTRING. The different
values of this property are displayed as distinct entries in the drop-down list box.

Remarks

This structure defines a list box that is browse only; the user cannot make a selection.

The DTBLMVDDLBOX structure is defined in MAPIDEFS.H.

See Also

DTCTL structure

 DTBLMVLISTBOX

The DTBLMVLISTBOX structure contains a multivalued property to be displayed in a list box.

typedef struct _DTBLMVLISTBOX
{
 ULONG ulFlags;
 ULONG ulMVPropTag;
} DTBLMVLISTBOX, FAR * LPDTBLMVLISTBOX;

Members

ulFlags
Reserved; must be zero.

ulMVPropTag
Specifies a property name that is a multivalued type, PT_MV_TSTRING.

Remarks

The list box defined by this structure is browse-only; the user cannot make a selection.

Only multivalued string properties are supported for the multivalued list box and drop-down list box;
other multivalued property types are not supported.

The DTBLMVLISTBOX structure is defined in MAPIDEFS.H.

See Also

DTCTL structure

 DTBLPAGE

The DTBLPAGE structure contains information about a tabbed page that will be part of a dialog box.

typedef struct _DTBLPAGE
{
 ULONG ulbLpszLabel;
 ULONG ulFlags;
 ULONG ulbLpszComponent;
 ULONG ulContext;
} DTBLPAGE, FAR *LPDTBLPAGE;

Members

ulbLpszLabel
Specifies the offset from the beginning of the structure, in bytes, to the label text for the page tab.

ulFlags
Bitmask of flags used to designate the format of the text pointed to by the ulbLpszLabel member.
The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

ulbLpszComponent
Specifies the offset, in number of bytes, to a Help file component string that appears in a
MAPISVC.INF entry mapping Help files to user interface items. If this string is not NULL, a user can
access extended Help for the tabbed page by clicking the Help button on the property sheet.

ulContext
Specifies a unique identifier for the tabbed page within the string defined by the
ulbLpszComponent member. If this identifier is zero and the component string is NULL, there is no
Help associated with the page.

Remarks

A DTBLPAGE structure does not specify the character length of the label and Help component strings,
it only contains offsets to the beginnings of these strings in memory allocated for the structure.

The ulbLpszComponent member and the ulContext member must both be nonzero in order for the
Help button to work.

Use the SizedDtblPage macro to define a structure similar to DTBLPAGE but whose page label and
Help file component string are of specified character lengths. The syntax is:

SizedDtblPage (int n, int n1, u)

The n parameter specifies the character length of the page's label. The n1 parameter specifies the
character length of a Help file component string that appears in a MAPISVC.INF entry mapping Help
files to user interface items. If this string is not NULL, a user can access extended Help for the tabbed
page by clicking the Help button on the property sheet. The structure type is defined with the tag
DTBLPAGE u and type name u.

SizedDtblPage provides a means of defining a display table page when the number of label and
component string characters is known. A DTBLPAGE structure does not explicitly give the length of
these strings, only offsets to their locations in memory allocated for the structure.

To use lpSizedDtblPage, a sized display-table page pointer in any function call or structure that expects
a LPDTBLPAGE pointer, perform the following cast:

lpDtblPage = (LPDTBLPAGE) lpSizedDtblPage

The DTBLPAGE stucture is defined in MAPIDEFS.H.

See Also

DTCTL structure

 DTBLRADIOBUTTON

The DTBLRADIOBUTTON structure contains information about one radio button that will be part of a
radio button group in a display table dialog box.

typedef struct _DTBLRADIOBUTTON
{
 ULONG ulbLpszLabel;
 ULONG ulFlags;
 ULONG ulcButtons;
 ULONG ulPropTag;
 long lReturnValue;
} DTBLRADIOBUTTON, FAR *LPDTBLRADIOBUTTON;

Members

ulbLpszLabel
Specifies the offset from the beginning of the structure, in number of bytes, to the label text for the
radio button.

ulFlags
Bitmask of flags used to designate the format of the text pointed to by the ulbLpszLabel member.
The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

ulcButtons
Specifies the number of buttons in the radio button group. The remaining button structures must
appear in successive rows of the display table. Each of these rows should contain the same value
for the ulcButtons member.

ulPropTag
Specifies the name of the property associated with the group of radio buttons. The property tag must
be of type PT_LONG. The initial selection within the radio button group is based on the initial value
of this property. Each button in the group must have ulPropTag set to the same property.

lReturnValue
Specifies a unique number that represents the radio button within the group when the button is
selected at run time. Unless the flag DT_SET_IMMEDIATE is set in the display table, the client
application sets the value of lReturnValue to ulPropTag when the dialog box is closed. If this flag is
set, the client application writes the value of lReturnValue to ulPropTag at the time the radio button
is selected.

Remarks

A DTBLRADIOBUTTON structure does not specify the character length of the label, it only contains an
offset to the beginning of the label in memory allocated for the structure.

The DTBLRADIOBUTTON structure is defined in MAPIDEFS.H.

See Also

BuildDisplayTable function , DTCTL structure , SizedDtblButton macro

 DTCTL

The DTCTL structure contains information about one or more dialog box controls for inclusion in a
display table. The BuildDisplayTable function uses this structure for building the display table from
control resources.

typedef struct
{
 ULONG ulCtlType;
 ULONG ulCtlFlags;
 LPBYTE lpbNotif;
 ULONG cbNotif;
 LPTSTR lpszFilter;
 ULONG ulItemID;
 union
 {
 LPVOID lpv;
 LPDTBLLABEL lplabel;
 LPDTBLEDIT lpedit;
 LPDTBLLBX lplbx;
 LPDTBLCOMBOBOX lpcombobox;
 LPDTBLDDLBX lpddlbx;
 LPDTBLCHECKBOX lpcheckbox;
 LPDTBLGROUPBOX lpgroupbox;
 LPDTBLBUTTON lpbutton;
 LPDTBLRADIOBUTTON lpradiobutton;
 LPDTBLMVLISTBOX lpmvlbx;
 LPDTBLMVDDLBX lpmvddlbx;
 LPDTBLPAGE lppage;
 } ctl;
} DTCTL, FAR *LPDTCTL;

Members

ulCtlType
Specifies a value indicating the control represented by the DTCTL structure. The possible values
are:
DTCT_LABEL

Indicates a label.
DTCT_EDIT

Indicates a text box.
DTCT_LBX

Indicates a list box.
DTCT_COMBOBOX

Indicates a combo box.
DTCT_DDLBX

Indicates a drop-down list box.
DTCT_CHECKBOX

Indicates a check box.
DTCT_GROUPBOX

Indicates a group box.
DTCT_BUTTON

Indicates a button control.

DTCT_PAGE
Indicates a tabbed page.

DTCT_RADIOBUTTON
Indicates a radio button.

DTCT_INKEDIT
Indicates an ink-aware edit box.

DTCT_MVLISTBOX
Indicates a multivalued list box.

DTCT_MVDDLBX
Indicates a multivalued drop-down list box.

ulCtlFlags
Bitmask of dialog box control flags. The following flags can be set:
DT_ACCEPT_DBCS

Indicates ANSI or DBCS format is accepted.
DT_EDITABLE

Indicates the text in the dialog box control can be edited.
DT_MULTILINE

Indicates the dialog box control can contain multiple lines.
DT_PASSWORD_EDIT

Indicates that the edit control contains a password, and therefore the contents of the edit control
should not be displayed to the user.

DT_REQUIRED
Indicates the dialog box control is required.

DT_SET_IMMEDIATE
Enables immediate output of a value upon a change in value of the control. This includes
checking a check box or radio button, entering text in an edit control, or changing the selection in
a list box.

lpbNotif
Points to notification data.

cbNotif
Indicates the size, in bytes, of the notification data.

lpszFilter
Points to a character filter for an edit box.

ulItemID
Item identifier validating parallel dialog box template entries.

lpv
Points to a value that the client application should initialize to avoid warnings when calling
BuildDisplayTable.

lplabeln
Points to a DTBLLABEL structure.

lpedit
Points to a DTBLEDIT structure.

lplbx
Points to a DTBLLBX structure.

lpcombobox
Points to a DTBLCOMBOBOX structure.

lpddlbx
Points to a DTBLDDLBX structure.

lpcheckbox
Points to a DTBLCHECKBOX structure.

lpgroupbox
Points to a DTBLGROUPBOX structure.

lpbutton
Points to a DTBLBUTTON structure.

lpradiobutton
Points to a DTBLRADIOBUTTON structure.

lpmvlbx
Points to a DTBLMVLISTBOX structure.

lpmvddlbx
Points to a DTBLMVDDLBOX structure.

lppage
Points to a DTBLPAGE structure.

Remarks

Although the the BuildDisplayTable function uses this structure for building the display table from
control resources, the DTCTL structure never appears in the display table itself. This structure simply
supplies information to BuildDisplayTable.

In the ulCtlFlags member, four flags ¾ DT_ACCEPT_DBCS, DT_EDITABLE, DT_MULTILINE_and
DT_PASSWORD_EDIT ¾ affect edit controls only. Two others ¾ DT_REQUIRED and
DT_SET_IMMEDIATE ¾ affect any editable control.

The controls available for a dialog box are label, edit box, ink-aware edit box, list box, drop-down list
box, combo box, check box, group box, button, radio button, and tabbed page.

The DTCTL structure is defined in MAPIUTIL.H.

See Also

BuildDisplayTable function , DTBLBUTTON structure , DTBLCHECKBOX structure ,
DTBLCOMBOBOX structure , DTBLDDLBX structure , DTBLEDIT structure , DTBLGROUPBOX
structure, DTBLLABEL structure , DTBLLBX structure , DTBLMVDDLBOX structure ,
DTBLMVLISTBOX structure , DTBLPAGE structure , DTBLRADIOBUTTON structure

 DTPAGE

The DTPAGE structure contains information about a tabbed dialog box page. The BuildDisplayTable
function uses this structure to build the display table from control resources.

typedef struct DTPAGE
{
 ULONG cctl;
 LPTSTR lpszResourceName;
 union
 {
 LPTSTR lpszComponent;
 ULONG ulItemID;
 }
 LPDTCTL lpctl;
} DTPAGE, FAR *LPDTPAGE;

Members

cctl
Contains the count of controls in the lpctl array member of the same DTPAGE structure.

lpszResourceName
Points to the name of the tabbed page resource or to an integer identifier for the resource. The
MAKEINTRESOURCE macro should be used with an integer identifer to guarantee correctness.

lpszComponent
Points to a component string that appears in a Help file mapping entry in MAPISVC.INF. The
ulItemID member and this member are alternatives.

ulItemID
Contains a string resource identifier from which the component name can be read.

lpctl
Points to a array of DTCTL structures, one for each control on the page.

Remarks

To identify the tabbed page, a caller can use either a hard-coded string, which should be assigned to
the lpszComponent member or an integer resource identifier, which should be assigned to the
ulItemID member. When an integer identifier is used, BuildDisplayTable obtains the component name
from the corresponding string resource.

Although the BuildDisplayTable function uses this structure to build the display table from control
resources, the DTPAGE structure never appears in the display table itself.

Each help file mapping entry in MAPISVC.INF consists of a component string, no longer than 30
characters, on the left side and a Help file path on the right. Both ulItemID and lpszResourceName
are found in the hInstance parameter of BuildDisplayTable.

The DTPAGE structure is defined in MAPIUTIL.H.

See Also

BuildDisplayTable function , DTBLPAGE structure , DTCTL structure

 ENTRYID

The ENTRYID structure contains an entry identifier for a MAPI object.

typedef struct
{
 BYTE abFlags[4];
 BYTE ab[MAPI_DIM];
} ENTRYID, FAR *LPENTRYID;

Members

abFlags
Bitmask of flags that provide information describing the object. Only the first byte of the flags,
abFlags[0], may be set by the provider; the other three are reserved. The client should never
change anything in the structure.
The following flags can be set in abFlags[0]:
MAPI_NOTRECIP

Indicates the entry identifier cannot be used as a recipient on a message.
MAPI_NOTRESERVED

Indicates that other users cannot access the entry identifier.
MAPI_NOW

Indicates the entry identifier cannot be used at other times.
MAPI_SHORTTERM

Indicates the entry identifier is short-term. All other values in this byte must be set unless other
uses of the entry identifier are allowed.

MAPI_THISSESSION
Indicates the entry identifier cannot be used on other sessions.

The flags must not be set for permanent entry identifiers and set for short-term entry identifiers.
ab

Array of binary data used by service providers. The client application cannot use this array.

Remarks

A message store or address book provider fills an entry identifier with information that makes sense for
that provider. For a message store, entry identifiers identify folders or messages but not attachments.
For an address book, entry identifiers identify address book containers, individual messaging users,
and distribution lists. Entry identifiers also identify message store, status, profile, and session objects.
An entry identifier is a unique number that distinguishes one object from all other objects of the same
type. For example, a message entry identifier uniquely identifies a message in the message store.

Directly comparing the binary data in two entry identifiers does not provide much information to the
application because MAPI can use different binary values in ENTRYID structures to refer to the same
object. To determine if two entry identifiers refer to the same object, the client application can use the
IMAPISession::CompareEntryIDs method for the appropriate object.

The following rules apply for using the abFlags[0] byte in entry identifiers.

· Each object, if queried for its entry identifier through its IMAPIProp interface, generates and
provides the most permanent form of its entry identifier. To indicate an entry identifier is the most
permanent one available for a given object, clear all the bits in the abFlags array.

· Entry identifiers found in most MAPI tables can be short-term instead of permanent. The use of
short-term entry identifiers is usually restricted. In general, a client can use a short-term entry
identifier to open an object only in the current MAPI session. Use the short-term entry identifier with
the message store only for the current session and only while the address book remains open. To

indicate a short-term entry identifier, set all the values in the abFlags array. The next rule slightly
modifies these limitations.

· In some cases, your short-term entry identifier might be just as good as a permanent entry identifier.
In such cases, clear individual bits in the abFlags array as appropriate.

Although providers should handle arbitrarily aligned entry identifiers, clients cannot expect providers to
handle arbitrarily aligned entry identifiers. Failure to pass in a suitable aligned entry identifier can result
in an alignment fault on RISC CPUs. To allow for those providers that do not handle arbitrarily aligned
identifiers, clients should always pass in naturally aligned entry identifiers. The natural alignment factor,
typically 8 bytes, is the largest data type supported by the CPU, and usually the same alignment factor
used by the system memory allocator. A naturally aligned memory address allows the CPU to access
any data type it supports at that address without generating an alignment fault. For RISC CPUs, a data
type of size N bytes must usually be aligned on an even multiple of N bytes, with the address being an
even multiple of N.

The CbNewENTRYID macro determines the memory allocation requirements of an ENTRYID structure
with an entry identifier of a specified byte size. The syntax is:

int CbNewENTRYID (int _cb)

The cb parameter specifies the number of bytes used for the entry identifier. This macro returns the
size, in bytes, of an ENTRYID containing a _cb byte entry identifier.

The SizedENTRYID macro creates a structure type definition identical to that of ENTRYID but
containing an ab member that is a sized array. Use this macro to create an entry identifier array with
explicit bounds. The syntax is:

SizedENTRYID (int _cb, _name)

The _cb parameter specifies the number of bytes used for the entry identifier. The structure type is
defined with the tag _ENTRYID_ _name and type name _name.

The SizedENTRYID macro provides a way to define an entry identifier after array length requirements
are known.

To use a sized recipient list pointer such as lpSizedENTRYID in any function call or structure that
expects an LPENTRYID pointer, perform the following cast:

lpENTRYID = (LPENTRYID) lpSizedENTRYID

The ENTRYID structure is defined in MAPIDEFS.H.

See Also

IMAPISupport::CompareEntryIDs method , PR_RECORD_KEY property

 ENTRYLIST

The ENTRYLIST structure is an array of entry identifiers representing MAPI objects.

typedef SBinaryArray ENTRYLIST, FAR *LPENTRYLIST;

Remarks

The ENTRYLIST structure is defined in MAPIDEFS.H.

See Also

ENTRYID structure , SBinaryArray structure

 ERROR_NOTIFICATION

The ERROR_NOTIFICATION structure describes an error notification event. When a critical error
occurs in an object, the object calls the IMAPIAdviseSink::OnNotify method of all registered advise
sinks, passing an ERROR_NOTIFICATION structure for the lpNotifications parameter.

typedef struct _ERROR_NOTIFICATION
{
 ULONG cbEntryID;
 LPENTRYID lpEntryID;
 SCODE scode;
 ULONG ulFlags;
 LPMAPIERROR lpMAPIError;
} ERROR_NOTIFICATION;

Members

cbEntryID
Indicates the size, in bytes, of the entry identifier of the object causing the error.

lpEntryID
Points to the entry identifier of the object causing the error.

scode
Specifies the error value for the critical error.

ulFlags
Bitmask of flags used to designate the format of the text pointed to by the lpszError member in the
structure pointed to by lpMAPIError. The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lpMAPIError
Points to a MAPIERROR structure describing the error.

Remarks

The value of the cbEntryID member and the lpEntryID member can be NULL.

The ERROR_NOTIFICATION structure is defined in MAPIDEFS.H.

See Also

NOTIFICATION structure

 EXTENDED_NOTIFICATION

The EXTENDED_NOTIFICATION structure describes a notification for an event that is specific to a
provider. When this provider-specific event occurs, the provider calls the IMAPIAdviseSink::OnNotify
method of all registered advise sinks, passing an EXTENDED_NOTIFICATION structure for the
lpNotifications parameter.

typedef struct _EXTENDED_NOTIFICATION
{
 ULONG ulEvent;
 ULONG cb;
 LPBYTE pbEventParameters;
} EXTENDED_NOTIFICATION;

Members

ulEvent
Indicates an extended event code that is defined by the provider.

cb
Indicates the size, in bytes, of the event-specific parameters defined in the pbEventParameters
member.

pbEventParameters
Points to event-specific parameters. What type of parameters are used depends on the value of the
ulEvent member; these parameters are documented by the provider that issued the event.

Remarks

The provider defines and issues the event for which the EXTENDED_NOTIFICATION structure
contains information.

The EXTENDED_NOTIFICATION structure is defined in MAPIDEFS.H.

See Also

NOTIFICATION structure

 FILETIME

The FILETIME structure, implemented for Windows, holds a 64-bit time value for a file. This value
represents the number of 100-nanosecond intervals since January 1, 1601.

typedef struct _FILETIME
{
 DWORD dwLowDateTime;
 DWORD dwHighDateTime;
} FILETIME, FAR *LPFILETIME;

Members

dwLowDateTime
Indicates low-order 32 bits of the file time value.

dwHighDateTime
Indicates high-order 32 bits of the file time value.

Remarks

Each MAPI property includes a FILETIME structure in its definition in an SPropValue structure. A
property of type PT_SYSTIME has a FILETIME structure for its value.

The full definition of the FILETIME structure is in the 32-bit Windows reference. MAPI defines this
structure in MAPIDEFS.H.

See Also

SPropValue structure

 FLAGLIST

The FLAGLIST structure contains a list of flags used to indicate the status of address entries during
the name resolution process.

typedef struct
{
 ULONG cFlags;
 ULONG ulFlags[MAPI_DIM];
} FlagList, FAR * LPFlagList;

Members

cFlags
Indicates the number of MAPI-defined flags in the list.

ulFlags
Indicates the first flag in the list.

Remarks

See IABContainer::ResolveNames and IDistList::ResolveNames for descriptions of the flags that
can be part of this list.

The FLAGLIST structure is defined in MAPIDEFS.H.

See Also

IABContainer::ResolveNames method

 FLATENTRY

The FLATENTRY structure contains a "flattened" entry identifier. That is, it holds the actual data of an
entry identifier, in contrast to an ENTRYID structure, as retrieved from IMAPIProp.

typedef struct
{
 ULONG cb;
 BYTE abEntry[MAPI_DIM];
} FLATENTRY, FAR *LPFLATENTRY;

Members

cb
Indicates the size, in bytes, of the data in the abEntry member.

abEntry
Indicates the byte array that contains the data of an entry identifier.

Remarks

FLATENTRY is useful because a transport provider can store it in a file or pass it in a stream of bytes.
The MAPI SDK sample transport provider contains code that can represent a standard entry identifier
in a FLATENTRY structure.

Use the cbFLATENTRY macro to determine the number of bytes of memory occupied by an existing
FLATENTRY structure. The syntax is:

int CbFLATENTRY (LPFLATENTRY _lpentry)

The _lpentry parameter points to a FLATENTRY structure. This macro returns the number of bytes
occupied by the FLATENTRY structure pointed to by _lpentry.

 Use the CbNewFLATENTRY macro to determine the memory allocation requirements of a
FLATENTRY structure containing an entry identifier of a specified byte size. The syntax is:

int CbNewFLATENTRY (int _cb)

The _cb parameter specifies the entry identifier byte size. This macro returns the number of bytes of
memory that a FLATENTRY with a _cb byte entry identifier would occupy.

The FLATENTRY structure is defined in MAPIDEFS.H.

See Also

ENTRYID structure

 FLATENTRYLIST

The FLATENTRYLIST structure contains an array of FLATENTRY structures.

typedef struct
{
 ULONG cEntries;
 ULONG cbEntries;
 BYTE abEntries[MAPI_DIM];
} FLATENTRYLIST, FAR *LPFLATENTRYLIST;

Members

cEntries
Indicates the number of FLATENTRY structures in the array described by the abEntries member.

cbEntries
Indicates the number of bytes occupied by the entire array described by abEntries.

abEntries
Indicates the byte array containing the number of FLATENTRY structures designated by the
cEntries member, arranged end to end.

Remarks

In the abEntries array, each FLATENTRY structure is aligned on a naturally aligned boundary. Extra
bytes are included as padding to ensure natural alignment between any two FLATENTRY structures.
For example, the second FLATENTRY structure starts at an offset made up of the first FLATENTRY
structure, plus extra bytes as padding to round the space taken up to the next multiple of the natural
alignment, plus the offset of the second FLATENTRY structure.

The CbFLATENTRYLIST macro determines the number of bytes of memory occupied by an existing
FLATENTRYLIST structure. The syntax is:

int CbFLATENTRYLIST (LPFLATENTRYLIST _lplist).

The _lplist parameter points to a FLATENTRYLIST structure. This macro returns the number of bytes
occupied by the FLATENTRY structure pointed to by _lplist.

The CbNewFLATENTRYLIST macro determines the memory allocation requirements of a
FLATENTRYLIST whose list of FLATENTRY structures is of a specified byte size. The syntax is:

int CbNewFLATENTRY (int _cb)

The _cb parameter specifies the byte size of the list of FLATENTRY structures. This macro returns the
number of bytes in memory that a FLATENTRYLIST with a _cb byte FLATENTRY list would occupy.

The FLATENTRYLIST structure is defined in MAPIDEFS.H.

See Also

FLATENTRY structure , PR_REPLY_RECIPIENT_ENTRIES property

 FLATMTSIDLIST

The FLATMTSIDLIST structure contains an array of MTSID structures, each of which contains an
X.400 message transport system (MTS) entry identifier.

typedef struct
{
 ULONG cMTSIDs;
 ULONG cbMTSIDs;
 BYTE abMTSIDs[MAPI_DIM];
} FLATMTSIDLIST, FAR *LPFLATMTSIDLIST;

Members

cMTSIDs
Indicates the number of MTSID structures in the array described by the abMTSIDs member.

cbMTSIDs
Indicates the number of bytes in the array described by abMTSIDs.

abMTSIDs
Indicates a byte array of MTSID structures.

Remarks

The FLATMTSIDLIST structure's use in X.400 messaging corresponds to the FLATENTRYLIST
structure's use in MAPI messaging. MAPI uses FLATMTSIDLIST structures to maintain X.400
properties during message handling. Service providers use FLATMTSIDLIST structures when handling
inbound and outbound X.400 messages.

In the abMTSIDs array, each MTSID structure is aligned on a naturally aligned boundary. Extra bytes
are included as padding to ensure natural alignment between any two MTSID structures.

The CbFLATMTSIDLIST macro determines the number of bytes of memory occupied by a
FLATMTSIDLIST structure. The syntax is:

int CbFLATMTSIDLIST (LPFLATMTSIDLIST _lplist)

The _lplist parameter is a pointer to a FLATMTSIDLIST structure. This macro returns the number of
bytes occupied by the FLATMTSIDLIST structure pointed to by _lpentry.

Use the CbNewFLATMTSIDLIST macro to determine the memory allocation requirements of a
FLATMTSIDLIST structure whose list of MTSID structures is of a specified byte size. The syntax is:

int CbNewMTSID (int _cb)

The _cb parameter specifies the byte size of the MTSID list. This macro returns the number of bytes of
memory occupied by a FLATMTSIDLIST with a _cb byte MTSID list.

The FLATMTSIDLIST stucture is defined in MAPIDEFS.H.

See Also

CbNewFLATMTSIDLISTmacro FLATENTRYLIST structure , MTSID structure

 FORMPRINTSETUP

The FORMPRINTSETUP structure describes the print setup information for the form object.

typedef struct
{
 ULONG ulFlags;
 HDEVMODE hDevMode;
 HDEVNAMES hDevNames;
 ULONG ulFirstPageNumber;
 ULONG ulFPrintAttachments;
} FORMPRINTSETUP, FAR * LPFORMPRINTSETUP;

Members

ulFlags
Controls the type of the strings. The following flag can be used:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

hDevmode
Specifies the mode of the printer.

hDevnames
Specifies the path of the printer.

ulFirstPageNumber
Contains the page number of the first page to be printed.

ulFPrintAttachments
Indicates whether there are attachments to be printed.

Remarks

FORMPRINTSETUP is used to describe the print setup information for the form object.
Implementations of IMAPIViewContext::GetPrintSetup fill in the FORMPRINTSETUP structure and
return it in the lppformprintsetup output parameter of GetPrintSetup.

If the MAPI_UNICODE flag is passed in the ulflags parameter of GetPrintSetup, the strings in the
hDevmode and hDevnames members should be in Unicode format. Otherwise, the strings should be
ANSI format.

The hDevMode and hDevNames members must be allocated using the Windows function
GlobalAlloc and must be freed using the Windows function GlobalFree. The FORMPRINTSETUP
structure must be freed by the calling form object using the MAPIFreeBuffer function. The application
must free the FORMPRINTSETUP structure using MAPIFreeBuffer and the other two items using
GlobalFree. Implementations of IMAPIViewContext must allocate to match.

The FORMPRINTSETUP structure is defined in MAPIFORM.H.

See Also

IMAPIViewContext::GetPrintSetup MAPIFreeBuffer

 GUID

The GUID structure describes a globally unique identifier. GUID structures are used, for example, for
the MAPIUID structures that service providers register when they call IMAPISupport::SetProviderUID
and for the property set names of named properties.

typedef struct _GUID
{
 unsigned long Data1;
 unsigned short Data2;
 unsigned short Data3;
 unsigned char Data4[8];
} GUID;

Members

Data1
Specifies an unsigned long integer data value.

Data2
Specifies an unsigned short integer data value.

Data3
Specifies an unsigned short integer data value.

Data4
Specifies an array of unsigned characters.

Remarks

The GUID structure is defined in MAPIGUID.H. For more information about GUID structures, see the
Remote Procedure Call (RPC) documentation, OLE Programmer's Reference, and Inside OLE,
Second Edition.

See Also

MAPIUID structure

 IID

The IID structure is a specialized GUID structure that identifies a MAPI interface. For more information
about IIDs, see the Remote Procedure Call (RPC) documentation, OLE Programmer's Reference, and
Inside OLE, Second Edition.

Remarks

The IID structure is defined in MAPIGUID.H.

See Also

GUID structure

 LARGE_INTEGER

The LARGE_INTEGER structure, implemented for all platforms, contains a 64-bit signed integer value.

typedef struct _LARGE_INTEGER
{
 DWORD LowPart;
 DWORD HighPart;
} LARGE_INTEGER, FAR *LARGE_INTEGER;

Members

LowPart
Indicates low-order 32 bits of the value.

HighPart
Indicates high-order 32 bits of the value.

Remarks

A MAPI property includes a LARGE_INTEGER structure in its definition in an SPropValue structure.

The Large_Integer structure is defined in MAPIDEFS.H.

See Also

SPropValue structure

 MAPIERROR

The MAPIERROR structure provides detailed information about an error, typically generated by the
operating system or a service provider.

typedef struct _MAPIERROR
{
 ULONG ulVersion;
 LPTSTR lpszError;
 LPTSTR lpszComponent;
 ULONG ulLowLevelError;
 ULONG ulContext;

} MAPIERROR, FAR * LPMAPIERROR;

Members

ulVersion
Contains the version number of the structure, which must be zero.

lpszError
Points to an error message string.

lpszComponent
Indicates the name of the component that generated the error. Also, this member is used to map the
component's Help file. For example:
[Help File Mappings]
MAPI 1.0 = mapi.hlp

ulLowLevelError
Specifies the low-level error value used only when the error to be returned is low-level.

ulContext
Identifies the error location within the lpszComponent member. If there is a Help file for this
component, ulContext is a Help file context identifier; otherwise, it specifies a unique numeric
identifier.

Remarks

The MAPIERROR structure is used to provide error information to calling processes. MAPI methods
and functions that return error information typically include an lppMAPIError parameter in which the
MAPIERROR structure is placed. To get information on the error, clients call the
IMAPIProp::GetLastError method of the object that caused the error. Free the memory for the
MAPIERROR structure call using the MAPIFreeBuffer function.

The ulVersion member provides for future expansion of the structure; its value must be zero.

The ulContext member primarily identifies the point in the code where the error occurred. This assists
support personnel and developers in tracking and isolating problems. It can also be used to refer to an
online Help topic for common errors.

The MAPIERROR structure is defined in MAPIDEFS.H.

See Also

IABLogon::GetLastError, IMAPISession::GetLastError, IProfAdmin::GetLastError,
IProviderAdmin::GetLastError, IMAPISupport::GetLastError, IMAPIControl::GetLastError,
IMAPITable::GetLastError, IMAPIProp::GetLastError, IMsgServiceAdmin::GetLastError,
IMSLogon::GetLastError, IMSProvider::Logon, IABProvider::Logon,
IMAPISession::OpenAddressBook, IMAPISupport::OpenAddressBook,

IMAPIProp::GetLastError

 MAPIINIT_0

The MAPIINIT_0 structure conveys options to MAPIInitialize.

typedef struct
{
 ULONG ulVersion;
 ULONG ulFlags;
} MAPIINIT_0, FAR *LPMAPIINIT_0;

Members

ulVersion
Indicates the integer value of the MAPIINIT_0 structure version. The following flag can be set:
MAPI_INIT_VERSION

This number should be set to ensure the client uses the correct version of the structure.
ulFlags

Bitmask of flags used to control the format of the data. The following flags can be set:
MAPI_MULTITHREAD_NOTIFICATIONS

When running under Windows NT or Windows 95, the client should set this flag if MAPI
notification callbacks should happen on a separate thread. If the flag is not set, notification
callbacks will happen on the first thread on which MAPI was initialized, and that thread must have
a message loop.

MAPI_NT_SERVICE
When running under Windows NT, the client must set this flag if it is running as a service. Clients
that are capable of running either as a service or an application must set the flag when running as
a service, and should not set it when running as an application.

Remarks

MAPIInitialize uses this structure in its processing. The ulVersion member should be set to
MAPI_INIT_VERSION.

 The MAPIINIT_0 structure is defined in MAPIX.H.

See Also

MapiInitialize function

 MAPINAMEID

The MAPINAMEID structure is used to describe a property name.

typedef struct _MAPINAMEID
{
 LPGUID lpguid;
 ULONG ulKind;
 union
 {
 LONG lID;
 LPWSTR lpwstrName;
 } Kind;
} MAPINAMEID, FAR *LPMAPINAMEID;

Members

lpguid
Points to a GUID structure defining a particular property set; this member cannot be NULL.

ulKind
Specifies a value describing an object described in the Kind union.

lID
Specifies a numeric value representing the property name.

lpwstrName
Points to a wide (Unicode) character string representing the property name.

Remarks

The lpguid member cannot be NULL; may be PS_PUBLIC_STRINGS, PS_MAPI, or a client-defined
value. The ulkind member should be set to either MNID_ID if the value of Kind is numeric, or set to
MNID_STRING if it is a character string.

MAPINAMEID is used to describe the names of named properties, that is, properties that have
identifiers over 0x8000. A property set is an integral part of a named property's property name. For
example PS_PUBLIC_STRINGS or PS_ROUTING_ADDRTYPE are property sets defined by MAPI.

Property names enable users to define custom properties in a larger name space than the MAPI
property identifier. Property names cannot be used to obtain property values directly, they must first be
mapped to property identifiers through the IMAPIProp::GetIDsFromNames method.

The MAPINAMEID structure is defined in MAPIDEFS.H.See Also

GUID structure , IMAPIProp::GetIDsFromNames interface

 MAPIUID

The MAPIUID structure contains a unique identifier (UID) used to identify a particular message
conversation or string-to-identifier mapping.

typedef struct _MAPIUID
{
 BYTE ab[16];
} MAPIUID, FAR *LPMAPIUID;

Members

ab
Specifies an array containing a 16-byte UID.

Remarks

A MAPI unique identifier is a globally unique identifier (GUID) put into Intel® processor byte order. That
is, a MAPI unique identifier and a GUID have the same byte order when used on an Intel-processor
computer, but on a computer that uses a different byte order ¾ for example, a Motorola®-processor
computer ¾ the MAPI UID has the same byte order as on the Intel machine and the GUID uses the
byte order specific to the computer.

MAPI creates MAPIUID structures in a way that makes it extremely rare for two different items to have
the same UID. The client application can store MAPIUID structures as binary object properties or as
files, without regard for the byte ordering of the computer storing or accessing the information. When
the client transmits across a network, it should use a protocol or transmission format that does not
change the byte order of MAPIUID data.

The most common use of a MAPIUID structure by MAPI applications is to define the unique identifier of
a profile section. You can define a MAPI UID to identify the profile section your application uses to store
configuration information specific to a user's selected profile. The UID can then be formed from the
GUID by placing the bytes of the GUID into Intel byte order. For more information on generating a UID,
see the OLE Programmer's Reference.

The IsEqualMAPIUID macro is used by a client application or a service provider to compare two MAPI
unique identifiers (UIDs). It evaluates to TRUE if the two UIDs are equal. The syntax is:

BOOL IsEqualMAPIUID(lpuid1, lpuid2)

The lpuid1 and lpuid2 input parameters specify pointers to a MAPIUID structure identifying the first UID
and second UID, respectively.

If the client or provider uses this macro, be sure to include MEMORY.H in code. This macro returns
TRUE, if the UIDs are equal, and FALSE otherwise.

The MAPIUID structure is defined in MAPIDEFS.H.

See Also

GUID structure , IMAPISession::OpenProfileSection method IMAPISupport::NewUID method

 MTSID

The MTSID structure contains the actual data of an X.400 message transport system (MTS) entry
identifier. Its format contrasts with that of an ENTRYID structure, which contains only a pointer to entry
identifier data.

typedef struct
{
 ULONG cb;
 BYTE ab[MAPI_DIM];
} MTSID, FAR *LPMTSID;

Members

cb
Indicates the size, in bytes, of the data in the abEntry member.

abEntry
Indicates a byte array containing the MTS entry identifier data.

Remarks

The MTSID structure is used only for X.400 mappings of MAPI entry identifiers. It corresponds to the
MAPI FLATENTRY structure.

An MTS identifier has the same format as a MAPI entry identifier or a binary property value. MTS
identifiers can be particularly useful for canceling deferred messages.

Use the CbMTSID macro to determine the number of bytes of memory occupied by a MTSID structure.
The syntax is:

int CbFLATENTRYLIST (LPMTSID _lpentry)

The _lpentry parameter points to a MTSID structure. This macro returns the number of bytes occupied
by the MTSID structure pointed to by _lpentry.

The CbNewMTSID macro determines the memory allocation requirements of an MTSID structure
using a specified number of bytes for its message transfer agent identifier. The syntax is:

int CbNewMTSID (int _cb)

The value in the _cb parameter is the byte size of the identifier, a message transfer agent. This macro
returns the number of bytes of memory occupied by an MTSID structure with a _cb byte message
transfer agent identifier.

The MTSID structure is defined in MAPIDEFS.H.

See Also

FLATENTRY structure , FLATMTSIDLIST structure

 NEWMAIL_NOTIFICATION

The NEWMAIL_NOTIFICATION structure contains information about a notification event that indicates
to an application a new message has arrived.

typedef struct _NEWMAIL_NOTIFICATION
{
 ULONG cbEntryID;
 LPENTRYID lpEntryID;
 ULONG cbParentID;
 LPENTRYID lpParentID;
 ULONG ulFlags;
 LPTSTR lpszMessageClass;
 ULONG ulMessageFlags;
} NEWMAIL_NOTIFICATION;

Members

cbEntryID
Indicates the size, in bytes, of the entry identifier of the arriving message.

lpEntryID
Points to the entry identifier of the arriving message.

cbParentID
Indicates the size, in bytes, of the data pointed to by the lpParentID member.

lpParentID
Points to the entry identifier of the folder where the arriving message was placed.

ulFlags
Bitmask of flags used to describe the format of the message. The following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

lpszMessageClass
Points to the message class of the new message, indicating whether the messaging system is using
a Unicode or an ANSI platform.

ulMessageFlags
Specifies a copy of the PR_MESSAGE_FLAGS property for the message, which contains a bitmask
of flags used to control the current state of the message object.

Remarks

MAPI uses this structure only as a member of the NOTIFICATION structure, which holds information
about a notification event for the advise sink.

The NEWMAIL_NOTIFICATION structure is defined in MAPIDEFS.H.

See Also

NOTIFICATION structure , PR_MESSAGE_FLAGS property

 NOTIFICATION

The NOTIFICATION structure contains information about one of several possible notification events for
an advise sink.

typedef struct
{
 ULONG ulEventType;
 union
 {
 ERROR_NOTIFICATION err;
 NEWMAIL_NOTIFICATION newmail;
 OBJECT_NOTIFICATION obj;
 TABLE_NOTIFICATION tab;
 EXTENDED_NOTIFICATION ext;
 STATUS_OBJECT_NOTIFICATION statobj;
 } info;
} NOTIFICATION, FAR *LPNOTIFICATION;

Members

ulEventType
Indicates the type of notification event that occurred. The client application uses this value to locate
and read the data of the actual notification in the corresponding data structure within a
NOTIFICATION structure member. The following table lists the possible types of notification events
along with the data structures that hold information for each type of event and the NOTIFICATION
members in which these data structures can be found.

Notification event
type

Corresponding data structure In
member

fnevCriticalError ERROR_NOTIFICATION err
fnevNewMail NEWMAIL_NOTIFICATION newmail
fnevObjectCreated OBJECT_NOTIFICATION obj
fnevObjectDeleted OBJECT_NOTIFICATION obj
fnevObjectModified OBJECT_NOTIFICATION obj
fnevObjectCopied OBJECT_NOTIFICATION obj
fnevObjectMoved OBJECT_NOTIFICATION obj
fnevSearchComplete OBJECT_NOTIFICATION obj
fnevTableModified TABLE_NOTIFICATION tab
fnevStatusObjectModifi
ed

STATUS_OBJECT_
NOTIFICATION

statobj

err
ERROR_NOTIFICATION structure containing information about a critical error, if one has occurred.

newmail
NEWMAIL_NOTIFICATION structure containing information about a new message's arrival, if one
has arrived.

obj
OBJECT_NOTIFICATION structure containing information about an object's having been created,
deleted, modified, copied, or searched, if this has occurred.

tab
TABLE_NOTIFICATION structure containing information about modifications, if any, to a table.

ext

EXTENDED_NOTIFICATION structure containing information for a provider-defined event, if one
has occurred.

statobj
STATUS_OBJECT_NOTIFICATION structure containing information about a change in a row of the
status table, if a change has occurred.

Remarks

One possible use of the NOTIFICATION structure is shown in the following code example. In this
example, a test is first performed to determine whether a new mail notification event has occurred. If it
has, the message class of the new message is displayed.

if (pNotif -> ulEventType == fnevNewMail)
{
 printf("%s\n", pNotif -> newmail.lpszMessageClass)
}

The NOTIFICATION structure is defined in MAPIDEFS.H.

See Also

ERROR_NOTIFICATION structure , EXTENDED_NOTIFICATION structure ,
NEWMAIL_NOTIFICATION structure , OBJECT_NOTIFICATION structure ,
STATUS_OBJECT_NOTIFICATION structure , TABLE_NOTIFICATION structure

 NOTIFKEY

The NOTIFKEY structure contains the notification key for the MAPI support object notification methods;
service providers create this key and make it available. MAPI uses this key to identify an object globally
so that notifications can reach it. A key works across multiple processes.

typedef struct
{
 ULONG cb;
 BYTE ab[MAPI_DIM];
} NOTIFKEY, FAR *LPNOTIFKEY;

Members

cb
Indicates the size, in bytes, of the notification key in the ab member.

ab
Specifies the byte array containing the notification key.

Remarks

The interpretation of a notification key depends on the object that it represents. An object's notification
key is frequently its entry identifier. However, the key can be a constant, a name, or another such
identifying item. In the sample message store, for example, the notification key for a folder directory is
its path.

The NOTIFKEY structure is defined in MAPISPI.H.

 OBJECT_NOTIFICATION

The OBJECT_NOTIFICATION structure contains information about a notification event indicating that
an object was created, deleted, modified, copied, or searched. MAPI uses this structure only as a
member of the NOTIFICATION structure for the advise sink.

typedef struct _OBJECT_NOTIFICATION
{
 ULONG cbEntryID;
 LPENTRYID lpEntryID;
 ULONG ulObjType;
 ULONG cbParentID;
 LPENTRYID lpParentID;
 ULONG cbOldID;
 LPENTRYID lpOldID;
 ULONG cbOldParentID;
 LPENTRYID lpOldParentID;
 LPSPropTagArray lpPropTagArray;
} OBJECT_NOTIFICATION;

Members

cbEntryID
Indicates the size, in bytes, of the entry identifier of the object that was created or modified.

lpEntryID
Points to the entry identifier of the object.

ulObjType
Indicates the type of object affected. Possible types are:
MAPI_STORE

Indicates a message store.
MAPI_ADDRBOOK

Indicates an address book.
MAPI_FOLDER

Indicates a folder.
MAPI_ABCONT

Indicates an address book container.
MAPI_MESSAGE

Indicates a message.
MAPI_MAILUSER

Indicates a messaging user.
MAPI_ATTACH

Indicates a message attachment.
MAPI_DISTLIST

Indicates a distribution list.
MAPI_PROFSECT

Indicates a profile section.
MAPI_STATUS

Indicates status.
MAPI_SESSION

Specifes which session is in use.
cbParentID

Indicates the size, in bytes, of the data pointed to by the lpParentID member.

lpParentID
Points to the entry identifier of the parent of the object.

cbOldID
Indicates the size, in bytes, of the entry identifier for the original object.

lpOldID
Points to the entry identifier of the original object. This pointer is NULL if the object has not changed.

cbOldParentID
Indicates the size, in bytes, of the data pointed to by the lpOldParentID member.

lpOldParentID
Points to the entry identifier of the parent of the original object.

lpPropTagArray
Points to an SPropTagArray structure containing the tags of object properties affected by the
notification event. If the notification is for the creation of a new object, for example, the creation of a
new message in a message store, then lpPropTagArray should point to an array of properties tags
for the properties on the newly created object. If this is unfeasable, MAPI service providers can
return NULL instead.

Remarks

The OBJECT_NOTIFICATION structure is defined in MAPIDEFS.H.

See Also

NOTIFICATION structure , SPropTagArray structure

 OPTIONDATA

The OPTIONDATA structure contains information specific to an e-mail address type supported by the
transport provider. OPTIONDATA address information can apply to a message or to a message
recipient.

typedef struct _OPTIONDATA
{
 ULONG ulFlags;
 LPGUID lpRecipGUID;
 LPTSTR lpszAdrType;
 LPTSTR lpszDLLName;
 ULONG ulOrdinal;
 ULONG cbOptionsData;
 LPBYTE lpbOptionsData;
 ULONG cOptionsProps;
 LPSPropValue lpOptionsProps;
} OPTIONDATA, FAR *LPOPTIONDATA;

Members

ulFlags
Bitmask of flags used to specify recipient or message options. The following flags can be set:
MAPI_MESSAGE

Indicates message-specific options.
MAPI_RECIPIENT

Indicates recipient-specific options.
lpRecipGUID

Points to a GUID structure identifying the message recipient, if applicable.
lpszAdrType

Points to the e-mail address type that must be NULL.
lpszDLLName

Points to the name of the DLL to be loaded.
ulOrdinal

Specifies which ordinal the transport provider DLL uses to find the client's option callback function.
cbOptionsData

Indicates the size, in bytes, of the data pointed to by the lpbOptionsData member.
lpbOptionsData

Points to transport-provider option data that is specific to the recipient or message.
cOptionsProps

Indicates the number of properties in the array pointed to by the lpOptionsProps member.
lpOptionsProps

Points to an array of SPropValue structures, each containing information about a default option
property.

Remarks

The MAPI spooler logs onto a transport provider with the information that this provider can support a
number of options specific to different e-mail address types. An option, for example, might indicate the
use of a specific message cover page or direct a phone number be redialed a specific number of times.
To register options, the MAPI spooler calls the IXPLogon::RegisterOptions method provided by the
transport provider.

RegisterOptions writes one or two OPTIONDATA structures for each supported address type,

depending on whether the provider is registered for both recipient and message options, recipient
options only, or message options only. If a provider is registered for both option types,
RegisterOptions writes one structure containing address information for message recipients and one
containing address information for messages. For each structure, the ulFlags member indicates
whether the options apply to a recipient or a message.

For an example of the use of OPTIONDATA, consider a transport provider that handles recipients for
both Microsoft Mail and Microsoft Mail for the Macintosh. If the provider is registered for both recipient
and message options, it provides two pairs of OPTIONDATA structures, one pair for each platform. The
MAPI spooler can use this information to determine what options are valid for each platform. Once it
has this option information, the MAPI spooler prompts the user with a dialog box to retrieve the actual
settings for the options.

The DLL name in the lpszDLLname parameter should not indicate the operating system platform when
OPTIONDATA is passed in the lppOptions parameter of the LXPLogon::Register method.

The OPTIONDATA structure is defined in MAPISPI.H.

See Also

IXPLogon::AddressTypes method , IXPLogon::RegisterOptions method , SPropValue structure

 PFNIDLE

PFNIDLE is a pointer type used to declare a MAPI idle function ¾ that is, a function with the prototype
FNIDLE.

typedef FNIDLE *PFNIDLE;

Remarks

Functions based on FNIDLE are client application or service provider idle functions that the MAPI idle
engine calls periodically according to priority; the specific functionality of such idle functions is defined
by the application or provider.

The PFNIDLE type is defined in MAPIUTIL.H.

See Also

FNIDLE function prototype

 SAndRestriction

The SAndRestriction structure contains a group of search restrictions that are combined using a
logical AND operation.

typedef struct _SAndRestriction
{
 ULONG cRes;
 LPSRestriction lpRes;
} SAndRestriction;

Members

cRes
Indicates the number of search restrictions in the array pointed to by the lpRes member.

lpRes
Points to an array of SRestriction structures to be combined with a logical AND operation.

Remarks

The SAndRestriction structure is defined in MAPIDEFS.H.

See Also

SRestriction structure

 SAppTimeArray

The SAppTimeArray structure contains a pointer to an array of application time values for use in an
SPropValue structure containing information about a property.

typedef struct _SAppTimeArray
{
 ULONG cValues;
 double FAR *lpat;
} SAppTimeArray;

Members

cValues
Indicates the number of values in the array pointed to by the lpat member.

lpat
Points to an array of application time values.

Remarks

The SAppTimeArray structure is defined in MAPIDEFS.H.

 SBinary

The SBinary structure contains a pointer to a property value of type PT_BINARY for use in an
SPropValue structure containing information about a property.

typedef struct _SBinary
{
 ULONG cb;
 LPBYTE lpb;
} SBinary, FAR *LPSBinary;

Members

cb
Indicates the size, in bytes, of the data pointed to by the lpb member.

lpb
Points to the PT_BINARY property value.

Remarks

The SBinary structure is defined in MAPIDEFS.H.

See Also

SPropValue structure

 SBinaryArray

The SBinaryArray structure contains a property value of type PT_MV_BINARY for use in an
SPropValue structure containing information about a multivalued property.

typedef struct _SBinaryArray
{
 ULONG cValues;
 SBinary FAR *lpbin;
} SBinaryArray;

Members

cValues
Indicates the number of values in the array pointed to by the lpbin member.

lpbin
Points to an array of SBinary structures holding the multiple values for the property.

Remarks

The SBinaryArray structure is defined in MAPIDEFS.H.

See Also

PT_MV_BINARY property type, SBinary structure , SPropValue structure

 SBitMaskRestriction

The SBitMaskRestriction structure contains a bitmask search restriction for objects such as tables
and message stores.

typedef struct _SBitMaskRestriction
{
 ULONG relBMR;
 PT_LONG ulPropTag;
 ULONG ulMask;
} SBitMaskRestriction;

Members

relBMR
Relational operator describing how the mask specified in the ulMask member should be applied to
the property tag. Possible values are:
BMR_EQZ

Indicates the value is equal to zero.
BMR_NEZ

Indicates the value is not equal to zero.

ulPropTag
Property tag of the property being masked in the search.

ulMask
Bitmask of flags to compare with the specified property value.

Remarks

This restriction operates by taking the logical AND of ulMask with the value of the property indicated by
the ulPropTag member. If the result is zero, then BMR_EQZ is satisfied. If it's nonzero, that is, if the
property value has at least one of the same bits set as ulMask, then BMR_NEZ is satisfied.

The result of a property value restriction is undefined when the property does not exist. When a client
requires well-defined behavior for such a restriction and is not sure whether the property exists ¾ for
example, it is not a required column of a table ¾ it should combine the property restriction with an
SExistsRestriction in an SAndRestriction.

The SBitmaskRestriction structure is defined in MAPIDEFS.H.

See Also

SRestriction structure

 SCommentRestriction

The SCommentRestriction structure contains a comment search restriction for objects such as tables
and message stores.

typedef struct _SCommentRestriction
{
 ULONG cValues;
 LPSRestriction lpRes;
 LPSPropValue lpProp;
} SCommentRestriction;

Members

cValues
Indicates the number of values in the array pointed to by the lpProp member.

lpRes
Points to an SRestriction structure.

lpProp
Points to an array of SPropValue structures, each containing information about a property. The
method using the SCommentRestriction structure ignores the values of the properties when
computing the restriction result.

Remarks

The SCommentRestriction structure associates an object with a set of named properties. This
structure is used by clients that save restrictions on disk to keep application-specific information with
the restriction. For example, a client saving the name of a named property used in a property restriction
can do so in an SCommentRestriction structure. Saving the name is not possible in a property
restriction; the SPropertyRestriction structure holds only the property tag. Comment restrictions are
ignored by the IMAPITable::Restrict method. There is no effect on the rows returned by the
IMAPITable::QueryRows method after an IMAPITable::Restrict call has been made.

The SCommentsRestriction structure is defined in MAPIDEFS.H.

See Also

SPropValue structure , SRestriction structure

 SComparePropsRestriction

The SComparePropsRestriction structure contains a search restriction that compares properties for
objects such as tables and message stores.

typedef struct _SComparePropsRestriction
{
 ULONG relop;
 ULONG ulPropTag1;
 ULONG ulPropTag2;
} SComparePropsRestriction;

Members

relop
Relational operator to use in the property comparison restriction. Possible values are:
RELOP_GE

Indicates the comparison is made based on a greater or equal first value.
RELOP_GT

Indicates the comparison is made based on a greater first value.
RELOP_LE

Indicates the comparison is made based on a lesser or equal first value.
RELOP_LT

Indicates the comparison is made based on a lesser first value.
RELOP_NE

Indicates the comparison is made based on unequal values.
RELOP_RE

Indicates the comparison is made based on LIKE (regular expression) values.
RELOP_EQ

Indicates the comparison is made based on equal values.
ulPropTag1

Specifies the property tag of the first property to be compared.
ulPropTag2

Specifies the property tag of the second property to be compared.

Remarks

The comparison order is (property tag 1) (relational operator) (property tag 2). The two properties
compared should be of the same type. Attempting to compare properties of different types commonly
returns the error value MAPI_E_TOO_COMPLEX.

The result of a property value restriction is undefined when the property does not exist. When a client
requires well-defined behavior for such a restriction and is not sure whether the property exists (for
example, it is not a required column of a table), it should combine the property restriction with an
SExistsRestriction in an SAndRestriction.

The MV_FLAG is combined, using the OR operation, with the type portion of the property tags to make
the property accommodate an array of the base type. MV_FLAG is not actually a flag; it is a
combination of the MV_FLAG and MV_INSTANCE.

If supported, property tags with MV_FLAG can be used anywhere single valued property tags can be
used. They can be used in IMAPIProp::SetProps, IMAPIProp::GetProps, IMAPITable::SetColumns,
IMAPITable::SortTable, and IMAPITable::Restrict.

Property tags with MVI_FLAG are only used on tables and have special semantics.They can be used

as input to IMAPITable::SetColumns in the SPropTagArray structure, IMAPITable::SortTable in the
SSortOrderSet structure and IMAPITable::Restrict in the SRestriction structure's ulPropTag
member. They are never found in SPropValue structures or in the output parameters of methods other
than IMAPITable::QueryColumns and IMAPITable::QuerySortOrder.

Columns with MVI_FLAG request the provider to return that column as single value properties, with
one row per instance of the MV_FLAG property that is stored in the object. The property tags in
SPropValues returned by IMAPITable::QueryRows are single valued for that column. For example, if
you ask for PR_FOO you will get PR_FOO and ~MVI_FLAG in the ulPropTag member of the
SPropValue structure.

SortOrderSet works identically to the IMAPITable::SetColumns behavior. Sorts are done based on
the single values in the instances, and rows are added based on the expansion of each object's
MVI_FLAG columns in both the SSortOrder and SPropTagArray structures.

Unlike the MVI_FLAG in SSortOrder and SPropTagArray, MVI_FLAG in SRestriction does not
expand the objects into computed rows. Rather, given that a column has been set by
IMAPITable::SetColumns or IMAPITable::SortTable to be instances of the underlying multivalued
property, putting a property tag with the MVI_FLAG in SRestriction tells the provider to use that
column in restricting the table. The SPropValue structure (if any) to restrict against must be a single
valued property tag identical to the one that would be returned by IMAPITable::QueryRows for the
column.

The SComparePropsRestriction structure is defined in MAPIDEFS.H.

See Also

SBitMaskRestriction structure , SRestriction structure

 SContentRestriction

The SContentRestriction structure contains a search restriction to limit a view of the messages in a
table based on checking for a search string.

typedef struct _SContentRestriction
{
 ULONG ulFuzzyLevel;
 ULONG ulPropTag;
 LPSPropValue lpProp;
} SContentRestriction;

Members

ulFuzzyLevel
Option settings defining the fuzzy level for a message contents search. The lower 16 bits apply to
property types PT_STRING8 and PT_BINARY. They contain the substring alignment code, which
must be set to exactly one of the following values:
FL_FULLSTRING

Indicates that the lpProp search string must be contained as a full string in the message property
string ¾ that is, the two strings must be identical.

FL_PREFIX
Indicates that the lpProp search string must be contained as a substring at the beginning of the
message property string. The two strings should be compared only up to the length of the search
string indicated by lpProp.

FL_SUBSTRING
Indicates that the lpProp search string must be contained as a substring anywhere within the
message property string.
The upper 16 bits of the fuzzy level apply only to property type PT_STRING8. They are a bitmask
of different options for comparing character strings within messages. The following flags can be
set in any combination:

FL_IGNORECASE
Indicates that the function should make the comparison in case-insensitive fashion.

FL_IGNORENONSPACE
Indicates that the function should make the comparison so as to ignore Unicode-defined
"nonspacing characters," for example, diacritical marks.

FL_LOOSE
Indicates that the service provider should perform as many fuzzy level heuristics of types
FL_IGNORECASE and FL_IGNORENONSPACE as it has been designed to handle.

ulPropTag
Property tag identifying the property (string) in each message to be checked for occurrence of the
search string.

lpProp
Pointer to an SPropValue structure containing the search string to be checked for in each message.

Remarks

The SPropValue structure pointed to by lpProp also contains a ulPropTag member. In both tags,
MAPI requires only the property type field and ignores the property identifier field. However, the two
property types must match, or else the error value MAPI_E_TOO_COMPLEX is returned.

The codes FL_FULLSTRING, FL_PREFIX, and FL_SUBSTRING are mutually exclusive. Only one of
them can be set, and one of them must be set. Their meanings are fixed, and the provider must
implement them exactly as defined. The provider should return MAPI_E_TOO_COMPLEX if it is unable

to implement a specified code.

The flags FL_IGNORECASE, FL_IGNORENONSPACE, and FL_LOOSE are independent. Anywhere
from zero to all three of them can be set. Their definitions are provided as a guideline only, and the
provider is free to implement its own specific meaning of each flag. The provider should not return any
error indication if it has no implementation of a specified flag.

The result of a property value restriction is undefined when the property does not exist. When a client
requires well-defined behavior for such a restriction and is not sure whether the property exists (for
example, it is not a required column of a table), it should combine the property restriction with an
SExistsRestriction in an SAndRestriction.

The MV_FLAG is combined using the OR operation to the type portion of the property tags to make the
property accommodate an array of the base type. MVI_FLAG is not actually a flag, but instead a
combination of the MV_FLAG and MV_INSTANCE.

If supported, property tags with MV_FLAG can be used anywhere single valued property tags can be
used. They can be used in IMAPIProp::SetProps, IMAPIProp::GetProps, IMAPITable::SetColumns,
IMAPITable::SortTable, and IMAPITable::Restrict.

Property tags with MVI_FLAG are only used on tables and have special semantics.They can be used
as input to IMAPITable::SetColumns in the SPropTagArray structure, IMAPITable::SortTable in the
SSortOrderSet structure and IMAPITable::Restrict in the SRestriction structure's ulPropTag
member. They are never found in SPropValue or in the output parameters of methods other than
IMAPITable::QueryColumns and IMAPITable::QuerySortOrder.

Columns with MVI_FLAG request the provider to return that column as single value properties, with
one row per instance of the MV_FLAG property that is stored in the object. The property tags in
SPropValues returned by IMAPITable::QueryRows are single valued for that column. For example, if
you ask for PR_FOO you will get PR_FOO and ~MVI_FLAG in the ulPropTag field of the SPropValue
structure.

SortOrderSet works identically to the IMAPITable::SetColumns behavior. Sorts are done based on
the single values in the instances, and rows are added based on the expansion of each object's
MVI_FLAG columns in both the SSortOrder and SPropTagArray structures.

Unlike the MVI_FLAG in SSortOrder and SPropTagArray, MVI_FLAG in SRestriction does not
expand the objects into computed rows. Rather, given that a column has been set by
IMAPITable::SetColumns or IMAPITable::SortTable to be instances of the underlying multivalued
property, putting a property tag with the MVI_FLAG in the SRestriction structure tells the provider to
use that column in restricting the table. The SPropValue structure (if any) to restrict against must be a
single valued property tag identical to the one that would be returned by IMAPITable::QueryRows for
the column.

The SContentRestriction structure is defined in MAPIDEFS.H.

See Also

SPropValue structure , SRestriction structure

 SCurrencyArray

The SCurrencyArray structure contains a property value of type PT_MV_CURRENCY for use in an
SPropValue structure containing information about a multivalued property.

typedef struct _SCurrencyArray
{
 ULONG cValues;
 CURRENCY FAR *lpcur;
} SCurrencyArray;

Members

cValues
Indicates the number of values in the array pointed to by the lpcur member.

lpcur
Points to an array of CURRENCY structures containing the multiple values for the property.

Remarks

The SCurrencyArray structure is defined in MAPIDEFS.H.

See Also

PT_MV_CURRENCY property type, SPropValue structure

 SDateTimeArray

The SDateTimeArray structure contains a property value of type PT_MV_SYSTIME for use in an
SPropValue structure containing information about a multivalued property.

typedef struct _SDateTimeArray
{
 ULONG cValues;
 FILETIME FAR *lpft;
} SDateTimeArray;

Members

cValues
Indicates the number of values in the array pointed to by the lpft member.

lpft
Points to an array of FILETIME structures containing the multiple values for the property.

Remarks

The SDateTimeArray structure is defined in MAPIDEFS.H.

See Also

FILETIME structure , PT_MV_SYSTIME property type, SPropValue structure

 SDoubleArray

The SDoubleArray structure contains a property value of type PT_MV_DOUBLE for use in an
SPropValue structure containing information about a multivalued property.

typedef struct _SDoubleArray
{
 ULONG cValues;
 double FAR *lpdbl;
} SDoubleArray;

Members

cValues
Indicates the number of values in the array pointed to by the lpdbl member.

lpdbl
Points to the array of double values making up the property.

Remarks

The SDoubleArray structure is defined in MAPIDEFS.H.

See Also

PT_MV_DOUBLE property type, SPropValue structure

 SExistRestriction

The SExistRestriction structure contains a search restriction to limit a view of the messages in a table
based on the existence of a particular property.

typedef struct _SExistRestriction
{
 ULONG ulReserved1;
 ULONG ulPropTag;
 ULONG ulReserved2;
} SExistRestriction;

Members

ulReserved1
Reserved; must be zero.

ulPropTag
Property tag identifying the property in each message to be tested for existence.

ulReserved2
Reserved; must be zero.

Remarks

For meaningful results, restrictions on properties that are not required columns in a table should be
ANDed with SExistRestriction structures on those properties. The provider is not obligated to return
consistent or predictable results when a non-existent property is tested in a restriction.

Since PR_MESSAGE_ATTACHMENTS and PR_MESSAGE_RECIPIENTS are subobject properties, a
restriction on them using SExistRestriction does not produce reliable results.

The SExistRestriction structure is defined in MAPIDEFS.H.

See Also

SRestriction structure

 SGuidArray

The SGuidArray structure contains a property value of type PT_MV_CLSID for use in an SPropValue
structure containing information about a multivalued property.

typedef struct _SGuidArray
{
 ULONG cValues;
 GUID FAR *lpguid;
} SGuidArray;

Members

cValues
Indicates the number of values in the array pointed to by the lpguid member.

lpguid
Points to an array of property values for use in the SPropValue structure.

Remarks

The SGUIDArray structure is defined in MAPIDEFS.H.

See Also

GUID structure , PT_MV_CLSID property type, SPropValue structure

 SLargeIntegerArray

The SLargeIntegerArray structure contains a property value of type PT_MV_I8 for use in an
SPropValue structure containing information about a multivalued property.

typedef struct _SLargeIntegerArray
{
 ULONG cValues;
 LARGE_INTEGER FAR *lpli;
} SLargeIntegerArray;

Members

cValues
Indicates the number of values in the array pointed to by the lpli member.

lpli
Points to an array of LARGE_INTEGER structures holding the multiple values for the property.

Remarks

The SLargeIntegerArray structure is defined in MAPIDEFS.H.

See Also

LARGE_INTEGER structure , PT_MV_I8 property type, SPropValue structure

 SLongArray

The SLongArray structure contains a property value of type PT_MV_LONG for use in an SPropValue
structure containing information about a multivalued property.

typedef struct _SLongArray
{
 ULONG cValues;
 LONG FAR *lpl;
} SLongArray;

Members

cValues
Indicates the number of values in the array pointed to by the lpl member.

lpl
Points to the array of long values making up the property.

Remarks

The SLongArray structure is defined in MAPIDEFS.H.

See Also

PT_MV_LONG property type, SPropValue structure

 SLPSTRArray

The SLPSTRArray structure contains a property value of type PT_MV_STRING8 for use in an
SPropValue structure containing information about a multivalued property.

typedef struct _SLPSTRArray
{
 ULONG cValues;
 LPSTR FAR *lppszA;z
} SLPSTRArray;

Members

cValues
Indicates the number of values in the array pointed to by the lppszA member.

lppszA
Points to the array of null-terminated 8-bit character strings making up the property.

Remarks

The SLPSTRArray structure is defined in MAPIDEFS.H.

See Also

PT_MV_STRING8 property type, SPropValue structure

 SMAPIFormInfoArray

The SMAPIFormInfoArray structure contains a list of pointers to IMAPIFormInfo interfaces.

typedef struct
{
 ULONG cForms;
 LPMAPIFORMINFO aFormInfo[MAPI_DIM];
} SMAPIFormInfoArray, FAR * LPSMAPIFORMINFOARRAY;

Members

cForms
Indicates the number of IMAPIFormInfo interface pointers in the array in the aFormInfo member.

aFormInfo
Holds an array of pointers to IMAPIFormInfo interface implementations.

Remarks

This structure is passed as a parameter in the IMAPIFormMgr methods
ResolveMultipleMessageClasses, CalcFormPropSet, SelectMultipleForms and the
IMAPIFormContainer method ResolveMultipleMessageClasses.

Use the CbMAPIFormInfoArray macro to determine the minimum number of bytes required to hold an
SMAPIFormInfoArray containing a specified number of IMAPIFormInfo interface pointers. The syntax
is:

int CbMAPIFormInfoArray (int _c)

The _c parameter specifies the number of IMAPIFormInfo interface pointers. This macro returns the
number of bytes of memory needed to hold a SMAPIFormInfoArray containing the number of
interface pointers specified by _c.

The SMAPIFormInfoArray structure is defined in MAPIFORM.H.

See Also

IMAPIFormContainer::ResolveMultipleMessageClasses method ,
IMAPIFormMgr::CalcFormPropSet method , IMAPIFormMgr::ResolveMultipleMessageClasses
method, IMAPIFormMgr::SelectMultipleForms method

 SMAPIFormProp

The SMAPIFormProp structure contains a form property used with form interfaces.

typedef struct _SMAPIFormProp
{
 ULONG ulFlags;
 ULONG nPropType;
 MAPINAMEID nmid;
 LPTSTR pszDisplayName;
 FORMPROPSPECIALTYPE nSpecialType;
 union
 {
 struct
 {
 MAPINAMEID nmidIdx;
 ULONG cfpevAvailable;
 LPMAPIFormPropEnumVal pfpevAvailable;
 } s1;
 } u;
} SMAPIFormProp;

Members

ulFlags
Contains MAPI_UNICODE if the strings in the structure are Unicode; zero if they are not.

nPropType
Property type of the form property, with the most significant word equal to zero.

nmid
MAPINAMEID structure containing the property's globally unique identifier (GUID) and a form kind,
made up of an interface identifier and the form's name.

pszDisplayName
Points to the display name of the property.

nSpecialType
Indicates the special type tag defined in the FORMPROPSPECIALTYPE enumeration. This tag
applies to the u union.

nmidIdx
Indicates the MAPINAMEID structure containing the identifier for the interface implementing the
property.

cfpevAvailable
Indicates the number of SMAPIFormPropEnumVal structures in the array pointed to by the
pfpevAvailable member.

pfpevAvailable
Points to an array of SMAPIFormPropEnumVal structures, each of which holds a value for a form
property.

Remarks

SMAPIFormProp contains information about a form property used as part of the definitions of the
IMAPIFormInfo interface; nSpecialType contains a tag that applies to the u union that is part of
SMAPIFormProp.

The FORMPROPSPECIALTYPE enumeration lists possible special type tags for the nSpecialType
member of the SMAPIFormProp structure. In the FORMPROPSPECIALTYPE enumeration, the

FPST_VANILLA member indicates that no enumeration is used, and the FPST_ENUM_PROP
member indicates the enumeration contains a MAPI property.

The SMAPIFormProp structure is defined in MAPIDEFS.H.

See Also

MAPINAMEID structure , SMAPIFormPropEnumVal structure

 SMAPIFormPropArray

The SMAPIFormPropArray structure contains a list of form properties, that is, SMAPIFormProp
structures.

typedef struct
{
 ULONG cProps;
 ULONG ulPad;
 SMAPIFormProp aFormProp[MAPI_DIM];
} SMAPIFormPropArray, FAR * LPMAPIFORMPROPARRAY;

Members

cProps
Indicates the number of verbs in the list.

ulPad
Indicates an eight-byte pad used for alignment of the SMAPIFormPropArray.

aFormProp
Indicates the name of the first form property in the list.

Remarks

This structure is passed as a parameter in the methods IMAPIFormInfo::CalcFormPropSet,
IMAPIFormMgr::CalcFormPropSet, IMAPIFormContainer::CalcFormPropSet.

Use the CbMAPIFormPropArray macro to determine the memory allocation requirements for an
SMAPIFormPropArray containing a specified number of form properties, that is a specified number of
SMAPIFormProp structures. The syntax is:

int CbMAPIFormPropArray (int _c)

The _c parameter specifies the number of form properties. This macro returns the number of bytes of
memory needed to hold an SMAPIFormPropArray containing the number of form properties specified
by _c.

The SMAPIFormPropArray structure is defined in MAPIFORM.H.

See Also

CbMAPIFormPropArray macro , IMAPIFormContainer::CalcFormPropSet method ,
IMAPIFormInfo::CalcFormPropSet method , IMAPIFormMgr::CalcFormPropSet method ,
SMAPIFormProp structure

 SMAPIFormPropEnumVal

The SMAPIFormPropEnumVal structure contains a value of a form property that will be used as part
of the SMAPIFormProp structure.

typedef struct _SMAPIFormPropEnumVal
{
 SPropValue val;
 ULONG nVal;
} SMAPIFormPropEnumVal;

Members

val
Specifies an SPropValue structure containing information about the form property.

nVal
Specifies an enumeration value for the structure in the val member.

Remarks

The SMAPIFormProp structure contains form property information used in forms definitions.

The SMAPIFormPropEnumVal structure is defined in MAPIDEFS.H.

See Also

SMAPIFormProp structure , SPropValue structure

 SMAPIVerb

The SMAPIVerb structure contains arrays of MAPI verbs.

typedef struct
{
 LONG lVerb;
 LPTSTR szVerbname;
 DWORD fuFlags;
 DWORD grfAttribs;
 ULONG ulFlags; /* Either 0 or MAPI_UNICODE */
} SMAPIVerb, FAR * LPMAPIVERB;

Members

lVerb
Numeric value for the verb.

szVerbname
Character string containing the name of the verb.

fuFlags
Flags for the verb.

grfAttribs
Attributes of the verb.

ulFlags
Bitmask of flags. If the szVerbname member has Unicode format, the following flag can be set:
MAPI_UNICODE

Indicates the passed-in strings are in Unicode format. If the MAPI_UNICODE flag is not set, the
strings are in ANSI format.

Remarks

This structure is passed as a parameter in the IMAPIFormMgr and IMAPIFormContainer method
ResolveMultipleMessageClasses.

The SMAPIVerb structure is defined in MAPIFORM.H.

See Also

CbMessageClassArray macro , IMAPIFormContainer::ResolveMultipleMessageClasses method ,
IMAPIFormMgr::ResolveMultipleMessageClasses method

 SMAPIVerbArray

The SMAPIVerbArray structure contains a list of MAPI verbs, that is SMAPIVerb structures.

typedef struct
{
 ULONG cMAPIVerb;
 SMAPIVerb aMAPIVerb[MAPI_DIM];
} SMAPIVerbArray, FAR * LPMAPIVERBARRAY;

Members

cForms
Indicates the number of verbs in the list.

aFormInfo
Names the first verb in the list.

Remarks

This structure is passed as a parameter in the IMAPIFormInfo::CalcVerbSet method.

Use the cbMAPIVerbArray macro to determine the memory allocation requirements of an
SMAPIVerbArray containing a specified number of verbs, that is a specified number of SMAPIVerb
structures. The syntax is:

int CbMAPIVerbArray (int _c)

The _c parameter specifies the number of verbs. This macro returns the number of bytes of memory
needed to hold an SMAPIVerbArray containing the number of verbs specified by _c.

The SMAPIVerbArray structure is defined in MAPIFORM.H.

See Also

IMAPIFormInfo::CalcVerbSet method , SMAPIVerb structure

 SMessageClassArray

The SMessageClassArray structure contains a list of message class string pointers.

typedef struct
{
 ULONG cValues;
 LPCSTR aMessageClass[MAPI_DIM];
} SMessageClassArray, FAR * LPSMESSAGECLASSARRAY;

Members

cValues
Indicates the number of message class string pointers in this structure.

aMessageClass
Names the first pointer in the list of message class string pointers.

Remarks

This structure is passed as a parameter in the IMAPIFormMgr and IMAPIFormContainer method
ResolveMultipleMessageClasses.

Use the cbMessageClassArray macro to determine the minimum number of bytes required to hold an
SMessageClassArray containing a specified number of message class string pointers. The syntax is:

int CbMessageClassArray (int _c)

The _c parameter specifies the number of message class string pointers. This macro returns the
number of bytes of memory needed to hold a SMessageClassArray containing the number of pointers
specified by _c.

The SMessageClassArray structure is defined in MAPIDEFS.H.

See Also

IMAPIFormContainer::ResolveMultipleMessageClasses method ,
IMAPIFormMgr::ResolveMultipleMessageClasses method

 SNotRestriction

The SNotRestriction structure contains a group of search restrictions to which a logical NOT operation
has been applied.

typedef struct _SNotRestriction
{
 ULONG ulReserved;
 LPSRestriction lpRes;
} SNotRestriction;

Members

ulReserved
Reserved; must be zero.

lpRes
Points to an SRestriction structure containing the restrictions to be included in the logical NOT
operation.

Remarks

The SNotRestriction structure is defined in MAPIDEFS.H.

See Also

SRestriction structure

 SOrRestriction

The SOrRestriction structure contains a group of search restrictions combined in a logical OR
operation.

typedef struct _SOrRestriction
{
 ULONG cRes;
 LPSRestriction lpRes;
} SOrRestriction;

Members

cRes
Indicates the number of structures in the array pointed to by the lpRes member.

lpRes
Points to an array of SRestriction structures defining the restrictions to be combined using the
logical OR operation.

Remarks

The SOrRestriction structure is defined in MAPIDEFS.H.

See Also

SRestriction structure

 SPropAttrArray

The SPropAttrArray structure contains a list of attributes for a MAPI property.

typedef struct
{
 ULONG cValues;
 ULONG aPropAttr[MAPI_DIM];
} SPropAttrArray, FAR *LPSPropAttrArray;

Members

cValues
Indicates the number of property attributes in the array in the aPropAttr member.

aPropAttr
Contains an array of property attributes. Attributes that can be placed in this list are:
PROPATTR_MANDATORY
PROPATTR_READABLE
PROPATTR_WRITEABLE
PROPATTR_NOT_PRESENT

Remarks

Use the CbSPropAttrArray macro to determine the number of bytes occupied by an existing
SPropAttrArray structure. The syntax is:

int CbSPropAttrArray (LPSPROPATTRARRAY _lparray)

The _lparray parameter points to an SPropAttrArray structure. This macro returns the number of
bytes of memory occupied by the SPropAttrArray structure.

Use the CbNewSPropAttrArray macro to determine the memory allocation requirement of an
SPropAttrArray structure containing a specified number of property attributes. The syntax is:

int CbNewSPropAttrArray (int _c)

The _c parameter specifies the number of property attributes. This macro returns the number of bytes
of memory needed to hold an SPropAttrArray containing the number of property attributes specified
by _c.

The SPropAttrArray structure is defined in IMESSAGE.H.

 SPropertyRestriction

The SPropertyRestriction structure contains a search restriction to limit a view of the messages in a
table based on comparing a property's value to a constant.

typedef struct _SPropertyRestriction
{
 ULONG relop;
 ULONG ulPropTag;
 LPSPropValue lpProp;
} SPropertyRestriction;

Members

relop
Indicates the relational operator to be used in the search. Possible values are:
RELOP_GE

Indicates the comparison is made based on a greater or equal first value.
RELOP_GT

Indicates the comparison is made based on a greater first value.
RELOP_LE

Indicates the comparison is made based on a lesser or equal first value.
RELOP_LT

Indicates the comparison is made based on a lesser first value.
RELOP_NE

Indicates the comparison is made based on unequal values.
RELOP_RE

Indicates the comparison is made based on LIKE (regular expression) values.
RELOP_EQ

Indicates the comparison is made based on equal values.
ulPropTag

Indicates a property tag identifying the property in each message to be compared to the constant.
lpProp

Points to an SPropValue structure containing the constant value to be compared against.

Remarks

The SPropValue structure pointed to by lpProp also contains a ulPropTag member. In both tags,
MAPI requires only the property type field and ignores the property identifier field. However, the two
property types must match, or else the error value MAPI_E_TOO_COMPLEX is returned.

The comparison order is (property value) (relational operator) (constant value).

The result of a property value restriction is undefined when the property does not exist. When a client
requires well-defined behavior for such a restriction and is not sure whether the property exists (for
example, it is not a required column of a table), it should combine the property restriction with an
SExistsRestriction in an SAndRestriction.

The MV_FLAG is combined using the OR operation to the type portion of the property tags to make the
property accommodate an array of the base type. MVI_FLAG is not actually a flag, but instead a
combination of the MV_FLAG and MV_INSTANCE.

If supported, property tags with MV_FLAG can be used anywhere single valued property tags can be
used. They can be used in IMAPIProp::SetProps, IMAPIProp::GetProps, IMAPITable::SetColumns,
IMAPITable::SortTable, IMAPITable::Restrict.

Property tags with MVI_FLAG are only used on tables and have special semantics.They can be used
as input to IMAPITable::SetColumns in the SPropTagArray structure, IMAPITable::SortTable in the
SSortOrderSet structure and IMAPITable::Restrict in the SRestriction structure's ulPropTag
member. They are never found in SPropValue or in the output parameters of methods other than
IMAPITable::QueryColumns and IMAPITable::QuerySortOrder.

Columns with MVI_FLAG request the provider to return that column as single value properties, with
one row per instance of the MV_FLAG property that is stored in the object. The property tags in
SPropValues returned by IMAPITable::QueryRows are single valued for that column. For example, if
you ask for PR_FOO you will get PR_FOO and ~MVI_FLAG in the ulPropTag member of the
SPropValue structure.

SortOrderSet works identically to the IMAPITable::SetColumns behavior. Sorts are done based on
the single values in the instances, and rows are added based on the expansion of each object's
MVI_FLAG columns in both the SSortOrder and SPropTagArray structures.

Unlike MVI_FLAG in SSortOrder and SPropTagArray, MVI_FLAG in SRestriction does not expand
the objects into computed rows. Rather, given that a column has been set by
IMAPITable::SetColumns or IMAPITable::SortTable to be instances of the underlying multivalued
property, putting a property tag with the MVI_FLAG in the SRestriction structure tells the provider to
use that column in restricting the table. The SPropValue structure (if any) to restrict against must be a
single valued property tag identical to the one that would be returned by IMAPITable::QueryRows for
the column.

The SPropertyRestriction structure is defined in MAPIDEFS.H.

See Also

SPropValue structure , SRestriction structure

 SPropProblem

The SPropProblem structure describes an error relating to a particular property.

typedef struct _SPropProblem
{
 ULONG ulIndex;
 ULONG ulPropTag;
 SCODE scode;
} SPropProblem, FAR *LPSPropProblem;

Members

ulIndex
Indicates an index in an array of property tags.

ulPropTag
Indicates a property tag for the property.

scode
Indicates an error value indicating the property problem encountered during the update. This value
can be any SCODE value.

Remarks

The SPropProblem structure is defined in MAPIDEFS.H. An SPropProblem structure contains an
SCODE error value that is a result of an operation attempting to modify or delete a MAPI property.

See Also

SCODE data type, SPropProblemArray structure

 SPropProblemArray

The SPropProblemArray structure contains an array of one or more SPropProblem structures, each
of which holds an SCODE error value that is a result of an operation attempting to modify or delete a
MAPI property.

typedef struct _SPropProblemArray
{
 ULONG cProblem;
 SPropProblem aProblem[MAPI_DIM];
} SPropProblemArray, FAR *LPSPropProblemArray;

Members

cProblem
Indicates the number of problem structures in the array indicated by the aProblem member.

aProblem
Contains an array of SPropProblem structures, each holding a property error.

Remarks

Use the CbSPropProblemArray to determine the number of bytes in an
existing SPropProblemArray.

The syntax is:

int CbSPropProblemArray (LPSPropProblemArray _lparray)

The _lparray parameter specifies a pointer to an SPropProblemArray structure. This macro returns
the number of bytes of memory in the SPropProblemArray structure pointed to by _lparray.

The CbNewSPropProblemArray macro determines the memory allocation requirements of a
SPropProblemArray structure containing a specified number of SPropProblem structures.

The syntax is:

 int CbNewSPropProblemArray (int_cprob)

The _cprob parameter specifies the number of SPropProblem structures. This macro returns the
number of bytes of memory occupied by an SPropProblemArray structure that contains the number of
SPropProblem structures specified by _cprob.

The SizedSPropProblemArray creates a structure definition identical to that of SPropProblemArray
but with a specified number of SPropProblem structures. Use the SizedSPropProblemArray macro
to create property problem arrays with explicit bounds. The syntax is:

The syntax is: SizedSPropProblemArray (int_cprob, _name)

The _cprob parameter specifies the number of SPropProblem structures to be in the property problem
array, aProblem. The structure type is defined with the _SPropProblemArray_ _name and type name
_name.

The SPropProblemArray structure is defined in MAPIDEFS.H.

See Also

SCODE data type, SPropProblem structure

 SPropTagArray

The SPropTagArray structure contains an array of property tags.

typedef struct _SPropTagArray
{
 ULONG cValues;
 ULONG aulPropTag[MAPI_DIM];
} SPropTagArray, FAR *LPSPropTagArray;

Members

cValues
Indicates the number of property tags in the array indicated by the aulPropTag member.

aulPropTag
Indicates an array of property tags.

Remarks

The CbSPropTagArray macro determines the number of bytes occupied by an existing
SPropTagArray. The syntax is:

int CbSPropTagArray (LPSPropTagArray _lparray)

The _lparray parameter specifies a pointer to an SPropTagArray structure. This macro returns the
number of bytes of memory occupied by the SPropTagArray structure pointed to by _lparray.

The CbNewSPropTagArray macro determines the memory allocation requirements of an
SPropTagArray structure containing a specified number of property tags. The syntax is:

int CbNewSPropTagArray (int _ctag)

The _ctag parameter specifies the number of property tags. This macro returns the number of bytes of
memory occupied by an SPropTagArray structure that contains the number of property tags specified
by _ctag.

The SizedSPropTagArray macro creates a structure definition identical to that of SPropTagArray but
with a specified number of property tags. Use the SizedSPropTagArray macro to create property tag
arrays with explicit bounds. The syntax is:

SizedSPropTagArray (int _ctag, _name)

The _ctag parameter specifies the number of property tags to be in the property tag array aulPropTag.
The structure type is defined with the tag _SPropTagArray_ _name and type name _name.

To use lpSizedSPropTagArray, a sized property tag pointer, with a sized property tag in any function
call or structure that expects a LPSPropTagArray pointer, perform the following cast:

lpSPropTagArray = (LPSPropTagArray) lpSizedSPropTagArray

The SPropTagArray structure is defined in MAPIDEFS.H.

 SPropValue

The SPropValue structure contains a MAPI property, including its property tag and property value.

typedef struct _SPropValue
{
 ULONG ulPropTag;
 ULONG dwAlignPad;
 union _PV Value;
} SPropValue, FAR *LPSPropValue;

Members

ulPropTag
Contains a property tag for the property. This tag consists of a code for the property type in the lower
16 bits and a code for the property identifier in the upper 16 bits.

dwAlignPad
Contains the padding bytes to properly align the information indicated by the Value member.

Value
Contains the property value from the _UPV union.

Remarks

A _UPV union, used in the Value member of the SPropValue structure, defines the possible values for
a MAPI property. The syntax for the _UPV union is as follows:

typedef union _PV
{
 short int i;
 LONG l;
 ULONG ul;
 float flt;
 double dbl;
 unsigned short int b;
 CURRENCY cur;
 double at;
 FILETIME ft;
 LPSTR lpszA;
 SBinary bin;
 LPWSTR lpszW;
 LPGUID lpguid;
 LARGE_INTEGER li;
 SShortArray MVi;
 SLongArray MVl;
 SRealArray MVflt;
 SDoubleArray MVdbl;
 SCurrencyArray MVcur;
 SAppTimeArray MVat;
 SDateTimeArray MVft;
 SBinaryArray MVbin;
 SLPSTRArray MVszA;
 SWStringArray MVszW;
 SGuidArray MVguid;
 SLargeIntegerArray MVli;
 SCODE err;

 LONG x;
} _UPV;

The members of the _UPV union contain the following information:

i
Property value of the property for which the SPropValue structure holds information if the property's
type is PT_I2.

l
Property value if the property's type is PT_LONG and the property value is a LONG integer.

ul
Property value if the property's type is PT_LONG and the property value is an unsigned LONG
integer.

flt
Property value if the property's type is PT_R4.

dbl
Property value if the property's type is PT_DOUBLE.

b
Property value if the property's type is PT_BOOLEAN.

cur
Property value if the property's type is PT_CURRENCY.

at
Property value if the property's type is PT_APPTIME.

ft
Property value if the property's type is PT_SYSTIME.

lpszA
Property value if the property's type is PT_STRING8.

bin
Property value if the property's type is PT_BINARY.

lpszW
Property value if the property's type is PT_UNICODE.

lpguid
Property value if the property's type is PT_CLSID.

li
Property value if the property's type is PT_I8.

MVi
Property value if the property's type is PT_MV_I2.

MVl
Property value if the property's type is PT_MV_LONG.

MVflt
Property value if the property's type is PT_MV_R4.

MVdbl
Property value if the property's type is PT_MV_DOUBLE.

MVcur
Property value if the property's type is PT_MV_CURRENCY.

MVat
Property value if the property's type is PT_MV_APPTIME.

MVft
Property value if the property's type is PT_MV_SYSTIME.

MVbin

Property value if the property's type is PT_MV_BINARY.
MVszA

Property value if the property's type is PT_MV_STRING8.
MVszW

Property value if the property's type is PT_MV_UNICODE.
MVguid

Property value if the property's type is PT_MV_CLSID.
MVli

Property value if the property's type is PT_MV_I8.
err

Property value if the property's type is PT_ERROR.
x

Property value if the property's type is PT_NULL or PT_OBJECT.

The following five macros are used to set data types, flags, or to return property, type, or property
identifier values.

CHANGE_PROP_TYPE
MVI_PROP
PROP_ID
PROP_TAG
PROP_TYPE

Use the CHANGE_PROP_TYPE macro to set the data type of the supplied MAPI property tag without
changing the property identifier part of the tag. The syntax is:

ULONG CHANGE_PROP_TYPE (ULONG ulPropTag,ULONG ulPropType)

The ulPropTag parameter specifies the property tag. The ulPropType parameter specifies the value of
the property type to set within ulPropTag. This macro returns a property tag with the property identifier
set to ulPropTag and with the property type set to ulPropType.

Use the MVI_PROP macro to set the MV_FLAG and MV_INSTANCE flags for the supplied property
tag. The property identifier and property type are otherwise unchanged. The syntax is:

ULONG MVI_PROP (ULONG tag)

The tag parameter is the property tag that will have its MVI_FLAG bits set; this macro returns the
property tag with its MVI_FLAG bits set. The MVI_FLAG represents the MV_FLAG and the
MV_INSTANCE flags.

The MV_FLAG indicates a multivalued property. The MV_INSTANCE flag is used in table operations to
request that a multivalued property be presented as a single-valued property appearing in multiple
rows.

For example, when the input property tag contains the type PT_FLOAT, the returned property tag
specifies the type PT_MVI_FLOAT; that is, PT_MV_FLOAT with the MV_INSTANCE bit set. All single-
valued types have corresponding multivalued types.

The PROP_ID macro returns the property identifier value from the supplied property tag. The syntax is:

ULONG PROP_ID (ULONG ulPropTag)

The ulPropTag parameter specifies a property tag for which you want to obtain the property identifier.
This macro returns the property identifier in the low-order word (bits 0-15) and zeros in the high-order
word (bits 16-31). Bits 0-15 of the return value are equal to bits 16-31 of the supplied ulPropTag.

Use the PROP_TAG macro to return a property tag constructed from the supplied property type and
the supplied property identifier.

The low-order 16 bits of the returned property tag contain the property type, and the high-order 16 bits
of the returned tag contain the property identifier. The syntax is:

ULONG PROP_TAG (ulPropType, ulPropID)

The ulPropType parameter specifies the property type to be used in the property tag. The ulPropID
parameter specifies the property identifier. This macro returns a property tag with a data type of
ulPropType and identifier ulPropID.

For example, the property tag PR_ENTRYID is formed by using the PROP_TAG macro as follows:
PROP_TAG(PT_BINARY, 0x0FFF).

The PROP_TYPE macro returns the property type of the supplied property tag. The syntax is:

ULONG PROP_TYPE (ULONG ulPropTag)

The ulPropTag parameter specifies a property tag. This macro returns the low-order 16 bits of the
property tag, which contain the value that represents the property type. The high-order 16 bits in the
return value are set to zero. For example, PROP_TYPE(PR_ENTRYID) returns the value PT_BINARY.

The MVI_FLAG property tags are never used in the SPropValue structure.

The SPropValue structure is defined in MAPIDEFS.H.

See Also

About Property Types

 SRealArray

The SRealArray structure contains a property value of type PT_FLOAT for use in an SPropValue
structure containing information about a multivalued property.

typedef struct _SRealArray
{
 ULONG cValues;
 float FAR *lpflt;
} SRealArray;

Members

cValues
Indicates the number of values in the array pointed to by the lpflt member.

lpflt
Points to an array of float values making up the property.

Remarks

The SRealArray structure is defined in MAPIDEFS.H.

See Also

PT_FLOAT property type, SPropValue structure

 SRestriction

The SRestriction structure contains a search restriction, or a set of search restrictions, used to limit a
view of the messages in a table.

typedef struct _SRestriction
{
 ULONG rt;
 union
 {
 SComparePropsRestriction resCompareProps;
 SAndRestriction resAnd;
 SOrRestriction resOr;
 SNotRestriction resNot;
 SContentRestriction resContent;
 SPropertyRestriction resProperty;
 SBitMaskRestriction resBitMask;
 SSizeRestriction resSize;
 SExistRestriction resExist;
 SSubRestriction resSub;
 SCommentRestriction resComment;
 } res;
} SRestriction;

Members

rt
Indicates the restriction type. Possible values are:
RES_COMPAREPROPS

A property comparison restriction, defined by an SComparePropsRestriction structure.
RES_AND

A logical AND restriction, defined by an SAndRestriction structure.
RES_OR

A logical OR restriction, defined by an SOrRestriction structure.
RES_NOT

A logical NOT restriction, defined by an SNotRestriction structure.
RES_CONTENT

A message content restriction, defined by an SContentRestriction structure.
RES_PROPERTY

A property value restriction, defined by an SPropertyRestriction structure.
RES_BITMASK

A bitmask restriction, defined by an SBitMaskRestriction structure.
RES_SIZE

A size restriction, defined by an SSizeRestriction structure.
RES_EXIST

A property existence restriction, defined by an SExistRestriction structure.
RES_SUBRESTRICTION

A subrestriction restriction, defined by an SSubRestriction structure.
RES_COMMENT

A comment restriction, defined by an SCommentRestriction structure.
resCompareProps

Contains an SComparePropsRestriction structure. This structure is the first in the union to

accommodate static initializations of three-value restrictions.
resAnd

Indicates an SAndRestriction structure.
resOr

Indicates an SOrRestriction structure.
resContent

Indicates an SContentRestriction structure.
resProperty

Indicates an SPropertyRestriction structure.
resBitMask

Indicates an SBitMaskRestriction structure.
resSize

Indicates an SSizeRestriction structure.
resExist

Indicates an SExistRestriction structure.
resSub

Indicates an SSubRestriction structure.
resComment

Indicates an SCommentRestriction structure.

Remarks

A client application uses SRestriction structures in calls to the IMAPITable::Restrict and (for search-
results folders) IMAPIContainer::SetSearchCriteria methods. A client can also use SRestriction with
the IMAPITable::FindRow method to find table rows with certain attributes.

These three methods use SRestriction structures for locating and selecting an item or items based on
the set of criteria incorporated in the SRestriction structure. During a search or restriction operation,
the provider evaluates each object in a table or folder in terms of the SRestriction criteria. Only an
object that matches the search restriction is included as a result of the search.

For meaningful results, restrictions on properties that are not required columns in a table should be
ANDed with SExistRestriction structures on those properties. The provider is not obligated to return
consistent or predictable results when a non-existent property is tested in a restriction.

The SRestriction structure is defined in MAPIDEFS.H.

See Also

SAndRestriction structure , SBitMaskRestriction structure , SCommentRestriction structure ,
SComparePropsRestriction structure , SContentRestriction structure , SExistRestriction structure ,
SNotRestriction structure , SOrRestriction structure , SPropertyRestriction structure ,
SSizeRestriction structure , SSubRestriction structure , IMAPIContainer::SetSearchCriteria method ,
IMAPITable::FindRow method , IMAPITable::Restrict method

 SRow

The SRow structure contains a table row containing selected properties for a specific object.

typedef struct _SRow
{
 ULONG ulAdrEntryPad;
 ULONG cValues;
 LPSPropValue lpProps;
} SRow, FAR *LPSRow;

Members

ulAdrEntryPad
Indicates padding bytes to properly align the information pointed to by the lpProps member.

cValues
Indicates the number of values in the array pointed to by lpProps.

lpProps
Points to an array of SPropValue structures. Each SPropValue structure represents a column
within the SRow.

Remarks

SRow structures typically exist as components of SRowSet structures. These structures are used to
represent MAPI table rows and MAPI tables, respectively.

Each instance of an SRow lpProps member in an SRowSet must be allocated (using
MAPIAllocateBuffer) separately from the SRowSet. A row's allocated memory can then be preserved
and reused outside of the context of the SRowSet.

The lpProps members must be deallocated prior to deallocation of the containing SRowSet so that
pointers to allocated SPropValue structures are not lost.

The SRow structure is defined in MAPIDEFS.H.

See Also

ADRLIST structure , SPropValue structure , SRowSet structure

 SRowSet

The SRowSet structure contains a set of table rows; each row in this set of rows contains selected
properties for a specific object.

typedef struct _SRowSet
{
 ULONG cRows;
 SRow aRow[MAPI_DIM];
} SRowSet, FAR *LPSRowSet;

Members

aRow
Indicates an array of SRow structures, one for each table row.

Remarks

The MAPI function HrQueryAllRows retrieves MAPI table rows into this structure.

The structure member types and allocation rules for SRow and ADRENTRY structures are identical.
SRowSet structures can be cast into ADRLIST structures to which IMessage::ModifyRecipients and
IAddrBook::Address can then be applied.

See SRow for allocation rules for SRowSet structures and their associated SRow structures.

Use the CbSRowSet macro to determine the number of bytes of memory occupied by an existing
SRowSet structure. The syntax for this macro is:

int CbSRowSet (LPSRowSet _lpSRowSet)

The _lpSRowSet parameter specifies a pointer to an SRowSet structure. This macro returns the
number of bytes occupied by the SRowSet structure pointed to by _lpSRowSet.

Use the cbNewSRowSet macro to determine the memory allocation requirements of an SRowSet
structure containing a specified number of rows. The syntax is:

int CbNewSRowSet (int _crow)

The _crow parameter specifies the number of rows, that is the number of elements of type SRow in the
aRow member. This macro returns the number of bytes of memory that an SRowSet with the number
of rows specified by _crow would occupy.

The SizedSRowSet macro creates a structure definition identical to that of SRowSet but with a
specified number of rows. The syntax is:

SizedSRowSet (int _crow, _name)

The _crow parameter specifies the number of rows. The structure type is defined with the tag
SRowSet _name and type name _name.

To use a sized property tag array pointer lpSizedSRowSet in any function call or structure that expects
a LPSRowSet pointer, perform the following cast:

lpSRowSet = (LPSRowSet) lpSizedSRowSet

The SRowSet structure is defined in MAPIDEFS.H.

See Also

ADRLIST structure , HrQueryAllRows function , SRow structure

 SShortArray

The SShortArray structure contains a property value of type PT_MV_SHORT for use in an
SPropValue structure containing information about a multivalued property.

typedef struct _SShortArray
{
 ULONG cValues;
 short int FAR *lpi;
} SShortArray;

Members

cValues
Indicates the number of values in the array pointed to by the lpi member.

lpi
Points to an array of values making up the property.

Remarks

The SRowSet structure is defined in MAPIDEFS.H.

See Also

PT_MV_SHORT property type, SPropValue structure

 SSizeRestriction

The SSizeRestriction structure contains a size search restriction for objects such as tables and
message stores.

typedef struct _SSizeRestriction
{
 ULONG relop;
 ULONG ulPropTag;
 ULONG cb;
} SSizeRestriction;

Members

relop
Relational operator used in the size comparison. Possible values are:
RELOP_GE

Indicates the comparison is made based on a greater or equal first value.
RELOP_GT

Indicates the comparison is made based on a greater first value.
RELOP_LE

Indicates the comparison is made based on a lesser or equal first value.
RELOP_LT

Indicates the comparison is made based on a lesser first value.
RELOP_NE

Indicates the comparison is made based on unequal values.
RELOP_RE

Indicates the comparison is made based on LIKE (regular expression) values.
RELOP_EQ

Indicates the comparison is made based on equal values.
ulPropTag

Contains a property tag.
cb

Indicates the size, in bytes, of the property value.

Remarks

The result of a property value restriction is undefined when the property does not exist. When a client
requires well-defined behavior for such a restriction and is not sure whether the property exists (for
example, it is not a required column of a table), it should combine the property restriction with an
SExistsRestriction in an SAndRestriction.

The SSizeRestriction structure is defined in MAPIDEFS.H.

See Also

SRestriction structure

 SSortOrder

The SSortOrder structure defines the sort order of data in a table.

typedef struct _SSortOrder
{
 ULONG ulPropTag;
 ULONG ulOrder;
} SSortOrder, FAR *LPSSortOrder;

Members

ulPropTag
Indicates the property tag of the column on which the table is to be sorted.

ulOrder
Indicates the order in which the data is to be sorted. Possible values are:
TABLE_SORT_ASCEND

Sorts the table in ascending order.
TABLE_SORT_COMBINE

Indicates that the provider should not show this as a separate category, but should instead
combine it with the previous category.

TABLE_SORT_DESCEND
Sorts the table in descending order.

Remarks

TABLE_SORT_COMBINE is used on categorized tables to indicate that a particular column should not
be its own category. Instead, it should be combined with the previous column. Using this value reduces
the number of category rows which are displayed. This value can be used on multiple adjacent
columns for multiple combinations. For example, to categorize a table with two name columns by
name, yet have a single category, use the TABLE_SORT_COMBINE value.

The MV_FLAG is combined, using the OR operation, with the type portion of the property tags to make
the property accommodate an array of the base type. MVI_FLAG is not actually a flag, but instead a
combination of the MV_FLAG and MV_INSTANCE.

If supported, property tags with MV_FLAG can be used anywhere single valued property tags can be
used. They can be used in IMAPIProp::SetProps, IMAPIProp::GetProps, IMAPITable::SetColumns,
IMAPITable::SortTable, IMAPITable::Restrict.

Property tags with MVI_FLAG are only used on tables and have special semantics.They can be used
as input to IMAPITable::SetColumns in the SPropTagArray structure, IMAPITable::SortTable in the
SSortOrderSet structure and IMAPITable::Restrict in the SRestriction structure's ulPropTag
member. They are never found in SPropValue or in the output parameters of methods other than
IMAPITable::QueryColumns and IMAPITable::QuerySortOrder.

Columns with MVI_FLAG request the provider to return that column as single value properties, with
one row per instance of the MV_FLAG property that is stored in the object. The property tags in
SPropValues returned by IMAPITable::QueryRows are single valued for that column. For example, if
you ask for PR_FOO you will get PR_FOO and ~MVI_FLAG in the ulPropTag member of the
SPropValue structure.

SortOrderSet works identically to the IMAPITable::SetColumns behavior. Sorts are done based on
the single values in the instances, and rows are added based on the expansion of each object's
MVI_FLAG columns in both the SSortOrder and SPropTagArray structures.

Unlike MVI_FLAG in SSortOrder and SPropTagArray, MVI_FLAG in SRestriction does not expand

the objects into computed rows. Rather, given that a column has been set by
IMAPITable::SetColumns or IMAPITable::SortTable to be instances of the underlying multivalued
property, putting a property tag with MVI_FLAG in the SRestriction structure tells the provider to use
that column in restricting the table. The SPropValue structure (if any) to restrict against must be a
single valued property tag identical to the one that would be returned by IMAPITable::QueryRows for
the column.

The SSortOrder structure is defined in MAPIDEFS.H.

See Also

SSortOrderSet structure

 SSortOrderSet

The SSortOrderSet structure defines a set of sort orders for a table, each order indicating on which
column the table is to be sorted.

typedef struct _SSortOrderSet
{
 ULONG cSorts;
 ULONG cCategories;
 ULONG cExpanded;
 SSortOrder aSort[MAPI_DIM];
} SSortOrderSet, FAR *LPSSortOrderSet;

Members

cSorts
Indicates the number of columns on which to sort the table in the array in the aSort member.

cCategories
Indicates the number of categories of data to be sorted. Possible values range from zero, which
indicates a noncategorized sort, up to the number indicated by the cSorts member.

cExpanded
Indicates the number of categories that start in an expanded condition. Possible values include zero.

aSort
Contains an array of SSortOrder structures, each defining a sort order.

Remarks

Use the CbSSortOrderSet macro to determine the number of bytes of memory occupied by an
existing SSortOrderSet structure. The syntax is:

CbSSortOrderSet (_lpSSortOrderSet)

The _lpSSortOrderSet parameter specifies a pointer to an SSortOrderSet structure. This macro
returns the number of bytes occupied by the SSortOrderSet structure pointed to by _lpSSortOrderSet.

The CbNewSSortOrderSet macro determines the memory allocation requirements of an
SSortOrderSet structure containing a specified number of sort orders. The syntax is:

CbNewSSortOrderSet (_csort)

The _csort parameter specifies the number of sort orders, that is, the number of elements of type
SSortOrder in the aSort member. This macro returns the number of bytes of memory that an
SSortOrderSet with the number of sort orders specified by _csort would occupy.

The SizedSSortOrderSet macro creates a structure definition identical to that of SSortOrderSet but
specifies the columns to sort on. Use the SizedSSortOrderSet macro to create sort order sets with
explicit bounds. The syntax is:

SizedSSortOrderSet (_csort, _name)

The _csort parameter specifies the number of sort orders. The structure type is defined with the tag
SSortOrderSet _name and type name _name.

To use a sized, sort order set pointer lpSizedSSortOrderSet in any function call or structure that
expects an LPSSortOrderSet pointer, perform the following cast:

lpSSortOrderSet = (LPSSortOrderSet) lpSizedSSortOrderSet

The SSortOrderSet structure is defined in MAPIDEFS.H.

 SSubRestriction

The SSubRestriction structure contains a search subrestriction for subobjects of table entries.

typedef struct _SSubRestriction
{
 ULONG ulSubObject;
 LPSRestriction lpRes;
} SSubRestriction;

Members

ulSubObject
Indicates the subobject identified in the RES_SUBRESTRICTION restriction type supplied for the rt
member of the SRestriction structure. Possible values are PR_MESSAGE_RECIPIENTS or
PR_MESSAGE_ATTACHMENTS.

lpRes
Points to an SRestriction structure.

Remarks

The most common objects to support subrestrictions are folder contents tables and search-results
folders. These objects may support restricting a search using PR_MESSAGE_ATTACHMENTS or
PR_MESSAGE_RECIPIENTS as a restriction to find a message that has an attachment or a recipient
that meets the other given restrictions. If an implementation does not support subrestrictions, it returns
for a subrestricted search the error value MAPI_E_TOO_COMPLEX.

The SSubRestriction structure is defined in MAPIDEFS.H.

See Also

SRestriction structure

 STATUS_OBJECT_NOTIFICATION

The STATUS_OBJECT_NOTIFICATION structure contains information about a notification event
indicating that a row of the status table has changed. MAPI uses this structure only as a member of the
NOTIFICATION structure for the advise sink.

typedef struct
{
 ULONG cbEntryID;
 LPENTRYID lpEntryID;
 ULONG cValues;
 LPSPropValue lpPropVals;
} STATUS_OBJECT_NOTIFICATION;

Members

cbEntryID
Indicates the size, in bytes, of the entry identifier of the changed status object.

lpEntryID
Points to the entry identifier of the changed status object.

cValues
Indicates the number of SPropValue structures in the array pointed to by the lpPropVals member.

lpPropVals
Points to an array of SPropValue structures, one for each changed property of the status object.

Remarks

The STATUS_OBJECT_NOTIFICATION structure is defined in MAPIDEFS.H.

See Also

NOTIFICATION structure , SPropValue structure

 STnefProblem

The STnefProblem structure contains information about a property or attribute processing problem
that occurred during the encoding or decoding of a Transport-Neutral Encapsulation Format (TNEF)
stream.

typedef struct _STnefProblem
{
 ULONG ulComponent;
 ULONG ulAttribute;
 ULONG ulPropTag;
 SCODE scode;
} STnefProblem;

Members

ulComponent
Indicates the type of processing during which the problem occurred. If the problem occurred during
message processing, the ulComponent member is set to zero. If the problem occurred during
attachment processing, ulComponent is set equal to the corresponding attachment's
PR_ATTACHMENT_NUM value.

ulAttribute
Indicates the attribute corresponding to the ulPropTag member, except when the TNEF processing
problem arises while decoding an encapsulation block. In this case, the ulAttribute member can
have the following possible values:
attMAPIProps

Message level
attAttachment

Attachment level
ulPropTag

Indicates the property tag of the property that caused the TNEF processing problem, except when
the problem arises while decoding an encapsulation block, in which case ulPropTag is set to zero.

scode
Indicates an error value indicating the problem encountered during processing.

Remarks

If an STnefProblem structure is not generated during the processing of an attribute or property, the
application can continue under the assumption that the processing of that attribute or property
succeeded. The only exception occurs when the problem arose during decoding of an encapsulation
block. In this case, the decoding of the component corresponding to the block is halted and decoding is
continued in another component.

The STnefProblem structure is defined in TNEF.H.

See Also

STnefProblemArray structure

 STnefProblemArray

The STnefProblemArray structure lists one or more property or attribute processing problems that
occurred during the encoding or decoding of a Transport-Neutral Encapsulation Format (TNEF) stream.

typedef struct _STnefProblemArray
{
 ULONG.... cProblem;
 STnefProblem aProblem[MAPI_DIM];
}STnefProblemArray, FAR * LPSTnefProblemArray

Members

cProblem
Indicates the number of elements in the array in the aProblem member.

aProblem
Contains an array of STnefProblem structures. Each structure contains information about a
property or attribute processing problem.

Remarks

If a problem occurs during attribute or property processing, an output parameter in the
ITnef::ExtractProps method and in the ITnef::Finish method each receive a pointer to an
STnefProblemArray structure and ExtractProps and Finish each return the value
MAPI_W_ERRORS_RETURNED. This error value indicates that a problem arose during processing
and an STnefProblemArray structure was generated.

If an STnefProblem structure is not generated during the processing of an attribute or property, the
client application can continue under the assumption that the processing of that attribute or property
succeeded. The only exception occurs when the problem arose during decoding of an encapsulation
block. If the error occurred during this decoding, MAPI_E_UNABLE_TO_COMPLETE can be returned
as the SCODE in the structure. In this case, the decoding of the component corresponding to the block
is halted and decoding is continued in another component.

The STnefProblemArray structure is defined in TNEF.H.

See Also

ITnef::ExtractProps method , ITnef::Finish method , STnefProblem structure

 SWStringArray

The SWStringArray structure contains a property value of type PT_MV_UNICODE for use in an
SPropValue structure containing information about a multivalued property.

typedef struct _SWStringArray
{
 ULONG cValues;
 LPWSTR FAR *lppszW;
} SWStringArray;

Members

cValues
Indicates the number of values in the array pointed to by the lppszW member.

lppszW
Points to the array of null-terminated Unicode string values making up the property.

Remarks

The SWStringArray structure is defined in MAPIDEFS.H.

See Also

PT_MV_UNICODE property type, SPropValue structure

 TABLE_NOTIFICATION

The TABLE_NOTIFICATION structure contains information about a notification event related to a table,
such as a table change, error, addition, or deletion. MAPI uses this structure only as a member of the
NOTIFICATION structure for the advise sink.

typedef struct _TABLE_NOTIFICATION
{
 ULONG ulTableEvent;
 HRESULT hResult;
 SPropValue propIndex;
 SPropValue propPrior;
 SRow row;
} TABLE_NOTIFICATION;

Members

ulTableEvent
Bitmask of flags used to represent the table event type. The following flags can be set:
TABLE_CHANGED

Indicates something has changed but the table implementation does not have the details. The
table's state is as it was before the event. All PR_INSTANCE_KEY properties, bookmarks, current
positioning, and user interface selections are still valid. The user interface code that displays the
table should re-read the entire table upon receiving this event. Service providers that do not want
to implement "rich" table notifications simply send TABLE_CHANGED events rather than more
detailed events to indicate a particular type of change.
In response to this flag, the client application can re-read the entire table to get current data.

TABLE_ERROR
Indicates an error has occurred, usually during asynchronous table processing. Errors during calls
to IMAPITable::SortTable, SetColumns, or Restrict can generate this type of event. The
IMAPITable::GetLastError method cannot provide any further information about the error
because it was generated at some previous point, not necessarily from the last method call.

TABLE_RELOAD
Indicates a need to re-read the data and start over. Service providers send TABLE_RELOAD
when, for example, the underlying data is stored in a database and the database is replaced.
When advise sinks receive this event, they should assume that nothing about the table is still
valid. All bookmarks, instance keys, status and positioning information are invalid and the data
should be reread.

TABLE_RESTRICT_DONE
Indicates a search of the table has completed.

TABLE_ROW_ADDED
Indicates a new row has been added to the table, after a call to IMAPIProp::SaveChanges. The
propPrior instance key is for the row above where the row was added. Advise sinks receiving this
event should bear in mind that although the instance key for the row prior to the affected row
(propPrior) and the property data contained in the SRow structure were correct when the
notification was generated, it might no longer be correct. Between the time the notification was
generated and the time that it was sent, other changes might have occurred. If the added or
modified row is now the first row in the table, the property tag in the propPrior member is
PR_NULL (== 1).

TABLE_ROW_DELETED
Indicates that a row is removed from the table. The TABLE_NOTIFICATION structure does not
contain a value for the propPrior member for this event, only the propIndex member.

TABLE_ROW_MODIFIED

Indicates a changed row. The SRow structure contains new data for the row. Multiple
TABLE_ROW_MODIFIED events should be sent in chronological order with respect to the view
that is seen by the user. All TABLE_ROW_MODIFIED events should be sent after changes to the
row have been committed and IMAPIProp::SaveChanges has been called. If the added or
modified row is now the first row in the table, the property tag in the propPrior member is
PR_NULL (== 1).

TABLE_SETCOL_DONE
Indicates the table's columns have been set.

TABLE_SORT_DONE
Indicates that the table's sort order has changed.

hResult
Contains an HRESULT value for the TABLE_ERROR event listed for the ulTableEvent member.

propIndex
Contains an SPropValue structure giving the index of the table row that has changed, that is, the
current row's index.

propPrior
Contains an SPropValue structure giving the index of the row preceding the current one.

row
Contains an SRow structure containing the data for the added or modified row. This structure is filled
for all table notification events, even if an event of the current type doesn't require it. For table
notification events that do not pass row data, row.cValues must equal zero and row.lpProps must
be NULL. This SRow structure is read-only, so client applications must copy it to work with it.

Remarks

The properties received in the TABLE_NOTIFICATION structure are not necessarily the same as the
current column set of the table in question.

TABLE_ERROR can be sent as a result of asynchronous calls to the Sort, IMAPITable::Restrict, or
IMAPITable::SetColumns methods. This TABLE_ERROR flag can be written for asynchronous Sort,
IMAPITable::Restrict, or IMAPITable::SetColumns calls. It can also be written with underlying
processing that attempts to update a table with, for example, new or modified rows.

The TABLE_ROW_ADDED flag that indicates the propIndex member identifies the row that the client
application has created.

Because client applications handle notifications asynchronously, notification of an addition to a table
might arrive after the application is already aware of the change. For example, suppose a notification
that a row is added has been generated but not yet sent to the application. The application might read
20 rows, including the added row, before MAPI passes the notification to the application's notification
callback function.

Data describing the new position and contents of the row (the propPrior, row.cValues, and
row.lpProps members). If the added or modified row is now the first row in the table, the property tag
in the propPrior member is PR_NULL.

Once a client application receives TABLE_ERROR for a table, the application can no longer rely on the
accuracy of the table contents. Notification of changes might be lost. To get additional information
about a table for which a TABLE_ERROR event has occurred, the application can call the
GetLastError method for the table.

The TABLE_NOTIFICATION structure is defined in MAPIDEFS.H.

See Also

IMAPITable::Restrict method , IMAPITable::SetColumns method , NOTIFICATION structure ,
SPropValue structure , SRow structure

 MAPI Data Types

The following alphabetized entries contain documentation for MAPI Data Types.

 BOOKMARK

BOOKMARK is an unsigned long data type that retains in memory a position in a table. The data
stored in a bookmark depends on the client application.

typedef ULONG BOOKMARK;

Remarks

MAPI defines the following bookmarks:

BOOKMARK_BEGINNING
Seeks to the beginning of the table.

BOOKMARK_CURRENT
Seeks to the row in the table where the cursor is located.

BOOKMARK_END
Seeks to the end of the table.

The client application can create additional bookmarks. Created bookmarks are only useful while a
table is open. The client must free any created bookmarks when it closes a table.

The BOOKMARK unsigned long data type is defined in MAPIDEFS.H.

See Also

IMAPITable::CreateBookmark method , IMAPITable::FindRow method , IMAPITable::FreeBookmark
method, IMAPITable::SeekRow method

 BYTE

BYTE is an unsigned character data type that is binary data.

typedef unsigned char BYTE;

 HRESULT

HRESULT is a data type that is a 32-bit error or warning value.

typedef LONG HRESULT;

Remarks

An HRESULT data type is made up of a 1-bit severity flag, an 11-bit handle, a 4-bit facility code
indicating status code (SCODE) group, and a 16-bit SCODE information code. A value of zero for the
severity flag indicates the success of the operation for which the HRESULT was returned.

An HRESULT type returned as an error value for a function can provide the application that called the
function information on the error and how to recover from it. To obtain this information, the application
uses the handle of the HRESULT. The HRESULT and SCODE types are not equivalent. OLE includes
functions and macros to convert between error values of these two types. To create an HRESULT
value from an SCODE value, use ResultFromScode(SCODE). To convert an HRESULT form to
SCODE value, use GetScode(HRESULT). For details about ResultFromScode and GetScode and
for faster ways of making the conversions just mentioned, see the OLE Programmer's Reference. For a
description of the OLE implementation of HRESULT, see Inside OLE, Second Edition, by Kraig
Brockschmidt.

See Also

SCODE data type

 LHANDLE

LHANDLE is a Simple MAPI data type that is a MAPI session handle.

typedef unsigned long LHANDLE, FAR *LPLHANDLE;

 LONG

LONG is a data type that is a 32-bit signed integer.

typedef long LONG;

 SCODE

SCODE is a data type that is a 32-bit status value. MAPI functions and methods return values of the
SCODE type.

typedef ULONG SCODE;

Remarks

All MAPI functions and methods return SCODE values; some MAPI functions also return warnings,
which are nonzero HRESULT values.

To obtain an SCODE value from an HRESULT value, the client application can use the OLE function
GetScode as follows:

SCODE scode;
HRESULT hresult;

hresult = arbitrary function call;

if (hresult)
{
 scode = GetScode(hresult);
/* Display error based on scode */
}

When a MAPI function returns an HRESULT value as a warning, an SCODE return value can be
identified as a type of success. For example:

hresult = SomeCall(..)
if (hresult !=0)
{
 SCODE scode = GetScode(hresult);
 if (FAILED(scode))
 goto error;
 /*Handle the warning here */
 if (scode == MAPI_W_warning)
 {
 }
}
See Also

HRESULT data type

 TCHAR

TCHAR is a data type that is a character string on either a Unicode or an ANSI or DBCS platform. For
Unicode platforms, this string is defined as having the WCHAR type. For ANSI and DBCS platforms,
the string is defined as having the char type.

typedef char TCHAR;
typedef WCHAR TCHAR;

Remarks

The client application can use TCHAR to represent a string of either the WCHAR or char type. Be sure
to define the symbolic constant UNICODE and limit the platform where necessary. MAPI will interpret
the platform information and internally translate TCHAR to the appropriate string.

 ULONG

ULONG is a data type that is a 32-bit unsigned integer.

typedef unsigned long ULONG;

 WCHAR

WCHAR is a data type that is a Unicode character string.

typedef WORD WCHAR;

 Common Messaging Calls (CMC)

The Common Messaging Calls (CMC) applications programming interface (API) provides a simple and
convenient set of functions for applications that need basic messaging functionality. CMC provides for
all the major messaging functionality an application should need, such as accessing message stores
for sending and receiving messages, and addressing and name resolution services. The functions in
the CMC API are typically high level functions and can each be used in several different ways
depending on the arguments to the functions. The CMC API makes it possible for the calling
application to know nothing about the underlying messaging system or transport mechanism used to
implement the CMC API itself.

Most CMC functions use both input and output parameters. Input parameters provide information the
CMC implementation uses to perform the tasks needed by the calling application. The CMC
implementation uses output parameters to pass information back to the calling application from a CMC
function. Some functions have parameters used for both input and output.

Data structures and symbolic constants for CMC and its extensions are described in this reference.
Their C language definitions can be found in the following header files:

Header file name Header file contents
XCMC.H CMC data structures and

symbolic constants.
XCMCEXT.H Common CMC extension data

structures and symbolic
constants.

XCMCMSXT.H Microsoft CMC extension data
structures and symbolic
constants.

Functions

The following functions are implemented in compliance with the X.400 API Association's Common
Messaging Call API specification. These functions make heavy use of extensions, which are described
in the Data Extensions section of the CMC reference. The functions are listed in alphabetical order.

 cmc_act_on

The cmc_act_on function performs the specified operation on a message.

CMC_return_code cmc_act_on (
 CMC_session_id session,
 CMC_message_reference * message_reference,
 CMC_enum operation,
 CMC_flags act_on_flags,
 CMC_ui_id ui_id,
 CMC_extension FAR * act_on_extensions
)

Parameters

session
Input parameter containing a session handle that represents a MAPI session. The value in the
session parameter must be a valid session handle, not zero.

message_ reference
Input parameter pointing to a message reference that identifies the message to be acted upon. A
null pointer or a pointer to a message reference of length zero is invalid for any operation requiring a
message reference. If the message reference is invalid, the cmc_act_on function returns
CMC_E_INVALID_MESSAGE_REFERENCE.

operation
Input parameter containing an enumeration variable that identifies the operation to perform on the
message. Possible values for this variable are:
CMC_ACT_ON_DELETE

Marks the specified message for deletion from the mailbox. This operation requires a valid
message_reference parameter.

CMC_ACT_ON_EXTENDED
Indicates the operation to be performed is specified in the act_on_extensions parameter.

act_on_flags
Input parameter containing a bitmask of option flags. The following flag can be set:
CMC_ERROR_UI_ALLOWED

Displays a dialog box on encountering recoverable errors. If this flag is not set, cmc_act_on does
not display a dialog box and returns an error value instead.

ui_id
Input parameter containing a handle that cmc_act_on uses to present a dialog box for resolving
processing questions.

act_on_extensions
Input-output parameter pointing to an array of CMC_extension structures containing function
extensions. On input, this array contains MAPI extensions to the standard cmc_act_on function. A
value of NULL for the act_on_extensions parameter indicates the caller has no extensions for
cmc_act_on and is expecting no extensions. You can use the CMC_X_COM_SAVE_MESSAGE
extension to save a message to the receive folder.
On output, cmc_act_on writes to the array new information about its processing. It writes NULL if it
generates no output extensions.

Return Values

CMC_E_FAILURE
There was a general failure that does not fit the description of any other return value.

CMC_E_INSUFFICIENT_MEMORY
Insufficient memory was available to complete the requested operation.

CMC_E_INVALID_ENUM
A CMC_enum value was invalid.

CMC_E_INVALID_FLAG
A flag set using a flags parameter was invalid.

CMC_E_INVALID_MESSAGE_REFERENCE
The specified message reference is invalid or no longer valid (for example, it has been deleted).

CMC_E_INVALID_PARAMETER
A function parameter was invalid.

CMC_E_INVALID_SESSION_ID
The specified session handle is invalid or no longer valid (for example, after logging off).

CMC_E_INVALID_UI_ID
The specified user-interface identifier is invalid or no longer valid.

CMC_E_MESSAGE_IN_USE
The requested action could not be completed because the message was in use.

CMC_E_UNSUPPORTED_ACTION
The requested action is not supported by the current implementation.

CMC_E_UNSUPPORTED_FLAG
The flag requested is not supported.

CMC_E_UNSUPPORTED_FUNCTION_EXT
The function extension requested is not supported.

See Also

CMC_extension structure , CMC_X_COM_SAVE_MESSAGE

 cmc_free

The cmc_free function frees memory allocated by the message service through another CMC function.

CMC_return_code cmc_free (
 CMC_buffer memory
)

Parameters

memory
Input parameter pointing to memory previously allocated by CMC. The cmc_free function ignores a
parameter value of NULL. After this function completes, the pointer to memory is invalid, and the
application cannot reference it again.

Return Values

CMC_E_FAILURE
There was a general failure that does not fit the description of any other return value.

CMC_E_INVALID_MEMORY
A memory pointer passed is invalid.

Remarks

Results of the cmc_free function are unpredictable if the client application calls it with a base pointer to
a memory block not allocated by the message service, a base pointer to a memory block already freed,
or a nonbase pointer to a complex structure written by another CMC function.

The CMC functions cmc_list, cmc_look_up, cmc_query_configuration, and cmc_read can provide
the client application with a base pointer to a complex structure containing several levels of pointers.
The client application should free the entire structure or structure array by calling cmc_free with the
base pointer.

See Also

cmc_list function , cmc_look_up function , cmc_query_configuration function , cmc_read function

 cmc_list

The cmc_list function lists summary information for messages that meet client application-specified
criteria.

CMC_return_code cmc_list (
 CMC_session_id session,
 CMC_string message_type,
 CMC_flags list_flags,
 CMC_message_reference * seed,
 CMC_uint32 FAR * count,
 CMC_ui_id ui_id,
 CMC_message_summary FAR * FAR * result,
 CMC_extension FAR * list_extensions
)

Parameters

session
Input parameter containing an opaque session handle that represents a MAPI session object
indicating a session with a message service. If the session handle is invalid, this function returns
CMC_E_INVALID_SESSION_ID.

message_type
Input parameter pointing to the ASCII name of the type of message for which this function lists
information. If the cmc_list function does not recognize the specified message type, it returns
CMC_E_UNRECOGNIZED_MESSAGE_TYPE. If the function receives a value of NULL for the message
type, it lists information for all available message types.

list_flags
Input parameter containing a bitmask of flags. The following flags can be set:
CMC_ERROR_UI_ALLOWED

Displays a dialog box on encountering recoverable errors. If this flag is not set, cmc_list does not
display a dialog box and returns an error value instead.

CMC_LIST_COUNT_ONLY
Lists only a count of messages meeting the specified criteria, not any actual summary
information. If this flag is not set, the function lists summary information in the array.

CMC_LIST_MSG_REFS_ONLY
Writes only message reference information to the array pointed to by the result parameter. If this
flag is not set, cmc_list writes information to all members of the structures in the array.

CMC_LIST_UNREAD_ONLY
Lists unread messages only. If this flag is not set, cmc_list can list both read and unread
messages.

seed
Input parameter pointing to a message reference that identifies the message after which cmc_list
should begin to search. A value of NULL for this parameter indicates that the function should start
the search with the first message in the mailbox. A pointer to a message reference of length zero is
invalid and causes cmc_list to return CMC_E_INVALID_MESSAGE_REFERENCE. If the seed parameter is
part of a structure that is returned by an earlier CMC call, the structure that was allocated by CMC
should be freed before the current session exits.

count
Input-output parameter containing a message count. On input, this parameter specifies a pointer to
the maximum number of messages for which cmc_list should provide summary information. A value
of zero indicates no maximum.
On output, the count parameter specifies the location to which cmc_list writes the number of

messages for which it provides summary information. If no messages match the search criteria, or if
the mailbox is empty, cmc_list writes zero.

ui_id
Input parameter containing the handle of a dialog box for cmc_list to present to help resolve
processing questions.

result
Output parameter pointing to the location to which cmc_list writes the address of the array of
CMC_message_summary structures that it has written.

list_extensions
Input-output parameter pointing to an array of CMC_extension structures specifying function
extensions. On input, this array contains MAPI extensions to the standard cmc_list function. A value
of NULL for the list_extensions parameter indicates that the client application has no extensions for
cmc_list and is expecting no extensions.
On output, cmc_list writes to the array new information about its processing of the message
summaries. It writes NULL if it generates no output extensions.

Return Values

CMC_E_FAILURE
There was a general failure that does not fit the description of any other return value.

CMC_E_INSUFFICIENT_MEMORY
Insufficient memory was available to complete the requested operation.

CMC_E_INVALID_FLAG
A flag set using a flags parameter was invalid.

CMC_E_INVALID_MESSAGE_REFERENCE
The specified message reference is invalid or no longer valid (for example, it has been deleted).

CMC_E_INVALID_PARAMETER
A function parameter was invalid.

CMC_E_INVALID_SESSION_ID
The specified session handle is invalid or no longer valid (for example, after logging off).

CMC_E_INVALID_UI_ID
The specified user-interface identifier is invalid or no longer valid.

CMC_E_UNRECOGNIZED_MESSAGE_TYPE
The specified message type is not supported by the current implementation.

CMC_E_UNSUPPORTED_FLAG
The flag requested is not supported.

CMC_E_UNSUPPORTED_FUNCTION_EXT
The function extension requested is not supported.

Remarks

The client application can specify a cmc_list search to start with a certain message or to start at the
first message in the mailbox. It can also specify the maximum number of messages to list. The
cmc_list function writes the summary information for the specified messages in an array of
CMC_message_summary structures. Using the message references in these structures, the
application can then make calls to the cmc_read and cmc_act_on functions for additional processing.

Before cmc_list writes message summary information, it must allocate memory for the structure array
to contain the information. When this memory is no longer needed, the client application should free
the entire array with a call to the cmc_free function.

See Also

cmc_act_on function , CMC_extension structure , cmc_free function , CMC_message_summary

structure, cmc_read function

 cmc_logoff

The cmc_logoff function logs a client application off a message service.

CMC_return_code cmc_logoff (
 CMC_session_id session,
 CMC_ui_id ui_id,
 CMC_flags logoff_flags,
 CMC_extension FAR * logoff_extensions
)

Parameters

session
Input parameter containing an opaque session handle that represents a MAPI session object
indicating a session with a message service. If the session handle is invalid, the cmc_logoff
function returns CMC_E_INVALID_SESSION_ID. After cmc_logoff returns, the session handle is invalid.

ui_id
Input parameter containing the handle of a dialog box for cmc_logoff to present to help resolve
processing questions.

logoff_flags
Input parameter containing a bitmask of flags. The following flags can be set:
CMC_ERROR_UI_ALLOWED

Displays a dialog box on encountering recoverable errors. If this flag is not set, cmc_logoff does
not display a dialog box and returns an error value instead.

CMC_LOGOFF_UI_ALLOWED
Indicates cmc_logoff can display a dialog box for other purposes than displaying error messages
while logging the user off from the session.

logoff_extensions
Input-output parameter pointing to an array of CMC_extension structures containing function
extensions. On input, this array contains MAPI extensions to the standard cmc_logoff function. A
value of NULL for the logoff_extensions parameter indicates that the client application has no
extensions for cmc_logoff and is expecting no extensions.
On output, cmc_logoff writes to the array new information about the logoff operation. It writes NULL
if it generates no output extensions.

Return Values

CMC_E_FAILURE
There was a general failure that does not fit the description of any other return value.

CMC_E_INSUFFICIENT_MEMORY
Insufficient memory was available to complete the requested operation.

CMC_E_INVALID_FLAG
A flag set using a flags parameter was invalid.

CMC_E_INVALID_PARAMETER
A function parameter was invalid.

CMC_E_INVALID_SESSION_ID
The specified session handle is invalid or no longer valid (for example, after logging off).

CMC_E_INVALID_UI_ID
The specified user-interface identifier is invalid or no longer valid.

CMC_E_UNSUPPORTED_FLAG
The flag requested is not supported.

CMC_E_UNSUPPORTED_FUNCTION_EXT

The function extension requested is not supported.
CMC_E_USER_NOT_LOGGED_ON

The user was not logged on and the CMC_LOGON_UI_ALLOWED flag was not set.

See Also

CMC_extension structure

 cmc_logon

The cmc_logon function logs a client application onto a service provider.

CMC_return_code cmc_logon (
 CMC_string service,
 CMC_string user,
 CMC_string password,
 CMC_object_identifier character_set,
 CMC_ui_id ui_id,
 CMC_uint16 caller_CMC_version,
 CMC_flags logon_flags,
 CMC_session_id FAR * session,
 CMC_extension FAR * logon_extensions
)

Parameters

service
Input parameter pointing to the location of the service provider for the CMC implementation. Passing
NULL for the service parameter indicates either that the client application is requesting logon to a
service provider that does not require a service name, or that the client is requesting the CMC
implementation's logon dialog box.

user
Input parameter pointing to a MAPI profile name identifying the client application. Passing NULL for
the user parameter indicates either that the client is requesting logon to a service provider that does
not require a user name, or that the client is requesting the CMC implementation's dialog box to
prompt for a name.

password
Input parameter pointing to a MAPI profile password required for access to the CMC
implementation. Passing NULL for the service parameter indicates either that the client is requesting
logon to a service provider that does not require a password, or that the client is requesting the CMC
implementation's dialog box to prompt for a password.

character_set
Input parameter pointing to an object identifier for the character set used by the client application.
The client application can call the cmc_query_configuration function to retrieve the available
values. The CMC implementation requires a non-null value for the character_set parameter.

ui_id
Input parameter containing the handle of a dialog box for the cmc_logon function to present to help
resolve processing questions or prompt for logon.

caller_CMC_ version
Input parameter containing the client application's CMC version number, multiplied by 100. For
example, version 1 is specified as the integer 100.

logon_flags
Input parameter containing a bitmask of flags. The following flags can be set:
CMC_COUNTED_STRING_TYPE

Indicates the string type the calling application or provider uses for CMC interactions is a
CMC_counted_string. If this flag is not set, the function treats all strings as null-terminated strings.

CMC_ERROR_UI_ALLOWED
Displays a dialog box on encountering recoverable errors. If this flag is not set, cmc_logon does
not display a dialog box and returns an error value instead.

CMC_LOGON_UI_ALLOWED
Displays a dialog box to prompt for logon if required. If this flag is not set, cmc_logon does not

display a dialog box and returns an error value if the user does not supply enough information.
session

Output parameter pointing to the location to which cmc_logon writes an opaque session handle.
This identifier represents a MAPI session object indicating a session with a message service.

logon_extensions
Input-output parameter pointing to an array of CMC_extension structures specifying function
extensions. On input, this array contains MAPI extensions to the standard cmc_logon function. A
value of NULL for the logon_extensions parameter indicates that the client application has no
extensions for cmc_logon and is expecting no extensions.
On output, cmc_logon writes to the array new information about the logon operation. It writes NULL
if it generates no output extensions.

Return Values

CMC_E_COUNTED_STRING_UNSUPPORTED
This implementation does not support the counted-string type.

CMC_E_FAILURE
There was a general failure that does not fit the description of any other return value.

CMC_E_INSUFFICIENT_MEMORY
Insufficient memory was available to complete the requested operation.

CMC_E_INVALID_FLAG
A flag set using a flags parameter was invalid.

CMC_E_INVALID_PARAMETER
A function parameter was invalid.

CMC_E_INVALID_UI_ID
The specified user-interface identifier is invalid or no longer valid.

CMC_E_LOGON_FAILURE
The service, user name, or password specified was invalid, so logon cannot be completed.

CMC_E_PASSWORD_REQUIRED
A password is required on this message service.

CMC_E_SERVICE_UNAVAILABLE
The service requested was unavailable.

CMC_E_UNSUPPORTED_CHARACTER_SET
The current implementation does not support the character set requested.

CMC_E_UNSUPPORTED_FLAG
The current implementation does not support the flag requested.

CMC_E_UNSUPPORTED_FUNCTION_EXT
The current implementation does not support the function extension requested.

CMC_E_UNSUPPORTED_VERSION
The current implementation cannot support the version specified in the call.

Remarks

The cmc_logon function can, at the client application's option, either prompt the user for information
through a dialog box or proceed without any user interaction. It writes a session handle that the client
application can use in subsequent calls to the CMC implementation.

See Also

CMC_extension structure , cmc_query_configuration function

 cmc_look_up

The cmc_look_up function looks up addressing information in a directory provided by a specified
service provider.

CMC_return_code cmc_look_up (
 CMC_session_id session,
 CMC_recipient FAR * recipient_in,
 CMC_flags look_up_flags,
 CMC_ui_id ui_id,
 CMC_uint32 FAR * count,
 CMC_recipient FAR * FAR * recipient_out,
 CMC_extension FAR * look_up_extensions
)

Parameters

session
Input parameter containing an opaque session handle that represents a MAPI session object that
represents a session with a message service. If the session handle is invalid, the cmc_look_up
function returns the CMC_E_INVALID_SESSION_ID error value.

recipient_in
Input parameter pointing to an array of CMC_recipient structures containing recipient data. The
cmc_look_up function interprets the array depending on the flags that the client application has set
using the look_up_flags parameter. Possible interpretations are as following:
· If the client application has set one of the flags for name resolution, cmc_look_up obtains the

name to resolve from the name member of the first structure in the array. The function checks the
corresponding name-type member to discover what resolution should be performed. The
cmc_look_up function ignores all recipient structures except the first in the array.

· If the client application has set the CMC_LOOKUP_DETAILS_UI flag, the information in the array
must resolve to only one recipient. If it does not, cmc_look_up returns
CMC_E_AMBIGUOUS_RECIPIENT. The cmc_look_up function ignores all recipient structures except
the first in the array.

· If the client application has set the CMC_LOOKUP_ADDRESSING_UI flag, cmc_look_up
displays the recipients specified in the recipient array in the address-list dialog box.

look_up_flags
Input parameter containing a bitmask of flags. The following flags can be set:
CMC_COUNTED_STRING_TYPE

Indicates the string type the calling application or provider uses for CMC interactions is a
CMC_counted_string. If this flag is not set, the function treats all strings as null-terminated strings.

CMC_ERROR_UI_ALLOWED
Displays a dialog box on encountering recoverable errors. If this flag is not set, cmc_look_up
does not display a dialog box and returns an error value instead.

CMC_LOGON_UI_ALLOWED
Displays a dialog box to prompt for logon if required. If this flag is not set, cmc_look_up does not
display a dialog box and returns an error value if the user does not supply enough information.

CMC_LOOKUP_ADDRESSING_UI
Displays a dialog box to allow creation of a recipient list for addressing a message and general
directory browsing. The recipient list passed to the function is the original recipient list for the
dialog box. The function returns the list of recipients created by the user. This flag is optional for
implementations to support.

CMC_LOOKUP_DETAILS_UI
Displays a details dialog box for the recipient pointed to in the recipient_in parameter. This dialog

box only acts on the first recipient in the list. If the recipient name indicated resolves to more than
one address, cmc_look_up does not display the details dialog box and returns
CMC_E_AMBIGUOUS_RECIPIENT.

CMC_LOOKUP_RESOLVE_IDENTITY
Returns a recipient record for the identity of the current user of the message service. If no unique
identity can be determined, the implementation carries out ambiguous name resolution to
determine the address of the current user.

CMC_LOOKUP_RESOLVE_PREFIX_SEARCH
Indicates the search method should be by prefix. In a prefix search, all names matching the prefix
string, beginning at the first character of the name, are considered matches. If this flag is not set,
the search method should be exact-match. CMC implementations must support simple prefix
searching. The availability of wildcard or substring searches is optional.

CMC_LOOKUP_RESOLVE_UI
Attempts to resolve ambiguous names by presenting a name-resolution dialog box to the user. If
this flag is not set, resolutions that do not result in a single name return the error value
CMC_E_AMBIGUOUS_RECIPIENT for message services that require names to resolve to a
single address. Message services that can return multiple addresses can return a list of
addresses if the count parameter is non-null. The name_type field in the recipient_out parameter
can also be set on input as a hint to aid in resolution of the name. Some CMC implementations
might not support this flag. The CMC_LOOKUP_RESOLVE_UI flag is set only when the
CMC_LOOKUP_RESOLVE_PREFIX_SEARCH flag is also set.

ui_id
Input parameter containing the handle of a dialog box for cmc_look_up to present to help resolve
processing questions.

count
Input or output parameter containing a maximum name count. On input, this parameter specifies a
pointer to the maximum number of names for which cmc_look_up can find addressing information.
A value of zero indicates no maximum.
On output, the count parameter specifies the location to which cmc_look_up writes the number of
names that it actually writes to the location indicated by the recipient_out parameter. If no names are
written, cmc_look_up writes zero to the count parameter.

recipient_out
Output parameter pointing to the location to which cmc_look_up writes an array of one or more
CMC_recipient structures containing addressing details for the recipients in the array passed in the
recipient_in parameter.

look_up_extensions
Input-output parameter pointing to an array of CMC_extension structures specifying function
extensions. On input, this array contains MAPI extensions to the standard cmc_look_up function. A
value of NULL for the look_up_extensions parameter indicates that the client application has no
extensions for cmc_look_up and is expecting no extensions.
On output, cmc_look_up writes to the array new information about the lookup operation. It writes
NULL if it generates no output extensions.

Return Values

CMC_E_AMBIGUOUS_RECIPIENT
The recipient name was ambiguous. Multiple matches were found.

CMC_E_FAILURE
There was a general failure that does not fit the description of any other return value.

CMC_E_INSUFFICIENT_MEMORY
Insufficient memory was available to complete the requested operation.

CMC_E_INVALID_FLAG

A flag set using a flags parameter was invalid.
CMC_E_INVALID_PARAMETER

A function parameter was invalid.
CMC_E_INVALID_SESSION_ID

The specified session handle is invalid or no longer valid (for example, after logging off).
CMC_E_INVALID_UI_ID

The specified user-interface identifier is invalid or no longer valid.
CMC_E_LOGON_FAILURE

The service, user name, or password specified was invalid, so logon cannot be completed.
CMC_E_NOT_SUPPORTED

The current implementation does not support the operation requested.
CMC_E_RECIPIENT_NOT_FOUND

One or more of the specified recipients were not found.
CMC_E_UNSUPPORTED_DATA_EXT

The current implementation does not support the data extension requested.
CMC_E_UNSUPPORTED_FLAG

The current implementation does not support the flag requested.
CMC_E_UNSUPPORTED_FUNCTION_EXT

The current implementation does not support the function extension requested.
CMC_E_USER_CANCEL

The operation was canceled by the user.
CMC_E_USER_NOT_LOGGED_ON

The user was not logged on and the CMC_LOGON_UI_ALLOWED flag was not set.

Remarks

A client application calls the cmc_look_up function to resolve a display name to a messaging address
or to prompt the user to choose among multiple resolved names. A client can also use this function to
display a dialog box for creation of recipient lists or to display recipient details.

The cmc_look_up function can write multiple addresses. Before it writes addressing information, it
must allocate memory for the structure array to contain the information. When this memory is no longer
needed, the client application should free the entire array with a call to cmc_free.

See Also

CMC_extension structure , cmc_free function , CMC_recipient structure

 cmc_query_configuration

The cmc_query_configuration function determines configuration information for the installed CMC
implementation.

CMC_return_code cmc_query_configuration (
 CMC_session_id session,
 CMC_enum item,
 CMC_buffer reference,
 CMC_extension FAR * config_extensions
)

Parameters

session
Input parameter containing an opaque session handle that represents a MAPI session object
indicating a session with a message service. If this parameter is set to zero, there is no session and
the cmc_query_configuration function returns the default logon information to the buffer indicated
by the reference parameter. If the session parameter is set to a nonzero value,
cmc_query_configuration returns configuration information as determined by the session. If the
value provided for the session parameter is invalid, cmc_query_configuration returns
CMC_E_INVALID_SESSION_ID.

item
Input parameter containing an enumerated variable that identifies the configuration information
required by the client application. The cmc_query_configuration function will write different values
to the buffer or pointer that the reference parameter points to depending on the value of the item
parameter. The caller must allocate this buffer or pointer before calling cmc_query_configuration.
Possible item values are:
CMC_CONFIG_CHARACTER_SET

Indicates the reference parameter should be a pointer to a CMC_object_identifier structure
array. The cmc_query_configuration function writes a pointer to the array of
CMC_object_identifier structures that indicate the character sets supported by the current CMC
implementation to the location pointed at by the reference parameter. The
cmc_query_configuration function ends the array with a null CMC_object_identifier structure.
The first object identifier in the array is the default character set used if the calling client
application or service provider does not specify one explicitly. The calling client or provider uses
one of these object identifiers at logon to specify that the implementation use a different character
set than the default. This array should be freed with cmc_free.

CMC_CONFIG_DEFAULT_SERVICE
Indicates the reference parameter should be a pointer to a CMC_string data type. The
cmc_query_configuration function writes a pointer to the default message service name, if
available, to the location indicated by the reference parameter. The cmc_query_configuration
function writes NULL to this location if no default service name is available.
The calling client or provider can use this string, along with the one returned by
CMC_CONFIG_DEFAULT_USER, as defaults when prompting the user for the service name,
user name, and password. The string is returned in the CMC implementation's default character
set.

CMC_CONFIG_DEFAULT_USER
Indicates the reference parameter should be a pointer to a CMC_string data type. The
cmc_query_configuration function writes a pointer to the default user name, if available, to the
location indicated by the reference parameter. The cmc_query_configuration function writes
NULL to this location if no default user name is available.
The calling client or provider can use this string, along with the one returned by
CMC_CONFIG_DEFAULT_SERVICE, as defaults when prompting the user for the provider

name, user name, and password. The string is returned in the CMC implementation's default
character set.

CMC_CONFIG_LINE_TERM
Indicates the reference parameter should be a pointer to a CMC_enum variable, which is set to
CMC_LINE_TERM_CRLF if the line delimiter is a carriage return followed by a line feed,
CMC_LINE_TERM_LF if the line delimiter is a line feed, or CMC_LINE_TERM_CR if the line
delimiter is a carriage return.

CMC_CONFIG_REQ_PASSWORD
Indicates the reference parameter should be a pointer to a CMC_enum variable, which is set to
CMC_REQUIRED_NO if the password is not required to log on, CMC_REQUIRED_OPT if the
password is optional to log on, or CMC_REQUIRED_YES if the password is required to log on.

CMC_CONFIG_REQ_SERVICE
Indicates the reference parameter should be a pointer to a CMC_enum variable, which is set to
CMC_REQUIRED_NO if the service name is not required to log on, CMC_REQUIRED_OPT if
the service name is optional to log on, or CMC_REQUIRED_YES if the service name is required
to log on.

CMC_CONFIG_REQ_USER
Indicates the reference parameter should be a pointer to a CMC_enum variable, which is set to
CMC_REQUIRED_NO if the user name is not required to log on, CMC_REQUIRED_OPT if the
user name is optional to log on, or CMC_REQUIRED_YES if the user name is required to log on.

CMC_CONFIG_SUP_COUNTED_STR
Indicates the reference parameter should be a pointer to a CMC_boolean variable, which is set to
TRUE if the CMC_COUNTED_STRING_TYPE flag is supported during logon.

CMC_CONFIG_SUP_NOMKMSGREAD
Indicates the reference parameter should be a pointer to a CMC_boolean variable, which will be
set to TRUE if the cmc_read function supports the CMC_DO_NOT_MARK_AS_READ flag.

CMC_CONFIG_UI_AVAIL
Indicates the reference parameter should be a pointer to a CMC_boolean variable, which will be
set to TRUE if there is a dialog box provided by the CMC implementation.

CMC_CONFIG_VER_IMPLEM
Indicates the reference parameter should be a pointer to a CMC_uint16 variable, which is set to
the version number for the implementation, multiplied by 100. For example, version 1.01 returns
101.

CMC_CONFIG_VER_SPEC
Indicates the reference parameter should be a pointer to a CMC_uint16 variable, which is set to
the CMC specification version number for the implementation, multiplied by 100. For example,
version 1.00 returns 100.

reference
Output parameter pointing to a buffer or pointer to which cmc_query_configuration writes
configuration information. The value of reference depends on the value of item, as previously
described.

config_extensions
Input-output parameter pointing to an array of CMC_extension structures specifying function
extensions. On input, this array contains MAPI extensions to the standard
cmc_query_configuration function. A value of NULL for the config_extensions parameter indicates
that the client application has no extensions for cmc_query_configuration and is expecting no
extensions.
On output, cmc_query_configuration writes to the array new information about the query
configuration operation. It writes NULL if it generates no output extensions.

Return Values

CMC_E_FAILURE
There was a general failure that does not fit the description of any other return value.

CMC_E_INSUFFICIENT_MEMORY
Insufficient memory was available to complete the requested operation.

CMC_E_INVALID_ENUM
A CMC_enum value was invalid.

CMC_E_INVALID_PARAMETER
A function parameter was invalid. Either the reference parameter did not point to a writeable
location, or the config_extensions parameter was badly formed.

CMC_E_NOT_SUPPORTED
The current implementation does not support the operation requested.

CMC_E_UNSUPPORTED_FUNCTION_EXT
The current implementation does not support the function extension requested.

Remarks

The client application must cast the reference parameter to the CMC_buffer type before calling
cmc_query_configuration. The client application must allocate sufficient memory to contain the
information passed in the item parameter. When this memory is no longer needed, the client should
free this memory with whatever memory management routines it is using, or with a call to the
cmc_free function if required by the previous explanation.

See Also

CMC_extension structure , cmc_free function , cmc_read function

 cmc_read

The cmc_read function reads a specified message.

CMC_return_code cmc_read (
 CMC_session_id session,
 CMC_message_reference * message_reference,
 CMC_flags read_flags,
 CMC_message FAR * FAR * message,
 CMC_ui_id ui_id,
 CMC_extension FAR * read_extensions
)

Parameters

session
Input parameter containing an opaque session handle that represents a MAPI session object
indicating a session with a message service. If the value provided for the session parameter is
invalid, the cmc_read function returns CMC_E_INVALID_SESSION_ID.

message_reference
Input parameter pointing to a CMC_message_reference structure containing the message
reference of the message to be retrieved. A NULL value for this parameter indicates that cmc_read
should retrieve the first message in the mailbox. If the message reference is invalid, cmc_read
returns CMC_E_INVALID_MESSAGE_REFERENCE.

read_flags
Input parameter containing a bitmask of flags. The following flags can be set:
CMC_DO_NOT_MARK_AS_READ

Does not mark messages as read when they are returned. This flag also suppresses sending of
receipt reports. The calling client application or service provider can query the implementation to
see if it supports this flag by calling the cmc_query_configuration function.

CMC_ERROR_UI_ALLOWED
Displays a dialog box on encountering recoverable errors. If this flag is not set, cmc_read does
not display a dialog box and returns an error value instead.

CMC_MSG_AND_ATT_HDRS_ONLY
Indicates that the attach_filename fields in the CMC_message structure returned in the message
parameter will be undefined when cmc_read returns and should be ignored. This flag can be
used to reduce the amount of data transferred, because the filenames will not be included in the
transfer. If this flag is not set, the attach_filename fields are returned as usual.
Note that if the CMC_MSG_TEXT_NOTE_AS_FILE value is set in the flags of the returned
message, the first attachment contains the message text. In this case, cmc_read returns the
attach_filename field for that attachment regardless of the setting of the
CMC_MSG_AND_ATT_HDRS_ONLY flag.

CMC_READ_FIRST_UNREAD_MESSAGE
Returns the first message that is not marked as read. If this flag is not set, cmc_read should
return the first message in the mailbox, whether it is marked as read or not. This flag can only be
set when passing a null message reference to receive the first message in the mailbox.

message
Output parameter pointing to the location to which cmc_read writes the CMC_message structure
containing the message it has read. The function writes attachment data in files, and the
CMC_message structure indicates the names of those files in its attachments member. If the client
application has set the CMC_MSG_AND_ATT_HDRS_ONLY flag, the function does not indicate any
attachment files.

ui_id

Input parameter containing the handle of a dialog box for cmc_read to present to help resolve
processing questions.

read_extensions
Input-output parameter pointing to an array of CMC_extension structures specifying function
extensions. On input, this array contains MAPI extensions to the standard cmc_read function. A
value of NULL for the read_extensions parameter indicates that the client application has no
extensions for cmc_read and is expecting no extensions.
On output, cmc_read writes to the array new information about the read operation. It writes NULL if
it generates no output extensions.

Return Values

CMC_E_ATTACHMENT_OPEN_FAILURE
The specified attachment was found but could not be opened, or the attachment file could not be
created.

CMC_E_ATTACHMENT_READ_FAILURE
The specified attachment was found and opened, but there was an error reading it.

CMC_E_ATTACHMENT_WRITE_FAILURE
The attachment file was created successfully, but there was an error writing it.

CMC_E_DISK_FULL
Insufficient disk space was available to complete the requested operation (this can refer to local or
shared disk space).

CMC_E_FAILURE
There was a general failure that does not fit the description of any other return value.

CMC_E_INSUFFICIENT_MEMORY
Insufficient memory was available to complete the requested operation.

CMC_E_INVALID_FLAG
A flag set using a flags parameter was invalid.

CMC_E_INVALID_MESSAGE_REFERENCE
The specified message reference is invalid or no longer valid (for example, it has been deleted).

CMC_E_INVALID_PARAMETER
A function parameter was invalid.

CMC_E_INVALID_SESSION_ID
The specified session handle is invalid or no longer valid (for example, after logging off).

CMC_E_INVALID_UI_ID
The specified user-interface identifier is invalid or no longer valid.

CMC_E_TOO_MANY_FILES
The current implementation cannot support the number of files specified.

CMC_E_UNABLE_TO_NOT_MARK_READ
The current implementation cannot support the CMC_DO_NOT_MARK_AS_READ flag.

CMC_E_UNSUPPORTED_FLAG
The current implementation does not support the flag requested.

CMC_E_UNSUPPORTED_FUNCTION_EXT
The current implementation does not support the function extension requested.

Remarks

The cmc_read function only reads the first message in the mailbox if the client application passes a
null message-reference value.

After processing, cmc_read writes the data from the message into the CMC_message structure.
Unless the client application has set the flag CMC_DO_NOT_MARK_AS_READ on input, the message

will be marked as read when cmc_read returns. If the client application has set the input flag
CMC_MSG_AND_ATT_HDRS_ONLY, cmc_read writes only message and attachment headers on
output.

The cmc_read function can write multiple addresses. Before it writes message information, it must
allocate memory for the structure to contain that information. When this memory is no longer needed,
the client application should free all structures in the array with a call to the cmc_free function.

See Also

CMC_extension structure , cmc_free function , cmc_list function, CMC_message structure ,
CMC_message_reference structure , cmc_query_configuration function

 cmc_send

The cmc_send function sends a message.

CMC_return_code cmc_send (
 CMC_session_id session,
 CMC_message FAR * message,
 CMC_flags send_flags,
 CMC_ui_id ui_id,
 CMC_extension FAR s* send_extensions
)

Parameters

session
Input parameter containing an opaque session handle that represents a MAPI session object
indicating a session with a message service. If the value provided for the session parameter is
invalid, the cmc_send function returns CMC_E_INVALID_SESSION_ID.

message
Input parameter pointing to a CMC_message structure identifying the message to be sent. If the
client application has not set the flag CMC_SEND_UI_REQUESTED in the send_flags parameter,
the message structure must specify at least one primary (TO), carbon-copy (CC), or blind carbon-
copy (BCC) recipient. All other structure members are optional. The cmc_send function ignores the
time_sent and message_reference members.

send_flags
Input parameter containing a bitmask of flags. The following flags can be set:
CMC_COUNTED_STRING_TYPE

Indicates the string type the calling application or provider uses for CMC interactions is
CMC_counted_string. If this flag is not set, the function treats all strings as null-terminated strings.

CMC_ERROR_UI_ALLOWED
Displays a dialog box on encountering recoverable errors. If this flag is not set, cmc_send does
not display a dialog box and returns an error value instead.

CMC_LOGON_UI_ALLOWED
Displays a dialog box to prompt for logon if required. If this flag is not set, cmc_send does not
display a dialog box and returns an error value if the caller does not supply enough information.

CMC_SEND_UI_REQUESTED
Displays a dialog box to prompt for recipients, message field information, and other sending
options. If this flag is not set, cmc_send does not display a dialog box and the caller must specify
at least one recipient.

ui_id
Input parameter containing the handle of a dialog box for cmc_send to present when resolving
processing questions, prompting the user for additional information, or verifying provided
information.

send_extensions
Input-output parameter pointing to an array of CMC_extension structures specifying function
extensions. On input, this array contains MAPI extensions to the standard cmc_send function. A
value of NULL for the send_extensions parameter indicates that the client application has no
extensions for cmc_send and is expecting no extensions.
On output, cmc_send returns to the array new information about the send operation. It returns
NULL if it generates no output extensions.

Return Values

CMC_E_AMBIGUOUS_RECIPIENT

The recipient name was ambiguous. Multiple matches were found.
CMC_E_ATTACHMENT_NOT_FOUND

The specified attachment was not found as specified.
CMC_E_ATTACHMENT_OPEN_FAILURE

The specified attachment was found but could not be opened, or the attachment file could not be
created.

CMC_E_ATTACHMENT_READ_FAILURE
The specified attachment was found and opened, but there was an error reading it.

CMC_E_ATTACHMENT_WRITE_FAILURE
The attachment file was created successfully, but there was an error writing it.

CMC_E_COUNTED_STRING_UNSUPPORTED
The current implementation does not support the counted-string type.

CMC_E_FAILURE
There was a general failure that does not fit the description of any other return value.

CMC_E_INSUFFICIENT_MEMORY
Insufficient memory was available to complete the requested operation.

CMC_E_INVALID_FLAG
A flag set using a flags parameter was invalid.

CMC_E_INVALID_MESSAGE_PARAMETER
One of the parameters in the message was invalid.

CMC_E_INVALID_PARAMETER
A function parameter was invalid.

CMC_E_INVALID_SESSION_ID
The specified session handle is invalid or no longer valid (for example, after logging off).

CMC_E_INVALID_UI_ID
The specified user-interface identifier is invalid or no longer valid.

CMC_E_LOGON_FAILURE
The service, user name, or password specified were invalid, so logon cannot be completed.

CMC_E_RECIPIENT_NOT_FOUND
One or more of the specified recipients were not found.

CMC_E_TEXT_TOO_LARGE
The size of the text string passed to the current implementation is too large.

CMC_E_TOO_MANY_FILES
The current implementation cannot support the number of files specified.

CMC_E_TOO_MANY_RECIPIENTS
The current implementation cannot support the number of recipients specified.

CMC_E_UNSUPPORTED_DATA_EXT
The current implementation does not support the data extension requested.

CMC_E_UNSUPPORTED_FLAG
The current implementation does not support the flag requested.

CMC_E_UNSUPPORTED_FUNCTION_EXT
The current implementation does not support the function extension requested.

CMC_E_USER_CANCEL
The operation was canceled by the user.

CMC_E_USER_NOT_LOGGED_ON
The user was not logged on and the CMC_LOGON_UI_ALLOWED flag was not set.

Remarks

The cmc_send function can, at the client application's option, either use an interface, like a dialog box,

to prompt the user for message creation or proceed without any user interaction. A successful return
from this function does not necessarily imply recipient validation.

The client application can optionally provide recipient list, subject text, attachments, and note text for
the message. If the client application does not provide the required message elements, the cmc_send
function can prompt the user for them if a dialog box is available. If the client provides one or more
recipients, the function can send the message without prompting the user. If the client provides optional
parameters and requests a dialog box, the parameters provide the initial values for the dialog box.

The following conditions apply to the CMC_message structure members:

message_type
To specify an interpersonal message, use a pointer to the string "CMC:IPM". If the client application
provides a pointer value of NULL or a pointer to an empty string, cmc_send uses the default string
CMC:IPM.

subject
A pointer value of NULL indicates no subject text.

text_note
A pointer value of NULL indicates no message text. If the client application does pass a non-null
value to indicate the message text that exceeds the limits of the service provider, the provider can
demote the text to an attachment. Alternatively, it can cause cmc_send to return
CMC_E_TEXT_TOO_LARGE.

recipients
A pointer value of NULL indicates no recipients. If the client application passes a non-null value to
indicate recipients in excess of the number of recipients that the service provider allows per
message, cmc_send returns CMC_E_TOO_MANY_RECIPIENTS.
Note that the CMC_recipient structure pointed to by recipients can include either the recipient's
name, an address, or a name and address pair. If the client application specifies only a name,
cmc_send resolves the name to an address using name resolution rules defined by the CMC
implementation. If the client specifies only an address, cmc_send uses this address for delivery and
for the recipient display name. Finally, if the client specifies a name and address pair, cmc_send
does not resolve the name.
The cmc_send function does not require a recipient of type originator to send a message.

attachments
A pointer value of NULL indicates no attachments. If the client application passes a non-null value to
indicate attachments in excess of the number of attachments that the service provider allows per
message, cmc_send returns CMC_E_TOO_MANY_FILES.
The cmc_send function reads the attachment files before it returns. Thus the caller or user can
freely change or delete attachment files after cmc_send returns without affecting the message.

message_flags
Bitmask of message flags. The following flag can be set:
CMC_MSG_TEXT_NOTE_AS_FILE

Indicates that the text_note member of the message parameter is ignored and the message text
is contained in the file referred to by the first attachment. If this flag is set to zero, the message
text is contained in the text_note member.

See Also

CMC_extension structure , CMC_message structure , CMC_recipient structure

 cmc_send_documents

The cmc_send_documents function sends a document.

CMC_return_code cmc_send_documents (
 CMC_string recipient_addresses,
 CMC_string subject,
 CMC_string text_note,
 CMC_flags send_doc_flags,
 CMC_string file_paths,
 CMC_string file_names,
 CMC_string delimiter,
 CMC_ui_id ui_id
)

Parameters

recipient_addresses
Input parameter pointing to the address of the document recipient. When the client application
specifies multiple recipients, it should separate the strings using the character specified by the
delimiter parameter. The cmc_send_documents function assumes a recipient to be a primary
recipient unless the address is prefixed by CC: (carbon copy) or BCC: (blind carbon copy). The TO:
prefix can optionally be used with the primary recipient for consistency with the other recipient types.
Passing NULL in the recipient_addresses parameter indicates that cmc_send_documents should
present a dialog box to prompt for recipients.

subject
Input parameter pointing to the subject of the document. Passing NULL in the subject parameter
indicates no subject text.

text_note
Input parameter pointing to the text note carried with the document. Passing NULL in the text_note
parameter indicates no text note.

send_doc_flags
Input parameter containing a bitmask of flags used to control how documents are sent. The following
flags can be set:
CMC_COUNTED_STRING_TYPE

Indicates the string type the calling application or provider uses for CMC interactions is
CMC_counted_string. If this flag is not set, the function treats all strings as null-terminated strings.

CMC_ERROR_UI_ALLOWED
Displays a dialog box on encountering recoverable errors. If this flag is not set,
cmc_send_documents does not display a dialog box and returns an error value instead.

CMC_FIRST_ATTACH_AS_TEXT_NOTE
Sends the first attachment as the message text. If this flag is not set, the text_note field contains
the text note.

CMC_LOGON_UI_ALLOWED
Displays a dialog box to prompt for logon if required. If this flag is not set,
cmc_send_documents does not display a dialog box and returns an error if the user does not
supply enough information.

CMC_SEND_UI_REQUESTED
Displays a dialog box to prompt for recipients, message field information, and other sending
options. If this flag is not set, cmc_send_documents does not display a dialog box but must
specify at least one recipient.

file_paths
Input parameter pointing to the actual path for the attachment file. When the client application

specifies multiple paths, it should separate the names using the character indicated by the delimiter
parameter.

attach_titles
Input parameter pointing to the title of the attachment displayed for the recipient. When the client
application specifies multiple titles, it should separate the titles using the character indicated by the
delimiter parameter.

delimiter
Input parameter pointing to a character used to delimit the names in the file_paths, attach_titles, and
recipient_addresses strings. The client application should choose a character that is not used in
operating system filenames or recipient names. This parameter cannot be NULL.

ui_id
Input parameter containing the handle of a dialog box for cmc_send_documents to present to help
resolve processing questions or prompt the user for additional information as required.

Return Values

CMC_E_ATTACHMENT_NOT_FOUND
The specified attachment was not found as specified.

CMC_E_ATTACHMENT_OPEN_FAILURE
The specified attachment was found but could not be opened, or the attachment file could not be
created.

CMC_E_ATTACHMENT_READ_FAILURE
The specified attachment was found and opened, but there was an error reading it.

CMC_E_ATTACHMENT_WRITE_FAILURE
The attachment file was created successfully, but there was an error writing it.

CMC_E_COUNTED_STRING_NOT_SUPPORTED
The current implementation does not support counted strings.

CMC_E_FAILURE
There was a general failure that does not fit the description of any other return value.

CMC_E_INSUFFICIENT_MEMORY
Insufficient memory was available to complete the requested operation.

CMC_E_INVALID_FLAG
A flag set using a flags parameter was invalid.

CMC_E_INVALID_PARAMETER
A function parameter was invalid.

CMC_E_INVALID_UI_ID
The specified user-interface identifier is invalid or no longer valid.

CMC_E_LOGON_FAILURE
The service, user name, or password specified was invalid, so logon cannot be completed.

CMC_E_RECIPIENT_NOT_FOUND
One or more of the specified recipients were not found.

CMC_E_TEXT_TOO_LARGE
The size of the text string passed to the current implementation is too large.

CMC_E_TOO_MANY_FILES
The current implementation cannot support the number of files specified.

CMC_E_TOO_MANY_RECIPIENTS
The current implementation cannot support the number of recipients specified.

CMC_E_UNSUPPORTED_FLAG
The current implementation does not support the flag requested.

CMC_E_USER_CANCEL
The operation was canceled by the user.

CMC_E_USER_NOT_LOGGED_ON
The user was not logged on and the CMC_LOGON_UI_ALLOWED flag was not set.

Remarks

The cmc_send_documents function is primarily useful for calls from a scripting language application,
such as a spreadsheet application using macros, that cannot handle data structures. The
cmc_send_documents function tries to establish a session without a logon dialog box. If this is not
possible, it prompts the user for logon information to establish a session. Before the function returns, it
closes the session.

 Structures and Data Types

The following data structures and simple data types are used by the CMC implementation to pass
information into and out of CMC functions. Wherever possible, you should use these types to maintain
compatibility with different CMC implementations.The structures and data types are listed in
alphabetical order.

 BYTE

BYTE is an unsigned character data type that is binary data.

typedef unsigned char BYTE;

 CMC_attachment

A CMC_attachment structure contains a CMC message attachment.

typedef struct
{
 CMC_string attach_title;
 CMC_object_identifier attach_type;
 CMC_string attach_filename;
 CMC_flags attach_flags;
 CMC_extension FAR *attach_extensions;
} CMC_attachment;

Members

attach_title
Specifies the optional title for the attachment, for example the original filename of the attachment.

attach_type
Object identifier that specifies the attachment type. Two attachment types have been defined for use
by client applications:
CMC_ATT_OID_BINARY

Indicates data in a file is treated as binary data. This attachment type is the default.
CMC_ATT_OID_TEXT

Indicates data in a file is treated as a text string. This attachment type assumes that data exists in
the character set for the session on input and maps to the character set for the session on output,
if possible.

A NULL value for attach_type indicates an attachment of an undefined type.
attach_filename

Specifies the name of the file in which attachment content is located. The location of the file depends
on the CMC implementation, which ensures access by the client application.

attach_flags
Bitmask of flags used to describe attachment options. The following flags can be set:
CMC_ATT_APP_OWNS_FILE

Indicates on output that the client application owns the attachment and is responsible for deleting
it. This flag is ignored on input. If the flag is not set, it indicates on output that the CMC
implementation owns the file and the client application can only read it.

CMC_ATT_LAST_ELEMENT
Identifies the last structure in an array of CMC_attachment structures. The structure with this flag
set must be at the end of the array. If this flag is set to zero for any structure, that structure is not
the last array element.

attach_extensions
Points to the first element in an array of CMC_extension structures, each of which is specific to an
attachment. Attachment extensions exist to support graphic representation of the attachments in a
message when it is displayed. The extensions contain the character positions for the graphic
representations. A pointer value of NULL indicates that no extensions are present.

Remarks

A CMC_message structure, which contains information about a CMC message, contains a pointer to
an array of one or more CMC_attachment structures defining attachments for the message, or is
NULL if there are no attachments. The array elements should have the same order as the attachments
in the message, and the last element in the array should have the CMC_ATT_LAST_ELEMENT flag
set in its attach_flags member.

See Also

CMC_extension structure , CMC_message structure

 CMC_boolean

CMC_boolean is a CMC unsigned integer data type that is a Boolean value.

typedef CMC_uint16 CMC_boolean;

Remarks

The CMC_boolean data type can contain the symbolic constants CMC_TRUE and CMC_FALSE. The
C interface denotes FALSE by using 0 and TRUE by using any other integer. CMC denotes
CMC_FALSE by using 0, in line with C interface usage. However, CMC_TRUE is denoted specifically
bythe integer 1.

 CMC_buffer

CMC_buffer is a CMC data type that points to a memory storage location of an undefined type and
size.

typedef void *CMC_buffer;

 CMC_counted_string

A CMC_counted_string structure is an optional structure supporting character sets that allow
embedded null characters. The structure contains a counted string and explicitly defines the length of
the string.

typedef struct {
 CMC_uint32 length;
 char string[1];
} CMC_counted_string;

Members

length
Indicates the length, in bytes, of the string specified by the string member.

string
Indicates an array of characters that make up the string. CMC does not require the string to be null-
terminated.

Remarks

If a client application uses counted strings instead of null-terminated strings, it must set the
CMC_COUNTED_STRING_TYPE flag in the cmc_logon function's logon_flags parameter when
logging on to a MAPI session through cmc_logon. The data pointed to by a string of type CMC_string
is then assumed to be defined as a CMC_counted_string structure.

To determine the character set of a string, the CMC implementation looks at the information for a
session identified by a CMC_session_id data type. CMC implementations always attempt to map all
strings passed to the client application to the character set for the session. If no session has been
created by a call to cmc_logon, CMC interprets the string by using the implementation's default
character set.

See Also

CMC_string data type

 CMC_enum

CMC_enum is a CMC data type that is an enumerated data value.

typedef CMC_sint32 CMC_enum;

Remarks

A variable of this type contains a value selected from an enumeration.

 CMC_extension

A CMC_extension structure contains a CMC data extension for use by the CMC API functions and
data structures. A CMC data extension adds parameters to functions or members to data structures.

typedef struct {
 CMC_uint32 item_code;
 CMC_uint32 item_data;
 CMC_buffer item_reference;
 CMC_flags extension_flags;
} CMC_extension;

Members

item_code
Contains code that uniquely identifies an extension to a function or data structure. The item_code
member is the mechanism for specifying the extension to be invoked. The client application puts the
extension code in this member before calling CMC functions that use extensions. The possible
extensions are:

CMC_X_COM_ATTACH_CHA
RPOS

CMC_X_COM_CAN_SEND_RE
CIP

CMC_X_COM_CONFIG_DATA CMC_X_COM_PRIORITY
CMC_X_COM_RECIP_ID CMC_X_COM_SAVE_MESSAG

E
CMC_X_COM_SENT_MESSA
GE

CMC_X_COM_SUPPORT_EXT

CMC_X_COM_TIME_RECEIV
ED

CMC_X_MS_ADDRESS_UI

CMC_X_MS_ATTACH_DATA CMC_X_MS_FUNCTION_FLAG
S

CMC_X_MS_MESSAGE_DAT
A

CMC_X_MS_SESSION_FLAGS

These extensions are identified by the extension identifiers CMC_XS_COM and CMC_XS_MS. For
definitions of these extensions, see Data Extensions.

item_data
Contains item data for the extension. Depending on the value of item_code, the item_data member
might contain the length of the item value, the item value itself, or other information about the item.
The specification of the extension describes the interpretation of this member.

item_reference
Contains the item reference for the extension. This value is a pointer to the storage location of the
item value. It is NULL if there is no related item storage. The specification of the extension describes
the interpretation of this member.

extension_flags
Bitmask of extension flags. The following flags can be set:
CMC_EXT_LAST_ELEMENT

Identifies the last structure in an array of CMC_extension structures. The structure with this flag
set must be at the end of the array. If this flag is set to zero for any structure, that structure is not
the last array element.

CMC_EXT_OUTPUT
Indicates for an output extension that the extension structure contains a pointer to
implementation-allocated memory that the client application must release with the cmc_free

function. If this flag is set to zero, the implementation has not allocated memory for the extension
that the application needs to free. This flag is always set to zero for structure extensions.

CMC_EXT_REQUIRED
Indicates an error value is returned if this extension cannot be supported. If this flag is set to zero,
it enables the CMC implementation to provide any level of support, including no support, for the
extension.

Remarks

Extensions are used to add functionality to the CMC API. For example, a client application can
implement the cmc_act_on function to allow saving a partially completed message in the receive
folder (the Inbox) for later updating and sending. To pass the structure defining this partially completed
message to CMC and receive back the resulting message reference, the client application can use the
CMC_X_COM_SAVE_MESSAGE extension.

An extension can be either an input extension or an output extension; that is, it can be passed either as
input from a client application to CMC or as output from CMC to a client application. Whether the
information contained in an extension is input or output is implied by the semantics of the particular
extension in question and by the presence or absence of CMC_EXT_OUTPUT in the extension's
extension_flags member after a call to a CMC function. For input extensions, the client application in
question allocates memory for the extension structure and any other structures associated with the
extension. For output extensions, storage for the extension result, if necessary, is allocated by a CMC
function.

For output extensions, a client application must free storage allocated by CMC with calls to the
cmc_free function. For each CMC_extension structure in the array, the caller must call cmc_free for
the pointer in the item_reference member of the structure.

CMC does not require explicit release of a data extension structure, because CMC releases such
structures along with the structures that contain them. For example, CMC implicitly releases the
message extension array created by the cmc_read function when calling cmc_free for the enclosing
CMC_message structure.

See Also

cmc_act_on function , cmc_free function , CMC_message structure , cmc_read function

 CMC_flags

CMC_flags is a CMC data type that is a bitmask of flags.

typedef CMC_uint32 CMC_flags;

Remarks

A bitmask of this type contains 32 flag bits. The CMC implementation reserves the upper 16 bits for
definition by the CMC specification. Any unused bits among the upper 16 must be clear. The
implementation reserves the lower 16 flag bits for definition by a CMC data extension.

The meanings of these CMC flags depend on the context in which the client application uses them.
CMC reserves all undocumented flags. Unspecified flags should always be set to zero.

 CMC_message

A CMC_message structure contains information about a CMC message.

typedef struct {
 CMC_message_reference *message_reference;
 CMC_string message_type;
 CMC_string subject;
 CMC_time time_sent;
 CMC_string text_note;
 CMC_recipient *recipients;
 CMC_attachment *attachments;
 CMC_flags message_flags;
 CMC_extension *message_extensions;
} CMC_message;

Members

message_reference
Points to the message reference, which is a counted string (that is, a CMC_counted_string
structure). The message reference is a unique identifier for a message within a mailbox.

message_type
Points to a string that identifies the type of the message. Three different string identifiers are
available:
· Object identifiers, which are used for message types identified by object identifiers as defined in

CCITT Recommendation X.208.
· CMC registered values, which are used for message types defined in the CMC specification.
· Bilaterally defined values, which are used for message types that are unregistered. CMC does not

ensure that bilaterally defined values are unique.
For the complete specification of CMC message types, see "Remarks."

subject
Points to a string describing the subject of the message.

time_sent
Contains the CMC_time structure containing the date and time when the client application submits
the message to the CMC implementation.

text_note
Points to the string containing the message text. If the value of this member is NULL, there is no
message text. If the CMC_MSG_TEXT_NOTE_AS_FILE flag is set for the message_flags member,
the message text is in the first attachment to the message. For information on message text format,
see "Remarks."

recipients
Points to the first element in an array of CMC_recipient structures defining the message recipients.

attachments
Points to the first element in an array of CMC_attachment structures defining the attachments to
the message.

message_flags
Bitmask of message flags. The following flags can be set:
CMC_MSG_LAST_ELEMENT

Identifies the last element in an array of CMC_message structures. The structure with this flag
set must be at the end of the array. If this flag is set to zero for any structure, that structure is not
the last array element.

CMC_MSG_READ

Indicates that the message has been read. If this flag is set to zero, the message has not been
read.

CMC_MSG_TEXT_NOTE_AS_FILE
Indicates that the text_note member is ignored and the message text is contained in the file
referred to by the first attachment. If this flag is set to zero, the message text is contained in the
text_note member.

CMC_MSG_UNSENT
Indicates that the client application has not sent the message, for example when the message is
a draft. The sender can create such a message with the CMC_X_COM_SAVE_MESSAGE data
extension. If this flag is set to zero, the client application has sent the message.

message_extensions
Points to the first structure in an array of CMC_extension structures representing the message
extensions.

Remarks

Message types are used to distinguish between various sorts of messages that might require different
processing. For example, the message type might be used by the client application to determine how
to display the message or by CMC to determine how to send the message.

CMC message types possible in the message_type member of a CMC_message structure can have
the following formats and are case-insensitive.

"OID: " + object_identifier
"CMC: " + cmc_registered_value
"BLT: " + string

An object_identifier is a string containing a series of whitespace separated integers. See
CMC_object_identifier for details.

The following is a list of message types

IPM
Interpersonal message. An interpersonal message is a memo-like message containing a recipient
list, an optional subject, an optional text note, and zero or more attachments. The CMC_message
structure is optimized to accommodate a message with the registered value IPM.

IP RN
Read notification for an interpersonal message. A read notification indicates the recipient has
opened a message.

IP NRN
Nonread notification for an interpersonal message. A nonread notification indicates a message has
been removed from the recipient's mailbox without being opened. For instance, the service or user
has discarded the message or it has been automatically forwarded to another recipient.

DR
Delivery report. A delivery report indicates the service was able to deliver a message to its recipient.

NDR
Nondelivery report. A nondelivery report indicates the message service was not able to deliver a
message to its recipient.

Bilaterally defined values are arbitrary strings and are used to identify custom message types used by
the client application.

As the syntax preceding indicates, the OID: type identifier indicates a type identified by an object
identifier, the CMC: type identifier indicates a type identified by a CMC registered value, and the BLT:
type identifier indicates a type identified by a bilaterally defined value. Following are examples of valid
type identifiers:

OID: 1 2 840 113556 3 2 850
CMC: IPM
BLT: my special message type

You can format type identifiers as you choose; the CMC implementation also defines a canonical type
identifier format that allows a client application to easily compare type identifier strings. The CMC
implementation always returns type identifiers in this format, which guarantees the following:

· All tokens are separated with a single space.
· The type identifiers OID:, CMC:, and BLT: are returned in uppercase.

The CMC specification does not define what it will do with type identifier strings that are not in this
format.

The formats of messages with the preceding registered values within a CMC_message structure
depend on the messaging protocols employed by the underlying messaging system. Often, non-IPM
messages take the form of a program-generated message, which follows a memo-like format similar to
an IPM format but serves instead to convey information about a previously sent message.

Note The cmc_registered_value types correspond to X.400 message types; however, non-X.400
messaging systems can also use them. Thus, these message types are meant to apply generically and
not specifically to X.400 services.

Some implementations only support the interpersonal message type (CMC: IPM). Some
implementations might treat messages of types other than IPM as IPM messages or might generate an
error for such messages.

For the text_note member, the format of the message text is a sequence of paragraphs, whether it is
passed in memory or in a file. Each paragraph is terminated with the appropriate line terminator for the
platform: CR (carriage return) for Macintosh, LF (linefeed) for UNIX, and CR/LF for MS-DOS and
Windows. The CMC implementation can word-wrap long lines (paragraphs). There is no guarantee that
paragraph formatting will remain constant when a message is saved and read back. For example, the
cmc_read function can return a long paragraph as a series of shorter paragraphs.

See Also

CMC_attachment structure , CMC_extension structure , CMC_recipient structure , cmc_send
function, CMC_time structure

 CMC_message_reference

A CMC_message_reference structure is a CMC_counted_string structure containing a message
reference, which is the identifier for a message within a message store.

typedef CMC_counted_string CMC_message_reference;

Remarks

The CMC implementation only guarantees the message reference to be valid for the life of the session.
The message reference is specific to the message store; CMC does not guarantee that the reference
has any correspondence to a message identifier used by the underlying messaging system. Only
during the current session can the client application expect the message reference to refer to the same
message.

 CMC_message_summary

A CMC_message_summary structure contains a summary of a message. A message summary
includes the type of the message, a reference to it for later retrieval, the size of the message, and other
information. Message summaries are useful for previewing messages on low-bandwidth networks
without actually retrieving the entire message.

typedef struct {
 CMC_message_reference *message_reference;
 CMC_string message_type;
 CMC_string subject;
 CMC_time time_sent;
 CMC_uint32 byte_length;
 CMC_recipient *originator;
 CMC_flags summary_flags;
 CMC_extension *message_summary_extensions;
} CMC_message_summary;

Members

message_reference
Points to the message reference, a CMC_counted_string structure containing the mailbox identifier
for a message. The message reference is unique within a mailbox.

message_type
Points to a string that identifies the type of the message. See CMC_message for details.

subject
Points to a string containing the subject of the message.

time_sent
Indicates a CMC_time structure containing the date and time when the client application submits the
message to the CMC implementation.

byte_length
Indicates the message size, in bytes. The value should include the size of all the associated features
of the message such as attachments and envelope and heading fields. A client application can
supply an approximate message size, or if the message size is unknown or unavailable, the value
CMC_LENGTH_UNKNOWN.

originator
Points to a CMC_recipient structure indicating the message sender.

summary_flags
Bitmask of message summary flags. The following flags can be set:
CMC_SUM_LAST_ELEMENT

Identifies the last structure in an array of CMC_message_summary structures. The structure
with this flag set must be at the end of the array. If this flag is set to zero for any structure, that
structure is not the last array element.

CMC_SUM_READ
Indicates that the message has been read. If this flag is set to zero, the message has not been
read.

CMC_SUM_UNSENT
Indicates that the client application has not sent the message, for example when the message is
a draft. If this flag is set to zero, the client application has sent the message.

message_summary_extensions
Points to the first structure in an array of CMC_extension structures representing the message-
summary data extensions, if any.

See Also

CMC_extension structure

 CMC_object_identifier

CMC_object_identifier is a data type that is a CMC object identifier string.

typedef CMC_string CMC_object_identifier;

Remarks

An identifier of this type is globally unique. Its syntax must match the format defined in CCITT
Recommendation X.208. This syntax is:

object_identifier ::= object_id_component*
object_id_component ::= integer

Namely, the object identifier is a sequence of whitespace separated integers.

The following is an example of an object identifier:

1 2 840 113556 3 2 850

Note The format of the object identifier string is the same as that used in the OID message type. For
more information on message types, see CMC_message.

See Also

CMC_message structure

 CMC_recipient

A CMC_recipient structure contains information about a messaging user, either a message recipient or
the message sender.

typedef struct {
 CMC_string name;
 CMC_enum name_type;
 CMC_string address;
 CMC_enum role;
 CMC_flags recip_flags;
 CMC_extension *recip_extensions;
} CMC_recipient;

Members

name
Points to a string that identifies the recipient or sender display name. When the CMC
implementation resolves the name to an address, it determines whether it should interpret the name
as the name of an individual first and then as the name of a group if the individual name is not
found, or vice versa, according to the value of the name_type member.

name_type
Enumeration that indicates whether the structure contains information for a message recipient or a
message sender. Possible values are:
CMC_TYPE_GROUP

Indicates the recipient or sender name belongs to a distribution list.
CMC_TYPE_INDIVIDUAL

Indicates the recipient or sender name belongs to an individual messaging user.
CMC_TYPE_UNKNOWN

Indicates an unknown recipient or originator name.
The name_type member is meaningful only if the name member is present. The CMC
implementation sets name_type on output. On input, the name_type information can be used by
the addressing mechanism in the message service to optimize resolution of the name.

address
Points to a recipient or sender address string in a format recognized by the underlying messaging
system. CMC does not define the format of the string. This member therefore accommodates any
string notations supported by the CMC implementation, as configured at installation.

role
Enumeration that indicates the role of the message recipient or sender. Possible values are:
CMC_ROLE_AUTHORIZING_USER

Indicates the user authorizing the message, in cases of messages sent by proxy or in the name of
another user.

CMC_ROLE_BCC
Indicates a blind carbon copy (BCC) recipient.

CMC_ROLE_CC
Indicates a carbon copy (CC) recipient.

CMC_ROLE_ORIGINATOR
Indicates the sender of the message.

CMC_ROLE_TO
Indicates a primary recipient.

recip_flags
Bitmask of recipient flags. The following flags can be set:

CMC_RECIP_IGNORE
Indicates that CMC should ignore the specified recipient. This flag is useful for reusing an
incoming message's recipient list for a reply. If this flag is set to zero, it indicates that the recipient
should not be ignored.

CMC_RECIP_LAST_ELEMENT
Identifies the last structure in an array of CMC_recipient structures. The structure with this flag
set must be at the end of the array. If this flag is set to zero for any structure, that structure is not
the last array element.

CMC_RECIP_LIST_TRUNCATED
Indicates that CMC has not written all recipient or originator structures requested. The client
application uses this flag only for the cmc_look_up function when the complete list of recipients
matching the search name cannot be written. The function only sets this flag in the last structure
in the array of CMC_recipient structures. If the flag is set to zero, cmc_look_up has written a
complete recipient array.

recip_extensions
Points to the first structure in an array of CMC_extension structures that contain the recipient or
sender data extensions, if any.

Remarks

If the underlying messaging system does not support carbon copy recipients, CMC can convert such a
recipient to a primary recipient. Services that cannot support blind carbon-copy recipients should reject
messages containing them. If a user designates the same recipient in more than one role, the client
application should place multiple recipient entries in the recipient list, each differing from the others in
role.

On output, the CMC implementation writes an array of CMC_recipient structures in a specific order.
The message sender's structure should be the first element in the array, followed by the primary,
carbon copy, and blind carbon-copy recipient structures grouped together in that order. If there is an
authorizing user structure, it should be the final element in the array. The CMC implementation does
not require ordering of the CMC_recipient structures on input.

See Also

CMC_extension structure , cmc_look_up function

 CMC_return_code

CMC_return_code is a data type that is a 32-bit value returned by a CMC function.

typedef CMC_uint32 CMC_return_code;

Remarks

A nonzero return value for a CMC function indicates an error and is associated with one of the defined
CMC return values. A return value of zero for a function indicates success. The CMC implementation
reserves values in the low-order 16 bits of the return value for standard CMC-defined error values. The
high-order 16 bits of the return value are reserved for error values that are defined specifically for the
implementation.

CMC client applications can resolve errors within the scope of the CMC implementation. For example,
a client application can resolve errors by prompting the user with a dialog box defined through the CMC
user interface. If the error remains unresolved after the dialog box has closed, CMC sets the
CMC_ERROR_UI_DISPLAYED flag in the return value to indicate that a dialog box regarding the error
has already been displayed.

 CMC_session_id

CMC_session_id is a data type that is a 32-bit CMC session handle.

typedef uint32 CMC_session_id;

Remarks

The context identified by the session handle contains information about the current session, such as
the character set in use and handles for any open sessions with underlying message services. The
cmc_logon function creates the CMC session handle, and the cmc_logoff function invalidates it.

See Also

cmc_logoff function , cmc_logon function

 CMC_string

CMC_string is a CMC data type that is a pointer to a character string.

typedef char *CMC_string;

Remarks

By default, the CMC implementation interprets the string that this data type points to as a null-
terminated array of characters. The chosen character set determines the width of a character and the
corresponding null-terminating character.

If a client application uses counted strings instead of null-terminated strings, it must set the
CMC_COUNTED_STRING_TYPE flag in the logon_flags parameter when logging onto a MAPI
session through cmc_logon. The data pointed to by a string of type CMC_string is then defined as a
CMC_counted_string structure.

To determine the character set of characters in the string, the CMC implementation looks at the
character set in the session attributes, which are chosen by the client application when the call to
cmc_logon is made. CMC always attempts to map all strings passed to the client application to the
character set for the session. If the client application has not called cmc_logon and is using an implicit
session, the CMC implementation interprets input strings by using its default character set.

See Also

CMC_counted_string structure , cmc_logon function

 CMC_time

A CMC_time structure contains a time value in CMC-compatible form for use in a message.

typedef struct{
 CMC_sint8 second;
 CMC_sint8 minute;
 CMC_sint8 hour;
 CMC_sint8 day;
 CMC_sint8 month;
 CMC_sint8 year;
 CMC_sint8 isdst;
 CMC_sint8 unused1;
 CMC_sint16 tmzone;
 CMC_sint16 unused2;
} CMC_time;

Members

second
Indicates seconds; possible values range from 0 through 59.

minute
Indicates minutes; possible values range from 0 through 59.

hour
Indicates hours since midnight; possible values range from 0 through 23.

day
Indicates day of the month; possible values range from 1 through 31.

month
Indicates months since January; possible values range from 0 through 11.

year
Indicates years since 1900.

isdst
Value for daylight saving time. A nonzero value means daylight saving time is in force.

unused1
Reserved. Do not use.

tmzone
Indicates time zone, measured in minutes relative to Greenwich mean time. The value
CMC_NO_TIMEZONE indicates that time zone information is not available.

unused2
Reserved. Do not use.

Remarks

The CMC time implementation is based on the assumption that all time values reflect the appropriate
local time. For example, the time_sent members in the CMC_message and
CMC_message_summary structures reflect the local time of the sender's location.

See Also

CMC_message structure , CMC_message_summary structure

 CMC_ui_id

CMC_ui_id is a data type that is a CMC user interface handle.

typedef CMC_uint32 CMC_ui_id;

Remarks

The CMC implementation uses a data value of this type for passing user interface information to CMC
functions. For example, in a Windows-based operating environment, the parent window handle for the
client application is a data value of this type.

A value of NULL for CMC_ui_id is always valid. The CMC implementation defines a default behavior.
For example, some implementations might treat NULL as a request to use a user interface defined
within the implementation, while other implementations might not have any internally defined interface
at all.

 CMC_X_COM_configuration

A CMC_X_COM_configuration structure contains configuration data written by the
cmc_query_configuration function for the CMC_X_COM_CONFIG_DATA data extension.

typedef struct {
 CMC_uint16 ver_spec;
 CMC_uint16 ver_implem;
 CMC_object_identifier *character_set;
 CMC_enum line_term;
 CMC_string default_service;
 CMC_string default_user;
 CMC_enum req_password;
 CMC_enum req_service;
 CMC_enum req_user;
 CMC_boolean ui_avail;
 CMC_boolean sup_nomkmsgread;
 CMC_boolean sup_counted_str;
} CMC_X_COM_configuration;

Members

ver_spec
Contains a CMC specification version number.

ver_implem
Contains a CMC version number multiplied by 100. For example, version 1.00 is represented as
100.

character_set
Points to a CMC_object_identifier structure.

line_term
Enumeration that indicates the type of line delimiter for the message text in a CMC_message.
Possible values are:
CMC_LINE_TERM_CRLF

Indicates the line delimiter is a carriage return followed by a line feed.
CMC_LINE_TERM_LF

Indicates the line delimiter is a line feed.
CMC_LINE_TERM_CR

Indicates the line delimiter is a carriage return.
default_service

Points to a string identifying the default message service.
default_user

Points to a string identifying the default user name of the user accessing the CMC implementation.
This default can be used when prompting the user for a user name.

req_password
Enumeration that indicates if a password is required to access the service. Possible values are:
CMC_REQUIRED_NO

Indicates no password is required.
CMC_REQUIRED_YES

Indicates a password is required.
CMC_REQUIRED_OPT

Indicates a password is optional.
req_service

Enumeration that indicates if the message service name is required for logon. Possible values are:
CMC_REQUIRED_NO

Indicates no service name is required.
CMC_REQUIRED_YES

Indicates a service name is required.
CMC_REQUIRED_OPT

Indicates a service name is optional.
req_user

Enumeration that indicates if the messaging user name is required for logon. Possible values are:
CMC_REQUIRED_NO

Indicates no user name is required.
CMC_REQUIRED_YES

Indicates a user name is required.
CMC_REQUIRED_OPT

Indicates a user name is optional.
ui_avail

Boolean value that is TRUE if the CMC implementation in use provides a user interface and FALSE
otherwise.

sup_nomkmsgread
Boolean value that indicates whether the cmc_read function supports not marking messages as
read. The value is TRUE if the cmc_read function supports the CMC_DO_NOT_MARK_AS_READ
flag and FALSE otherwise.

sup_counted_str
Boolean value that indicates whether the cmc_logon function supports the use of the
CMC_counted_string type. The value is TRUE if the cmc_logon function supports the
CMC_COUNTED_STRING_TYPE flag and FALSE otherwise.

Remarks

The cmc_query_configuration function writes a value into the buffer pointed to by its reference
parameter. That value is a copy of a particular member of the CMC implementation's
CMC_X_COM_configuration structure, depending on the value the client application passes for the
item parameter. For example, to see whether the CMC implementation defines its own user interface
for logon and error resolution, the client application should use CMC_CONFIG_UI_AVAIL as the value
of item. When cmc_query_configuration returns, the CMC_buffer pointed to by reference will contain
TRUE or FALSE to indicate whether an interface is available. The client application must ensure that
the reference parameter points to a buffer of sufficient size to hold the type of data that the item
parameter specifies.

See Also

cmc_free function , cmc_logon function , CMC_object_identifier data type ,
cmc_query_configuration function , cmc_read function , CMC_X_COM_CONFIG_DATA extension

 CMC_X_COM_support

A CMC_X_COM_support structure contains information about MAPI support for a particular CMC data
extension or extension set, and is used in an array pointed to by the item_reference member of a
CMC_extension structure.

typedef struct {
 CMC_uint32 item_code;
 CMC_flags flags;
} CMC_X_COM_support;

Members

item_code
Contains code for the CMC data extension whose support the client application is querying about.
The client application sets this member during calls to the cmc_logon and
cmc_query_configuration functions. The possible extensions are:

CMC_XS_COM CMC_X_COM_ATTACH_CHAR
POS

CMC_X_COM_CAN_SEND_R
ECIP

CMC_X_COM_CONFIG_DATA

CMC_X_COM_PRIORITY CMC_X_COM_RECIP_ID
CMC_X_COM_SAVE_MESSA
GE

CMC_X_COM_SENT_MESSAG
E

CMC_X_COM_SUPPORT_EX
T

CMC_X_COM_TIME_RECEIVE
D

CMC_XS_MS CMC_X_MS_ADDRESS_UI
CMC_X_MS_ATTACH_DATA CMC_X_MS_FUNCTION_FLAG

S
CMC_X_MS_MESSAGE_DAT
A

CMC_X_MS_SESSION_FLAGS

flags
Bitmask of extension code flags. The following flags can be set:
CMC_X_COM_SUP_EXCLUDE

On input this flag removes the item represented by the value of the item_code member from
consideration when deciding whether the implementation supports an extension set. If this flag is
set on input for the cmc_logon function, the implementation will not attach the item to extension
structures for this session even if other entries request it. If this flag is set on input, then none of
the remaining flags in this list will be set on output.

CMC_X_COM_SUPPORTED
Indicates the CMC implementation supports the item represented by the item_code member. For
whole extension sets (for example, CMC_XS_COM), this flag indicates the CMC implementation
supports all the function and structure extensions in the set.

CMC_X_COM_NOT_SUPPORTED
Indicates the CMC implementation does not support the item represented by the item_code
member. If this flag applies to a whole extension set containing both function and structure
extensions, it indicates the CMC implementation does not support some or all function and
structure extensions in the set. If this flag applies to a structure extension or an extension set
containing structure extensions, it indicates the CMC implementation will not attach the structure
extensions to structures for this session.

CMC_X_COM_DATA_EXT_SUPPORTED

Indicates the CMC implementation supports all requested structure extensions for an extension
set. The client application must request function extensions separately. When the cmc_logon
function returns this flag, the implementation will attach structure extensions to structures for this
session.

CMC_X_COM_FUNC_EXT_SUPPORTED
Indicates the CMC implementation supports all requested function extensions for an extension
set. The client application must request structure extensions separately. Unlike the
CMC_X_COM_SUPPORTED flag, if the cmc_logon function returns this flag, structure
extensions will not be attached to structures for this session and must be requested separately.

See Also

CMC_extension structure ,cmc_logon function , CMC_X_COM_SUPPORT_EXT extension

 CMC_X_MS_ATTACH

CMC_X_MS_ATTACH data structures are used by the CMC_X_MS_ATTACH_DATA and
CMC_X_MS_ATTACH_MESSAGE extensions to support message attachments.

typedef struct {
 CMC_message_reference FAR * message;
 CMC_uint32 id;
 CMC_buffer object;
} CMC_X_MS_ATTACH;

 Data Extensions

The functionality of the CMC data structures and functions can be augmented through the use of CMC
data extensions. Data extensions are used to add additional fields to data structures and additional
parameters to a function.

A standard generic data structure, CMC_extension, specifies the item code, item data, item reference,
and a bitmask of flags. The item code is the name of the extension and is used to identify it. The item
data, depending on the item code, contains either the length of the item value, the item value itself, or
other information about the item. The item reference points to where the extension value is stored or is
NULL if there is no related item storage. The flags are set to zero or to values that describe options for
the extension. To use an extension in a CMC function, a client application sets the item code member
of a CMC_extension structure to a valid name and passes the structure as part of the parameter list.

Extensions that are additional parameters to a function can be either input or output parameters. If the
extension is passed as an input parameter, the calling client application or service provider allocates
memory for the CMC_extension structure and any other structures that are associated with the
extension. If the extension is passed as an output parameter, CMC allocates the storage for the
extension result and the caller frees it by calling the cmc_free function.

The following extensions make up the CMC common extension set, the extensions that are common to
most CMC implementations but are not in the CMC base specification. The extensions are listed in
alphabetical order. Each reference entry describes the purpose of the extension.

 CMC_XS_COM

CMC_XS_COM is a CMC extension identifier used for all extensions in the common extension set, that
is the extensions that are common to most CMC implementations but are not in the CMC base
specification. For a complete list of common extensions, see CMC_X_COM_support.

See Also

cmc_logon function , cmc_query_configuration function , CMC_X_COM_SUPPORT_EXT extension

 CMC_X_COM_ATTACH_CHARPOS

CMC_X_COM_ATTACH_CHARPOS is a CMC extension that supports display of a graphical
representation (usually an icon) of an attachment in the message text. The extension holds the
character position for the representation.

Input Usage

item_data
Zero-based character offset of the attachment within the message text. Note that this offset is a
character offset, not a byte offset (an important distinction when multibyte character sets are in use).

item_reference
NULL.

extension_flags
All flags used with the CMC_extension structure are valid. No further flags are defined.

Output Usage

item_data
Zero-based character offset of the attachment.

item_reference
Unchanged.

extension_flags
Unchanged.

Adds to

The CMC_attachment structure.

Remarks

At logon, CMC passes the CMC_X_COM_ATTACH_CHARPOS item_data member and any flags in a
CMC_X_COM_support structure. Doing so indicates that CMC supports the
CMC_X_COM_ATTACH_CHARPOS extension and that the client application can attach a
CMC_extension containing an item code and a graphic representation to the CMC_attachment
structure during the session.

See Also

CMC_attachment structure , CMC_extension structure , CMC_X_COM_support structure

 CMC_X_COM_CAN_SEND_RECIP

CMC_X_COM_CAN_SEND_RECIP is a CMC extension that checks whether the message service is
ready to send to the specified recipient.

Input Usage

item_data
Zero.

item_reference
NULL. On input to the cmc_look_up function, the recipient_in parameter contains the recipient
about which the message service is being queried. If there is more than one recipient passed in
recipient_in, cmc_look_up only looks at the first recipient.

extension_flags
Indicates all flags used with the CMC_extension structure are valid. No further flags are defined.

Output Usage

item_data
Bitmask of extension flags. The following flags can be set:
CMC_X_COM_DEFER

Indicates the service provider will accept the message but defer it until a transport provider is
ready.

CMC_X_COM_NOT_READY
Indicates no transport provider is available for the specified recipient type.

CMC_X_COM_READY
Indicates the message can be sent immediately.

item_reference
Unchanged.

extension_flags
Unchanged.

Adds to

The cmc_look_up function.

See Also

CMC_extension structure , cmc_look_up function

 CMC_X_COM_CONFIG_DATA

CMC_X_COM_CONFIG_DATA is a CMC extension that obtains all available configuration information.

Input Usage

item_data
Zero.

item_reference
NULL.

extension_flags
Indicates all flags used with the CMC_extension structure are valid. No further flags are defined.

Output Usage

item_data
Unchanged.

item_reference
Points to a CMC_X_COM_configuration structure containing all the information available from the
cmc_query_configuration function.

extension_flags
Bitmask of extension flags. If the call successfully returns a structure, the function sets the
CMC_EXT_OUTPUT flag.

Adds to

The cmc_query_configuration function.

Remarks

The buffer pointed to by the item_reference member should be freed with one call to cmc_free.

See Also

CMC_extension structure , cmc_query_configuration function , CMC_X_COM_configuration
structure

 CMC_X_COM_PRIORITY

CMC_X_COM_PRIORITY is a CMC extension indicating message priority.

Input Usage

item_data
Bitmask of extension flags. The following flags can be set:
CMC_X_COM_LOW

Indicates a low priority for the message.
CMC_X_COM_NORMAL

Indicates a normal priority for the message.
CMC_X_COM_URGENT

Indicates a high priority for the message.
item_reference

NULL.
extension_flags

Indicates all flags used with the CMC_extension structure are valid. No further flags are defined.

Output Usage

item_data
Bitmask of extension flags that describe the urgency of the message. The following flags can be set:
CMC_X_COM_LOW

Indicates a low priority for the message.
CMC_X_COM_NORMAL

Indicates a normal priority for the message.
CMC_X_COM_URGENT

Indicates a high priority for the message.
item_reference

Unchanged.
extension_flags

Unchanged.

Adds to

The CMC_message and CMC_message_summary structures.

Remarks

At logon, the caller passes CMC_X_COM_PRIORITY in the CMC_X_COM_SUPPORT_EXT extension
to indicate that this extension should be attached to the CMC_message and
CMC_message_summary structures during the session.

See Also

CMC_extension structure , CMC_message structure , CMC_message_summary structure ,
CMC_X_COM_SUPPORT_EXT extension.

 CMC_X_COM_RECIP_ID

CMC_X_COM_RECIP_ID is a CMC extension that adds a unique recipient identifier to a
CMC_recipient structure. A recipient identifier is an opaque object that the underlying messaging
system uses to uniquely represent a recipient, and can be thought of as the result of resolving an
address.

Input Usage

item_data
Indicates the length in bytes of the recipient identifier.

item_reference
Points to the recipient identifier.

extension_flags
Indicates all flags used with the CMC_extension structure are valid. No further flags are defined.

Output Usage

item_data
Indicates the length in bytes of the recipient identifier.

item_reference
Points to the recipient identifier.

extension_flags
Unchanged.

Adds to

The CMC_recipient structure.

Remarks

The CMC implementation handles the CMC_X_COM_RECIP_ID extension during recipient name
resolution. The client application can use this to avoid further name resolution during sending. Some
message services allow the client application to reuse the recipient identifier returned by a previous call
to cmc_look_up. The client application can attach it to a recipient structure that the service provider
would otherwise try to resolve.

At logon, the client application passes the item_code member of CMC_X_COM_RECIP_ID in the
CMC_X_COM_SUPPORT_EXT array to request that the CMC implementation should attach recipent
identifiers to CMC_recipient structures during the session.

See Also

CMC_extension structure , CMC_recipient structure , CMC_X_COM_support structure

 CMC_X_COM_SAVE_MESSAGE

CMC_X_COM_SAVE_MESSAGE is a CMC extension that saves a message (that is, a
CMC_message structure) to the receive folder (the Inbox).

Input Usage

item_data
Zero.

item_reference
Points to the CMC_message structure to save to the receive folder. To indicate that an unsent
message has not been sent, the CMC implementation sets the CMC_MSG_UNSENT flag in the
message_flags member of the CMC_message structure. To indicate that the operation to be
performed (save to receive folder) is contained in a CMC_X_COM_SAVE_MESSAGE extension, the
cmc_act_on function's operation parameter must be set to the CMC_ACT_ON_EXTENDED flag.

extension_flags
Indicates all flags used with the CMC_extension structure are valid. No further flags are defined. To
indicate that the CMC implementation should carry out a save action rather than a deletion, the flag
CMC_EXT_REQUIRED must be set in the extension_flags member.

Output Usage

item_data
Unchanged.

item_reference
Points to the message reference of the message that was saved to the receive folder (the Inbox).
The client application must free the message reference using the cmc_free function.

extension_flags
If cmc_act_on has successfully saved the message and returned the message reference, the
CMC_EXT_OUTPUT flag is set.

Adds to

The cmc_act_on function.

See Also

cmc_act_on function , CMC_extension structure , CMC_message structure ,
CMC_message_reference structure

 CMC_X_COM_SENT_MESSAGE

CMC_X_COM_SENT_MESSAGE is a CMC extension that creates a CMC_message structure
containing information for the message just sent.

Input Usage

item_data
Zero.

item_reference
NULL.

extension_flags
Indicates all flags used with the CMC_extension structure are valid. No further flags are defined.

Output Usage

item_data
Unchanged.

item_reference
Points to a CMC_message structure containing information for the message just sent. The client
application must free this pointer by calling the cmc_free function.

extension_flags
Indicates cmc_send has successfully put a pointer to a CMC_message structure in the
item_reference parameter if the CMC_EXT_OUTPUT flag is set.

Adds to

The cmc_send function.

Remarks

CMC_X_COM_SAVE_MESSAGE is used to obtain information about a message that has just been
sent when some or all of the members of the CMC_message structure are set by the user interface
defined by the CMC implementation rather than by the client application before the cmc_send call.

See Also

CMC_extension structure , cmc_free function , CMC_message structure , cmc_send function

 CMC_X_COM_SUPPORT_EXT

CMC_X_COM_SUPPORT_EXT is a CMC extension that client applications use to query the CMC
implementation about the extensions it supports. If the implementation supports any extensions, it must
support CMC_X_COM_SUPPORT_EXT.

Input Usage

item_data
Indicates the number of items in an array pointed to by the item_reference member.

item_reference
Points to the first element in an array of CMC_X_COM_support structures listing extensions the
client application requests the CMC implementation to support. See CMC_X_COM_support for
details.

extension_flags
Indicates all flags used with CMC are valid. No further flags are defined.

Output Usage

item_data
Unchanged.

item_reference
Points to an array of CMC_X_COM_support structures where the CMC implementation sets the
flags in the flags member to indicate support for the requested extensions. The implementation
does not set these flags if CMC_X_COM_SUP_EXCLUDE was set on input. See
CMC_X_COM_support for details.

extension_flags
Unchanged.

Adds to

The cmc_query_configuration and cmc_logon functions.

Remarks

Client applications can use this extension before establishing a session to get preliminary information
about support before logging on. When a client application uses the extension with cmc_logon, it
indicates which data extensions the client wants added to the data structures for the session.

Note The CMC implementation supports different extensions, based on the service with which the
client application creates a session. Thus client applications should use
CMC_X_COM_SUPPORT_EXT at logon to verify extension support.

See Also

CMC_extension structure , cmc_logon function , cmc_query_configuration function ,
CMC_X_COM_support structure

 CMC_X_COM_TIME_RECEIVED

CMC_X_COM_TIME_RECEIVED is a CMC extension that provides a CMC_time structure containing
the delivery time of a message.

Input Usage

CMC ignores this extension on input.

Output Usage

item_data
Zero.

item_reference
Points to the CMC_time structure containing the time the message was received.

extension_flags
NULL.

Adds to

The CMC_message and CMC_message_summary structures.

Remarks

At logon, the client application passes the CMC_X_COM_TIME_RECEIVED extension in the
CMC_X_COM_SUPPORT_EXT array to indicate that the CMC implementation should attach this
extension to CMC_message and CMC_message_summary structures during the session.

See Also

CMC_extension structure , CMC_message structure , CMC_message_summary structure ,
CMC_time structure , CMC_X_COM_support structure

 CMC_XS_MS

CMC_XS_MS is a CMC extension identifier used for all extensions in the Microsoft extension set. For a
full list of Microsoft extensions, see CMC_X_COM_support.

See Also

cmc_logon function , cmc_query_configuration function , CMC_X_COM_SUPPORT_EXT extension

 CMC_X_MS_ADDRESS_UI

CMC_X_MS_ADDRESS_UI is a CMC extension that adds options to the address-book dialog box.

Input Usage

item_data
Indicates the number of edit boxes in the dialog box.

item_reference
Points to an array of two CMC_string data types. The first string is the caption for the address-book
dialog box. To not provide a label, the client application sets the label string to NULL. The second
string is a label for the recipient well if there is only one recipient well. If there are multiple recipient
wells (for example, TO: and CC:) this string is ignored.

extension_flags
Indicates all flags used with the CMC_extension structure are valid. No further flags are defined.

Output Usage

item_data
Unchanged.

item_reference
Unchanged.

extension_flags
Unchanged.

Adds to

The cmc_look_up function.

See Also

CMC_extension structure , cmc_look_up function

 CMC_X_MS_ATTACH_DATA

CMC_X_MS_ATTACH_DATA is a CMC extension that contains bitmasks of flags used to provide data
on message attachments.

Input Usage

item_data
Bitmask of attachment flags. The following flags can be set:
CMC_X_MS_ATTACH_OLE

Indicates the CMC implementation supports OLE attachments.
CMC_X_MS_ATTACH_OLE_STATIC

Indicates the CMC implementation supports static OLE attachments.
CMC_X_MS_ATTACH_MESSAGE

Indicates the CMC implementation supports attached messages.
item_reference

Object identifier for the attachment encoding. This member can point to a CMC_X_MS_ATTACH
structure, to allow a message reference to be added as an embedded message in the current
message.

extension_flags
Indicates all flags used with the CMC_extension structure are valid. No further flags are defined.

Output Usage

item_data
Bitmask of attachment flags. CMC can set the following flags:
CMC_X_MS_ATTACH_OLE

Indicates the CMC implementation supports OLE attachments.
CMC_X_MS_ATTACH_OLE_STATIC

Indicates the CMC implementation supports static OLE attachments.
CMC_X_MS_ATTACH_MESSAGE

Indicates the CMC implementation supports attached messages.
item_reference

Object identifier for the attachment encoding.
extension_flags

Unchanged.

Adds to

The CMC_attachment structure.

See Also

CMC_attachment structure , CMC_extension structure

 CMC_X_MS_FUNCTION_FLAGS

CMC_X_MS_FUNCTION_FLAGS is a CMC extension that contains a bitmask of flags used for CMC
functions that serve purposes other than session handling.

Input Usage

item_data
Bitmask of extension flags. The following flags can be set:
CMC_X_MS_AB_NO_MODIFY

Disallows changes to the address book through the address-book details dialog box if a user
interface is being used with the cmc_look_up function.

CMC_X_MS_LIST_GUARANTEE_FIFO
Causes the CMC implementation to return messages in date order when the cmc_list function is
called.

CMC_X_MS_READ_BODY_AS_FILE
Causes the CMC implementation to put an attachment containing the message text in the
message body rather than putting the message text in the message body directly when returning
a message with the cmc_read function.

CMC_X_MS_READ_ENV_ONLY
Causes the CMC implementation to return only the message header information when returning a
message with the cmc_read function.

item_reference
NULL.

extension_flags
Indicates all flags used with the CMC_extension structure are valid. No further flags are defined.

Output Usage

extension_flags
Unchanged.

item_data
Unchanged.

item_reference
Unchanged.

Adds to

The cmc_read, cmc_look_up, and cmc_list functions.

See Also

CMC_extension structure , cmc_list function , cmc_look_up function , cmc_read function

 CMC_X_MS_MESSAGE_DATA

CMC_X_MS_MESSAGE_DATA is a CMC extension that contains a bitmask of flags used to provide
extra data about messages.

Input Usage

item_data
Bitmask of extension flags. The following flag can be set:
CMC_X_MS_MSG_RECEIPT_REQ

Indicates the message sender requests notification of message receipt.
item_reference

Points to a string containing the conversation thread.
extension_flags

Indicates all flags used with the CMC_extension structure are valid. No further flags are defined.

Output Usage

item_data
Bitmask of extension flags. The following flag can be set:
CMC_X_MS_MSG_RECEIPT_REQ

Indicates the message sender requests notification of message receipt.
item_reference

Unchanged.
extension_flags

Unchanged.

Adds to

The CMC_message structure.

See Also

CMC_extension structure , CMC_message structure

 CMC_X_MS_SESSION_FLAGS

CMC_X_MS_SESSION_FLAGS is a CMC extension that contains a bitmask of flags used to provide
information when logging on and off a session.

Input Usage

item_data
Bitmask of logon and logoff flags. The following flags can be set for use with the cmc_logon
function:
CMC_X_MS_NEW_SESSION

Indicates that the message sender requests a new session instead of requesting use of a shared
session.

CMC_X_MS_FORCE_DOWNLOAD
Indicates that the CMC implementation should attempt to download all new messages before the
cmc_logon function returns. If this flag is not set, downloading might take place in the
background after cmc_logon returns.

The following flags can be used with the cmc_logoff function:
CMC_X_LOGOFF_SHARED

Indicates the CMC implementation should close all shared sessions.
item_reference

NULL.
extension_flags

Indicates all flags used with the CMC_extension structure are valid. No further flags are defined.

Output Usage

item_data
Unchanged.

item_reference
Unchanged.

extension_flags
Unchanged.

Adds to

The cmc_logon, cmc_look_up, and cmc_send functions.

See Also

CMC_extension structure , cmc_list function , cmc_logon function , cmc_look_up function ,
cmc_send function

 Simple MAPI

Simple MAPI is a set of functions and related data structures you can use to add messaging
functionality to C, C++, or Visual Basic Windows applications. The Simple MAPI functions are available
in C and C++ and Visual Basic versions.

The following table provides an overview of the Simple MAPI functions.

Simple MAPI
function

Description

MAPIAddress Addresses a message.
MAPIDeleteMail Deletes a message.
MAPIDetails Displays a recipient-details dialog box.
MAPIFindNext Returns the identifier of the first or next

message of a specified type.
MAPIFreeBuffer Frees memory allocated by the messaging

system.
MAPILogoff Ends a session with the messaging system.
MAPILogon Establishes a messaging session.
MAPIReadMail Reads a message.
MAPIResolveNa
me

Displays a dialog box to resolve an
ambiguous recipient name.

MAPISaveMail Saves a message.
MAPISendDocu
ments

Sends a standard message using a dialog
box.

MAPISendMail Sends a message, allowing greater flexibility
than MAPISendDocuments in message
generation.

To use the Simple MAPI functions, compile your source code with MAPI.H. MAPI.H contains definitions
for all of the functions, return value constants, and data types. To call a Simple MAPI function, load
MAPI.DLL and use the Win32 GetProcAddress function to acquire an entry point. The function calling
conventions should be FAR PASCAL.

All strings passed to all MAPI calls and returned by all MAPI calls are null-terminated and must be
specified in the current character set or code page of the caller's operating system process.

Functions for C and C++

The following alphabetical entries contain documentation for the Simple MAPI functions for C and C++.

 MAPIAddress

The MAPIAddress function creates or modifies a set of address list entries.

ULONG FAR PASCAL MAPIAddress(
 LHANDLE lhSession,
 ULONG ulUIParam,
 LPTSTR lpszCaption,
 ULONG nEditFields,
 LPTSTR lpszLabels,
 ULONG nRecips,
 lpMapiRecipDesc lpRecips,
 FLAGS flFlags,
 ULONG ulReserved,
 LPULONG lpnNewRecips,
 lpMapiRecipDesc FAR * lppNewRecips
)

Parameters

lhSession
Input parameter specifying either a session handle that represents a Simple MAPI session or zero. If
the value of the lhSession parameter is zero, MAPI logs on the user and creates a session that
exists only for the duration of the call. This temporary session can be an existing shared session or a
new one. If necessary, a logon dialog box is displayed.

ulUIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If the ulUIParam parameter contains a parent window handle, it is
of type HWND (cast to a ULONG). If no dialog box is displayed during the call, ulUIParam is ignored.

lpszCaption
Input parameter specifying either a pointer to the caption for the address list dialog box, NULL, or an
empty string. When the lpszCaption parameter is NULL or points to an empty string, MAPIAddress
uses the default caption "Address Book."

nEditFields
Input parameter specifying the number of edit controls that should be present in the address list. The
values 0 through 4 are valid. If the value of the nEditFields parameter is 4, each recipient class
supported by the underlying messaging system has an edit control. If the value of nEditFields is
zero, only address list browsing is possible. Values of 1, 2, or 3 control the number of edit controls
present.
However, if the number of recipient classes in the array pointed to by the lpRecips parameter is
greater than the value of nEditFields, the number of classes in lpRecips is used to indicate the
number of edit controls instead of the value of nEditFields. If the value of nEditFields is 1 and more
than one kind of entry exists in lpRecips, then the lpszLabels parameter is ignored.
Entries selected for the different controls are differentiated by the ulRecipClass member in the
returned recipient structure.

lpszLabels
Input parameter pointing to a string to be used as an edit control label in the address-list dialog box.
When the nEditFields parameter is set to any value other than 1, the lpszLabels parameter is
ignored and should be NULL or point to an empty string. Also, if the caller requires the default
control label "To," lpszLabels should be NULL or point to an empty string.

nRecips
Input parameter specifying the number of entries in the array indicated by the lpRecips parameter. If
the value of the nRecips parameter is zero, lpRecips is ignored.

lpRecips

Input parameter pointing to an array of MapiRecipDesc structures defining the initial recipient
entries to be used to populate the address-list dialog box. The entries do not need to be grouped by
recipient class; they are differentiated by the values of the ulRecipClass members of the
MapiRecipDesc structures in the array. If the number of different recipient classes is greater than
the value indicated by the nEditFields parameter, the nEditFields and lpszLabels parameters are
ignored.

flFlags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_LOGON_UI

Indicates that a dialog box should be displayed to prompt the user to log on if required. When the
MAPI_LOGON_UI flag is not set, the client application does not display a logon dialog box and
returns an error value if the user is not logged on.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPIAddress uses
an existing shared session.

ulReserved
Reserved; must be zero.

lpnNewRecips
Output parameter pointing to the number of entries in the lppNewRecips recipient output array. If the
value of the lpnNewRecips parameter is zero, the lppNewRecips parameter is ignored.

lppNewRecips
Output parameter pointing to an array of MapiRecipDesc structures containing the final list of
recipients. This array is allocated by MAPIAddress, cannot be NULL, and must be freed using
MAPIFreeBuffer, even if there are no new recipients. Recipients are grouped by recipient class in
the following order: MAPI_TO, MAPI_CC, MAPI_BCC.

Return Values

MAPI_E_FAILURE
One or more unspecified errors occurred while addressing the message. No list of recipient entries
was returned.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. No list of recipient entries was returned.

MAPI_E_INVALID_EDITFIELDS
The value of the nEditFields parameter was outside the range of 0 through 4. No list of recipient
entries was returned.

MAPI_E_INVALID_RECIPS
One or more of the recipients in the address list was not valid. No list of recipient entries was
returned.

MAPI_E_INVALID_SESSION
An invalid session handle was used for the lhSession parameter. No list of recipient entries was
returned.

MAPI_E_LOGIN_FAILURE
There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. No list of recipient entries was returned.

MAPI_E_NOT_SUPPORTED
The operation was not supported by the underlying messaging system.

MAPI_E_USER_ABORT
The user canceled one of the dialog boxes. No list of recipient entries was returned.

SUCCESS_SUCCESS
The call succeeded and a list of recipient entries was returned.

Remarks

The MAPIAddress function displays a standard address-list dialog box to show an initial set of zero or
more recipients. The user can choose new entries to add to the set or make changes to existing
entries. This dialog box cannot be suppressed, but the caller can set dialog box characteristics. The
changed set of recipients is returned to the caller.

Before MAPIAddress writes new or changed recipient information, it must allocate memory for the
structure array that will contain the information. Memory is also allocated as part of preloading the
address book, regardless of whether new or changed recipient data is written. Client applications must
call the MAPIFreeBuffer function to free this memory after MAPIAddress returns. If any error occurs,
no memory was allocated and clients do not need to call MAPIFreeBuffer.

See Also

MAPIFreeBuffer function , MAPILogon function , MapiRecipDesc structure

 MAPIDeleteMail

The MAPIDeleteMail function deletes a message.

ULONG FAR PASCAL MAPIDeleteMail(
 LHANDLE lhSession,
 ULONG ulUIParam,
 LPTSTR lpszMessageID,
 FLAGS flFlags,
 ULONG ulReserved
)

Parameters

lhSession
Input parameter specifying a session handle that represents a valid Simple MAPI session. The value
of the lhSession parameter must represent a valid session; it cannot be zero.

ulUIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If the ulUIParam parameter contains a parent window handle, it is
of type HWND (cast to a ULONG). If no dialog box is displayed during the call, ulUIParam is ignored.

lpszMessageID
Input parameter specifying the identifier for the message to be deleted. This identifier is messaging
system-specific and will be invalid when MAPIDeleteMail successfully returns.

flFlags
Reserved; must be zero.

ulReserved
Reserved; must be zero.

Return Values

MAPI_E_FAILURE
One or more unspecified errors occurred while deleting the message. No message was deleted.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. No message was deleted.

MAPI_E_INVALID_MESSAGE
An invalid message identifier was passed in the lpszMessageID parameter. No message was
deleted.

MAPI_E_INVALID_SESSION
An invalid session handle was passed in the lhSession parameter. No message was deleted.

SUCCESS_SUCCESS
The call succeeded and the message was deleted.

Remarks

To find the message to be deleted, call the MAPIFindNext function before calling the MAPIDeleteMail
function. Because message identifiers are opaque, messaging system-specific, and can be invalidated
at any time, MAPIDeleteMail considers a message identifier to be valid only for the current session.
MAPIDeleteMail handles invalid message identifiers by returning the MAPI_E_INVALID_MESSAGE
value.

See Also

MAPIFindNext function , MAPILogon function , MAPISaveMail function

 MAPIDetails

The MAPIDetails function displays a dialog box containing the details of a selected address list entry.

ULONG FAR PASCAL MAPIDetails(
 LHANDLE lhSession,
 ULONG ulUIParam,
 lpMapiRecipDesc lpRecip,
 FLAGS flFlags,
 ULONG ulReserved
)

Parameters

lhSession
Input parameter specifying either a session handle that represents a Simple MAPI session or zero. If
the value of the lhSession parameter is zero, MAPI logs on the user and creates a session that
exists only for the duration of the call. This temporary session can be an existing shared session or a
new one. If additional information is required from the user to successfully complete the logon, a
dialog box is displayed.

ulUIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If the ulUIParam parameter contains a parent window handle, it is
of type HWND (cast to a ULONG). If no dialog box is displayed during the call, ulUIParam is ignored.

lpRecip
Input parameter pointing to the recipient for which details are to be displayed. MAPIDetails ignores
all members of this MapiRecipDesc structure except the ulEIDSize and lpEntryID members. If the
value of ulEIDSize is non-zero, MAPIDetails resolves the recipient entry. If the value of ulEIDSize is
zero, MAPIDetails returns the MAPI_E_AMBIGUOUS_RECIP value.

flFlags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_AB_NOMODIFY

Indicates the caller is requesting that the dialog box be read-only, prohibiting changes.
MAPIDetails might or might not honor the request.

MAPI_LOGON_UI
Indicates that a dialog box should be displayed to prompt the user to log on if required. When the
MAPI_LOGON_UI flag is not set, the client application does not display a logon dialog box and
returns an error value if the user is not logged on.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPIDetails uses an
existing shared session.

ulReserved
Reserved; must be zero.

ReturnValues

MAPI_E_AMBIGUOUS_RECIPIENT
The dialog box could not be displayed because the ulEIDSize member of the structure pointed to by
the lpRecips parameter was zero.

MAPI_E_FAILURE
One or more unspecified errors occurred. No dialog box was displayed.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. No dialog box was displayed.

MAPI_E_INVALID_RECIPS
The recipient specified in the lpRecip parameter was unknown or the recipient had an invalid
ulEIDSize value. No dialog box was displayed.

MAPI_E_LOGIN_FAILURE
There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. No dialog box was displayed.

MAPI_E_NOT_SUPPORTED
The operation was not supported by the underlying messaging system.

MAPI_E_USER_ABORT
The user canceled either the logon dialog box or the details dialog box.

SUCCESS_SUCCESS
The call succeeded and the details dialog box was displayed.

Remarks

The MAPIDetails function presents a dialog box that shows the details of a particular address list entry.
The display name and address are the minimum attributes that are displayed in the dialog box; more
information can be shown, depending on the address book provider. The details dialog box cannot be
suppressed, but the caller can request that it be read-only or modifiable.

Details can only be shown for resolved address list entries. An entry is resolved if the value of the
ulEIDSize member of the MapiRecipDesc structure is nonzero. Entries are resolved when they are
returned by the MAPIAddress or MAPIResolveName functions and as the result being recipients of
read mail.

See Also

MAPIAddress function , MAPILogon function , MapiRecipDesc structure , MAPIResolveName
function

 MAPIFindNext

The MAPIFindNext function retrieves the next (or first) message identifier of a specified type of
incoming message.

ULONG FAR PASCAL MAPIFindNext(
 LHANDLE lhSession,
 ULONG ulUIParam,
 LPTSTR lpszMessageType,
 LPTSTR lpszSeedMessageID,
 FLAGS flFlags,
 ULONG ulReserved,
 LPTSTR lpszMessageID
)

Parameters

lhSession
Input parameter specifying a session handle that represents a Simple MAPI session. The value of
the lhSession parameter must represent a valid session; it cannot be zero.

ulUIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If the ulUIParam parameter contains a parent window handle, it is
of type HWND (cast to a ULONG). If no dialog box is displayed during the call, ulUIParam is ignored.

lpszMessageType
Input parameter pointing to a string identifying the message class to search. To find an interpersonal
message (IPM), specify NULL in the lpszMessageType parameter or have it point to an empty string.
Messaging systems whose only supported message class is IPM can ignore this parameter.

lpszSeedMessageID
Input parameter pointing to a string containing the message identifier seed for the request. If the
lpszSeedMessageID parameter is NULL or points to an empty string, MAPIFindNext retrieves the
first message that matches the type specified in the lpszMessageType parameter.

flFlags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_GUARANTEE_FIFO

Indicates the message identifiers returned should be in the order of time received. MAPIFindNext
calls can take longer if this flag is set. Some implementations cannot honor this request and
return the MAPI_E_NO_SUPPORT value.

MAPI_LONG_MSGID
Indicates that the returned message identifier can be as long as 512 characters. If this flag is set,
the lpszMessageID parameter must be large enough to accomodate 512 characters.
Older versions of MAPI supported smaller message identifiers (64 bytes) and did not include this
flag. MAPIFindNext will succeed without this flag set as long as lpszMessageID is large enough
to hold the message identifier. If lpszMessageID cannot hold the message identifier,
MAPIFindNext will fail.

MAPI_UNREAD_ONLY
Indicates that only unread messages of the specified type should be enumerated. If this flag is not
set, MAPIFindNext can return any message of the specified type.

ulReserved
Reserved; must be zero.

lpszMessageID
Output parameter specifying a pointer to the returned message identifier. The caller is responsible
for allocating the memory. To ensure compatibility, allocate 512 characters and set

MAPI_LONG_MSGID in the flFlags parameter. A smaller buffer is sufficient only if the returned
message identifier is always 64 characters or less.

Return Values

MAPI_E_FAILURE
One or more unspecified errors occurred while matching the message type. The call failed before
message type matching could take place.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. No message was found.

MAPI_E_INVALID_MESSAGE
An invalid message identifier was passed in the lpszSeedMessageID parameter. No message was
found.

MAPI_E_INVALID_SESSION
An invalid session handle was passed in the lhSession parameter. No message was found.

MAPI_E_NO_MESSAGES
A matching message could not be found.

SUCCESS_SUCCESS
The call succeeded and the message identifier was returned.

Remarks

The MAPIFindNext function allows a client application to enumerate messages of a given type. This
function can be called repeatedly to list all messages in the folder. Message identifiers returned from
MAPIFindNext can be used in other Simple MAPI calls to retrieve message contents and delete
messages. This function is for processing incoming messages, not for managing received messages.

MAPIFindNext looks for messages in the folder in which new messages of the specified type are
delivered. MAPIFindNext calls can be made only in the context of a valid Simple MAPI session
established with the MAPILogon function.

When the lpszSeedMessageID parameter is NULL or points to an empty string, MAPIFindNext returns
the message identifier for the first message of the type specified by the lpszMessageType parameter.
When lpszSeedMessageID contains a valid identifier, the function returns the next matching message
of the type specified by lpszMessageType. Repeated calls to MAPIFindNext ultimately result in a
return of the MAPI_E_NO_MESSAGES value, which means the enumeration is complete.

Message type matching is done against message class strings. All message types whose names
match (up to the length specified in lpszMessageType) are returned.

Because message identifiers are messaging system-specific and can be invalidated at any time,
message identifiers are valid only for the current session. If the message identifier passed in
lpszSeedMessageID is invalid, MAPIFindNext returns the MAPI_E_INVALID_MESSAGE value.

See Also

MAPILogon function

 MAPIFreeBuffer (Simple MAPI)

The MAPIFreeBuffer function frees memory allocated by the messaging system.

ULONG FAR PASCAL MAPIFreeBuffer(
 LPVOID pv
)

Parameters

pv
Input parameter specifying a pointer to memory allocated by the messaging system. This pointer is
returned by the MAPIReadMail, MAPIAddress, and MAPIResolveName functions.

Return Values

MAPI_E_FAILURE
One or more unspecified errors occurred. The memory could not be freed.

SUCCESS_SUCCESS
The call succeeded and the memory was freed.

See Also

MAPILogoff function

 MAPILogoff

The MAPILogoff function ends a session with the messaging system.

ULONG FAR PASCAL MAPILogoff (
 LHANDLE lhSession,
 ULONG ulUIParam,
 FLAGS flFlags,
 ULONG ulReserved
)

Parameters

lhSession
Input parameter specifying a handle for the Simple MAPI session to be terminated. Session handles
are returned by the MAPILogon function and invalidated by MAPILogoff. The value of the
lhSession parameter must represent a valid session; it cannot be zero.

ulUIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If the ulUIParam parameter contains a parent window handle, it is
of type HWND (cast to a ULONG). If no dialog box is displayed during the call, ulUIParam is
ignored.

flFlags
Reserved; must be zero.

ulReserved
Reserved; must be zero.

Return Values

MAPI_E_FAILURE
The flFlags parameter is invalid or one or more unspecified errors occurred.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. The session was not terminated.

MAPI_E_INVALID_SESSION
An invalid session handle was used for the lhSession parameter. The session was not terminated.

SUCCESS_SUCCESS
The call succeeded and the session was terminated.

See Also

MAPILogon function

 MAPILogon

The MAPILogon function begins a Simple MAPI session, loading the default message store and
address book providers.

ULONG FAR PASCAL MAPILogon(
 ULONG ulUIParam,
 LPTSTR lpszProfileName,
 LPTSTR lpszPassword,
 FLAGS flFlags,
 ULONG ulReserved,
 LPLHANDLE lplhSession
)

Parameters

ulUIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If the ulUIParam parameter contains a parent window handle, it is
of type HWND (cast to a ULONG). If no dialog box is displayed during the call, ulUIParam is ignored.

lpszProfileName
Input parameter pointing to a null-terminated profile name string, limited to 256 characters or less.
This is the profile to use when logging on. If the lpszProfileName parameter is NULL or points to an
empty string, and the flFlags parameter is set to MAPI_LOGON_UI, MAPILogon displays a logon
dialog box with an empty name field.

lpszPassword
Input parameter pointing to a null-terminated credential string, limited to 256 characters or less. If
the messaging system does not require password credentials, or if it requires that the user enter
them, the lpszPassword parameter should be NULL or point to an empty string. When the user must
enter credentials, the flFlags parameter must be set to MAPI_LOGON_UI to allow a logon dialog
box to be displayed.

flFlags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_FORCE_DOWNLOAD

Indicates an attempt should be made to download all of the user's messages before returning. If
the MAPI_FORCE_DOWNLOAD flag is not set, messages can be downloaded in the background
after the function call returns.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPILogon uses an
existing shared session.

MAPI_LOGON_UI
Indicates that a logon dialog box should be displayed to prompt the user for logon information. If
the user needs to provide a password and profile name to enable a successful logon,
MAPI_LOGON_UI must be set.

MAPI_PASSWORD_UI
Indicates that MAPILogon should only prompt for a password and not allow the user to change
the profile name. Either MAPI_PASSWORD_UI or MAPI_LOGON_UI should not be set, since the
intent is to select between two different dialog boxes for logon.

ulReserved
Reserved; must be zero.

lplhSession
Output parameter specifying a Simple MAPI session handle.

Return Values

MAPI_E_FAILURE
One or more unspecified errors occurred during logon. No session handle was returned.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. No session handle was returned.

MAPI_E_LOGIN_FAILURE
There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. No session handle was returned.

MAPI_E_TOO_MANY_SESSIONS
The user had too many sessions open simultaneously. No session handle was returned.

MAPI_E_USER_ABORT
The user canceled the logon dialog box. No session handle was returned.

SUCCESS_SUCCESS
The call succeeded and a Simple MAPI session was established.

Remarks

The MAPILogon function begins a session with the messaging system, returning a handle that can be
used in subsequent MAPI calls to explicitly provide user credentials to the messaging system. To
request the display of a logon dialog box if the credentials presented fail to validate the session, set the
flFlags parameter to MAPI_LOGON_UI.

The client application tests for an existing session by calling MAPILogon with a NULL value for the
lpszProfileName parameter, a NULL value for the lpszPassword parameter and by not setting the
MAPI_LOGON_UI flag in flFlags. If there is an existing session, the call succeeds and returns a valid
LHANDLE for the session. Otherwise, the call fails.

See Also

MAPILogoff function

 MAPIReadMail

The MAPIReadMail function retrieves a message for reading.

ULONG FAR PASCAL MAPIReadMail(
 LHANDLE lhSession,
 ULONG ulUIParam,
 LPTSTR lpszMessageID,
 FLAGS flFlags,
 ULONG ulReserved,
 lpMapiMessage FAR * lppMessage
)

Parameters

lhSession
Input parameter specifying a handle to a Simple MAPI session. The value of the lhSession
parameter must represent a valid session; it cannot be zero.

ulUIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If the ulUIParam parameter contains a parent window handle, it is
of type HWND (cast to a ULONG). If no dialog box is displayed during the call, ulUIParam is ignored.

lpszMessageID
Input parameter pointing to a message identifier string for the message to be read. The string is
allocated by the caller.

flFlags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_BODY_AS_FILE

Indicates MAPIReadMail should write the message text to a temporary file and add it as the first
attachment in the attachment list.

MAPI_ENVELOPE_ONLY
Indicates MAPIReadMail should read the message header only. File attachments are not copied
to temporary files, and neither temporary file names nor message text is written. Setting this flag
enhances performance.

MAPI_PEEK
Indicates MAPIReadMail does not mark the message as read. Marking a message as read
affects its appearance in the user interface and generates a read receipt. If the messaging system
does not support this flag, MAPIReadMail always marks the message as read. If MAPIReadMail
encounters an error, it leaves the message unread.

MAPI_SUPPRESS_ATTACH
Indicates MAPIReadMail should not copy file attachments but should write message text into the
MapiMessage structure. MAPIReadMail ignores this flag if the calling application has set the
MAPI_ENVELOPE_ONLY flag. Setting the MAPI_SUPPRESS_ATTACH flag enhances
performance.

ulReserved
Reserved; must be zero.

lppMessage
Output parameter pointing to the location where the message is written. Messages are written to a
MapiMessage structure which can be freed with a single call to the MAPIFreeBuffer function.
When MAPI_ENVELOPE_ONLY and MAPI_SUPPRESS_ATTACH are not set, attachments are
written to temporary files pointed to by the lpFiles member of the MapiMessage structure. It is the
caller's responsibility to delete these files when they are no longer needed.

Return Values

MAPI_E_ATTACHMENT_WRITE_FAILURE
An attachment could not be written to a temporary file. Check directory permissions.

MAPI_E_DISK_FULL
An attachment could not be written to a temporary file because there was not enough space on the
disk.

MAPI_E_FAILURE
One or more unspecified errors occurred while reading the message.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to read the message.

MAPI_E_INVALID_MESSAGE
An invalid message identifier was passed in the lpszMessageID parameter.

MAPI_E_INVALID_SESSION
An invalid session handle was passed in the lhSession parameter. No message was retrieved.

MAPI_E_TOO_MANY_FILES
There were too many file attachments in the message. The message could not be read.

MAPI_E_TOO_MANY_RECIPIENTS
There were too many recipients of the message. The message could not be read.

SUCCESS_SUCCESS
The call succeeded and the message was read.

Remarks

The MAPIReadMail function returns one message, breaking the message content into the same
parameters and structures used in the MAPISendMail function. MAPIReadMail fills a block of memory
with the MapiMessage structure containing message elements, such as the subject, message class,
delivery time, and the sender. File attachments are saved to temporary files, and the names are
returned to the caller in the message structure. Recipients, attachments, and contents are copied from
the message before MAPIReadMail returns to the caller, so later changes to the files do not affect the
contents of the message.

A flag is provided to specify that only envelope information is to be returned from the call. Another flag
(in the MapiMessage structure) specifies whether the message is marked as sent or unsent.

The caller is responsible for freeing the MapiMessage structure by calling the MAPIFreeBuffer
function and deleting any files associated with attachments included with the message.

Before calling MAPIReadMail, use the MAPIFindNext function to verify that the message to be read is
the one you want to be read. Because message identifiers are system-specific and opaque and can be
invalidated at any time, MAPIReadMail considers a message identifier to be valid only for the current
Simple MAPI session.

See Also

MAPIFreeBuffer function , MAPILogon function , MapiMessage structure

 MAPIResolveName

The MAPIResolveName function transforms a message recipient's name as entered by a user to an
unambiguous address list entry.

ULONG FAR PASCAL MAPIResolveName(
 LHANDLE lhSession,
 ULONG ulUIParam,
 LPTSTR lpszName,
 FLAGS flFlags,
 ULONG ulReserved,
 lpMapiRecipDesc FAR * lppRecip
)

Parameters

lhSession
Input parameter specifying either a handle that represents a Simple MAPI session or zero. If the
value of the lhSession parameter is zero, MAPI logs on the user and creates a session that exists
only for the duration of the call. This temporary session can be an existing shared session or a new
one. If necessary, the logon dialog box is displayed.

ulUIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If the ulUIParam parameter contains a parent window handle, it is
of type HWND (cast to a ULONG). If no dialog box is displayed during the call, ulUIParam is ignored.

lpszName
Input parameter pointing to the name to be resolved.

flFlags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_AB_NOMODIFY

Indicates the caller is requesting that the dialog box be read-only, prohibiting changes.
MAPIResolveName ignores this flag if MAPI_DIALOG is not set.

MAPI_DIALOG
Indicates that a dialog box should be displayed for name resolution. If this flag is not set and the
name cannot be resolved, MAPIResolveName returns the MAPI_E_AMBIGUOUS_RECIPIENT
value.

MAPI_LOGON_UI
Indicates that a dialog box should be displayed to prompt the user to log on if required. When the
MAPI_LOGON_UI flag is not set, the client application does not display a logon dialog box and
returns an error value if the user is not logged on.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPIResolveName
uses an existing shared session.

ulReserved
Reserved; must be zero.

lppRecip
Output parameter pointing to a recipient structure if the resolution results in a single match. The
recipient structure contains the resolved name and related information. Memory for this structure
must be freed using the MAPIFreeBuffer function.

Return Values

MAPI_E_AMBIGUOUS_RECIPIENT

The recipient requested has not been or could not be resolved to a unique address list entry.
MAPI_E_UNKNOWN_RECIPIENT

The recipient could not be resolved to any address. The recipient might not exist or might be
unknown.

MAPI_E_FAILURE
One or more unspecified errors occurred. The name was not resolved.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. The name was not resolved.

MAPI_E_LOGIN_FAILURE
There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. The name was not resolved.

MAPI_E_NOT_SUPPORTED
The operation was not supported by the underlying messaging system.

MAPI_E_USER_ABORT
The user canceled one of the dialog boxes. The name was not resolved.

SUCCESS_SUCCESS
The call succeeded and the name was resolved.

Remarks

The MAPIResolveName function resolves a message recipient's name (as entered by a user) to an
unambiguous address list entry, optionally prompting the user to choose between possible entries, if
necessary. A recipient descriptor structure containing fully resolved information about the entry is
allocated and returned. The caller should free this MAPIRecipDesc structure at some point by calling
the MAPIFreeBuffer function. If MAPIResolveName returns an error value, it is not necessary to
deallocate memory with MAPIFreeBuffer.

See Also

MAPIFreeBuffer function , MAPILogon function , MapiRecipDesc structure

 MAPISaveMail

The MAPISaveMail function saves a message into the message store.

ULONG FAR PASCAL MAPISaveMail(
 LHANDLE lhSession,
 ULONG ulUIParam,
 lpMapiMessage lpMessage,
 FLAGS flFlags,
 ULONG ulReserved,
 LPTSTR lpszMessageID
)

Parameters

lhSession
Input parameter specifying either a handle for a Simple MAPI session or zero. The value of the
lhSession parameter must not be zero if the lpszMessageID parameter contains a valid message
identifier. However, if lpszMessageID does not contain a valid message identifier, and the value of
lhSession is zero, MAPI logs on the user and creates a session that exists only for the duration of
the call. This temporary session can be an existing shared session or a new one. If necessary, the
logon dialog box is displayed.

ulUIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If the ulUIParam parameter contains a parent window handle, it is
of type HWND (cast to a ULONG). If no dialog box is displayed during the call, ulUIParam is ignored.

lpMessage
Input parameter pointing to a MapiMessage structure containing the contents of the message to be
saved. The lpOriginator member is ignored. Applications can either ignore the flFlags member, or if
the message has never been saved, can set the MAPI_SENT and MAPI_UNREAD flags.

flFlags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_LOGON_UI

Indicates that a dialog box should be displayed to prompt the user to logon if required. When the
MAPI_LOGON_UI flag is not set, the client application does not display a logon dialog box and
returns an error value if the user is not logged on. MAPISaveMail ignores this flag if the
lpszMessageID parameter is empty.

MAPI_LONG_MSGID
Indicates that the returned message identifier is expected to be 512 characters. If this flag is set,
the lpszMessageID parameter must be large enough to accomodate 512 characters.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPISaveMail uses
an existing shared session.

MAPI_LONG_MSGID
When the input message is NULL, this flag should be passed into MAPISaveMail, and the
accompanying message identifier buffer should be 512 bytes long.

ulReserved
Reserved; must be zero.

lpszMessageID
Input-output parameter pointing to either the message identifier to be replaced by the save operation
or an empty string, indicating that a new message is to be created. The string must be allocated by
the caller and must be able to hold at least 512 characters if the flFlags parameter is set to

MAPI_LONG_MSGID. If the flFlags parameter is not set to MAPI_LONG_MSGID, the message
identifier string can hold 64 characters.

Return Values

MAPI_E_ATTACHMENT_NOT_FOUND
An attachment could not be located at the specified path. Either the drive letter was invalid, the path
was not found on that drive, or the file was not found in that path.

MAPI_E_BAD_RECIPTYPE
The recipient type in the lpMessage was invalid.

MAPI_E_FAILURE
One or more unspecified errors occurred while saving the message. No message was saved.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to save the message. No message was saved.

MAPI_E_INVALID_MESSAGE
An invalid message identifier was passed in the lpszMessageID parameter; no message was saved.

MAPI_E_INVALID_RECIPS
One or more recipients of the message were invalid or could not be identified.

MAPI_E_INVALID_SESSION
An invalid session handle was passed in the lhSession parameter. No message was saved.

MAPI_E_LOGIN_FAILURE
There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. No message was saved.

MAPI_E_NOT_SUPPORTED
The operation was not supported by the underlying messaging system.

MAPI_E_USER_ABORT
The user canceled one of the dialog boxes. No message was saved.

SUCCESS_SUCCESS
The call succeeded and the message was saved.

Remarks

The MAPISaveMail function saves a message, optionally replacing an existing message. Before
calling MAPISaveMail, use the MAPIFindNext function to verify that the message to be saved is the
one you want saved. The elements of the message identified by the lpszMessageID parameter are
replaced by the elements in the lpMessage parameter. If lpszMessageID is empty, a new message is
created. All replaced messages are saved in their appropriate folders. New messages are saved in the
folder appropriate for incoming messages of that class.

Not all messaging systems support storing messages. If the underlying messaging system does not
support message storage, MAPISaveMail returns the MAPI_E_NOT_SUPPORTED value.

Because message identifiers are system-specific and opaque and can be invalidated at any time,
MAPISaveMail considers a message identifier to be valid only for the current Simple MAPI session.
MAPISaveMail handles invalid message identifiers by returning the MAPI_E_INVALID_MESSAGE
value.

See Also

MAPILogon function , MapiMessage structure

 MAPISendDocuments

The MAPISendDocuments function sends a standard message with one or more attached files and a
cover note. The cover note is a dialog box that allows the user to enter a list of recipients and an
optional message. MAPISendDocuments differs from the MAPISendMail function in that it allows less
flexibility in message generation.

ULONG FAR PASCAL MAPISendDocuments(
 ULONG ulUIParam,
 LPTSTR lpszDelimChar,
 LPTSTR lpszFullPaths,
 LPTSTR lpszFileNames,
 ULONG ulReserved
)

Parameters

ulUIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If the ulUIParam parameter contains a parent window handle, it is
of type HWND (cast to a ULONG). If no dialog box is displayed during the call, ulUIParam is ignored.

lpszDelimChar
Input parameter pointing to a character that the caller uses to delimit the names pointed to by the
lpszFullPaths and lpszFileNames parameters. The caller should select a character for the delimiter
that is not used in operating system filenames.

lpszFullPaths
Input parameter pointing to a string containing a list of full paths (including drive letters) to
attachment files. This list is formed by concatenating correctly formed file paths separated by the
character specified in the lpszDelimChar parameter and followed by a null terminator. An example of
a valid list is:
C:\TMP\TEMP1.DOC;C:\TMP\TEMP2.DOC

The files specified in this parameter are added to the message as file attachments. If this parameter
is NULL or contains an empty string, the Send Note dialog box is displayed with no attached files.

lpszFileNames
Input parameter pointing to a null-terminated list of the original filenames as they should appear in
the message. When multiple names are specified, the list is formed by concatenating the filenames
separated by the character specified in the lpszDelimChar parameter and followed by a null
terminator. An example is:
TEMP3.DOC;TEMP4.DOC

If there is no value for the lpszFileNames parameter or if it is empty, MAPISendDocuments sets the
filenames set to the filename values indicated by the lpszFullPaths parameter.

ulReserved
Reserved; must be zero.

Return Values

MAPI_E_ATTACHMENT_OPEN_FAILURE
One or more files in the lpszFilePaths parameter could not be located. No message was sent.

MAPI_E_ATTACHMENT_WRITE_FAILURE
An attachment could not be written to a temporary file. Check directory permissions.

MAPI_E_FAILURE
One or more unspecified errors occurred while sending the message. It is not known if the message

was sent.
MAPI_E_INSUFFICIENT_MEMORY

There was insufficient memory to proceed.
MAPI_E_LOGIN_FAILURE

There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. No message was sent.

MAPI_E_USER_ABORT
The user canceled one of the dialog boxes. No message was sent.

SUCCESS_SUCCESS
The call succeeded and the message was sent.

Remarks

The MAPISendDocuments function sends a standard message, always displaying a cover note dialog
box so the user can provide recipients and other sending options. This function tries to establish a
session using the messaging system's shared session. If no shared session exists, it prompts the user
for logon information to establish a session. Before MAPISendDocuments returns, it ends the session.

Message attachments can include the active document or all the currently open documents in the client
application that called MAPISendDocuments. This function is used primarily for calls from a macro or
scripting language, often found in applications such as spreadsheet or word-processing programs.

MAPISendDocuments creates as many file attachments as there are paths specified by the
lpszFullPaths parameter in spite of the fact that there can be different numbers of paths and filenames.
The caller is responsible for deleting temporary files created when using MAPISendDocuments.

See Also

MAPISendMail function

 MAPISendMail

The MAPISendMail function sends a message. This function differs from the MAPISendDocuments
function in that it allows greater flexibility in message generation.

ULONG FAR PASCAL MAPISendMail(
 LHANDLE lhSession,
 ULONG ulUIParam,
 lpMapiMessage lpMessage,
 FLAGS flFlags,
 ULONG ulReserved
)

Parameters

lhSession
Input parameter specifying either a handle to a Simple MAPI session or zero. If the value of the
lhSession parameter is zero, MAPI logs on the user and creates a session that exists only for the
duration of the call. This temporary session can be an existing shared session or a new one. If
necessary, the logon dialog box is displayed.

ulUIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If the ulUIParam parameter contains a parent window handle, it is
of type HWND (cast to a ULONG). If no dialog box is displayed during the call, ulUIParam is ignored.

lpMessage
Input parameter pointing to a MapiMessage structure containing the message to be sent. If the
MAPI_DIALOG flag is not set, the nRecipCount and lpRecips members must be valid for
successful message delivery. Client applications can set the flFlags member to
MAPI_RECEIPT_REQUESTED to request a read report. All other members are ignored and unused
pointers should be NULL.

flFlags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_DIALOG

Indicates that a dialog box should be displayed to prompt the user for recipients and other
sending options. When MAPI_DIALOG is not set, at least one recipient must be specified.

MAPI_LOGON_UI
Indicates that a dialog box should be displayed to prompt the user to log on if required. When the
MAPI_LOGON_UI flag is not set, the client application does not display a logon dialog box and
returns an error value if the user is not logged on. MAPISendMail ignores this flag if the
lpszMessageID parameter is empty.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPISendMail uses
an existing shared session.

ulReserved
Reserved; must be zero.

Return Values

MAPI_E_AMBIGUOUS_RECIPIENT
A recipient matched more than one of the recipient descriptor structures and MAPI_DIALOG was not
set. No message was sent.

MAPI_E_ATTACHMENT_NOT_FOUND
The specified attachment was not found. No message was sent.

MAPI_E_ATTACHMENT_OPEN_FAILURE
The specified attachment could not be opened. No message was sent.

MAPI_E_BAD_RECIPTYPE
The type of a recipient was not MAPI_TO, MAPI_CC, or MAPI_BCC. No message was sent.

MAPI_E_FAILURE
One or more unspecified errors occurred. No message was sent.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. No message was sent.

MAPI_E_INVALID_RECIPS
One or more recipients were invalid or did not resolve to any address.

MAPI_E_LOGIN_FAILURE
There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. No message was sent.

MAPI_E_TEXT_TOO_LARGE
The text in the message was too large. No message was sent.

MAPI_E_TOO_MANY_FILES
There were too many file attachments. No message was sent.

MAPI_E_TOO_MANY_RECIPIENTS
There were too many recipients. No message was sent.

MAPI_E_UNKNOWN_RECIPIENT
A recipient did not appear in the address list. No message was sent.

MAPI_E_USER_ABORT
The user canceled one of the dialog boxes. No message was sent.

SUCCESS_SUCCESS
The call succeeded and the message was sent.

Remarks

The MAPISendMail function sends a standard message, with or without any user interaction. The
profile must be configured so that MAPISendMail can open the default service providers without
requiring user interaction. However, if the flFlags parameter is set to MAPI_NEW_SESSION,
disallowing the use of a shared session, and the profile requires a password, MAPI_LOGON_UI must
be set or the function will fail. Client applications can avoid this situation by using an explicit profile
without a password or by using the default profile without a password.

Client applications can provide a full or partial list of recipient names, subject text, file attachments, or
message text. If any information is missing, MAPISendMail can prompt the user for it. If no information
is missing, either the message can be sent as is or the user can be prompted to verify the information,
changing values if necessary.

A successful return from MAPISendMail does not necessarily imply recipient validation. The message
might not have been sent to all recipients. Depending on the transport provider, recipient validation can
be a lengthy process.

A NULL value for the lpszSubject member of the MapiMessage structure pointed to by the lpMessage
parameter indicates that there is no text for the subject of the message. A NULL value for the
lpszNoteText member indicates that there is no message text. Some client applications can truncate
subject lines that are too long or contain carriage returns, line feeds, or form feeds.

Each paragraph should be terminated with a CR (0x0d), an LF (0x0a), or a CRLF pair (0x0d0a).
MAPISendMail wraps lines as appropriate. If the text exceeds system limits, the function returns the
MAPI_E_TEXT_TOO_LARGE value.

The lpszMessageType member of the MapiMessage structure pointed to by lpMessage is used only
by non-IPM applications. Applications that handle IPM messages can set it to NULL or have it point to

an empty string.

The number of attachments per message can be limited in some messaging systems. If the limit is
exceeded, the MAPI_E_TOO_MANY_FILES value is returned. If no files are specified, a pointer value
of NULL should be assigned to the lpFiles member of the structure pointed to by lpMessage. File
attachments are copied to the message before MAPISendMail returns; therefore, later changes to the
files do not affect the contents of the message. The files must be closed when they are copied. Do not
attempt to display attachments outside the range of the message text.

Some messaging systems can limit the number of recipients per message. A pointer value of NULL for
the lpRecips member in the MapiMessage structure pointed to by lpMessage indicates no recipients.
If the client application passes a non-NULL value indicating a number of recipients exceeding the
system limit, MAPISendMail returns the MAPI_E_TOO_MANY_RECIPIENTS value. If the value of the
nRecipCount member in the MapiMessage structure pointed to by lpMessage is 0, the
MAPI_DIALOG flag must be present in the call to MAPISendMail.

Note that the lpRecips member in the MapiMessage structure can include either an entry identifier,
the recipient's name, an address, or a name and address pair. The following table shows how
MAPISendMail handles the variety of information that can be specified:

Information Action
entry identifier No name resolution; the name and address are ignored.
name Name resolved using the Simple MAPI resolution rules.
address No name resolution; address is used for both message

delivery and for displaying the recipient name.
name and
address

No name resolution; name used only for displaying the
recipient name.

Client applications that send messages to custom recipients can avoid name resolution. Such clients
should set the lpszAddress member of the MapiRecipDesc structure pointed to by the lpRecips
member of the MapiMessage structure pointed to by the lpMessage parameter to the custom address.

MAPISendMail does not require an originator-type recipient to send a message.

See Also

MAPILogon function , MapiMessage structure , MapiRecipDesc structure

Structures for C and C++

The following alphabetized entries contain documentation for the Simple MAPI structures for C and C+
+.

 MapiFileDesc (Simple MAPI)

A MapiFileDesc structure contains information about a file containing a message attachment stored as
a temporary file. That file can contain a static OLE object, an embedded OLE object, an embedded
message, and other types of files.

typedef struct {
 ULONG ulReserved;
 ULONG flFlags;
 ULONG nPosition;
 LPTSTR lpszPathName;
 LPTSTR lpszFileName;
 LPVOID lpFileType;
} MapiFileDesc, FAR *lpMapiFileDesc;

Members

ulReserved
Reserved; must be zero.

flFlags
Contains a bitmask of attachment flags. The following flags can be set:
MAPI_OLE

Indicates the attachment is an OLE object. If MAPI_OLE_STATIC is also set, the attachment is a
static OLE object. If MAPI_OLE_STATIC is not set, the attachment is an embedded OLE object.

MAPI_OLE_STATIC
Indicates the attachment is a static OLE object.

If neither flag is set, the attachment is treated as a data file.
nPosition

Contains an integer used to indicate where in the message text to render the attachment.
Attachments replace the character found at a certain position in the message text. That is,
attachments replace the character in the MapiMessage structure field NoteText[nPosition]. A value
of - 1 (0xFFFFFFFF) means the attachment position is not indicated; the client application will have
to provide a way for the user to access the attachment.

lpszPathName
Points to the fully qualified path of the attached file. This path should include the disk drive letter and
directory name.

lpszFileName
Points to the attachment filename seen by the recipient, which may differ from the filename in the
lpszPathName member if temporary files are being used. If the lpszFileName member is empty or
NULL, the filename from lpszPathName is used.

lpFileType
Points to the attachment file type, which can be represented with a MapiFileTagExt structure. A
value of NULL indicates an unknown file type or a file type determined by the operating system.

Remarks

Simple MAPI works with three kinds of embedded attachments:

· Data file attachments
· Editable OLE object file attachments
· Static OLE object file attachments

Data file attachments are simply data files. OLE object file attachments are OLE objects that are
displayed in the message text. If the OLE attachment is editable, the recipient can double-click it and

its source application will be started to handle the edit session. If the OLE attachment is static, the
object cannot be edited. The flag set in the flFlags member of the MapiFileDesc structure determines
the kind of a particular attachment. Embedded messages can be identified by a .MSG extension in the
lpszFileName member.

OLE object files are file representations of OLE object streams. The client application can recreate an
OLE object from the file by calling the OLE function OleLoadFromStream with an OLESTREAM object
that reads the file contents. If an OLE file attachment is included in an outbound message, the OLE
object stream should be written directly to the file used as the attachment.

When using the MapiFileDesc member nPosition, the client application should not place two
attachments in the same location. Client applications might not display file attachments at positions
beyond the end of the message text.

See Also

MapiFileTagExt structure

 MapiFileTagExt (Simple MAPI)

A MapiFileTagExt structure specifies a message attachment's type at its creation and its current form
of encoding so that it can be restored to its original type at its destination.

typedef struct {
 ULONG ulReserved;
 ULONG cbTag;
 LPBYTE lpTag;
 ULONG cbEncoding;
 LPBYTE lpEncoding
} MapiFileTagExt, FAR *lpMapiFileTagExt;

Members

ulReserved
Reserved; must be zero.

cbTag
Indicates the size, in bytes, of the value defined by the lpTag member.

lpTag
Points to an X.400 object identifier indicating the type of the attachment in its original form, for
example "Microsoft Excel worksheet".

cbEncoding
Indicates the size, in bytes, of the value defined by the lpEncoding member.

lpEncoding
Points to an X.400 object identifier indicating the form in which the attachment is currently encoded,
for example MacBinary, UUENCODE, or binary.

Remarks

A MapiFileTagExt structure defines the type of an attached file for purposes such as encoding and
decoding the file, choosing the correct application to launch when opening it, or any use that requires
full information regarding the file type. Client applications can use information in the lpTag and
lpEncoding members of this structure to determine what to do with an attachment.

See Also

PR_ATTACH_TAG property PR_ATTACH_ENCODING property MapiFileDesc structure

 MapiMessage (Simple MAPI)

A MapiMessage structure contains information about a message.

typedef struct {
 ULONG ulReserved;
 LPTSTR lpszSubject;
 LPTSTR lpszNoteText;
 LPTSTR lpszMessageType;
 LPTSTR lpszDateReceived;
 LPTSTR lpszConversationID;
 FLAGS flFlags;
 lpMapiRecipDesc lpOriginator;
 ULONG nRecipCount;
 lpMapiRecipDesc lpRecips;
 ULONG nFileCount;
 lpMapiFileDesc lpFiles;
} MapiMessage, FAR *lpMapiMessage;

Members

ulReserved
Reserved; must be zero.

lpszSubject
Points to the text string describing the message subject, typically limited to 256 characters or less. If
this member is empty or NULL, the user has not entered subject text.

lpszNoteText
Points to a string containing the message text. If this member is empty or NULL, there is no
message text.

lpszMessageType
Points to a string indicating a non-IPM type of message. Client applications can select message
types for their non-IPM messages. Clients that only support IPM messages can ignore the
lpszMessageType member when reading messages and set it to empty or NULL when sending
messages.

lpszDateReceived
Points to a string indicating the date when the message was received. The format is YYYY/MM/DD
HH:MM, using a 24-hour clock.

lpszConversationID
Points to a string identifying the conversation thread to which the message belongs. Some
messaging systems can ignore and not return this member.

flFlags
Contains a bitmask of message status flags. The following flags can be set:
MAPI_RECEIPT_REQUESTED

Indicates a receipt notification is requested. Client applications set this flag when sending a
message.

MAPI_SENT
Indicates the message has been sent.

MAPI_UNREAD
Indicates the message has not been read.

lpOriginator
Points to a MapiRecipDesc structure containing information about the sender of the message.

nRecipCount

Indicates the number of message recipient structures in the array pointed to by the lpRecips
member. A value of zero indicates no recipients are included.

lpRecips
Points to an array of MapiRecipDesc structures, each containing information about a message
recipient.

nFileCount
Indicates the number of structures describing file attachments in the array pointed to by the lpFiles
member. A value of zero indicates no file attachments are included.

lpFiles
Points to an array of MapiFileDesc structures, each containing information about a file attachment.

See Also

MapiFileDesc structure , MapiRecipDesc structure

 MapiRecipDesc (Simple MAPI)

A MapiRecipDesc structure contains information about a message sender or recipient.

typedef struct {
 ULONG ulReserved
 ULONG ulRecipClass;
 LPTSTR lpszName;
 LPTSTR lpszAddress;
 ULONG ulEIDSize;
 LPVOID lpEntryID;
} MapiRecipDesc, FAR *lpMapiRecipDesc;

Members

ulReserved
Reserved; must be zero.

ulRecipClass
Contains a numeric value that indicates the type of recipient. Possible values are:

Val
ue

Constant Meaning

0 MAPI_ORIG Indicates the original sender of the
message.

1 MAPI_TO Indicates a primary message
recipient.

2 MAPI_CC Indicates a recipient of a message
copy.

3 MAPI_BCC Indicates a recipient of a blind copy.

lpszName
Points to the display name of the message recipient or sender.

lpszAddress
Optional pointer to the recipient or sender's address; this address is provider-specific message
delivery data. Generally, the messaging system provides such addresses for inbound messages. For
outbound messages, the lpszAddress member can point to an address entered by the user for a
recipient not in an address book (that is, a custom recipient).
The format of an address pointed to by the lpszAddress member is [address type][e-mail address].
Examples of valid addresses are FAX:206-555-1212 and SMTP:M@X.COM.

ulEIDSize
Indicates the size, in bytes, of the entry identifier pointed to by the lpEntryID member.

lpEntryID
Points to an opaque entry identifier used by a messaging system service provider to identify the
message recipient. Entry identifiers have meaning only for the service provider; client applications
will not be able to decipher them. The messaging system uses this member to return valid entry
identifiers for all recipients or senders listed in the address book.

Functions for Visual Basic

Visual Basic uses a different set of calling and programming conventions than C and C++ use. Different
structure and parameter definitions support the Visual Basic representation of strings and of structures,
which in Visual Basic are called types. The following list describes how programming Simple MAPI
Visual Basic applications differs from programming Simple MAPI C and C++ applications:

· Because the concept of a pointer is foreign to Visual Basic, developers use extra function
parameters instead of the complex pointer structures used in C and C++.

· Because the Visual Basic MAPI functions are declared, it is not necessary to explicitly cast passed
arguments using ByVal.

· An empty string in a string variable is equivalent to a NULL value.
· Arrays must be dynamically declared so that they are redimensioned when the Simple MAPI

function is executed.
· Visual Basic manages memory, eliminating the need for calling the MAPIFreeBuffer function.
· All structures used in the Visual Basic version of Simple MAPI are Visual Basic types rather than C-

language structures.
· All strings used in the Visual Basic version of Simple MAPI are Visual Basic strings rather than C-

language strings.

The Simple MAPI functions for Visual Basic work with Visual Basic 3, Visual Basic 4, and Visual Basic
for Applications. Note that slight differences in the 16-bit and 32-bit Visual Basic runtime DLLs mean
that some Simple MAPI functions have different declarations depending on which runtime is being
used. The 32-bit declarations use explicit Visual Basic array notation. The alternate declarations are
documented with the functions that have them.

 MAPIAddress (VB)

The Visual Basic MAPIAddress function enables users to create or modify a set of recipients.
MAPIAddress generates an address-book dialog box that shows the contents of the recipient set and
allows the user to select new entries or change existing entries.

MAPIAddress(

Session as Long,
UIParam as Long,
Caption as String,
EditFields as Long,
Label as String,
RecipCount as Long,
Recipients() as MapiRecip,
Flags as Long,
Reserved as Long) as Long

Parameters

Session
Input parameter specifying either a session handle that represents a Simple MAPI session or zero. If
the value of the Session parameter is zero, MAPI logs on the user and creates a session that exists
only for the duration of the call. This temporary session can be an existing shared session or a new
one. If necessary, a logon dialog box is displayed.

UIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If no dialog box is displayed during the call, the UIParam
parameter is ignored.

Caption
Input parameter specifying the caption of the address-list dialog box. If this parameter is an empty
string, the default value "Address Book" is used.

EditFields
Input parameter specifying the number of edit controls that should be present in the address list. The
values 0 through 4are valid. If the value of the nEditFields parameter is 4, each recipient class
supported by the underlying messaging system has an edit control. If the value of EditFields is zero,
only address list browsing is possible. Values of 1, 2, or 3 control the number of edit controls
present.
However, if the number of recipient classes in the Recipients parameter is greater than the value of
EditFields, the number of classes in Recipients is used to indicate the number of edit controls
instead of the value of EditFields. If the value of EditFields is 1 and more than one kind of entry
exists in Recipients, then the Labels parameter is ignored.
Entries selected for the different controls are differentiated by the ulRecipClass member in the
returned recipient structure.

Label
Input parameter specifying an edit control label in the address-list dialog box. The Label parameter
is ignored and should be an empty string except when the value of the EditFields parameter is 1. If
you want a default control label "To:", Label should be an empty string.

RecipCount
Input parameter specifying the number of entries in the Recipients parameter. If the value of the
RecipCount parameter is zero, Recipients is ignored.

Recipients
Input parameter specifying the initial array of recipient entries to be used to populate edit controls in
the address-list dialog box. Recipient entries need not be grouped by recipient class. If the value of

the greatest recipient class present is greater than the value of the EditFields parameter, the
EditFields and Label parameters are ignored. This array is redimensioned as necessary to
accommodate the entries made by the user in the address-list dialog box.

Flags
Input parameter containing a bitmask of flags. The following flags can be set:
MAPI_LOGON_UI

Indicates that a dialog box should be displayed to prompt the user to log on if required. When the
MAPI_LOGON_UI flag is not set, the client application does not display a logon dialog box and
returns an error value if the user is not logged on.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPIAddress uses
an existing shared session.

Reserved
Reserved; must be zero.

Return Values

MAPI_E_FAILURE
One or more unspecified errors occurred while building recipient lists or browsing the address book.
No list of recipients was returned.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. No list of recipients was returned.

MAPI_E_INVALID_EDITFIELDS
The value of the nEditFields parameter was outside the range of 0 through 4. No list of recipients
was returned.

MAPI_E_INVALID_RECIPS
One or more of the recipients in the address list was not valid or the Recipients parameter was not a
valid array. No list of recipients was returned.

MAPI_E_INVALID_SESSION
An invalid session handle was used for the lhSession parameter. No list of recipients was returned.

MAPI_E_LOGIN_FAILURE
There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. No list of recipients was returned.

MAPI_E_NOT_SUPPORTED
The operation was not supported by the underlying messaging system. A list of recipients might
have been returned.

MAPI_E_USER_ABORT
The user canceled one of the dialog boxes. No list of recipients was returned.

SUCCESS_SUCCESS
The call succeeded and a list of address entries was returned.

Remarks

The MAPIAddress function makes it possible for users to create or modify a set of address-list entries
using a standard address-list dialog box. The dialog box cannot be suppressed, but function
parameters allow the caller to set characteristics of the dialog box.

The call is made with an initial, and possibly empty, set of recipients. The address-list dialog box shows
the contents of the recipient set; users can choose new entries to add to the set. The final set of
recipients is returned to the caller in the RecipCount and Recipients parameters, destroying their initial
values.

The declaration of this function for the 32-bit Visual Basic runtime is:

MAPIAddress(

Session As Long,
UIParam As Long,
Caption As String,
nEditFields As Long,
Label As String,
nRecipients As Long,
Recips() As MapiRecip,
Flags As Long,
Reserved As Long) As Long

 MAPIDeleteMail (VB)

The Visual Basic MAPIDeleteMail function deletes a message.

MAPIDeleteMail(

Session as Long,
UIParam as Long,
MessageID as String,
Flags as Long,
Reserved as Long) as Long

Parameters

Session
Input parameter specifying a session handle that represents a valid Simple MAPI session. The value
of the Session parameter cannot be zero.

UIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If no dialog box is displayed during the call, the UIParam
parameter is ignored.

MessageID
Input parameter specifying the identifier for the message to be deleted. This string identifier is
messaging system-specific and will be invalid when the MAPIDeleteMail function successfully
returns. Both the MAPIFindNext and MAPISaveMail functions return message identifiers.

Flags
Reserved; must be zero.

Reserved
Reserved; must be zero.

Return Values

MAPI_E_FAILURE
One or more unspecified errors occurred while deleting the message. No message was deleted.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. No message was deleted.

MAPI_E_INVALID_MESSAGE
An invalid message identifier was passed in for the MessageID parameter. No message was
deleted.

MAPI_E_INVALID_SESSION
An invalid session handle was passed in for the Session parameter. No message was deleted.

SUCCESS_SUCCESS
The call succeeded and the message was deleted.

Remarks

To find the message to be deleted, call the MAPIFindNext function before calling MAPIDeleteMail.

The declaration of this function for the 32-bit Visual Basic runtime is:

MAPIDeleteMail(

ByVal Session&,
ByVal UIParam&,
ByVal MsgID$,
ByVal Flags&,

ByVal Reserved&) As Long

 MAPIDetails (VB)

The Visual Basic MAPIDetails function displays a dialog box containing the details of a selected
address-list entry.

MAPIDetails(

Session as Long,
UIParam as Long,
Recipient as MapiRecip,
Flags as Long,
Reserved as Long) as Long

Parameters

Session
Input parameter specifying either a session handle that represents a Simple MAPI session or zero. If
the value of the Session parameter is zero, MAPI logs on the user and creates a session that exists
only for the duration of the call. This temporary session can be an existing shared session or a new
one. If necessary, a logon dialog box is displayed.

UIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If no dialog box is displayed during the call, the UIParam
parameter is ignored.

Recipient
Input parameter specifying a recipient descriptor containing the entry whose details are to be
displayed. MAPIDetails ignores all members of the MapiRecip type except EIDSize and EntryID. If
the value of the EIDSize member is non-zero, MAPIDetails resolves the recipient entry. If the value
of EIDSize is zero, the MAPI_E_AMBIGUOUS_RECIPIENT value is returned.

Flags
Input parameter containing a bitmask of flags. The following flags can be set:
MAPI_AB_NOMODIFY

Indicates the caller is requesting that the dialog box be read-only, prohibiting changes.
MAPIDetails might or might not honor the request.

MAPI_LOGON_UI
Indicates that a dialog box should be displayed to prompt the user to log on if required. When the
MAPI_LOGON_UI flag is not set, the client application does not display a logon dialog box and
returns an error value if the user is not logged on.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPIDetails uses an
existing shared session.

Reserved
Reserved; must be zero.

Return Values

MAPI_E_AMBIGUOUS_RECIPIENT
The recipient requested has not been or could not be resolved to a unique address list entry.

MAPI_E_FAILURE
One or more unspecified errors occurred. No dialog box was displayed.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. No dialog box was displayed.

MAPI_E_INVALID_RECIPS

The recipient specified in the Recipient parameter was unknown. No dialog box was displayed.
MAPI_E_LOGIN_FAILURE

There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. No dialog box was displayed.

MAPI_E_NOT_SUPPORTED
The operation was not supported by the underlying messaging system.

MAPI_E_USER_ABORT
The user canceled either the logon dialog box or the details dialog box.

SUCCESS_SUCCESS
The call succeeded and the details dialog box was displayed.

Remarks

The MAPIDetails function presents a dialog box that shows the details of a particular address list entry.
The display name and address are the minimum attributes that are displayed in the dialog box; more
information can be shown depending on the directory to which the entry belongs. The details dialog
box cannot be suppressed, but the caller can request that it be read-only or modifiable.

Details can only be shown for resolved address list entries. An entry is resolved if the EIDSize member
of the MapiRecip type is nonzero. Entries are resolved when they are returned by the MAPIAddress
or MAPIResolveName functions and as the result of being recipients of read mail.

The declaration of this function for the 32-bit Visual Basic runtime is:

MAPIDetails(

ByVal Session&,
ByVal UIParam&,
Recipient As MapiRecip,
ByVal Flags&,
ByVal Reserved&) As Long

 MAPIFindNext (VB)

The Visual Basic MAPIFindNext function retrieves the next (or first) message identifier of a specified
type of incoming message.

MAPIFindNext(

Session as Long,
UIParam as Long,
MessageType as String,
SeedMessageID as String,
Flags as Long,
Reserved as Long,
MessageID as String) as Long

Parameters

Session
Input parameter specifying a session handle that represents a Simple MAPI session. The value of
the Session parameter must represent a valid session; it cannot be zero.

UIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If no dialog box is displayed during the call, the UIParam
parameter is ignored.

MessageType
Input parameter specifying the type of message to search. To find an interpersonal message (IPM),
use an empty string, "".

SeedMessageID
Input parameter specifying the message identifier seed for the request. If the SeedMessageID
parameter is an empty string, MAPIFindNext retrieves the first message that matches the type
specified in the MessageType parameter.

Flags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_GUARANTEE_FIFO

Indicates the message identifiers returned should be in the order of time received. MAPIFindNext
calls can take longer if this flag is set. Some implementations cannot honor this request and
return the MAPI_E_NO_SUPPORT value.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPIFindNext uses
an existing shared session.

MAPI_UNREAD_ONLY
Indicates that only unread messages of the specified type should be enumerated. When this flag
is not set, MAPIFindNext can return any message of the specified type.

Reserved
Reserved; must be zero.

MessageID
Output parameter specifying the returned message identifier. The MessageID parameter is a
variable-length string allocated by the caller. To ensure compatibility, allocate 512 characters. A
smaller buffer is sufficient only if the returned message identifier is always 64 characters or less.

Return Values

MAPI_E_FAILURE

One or more unspecified errors occurred while matching the message type. The call failed before
message type matching could take place.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. No message was found.

MAPI_E_INVALID_MESSAGE
An invalid message identifier was passed in the SeedMessageID parameter. No message was
found.

MAPI_E_INVALID_SESSION
An invalid session handle was passed in the lhSession parameter. No message was found.

MAPI_E_NO_MESSAGES
A matching message could not be found.

SUCCESS_SUCCESS
The call succeeded and the message identifier was returned.

Remarks

The MAPIFindNext function allows a client application to enumerate messages of a given type. This
function can be called repeatedly to list all messages in the folder. Message identifiers returned from
MAPIFindNext can be used in other Simple MAPI calls to retrieve message contents and delete
messages. This function is for processing incoming messages, not for managing received messages.

When the value of the SeedMessageID parameter is NULL or empty, MAPIFindNext returns the
message identifier for the first message of the type specified by the MessageType parameter. When
SeedMessageID contains a valid identifier, MAPIFindNext returns the next matching message of the
type specified by MessageType. Repeated calls to MAPIFindNext ultimately result in a return of the
MAPI_E_NO_MESSAGES value, which means the enumeration is complete.

Because message identifiers are messaging system-specific and can be invalidated at any time,
message identifiers are valid only for the current session. If the message identifier passed in with
SeedMessageID is invalid, MAPIFindNext returns the MAPI_E_INVALID_MESSAGE value.

Message type matching is done against message class strings. All message types whose names
match, up to the length specified in MessageType, are returned.

The declaration of this function for the 32-bit Visual Basic runtime is:

MAPIFindNext(

ByVal Session&,
ByVal UIParam&,
MsgType$,
SeedMsgID$,
ByVal Flag&,
ByVal Reserved&,
MsgID$) As Long

 MAPILogoff (VB)

The Visual Basic MAPILogoff function ends a session with the messaging system.

MAPILogoff(

Session as Long,
UIParam as Long,
Flags as Long,
Reserved as Long) as Long

Parameters

Session
Input parameter specifying a handle for a Simple MAPI session to be terminated. Session handles
are returned by MAPILogon and invalidated by MAPILogoff. The value of the Session parameter
must represent a valid session; it cannot be zero.

UIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If no dialog box is displayed during the call, the UIParam
parameter is ignored.

Flags
Reserved; must be zero.

Reserved
Reserved; must be zero.

Return Values

MAPI_E_FAILURE
One or more unspecified errors occurred.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. The session was not terminated.

MAPI_E_INVALID_SESSION
An invalid session handle was used for the Session parameter. The session was not terminated.

SUCCESS_SUCCESS
The call succeeded and the session was terminated.

The declaration of this function for the 32-bit Visual Basic runtime is:

MAPILogoff(

ByVal Session&,
ByVal UIParam&,
ByVal Flags&,
ByVal Reserved&) As Long

 MAPILogon (VB)

The Visual Basic MAPILogon function begins a Simple MAPI session, loading the default message
store and address book providers.

MAPILogon(

UIParam ByVal as Long,
User as String,
Password as String,
Flags as Long,
Reserved as Long,
Session as Long) as Long

Parameters

UIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If no dialog box is displayed during the call, the UIParam
parameter is ignored.

User
Input parameter specifying a client account-name string, limited to 256 characters or less. This is the
name to use when logging on. If the User parameter is empty, and the Flags parameter is set to
MAPI_LOGON_UI, MAPILogon displays a logon dialog box with an empty name field.

Password
Input parameter specifying a credential string, limited to 256 characters or less. If the messaging
system does not require password credentials, or if it requires that the user enter them, the
Password parameter should be empty. When the user must enter credentials, the Flags parameter
must be set to MAPI_LOGON_UI to allow a logon dialog box to be displayed.

Flags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_FORCE_DOWNLOAD

Indicates an attempt should be made to download all of the user's messages before returning. If
the MAPI_FORCE_DOWNLOAD flag is not set, messages can be downloaded in the background
after the function call returns.

MAPI_LOGON_UI
Indicates that a logon dialog box should be displayed to prompt the user for logon information. If
the user needs to provide information to enable a successful logon, MAPI_LOGON_UI must be
set.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPILogon uses an
existing shared session.

Reserved
Reserved; must be zero.

Session
Output parameter specifying a Simple MAPI session handle.

Return Values

MAPI_E_FAILURE
One or more unspecified errors occurred during logon. No session handle was returned.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. No session handle was returned.

MAPI_E_LOGIN_FAILURE
There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. No session handle was returned.

MAPI_E_TOO_MANY_SESSIONS
The user had too many sessions open simultaneously. No session handle was returned.

MAPI_E_USER_ABORT
The user canceled the process. No session handle was returned.

SUCCESS_SUCCESS
The call succeeded and a session was established.

Remarks

The MAPILogon function begins a session with the messaging system, returning a handle that can be
used in subsequent MAPI calls to explicitly provide user credentials to the messaging system. To
request the display of a logon dialog box if the credentials presented fail to validate the session, set the
Flags parameter to MAPI_LOGON_UI.

The declaration of this function for the 32-bit Visual Basic runtime is:

MAPILogon(

ByVal UIParam&,
ByVal User$,
ByVal Password$,
ByVal Flags&,
ByVal Reserved&,
Session&) As Long

 MAPIReadMail (VB)

The Visual Basic MAPIReadMail function retrieves a message for reading.

MAPIReadMail(

Session as Long,
UIParam as Long,
MessageID as String,
Flags as Long,
Reserved as Long,
Message as MapiMessage,
Originator as MapiRecip,
Recips() as MapiRecip,
Files() as MapiFile) as Long

Parameters

Session
Input parameter specifying a handle to a Simple MAPI session. The value of the Session parameter
must represent a valid session; it cannot be zero.

UIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If no dialog box is displayed during the call, the UIParam
parameter is ignored.

MessageID
Input parameter specifying the message identifier of the message to be read. The MessageID
parameter is a variable-length string that is obtained from the MAPIFindNext and MAPISaveMail
functions.

Flags
Input parameter containing a bitmask of flags. The following flags can be set:
MAPI_BODY_AS_FILE

Indicates MAPIReadMail should write the message text to a temporary file and add it as the first
attachment in the attachment list.

MAPI_ENVELOPE_ONLY
Indicates MAPIReadMail should read the message header only. File attachments are not copied
to temporary files, and neither temporary file names nor message text are written. Setting this flag
makes MAPIReadMail processing faster.

MAPI_PEEK
Indicates MAPIReadMail does not mark the message as read. Marking a message as read
affects its appearance in the user interface and generates a read receipt. If the messaging system
does not support this flag, MAPIReadMail always marks the message as read. If MAPIReadMail
encounters an error, it leaves the message unread.

MAPI_SUPPRESS_ATTACH
Indicates MAPIReadMail should not copy file attachments but should write message text into the
MapiMessage type. MAPIReadMail ignores this flag if the calling application has set the
MAPI_ENVELOPE_ONLY flag. Setting this flag makes MAPIReadMail processing faster.

Reserved
Reserved; must be zero.

Message
Output parameter specifying a type set by MAPIReadMail to a message containing the message
contents.

Originator

Output parameter specifying the originator of the message.
Recips

Output parameter specifying an array of recipients. This array is redimensioned as necessary to
accommodate the number of recipients chosen by the user.

Files
Output parameter specifying an array of attachment files written when the message is read. When
MAPIReadMail is called, all message attachments are written to temporary files. It is the caller's
responsibility to delete these files when they are no longer needed. When MAPI_ENVELOPE_ONLY
or MAPI_SUPPRESS_ATTACH is set, no temporary files are written and no temporary names are
filled into the file attachment descriptors. This array is redimensioned as necessary to accommodate
the number of files attached by the user.

Return Values

MAPI_E_ATTACHMENT_WRITE_FAILURE
An attachment could not be written to a temporary file. Check directory permissions.

MAPI_E_DISK_FULL
The disk was full.

MAPI_E_FAILURE
One or more unspecified errors occurred while reading the message.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to read the message.

MAPI_E_INVALID_MESSAGE
An invalid message identifier was passed in the MessageID parameter.

MAPI_E_INVALID_SESSION
An invalid session handle was passed in the Session parameter. No message was retrieved.

MAPI_E_TOO_MANY_FILES
There were too many file attachments in the message. The message could not be read.

MAPI_E_TOO_MANY_RECIPIENTS
There were too many recipients of the message. The message could not be read.

SUCCESS_SUCCESS
The call succeeded and the message was read.

Remarks

The MAPIReadMail function returns one message, breaking the message content into the same
parameters and types used in the MAPISendMail function. MAPIReadMail fills a block of memory with
the MapiMessage type containing message elements. File attachments are saved to temporary files,
and the names are returned to the caller in the message type. Recipients, attachments, and contents
are copied from the message before MAPIReadMail returns to the caller, so later changes to the files
do not affect the contents of the message.

A flag is provided to specify that only envelope informationis to be returned from the call. Another flag in
the MapiMessage type specifies whether the message is marked as sent or unsent.

All strings are null-terminated and must be specified in the current character set or code page of the
client application's operating system process. In Microsoft Windows, the character set is ANSI.

The sender, recipients, and file attachments are written into the appropriate parameters of the Visual
Basic call. The Recips and Files parameters should be dynamically allocated arrays of their respective
types.

The declaration of this function for the 32-bit Visual Basic runtime is:

MAPIReadMail(

Session As Long,
UIParam As Long,
MessageID As String,
Flags As Long,
Reserved As Long,
message As MAPIMessage,
Orig As MapiRecip,
RecipsOut() As MapiRecip,
FilesOut() As MapiFile) As Long

 MAPIResolveName (VB)

The Visual Basic MAPIResolveName function transforms a message recipient's name as entered by a
user to an unambiguous address list entry.

MAPIResolveName(

Session as Long,
UIParam as Long,
UserName as String,
Flags as Long,
Reserved as Long,
Recipient as MapiRecip) as Long

Parameters

Session
Input parameter specifying either a session handle that represents a Simple MAPI session or zero. If
the value of the Session parameter is zero, MAPI logs on the user and creates a session that exists
only for the duration of the call. This temporary session can be an existing shared session or a new
one. If necessary, a logon dialog box is displayed.

UIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If no dialog box is displayed during the call, the UIParam
parameter is ignored.

UserName
Input parameter specifying the name to be resolved.

Flags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_AB_NOMODIFY

Indicates the caller is requesting that the dialog box be read-only, prohibiting changes.
MAPIResolveName ignores this flag if MAPI_DIALOG is not set.

MAPI_DIALOG
Indicates that a dialog box should be displayed for name resolution. If this flag is not set and the
name cannot be resolved, MAPIResolveName returns the MAPI_E_AMBIGUOUS_RECIPIENT
value.

MAPI_LOGON_UI
Indicates that a dialog box should be displayed to prompt the user to log on if required. When the
MAPI_LOGON_UI flag is not set, the client application does not display a logon dialog box and
returns an error value if the user is not logged on.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPIResolveName
uses an existing shared session.

Reserved
Reserved; must be zero.

Recipient
Output parameter specifying a recipient-type set returned by MAPIResolveName if the resolution
results in a single match. The type contains the recipient information of the resolved name. The
descriptor can then be used in calls to the MAPISendMail, MAPISaveMail, and MAPIAddress
functions.

Return Values

MAPI_E_AMBIGUOUS_RECIPIENT
The recipient requested has not been or could not be resolved to a unique address list entry.

MAPI_E_FAILURE
One or more unspecified errors occurred. The name was not resolved.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. The name was not resolved.

MAPI_E_LOGIN_FAILURE
There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. The name was not resolved.

MAPI_E_NOT_SUPPORTED
The operation was not supported by the underlying messaging system.

MAPI_E_USER_ABORT
The user canceled the resolution. The name was not resolved.

SUCCESS_SUCCESS
The call succeeded and the name was resolved.

Remarks

The MAPIResolveName function resolves a message recipient's name (as entered by a user) to an
unambiguous address list entry, optionally prompting the user to choose between possible entries, if
necessary. A recipient descriptor containing fully resolved information about the entry is allocated and
returned.

The declaration of this function for the 32-bit Visual Basic runtime is:

MAPIResolveName(

ByVal Session&,
ByVal UIParam&,
ByVal UserName$,
ByVal Flags&,
ByVal Reserved&,
Recipient As MapiRecip) As Long

 MAPISaveMail (VB)

The Visual Basic MAPISaveMail function saves a message.

MAPISaveMail(

Session as Long,
UIParam as Long,
Message as MapiMessage,
Recips as MapiRecip,
Files as MapiFile,
Flags as Long,
Reserved ByVal as Long,
MessageID as String) as Long

Parameters

Session
Input parameter specifying either a session handle that represents a Simple MAPI session or zero. If
the value for the Session parameter is zero, MAPI logs on the user and creates a session that exists
only for the duration of the call. This temporary session can be an existing shared session or a new
one. If necessary, a logon dialog box is displayed.

UIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If no dialog box is displayed during the call, the UIParam
parameter is ignored.

Message
Input parameter specifying the contents of the message to be saved. Client applications can either
ignore the Flags member of the MapiMessage type, or if the message has never been saved, can
set the MAPI_SENT and MAPI_UNREAD flags.

Recips
Input parameter specifying the first element in an array of recipients. When the value of the
RecipCount member in the MapiMessage type is zero, this parameter is ignored. The recipient
string can include either the recipient's name or the recipient's name-address pair. If only a name is
specified, the name is resolved to an address using implementation-defined address-book search
rules. If an address is also specified, a search for the name is not performed. The address is in an
implementation-defined format and is assumed to have been obtained from the implementation
some other way. When the address is specified, the name is used for display to the user and the
address is used for delivery. When the EntryID member for a particular recipient is used, no search
is performed and the display-name and address are ignored. (A name and address are associated
with the EntryID within the messaging system.)

Files
Input parameter specifying the first element in an array of attachment files written when the message
is read. The number of attachments per message can be limited in some systems. If the limit is
exceeded, the MAPI_E_TOO_MANY_FILES value is returned. When the value of the FileCount
member in the MapiMessage type is zero, this parameter is ignored. Attachment files are read and
attached to the message before the call returns. Do not attempt to display attachments outside the
range of the message text.

Flags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_LOGON_UI

Indicates that a dialog box should be displayed to prompt the user to log on if required. When the
MAPI_LOGON_UI flag is not set, the client application does not display a logon dialog box and
returns an error value if the user is not logged on. MAPISaveMail ignores this flag if the

MessageID parameter is empty.
MAPI_LONG_MSGID

Indicates that the returned message identifier is expected to be 512 characters. If this flag is set,
the MessageID parameter must be large enough to accomodate 512 characters.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPISaveMail uses
an existing shared session.

Reserved
Reserved; must be zero.

MessageID
Input parameter specifying a variable-length, caller-allocated string identifier for the message,
returned either by the MAPIFindNext function or a previous call to MAPISaveMail, or a null string. If
the MessageID parameter contains a valid message identifier, the message is overwritten. If
MessageID contains a null string, a new message is created.

Return Values

MAPI_E_FAILURE
One or more unspecified errors occurred while saving the message. No message was saved.

MAPI_E_BAD_RECIPTYPE
The type of a recipient was not MAPI_TO, MAPI_CC, or MAPI_BCC. No message was sent.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to save the message. No message was saved.

MAPI_E_INVALID_MESSAGE
An invalid message identifier was passed in the MessageID parameter. No message was saved.

MAPI_E_INVALID_SESSION
An invalid session handle was passed in the Session parameter. No message was saved.

MAPI_E_LOGIN_FAILURE
There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. No message was saved.

MAPI_E_NOT_SUPPORTED
The operation was not supported by the underlying messaging system.

MAPI_E_USER_ABORT
The user canceled the process. No message was saved.

SUCCESS_SUCCESS
The call succeeded and the message was saved.

Remarks

To replace an existing message, the caller first calls the MAPIFindNext function to locate the message
to be replaced and then calls the MAPISaveMail function with the MessageID parameter set with a
valid message identifier. The elements of the message identified by MessageID are replaced by the
elements in the MapiMessage type pointed to by the Message parameter.

To create a new message, the caller passes an empty string for MessageID. New messages are saved
in the folder appropriate for incoming messages of that class. The new message identifier is returned in
MessageID on completion.

The MessageID parameter must be a variable-length string. The elements of the message identified by
MessageID are replaced by the elements in the Message parameter. If MessageID is empty, a new
message is created.

MAPISaveMail takes the recipients and file attachments from the Recips and Files parameters, which

should each be the first element of dynamically allocated arrays of their respective types. These arrays
are not redimensioned.

The declaration of this function for the 32-bit Visual Basic runtime is:

MAPISaveMail(

ByVal Session&,
ByVal UIParam&,
message As MAPIMessage,
Recipient() As MapiRecip,
File() As MapiFile,
ByVal Flags&,
ByVal Reserved&,
MsgID$) As Long

 MAPISendDocuments (VB)

The Visual Basic MAPISendDocuments function sends a standard message with one or more
attached files and a cover note. The cover note is a dialog box that allows the user to enter a list of
recipients and an optional message.

MAPISendDocuments(

UIParam as Long,
DelimChar as String,
FullPaths as String,
FileNames as String,
Reserved as Long) as Long

Parameters

UIParam
Input parameter specifying either a parent window handle or zero, indicating that if a dialog box is
displayed, it is application modal. If no dialog box is displayed during the call, the UIParam
parameter is ignored.

DelimChar
Input parameter specifying a string containing the character used to delimit the names in the
FullPaths and FileNames parameters. This character should not be used in filenames on your
operating system.

FullPaths
Input parameter specifying a string containing the list of full paths, including drive letters, for the
attached files. The list is formed by concatenating correctly formed file paths separated by the
character specified in the DelimChar parameter. An example of a valid list is:
C:\TMP\TEMP1.DOC;C:\TMP\TEMP2.DOC

The files specified in FullPaths are added to the message as file attachments. If FullPaths contains
an empty string, the Send Note dialog box is displayed with no attached files.

FileNames
Input parameter specifying a string containing the list of the original filenames as they should be
displayed in the message. When multiple names are specified, the list is formed by concatenating
the filenames separated by the character specified in the DelimChar parameter. An example is:
MEMO.DOC;EXPENSES.DOC

If there is no value for the FileNames parameter or if it is empty, MAPISendDocuments sets the
filenames set to the filename values indicated by the FullPaths parameter.

Reserved
Reserved; must be zero.

Return Values

MAPI_E_ATTACHMENT_NOT_FOUND
An attachment could not be located in the specified path. Either the drive letter was invalid, the path
was not found on that drive, or the file was not found in that path.

MAPI_E_ATTACHMENT_OPEN_FAILURE
One or more files in the FullPaths parameter could not be located. No message was sent.

MAPI_E_ATTACHMENT_WRITE_FAILURE
An attachment could not be written to a temporary file. Check directory permissions.

MAPI_E_FAILURE
One or more unspecified errors occurred while sending the message. It is not known if the message

was sent.
MAPI_E_INSUFFICIENT_MEMORY

There was insufficient memory to proceed.
MAPI_E_LOGIN_FAILURE

There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. No message was sent.

MAPI_E_USER_ABORT
The user canceled the process. No message was sent.

SUCCESS_SUCCESS
The call succeeded and the message was sent.

Remarks

Calling the MAPISendDocuments function displays a Send Note dialog box, which prompts the user
to send a message with data file attachments. Attachments can include the active document or all the
currently open documents in the Windows-based application that called MAPISendDocuments. This
function is used primarily for calls from a macro or scripting language, often found in applications such
as spreadsheet or word-processing programs.

There is no default identification when MAPISendDocuments is called; a standard logon dialog box
appears. After the user provides a mailbox name and password, the Send Note dialog box appears.

The user's default messaging options are used as the default dialog box values. The caller is
responsible for deleting temporary files created when using MAPISendDocuments.

The declaration of this function for the 32-bit Visual Basic runtime is:

MAPISendDocuments(

ByVal UIParam&,
ByVal DelimStr$,
ByVal FilePaths$,
ByVal FileNames$,
ByVal Reserved&) As Long

 MAPISendMail (VB)

The Visual Basic MAPISendMail function sends a standard message.

MAPISendMail(

Session as Long,.
UIParam as Long,
Message as MapiMessage,
Recips as MapiRecip,
Files as MapiFile,
Flags as Long,
Reserved as Long) as Long

Parameters

Session
Input parameter specifying either a session handle that represents a Simple MAPI session or zero. If
the value of the Session parameter is zero, MAPI logs on the user and creates a session that exists
only for the duration of the call. This temporary session can be an existing shared session or a new
one. If necessary, a logon dialog box is displayed.

UIParam
The parent window handle for the dialog box. A value of zero indicates that any dialog box displayed
is application modal.

Message
Input parameter specifying the message to be sent. An empty string indicates no text. Each
paragraph should be terminated with either a carriage return (0x0d), a line feed (0x0a), or a carriage
return-line feed pair (0x0d0a). The implementation wraps lines as appropriate. Implementations can
place limits on the size of the text. The MAPI_E_TEXT_TOO_LARGE value is returned if this limit is
exceeded. Client applications can set MAPI_RECEIPT_REQUESTED in the Flags member in the
MapiMessage type pointed to by the Message parameter to prompt for a read report.

Recips
Input parameter specifying the first element of an array of recipients. When the the value of the
RecipCount member in the MapiRecip type pointed to by the Message parameter is zero, the
Recips parameter is ignored. The Recips parameter can include either an entry identifier, the
recipient's name, an address, or a name and address pair. Depending on the type and amount of
information passed, MAPISendMail will perform varied levels of name resolution. If an entry
identifier in the EntryID member for a particular recipient is specified, MAPISendMail performs no
lookup and ignores the name and address. If only a name is specified, MAPISendMail resolves the
name to a valid address using name resolution rules defined by Simple MAPI. If only an address is
specified, MAPISendMail uses this address for both message delivery and for displaying the
recipient name; no name resolution occurs. If both a name and address are specified, again
MAPISendMail does not resolve the name. The specified name is used as the display name and not
for resolution.

Files
Input parameter specifying the first element of an array of attachment files written when the
message is read. The number of attachments per message might be limited in some systems. If the
limit is exceeded, the MAPI_E_TOO_MANY_FILES value is returned. When the value of the
FileCount member in the MapiMessage type pointed to by the Message parameter is zero, the
Files parameter is ignored. Attachment files are read and attached to the message before the call
returns. Do not attempt to display attachments outside the range of the message text.

Flags
Input parameter containing a bitmask of option flags. The following flags can be set:
MAPI_DIALOG

Indicates that a dialog box should be displayed to prompt the user for recipients and other
sending options. Set the MAPI_LOGON_UI flag if MAPISendMail should display a dialog box to
prompt the user to log on. When this flag is not set, MAPISendMail does not display a dialog box
and returns a message if the user is not logged on.

MAPI_LOGON_UI
Indicates that a dialog box should be displayed to prompt the user to log on if required. When the
MAPI_LOGON_UI flag is not set, the client application does not display a logon dialog box and
returns an error value if the user is not logged on. MAPISaveMail ignores this flag if the
MessageID parameter is empty.

MAPI_NEW_SESSION
Indicates an attempt should be made to create a new session rather than acquire the
environment's shared session. If the MAPI_NEW_SESSION flag is not set, MAPISendMail uses
an existing shared session.

Reserved
Reserved; must be zero.

Return Values

MAPI_E_AMBIGUOUS_RECIPIENT
A recipient matched more than one of the recipient descriptor structures and MAPI_DIALOG was not
set. No message was sent.

MAPI_E_ATTACHMENT_NOT_FOUND
The specified attachment was not found. No message was sent.

MAPI_E_ATTACHMENT_OPEN_FAILURE
The specified attachment could not be opened. No message was sent.

MAPI_E_FAILURE
One or more unspecified errors occurred. No message was sent.

MAPI_E_INSUFFICIENT_MEMORY
There was insufficient memory to proceed. No message was sent.

MAPI_E_LOGIN_FAILURE
There was no default logon, and the user failed to log on successfully when the logon dialog box
was displayed. No message was sent.

MAPI_E_TEXT_TOO_LARGE
The text in the message was too large. No message was sent.

MAPI_E_TOO_MANY_FILES
There were too many file attachments. No message was sent.

MAPI_E_TOO_MANY_RECIPIENTS
There were too many recipients. No message was sent.

MAPI_E_UNKNOWN_RECIPIENT
A recipient did not appear in the address list. No message was sent.

MAPI_E_USER_ABORT
The user canceled the process. No message was sent.

SUCCESS_SUCCESS
The call succeeded and the message was sent.

Remarks

The MAPISendMail function sends a standard message, with or without any user interaction. If
recipient names, file attachments, or message text is provided, MAPISendMail can send the files or
note without prompting users. If the optional parameters are specified and a dialog box is requested by
use of the MAPI_DIALOG flag, the parameters provide the initial values for the dialog box.

File attachments are copied to the message before MAPISendMail returns; therefore, later changes to

the files do not affect the contents of the message. The files must be closed when they are copied.

MAPISendMail takes the recipients and file attachments from the Recips and Files parameters, which
should each be the first element of dynamically allocated arrays of their respective types. These arrays
are not redimensioned.

All strings must be specified in the current character set or code page of the client application's
operating system process.

The declaration of this function for the 32-bit Visual Basic runtime is:

MAPISendMail(

ByVal Session&,
ByVal UIParam&,
message As MAPIMessage,
Recipient() As MapiRecip,
File() As MapiFile,
ByVal Flags&,
ByVal Reserved&) As Long

Data Types for Visual Basic

Visual Basic uses a different set of calling and programming conventions than C and C++ use. Different
structure and parameter definitions support the Visual Basic representation of strings and of structures,
which in Visual Basic are called types. The following list describes how programming Simple MAPI
Visual Basic applications differs from programming Simple MAPI C and C++ applications:

· In C and C++, structures can contain pointers to other structures. Because the concept of a pointer
is foreign to Visual Basic, extra function parameters are used instead of these complex structures.

· Because the Visual Basic MAPI functions are declared, it is not necessary to explicitly cast passed
arguments using ByVal.

· An empty string in a string variable is equivalent to a NULL value.
· Arrays must be dynamically declared so that they are redimensioned when the Simple MAPI

function is executed.
· Visual Basic manages memory, eliminating the need to call the MAPIFreeBuffer function.
· All structures used in the Visual Basic version of Simple MAPI are Visual Basic types rather than C-

language structures.
· All strings used in the Visual Basic version of Simple MAPI are Visual Basic strings rather than C-

language strings.

The following alphabetized entries contain documentation for the Visual Basic Data Types

 MapiFile (VB)

The Visual Basic MapiFile type contains file attachment information.

Type MapiFile
 Reserved as Long
 Flags as Long
 Position as Long
 PathName as String
 FileName as String
 FileType as String
End Type

Members

Reserved
Reserved; must be zero.

Flags
A bitmask of flags. The following flags can be set:
MAPI_OLE

Indicates the attachment is an OLE object file attachment. If MAPI_OLE_STATIC is also set, the
object is static. If neither flag is set, the attachment is simply a data file.

MAPI_OLE_STATIC
Indicates the attachment is a static OLE object file attachment.

Position
Contains an integer used to determine where the attachment should be placed in the message text.
Attachments replace the character found at a certain position in the message text; in other words,
attachments replace the MapiMessage member NoteText[Position]. Applications cannot place two
attachments in the same location within a message, and attachments cannot be placed beyond the
end of the message text. MAPIReadMail does not return an attachment with the value of Position
equal to -1 unless the MAPI_BODY_AS_FILE flag is set.

PathName
Contains the full path of the attached file. The file should be closed before this call is made.

FileName
Contains the filename seen by the recipient. This name can differ from the filename in the
PathName member if temporary files are being used. If the FileName member is empty, the
filename from PathName is used. If the attachment is an OLE object, FileName contains the class
name of the object, such as "Microsoft Excel Worksheet."

FileType
A reserved descriptor that indicates to the recipient the type of the attached file. An empty string
indicates an unknown or operating system-determined file type. With this release, you must use an
empty string, "", for this parameter.

Remarks

Simple MAPI for Visual Basic supports the following kinds of attachments:

· Data files
· Embedded OLE objects
· Static OLE objects

The Flags member determines the kind of attachment. OLE object files are file representations of OLE
object streams. You can re-create an OLE object from the file by calling the OLE function
OleLoadFromStream with an OLESTREAM object that reads the file contents. If an OLE file

attachment is included in an outbound message, the OLE object stream should be written directly to
the file used as the attachment.

 MapiMessage (VB)

The Visual Basic MapiMessage type contains message information.

Type MapiMessage
 Reserved as Long
 Subject as String
 NoteText as String
 MessageType as String
 DateReceived as String
 ConversiondID as String
 Flags as Long
 Originator as Long
 RecipCount as Long
 FileCount as Long
End Type

Members

Reserved
Reserved; must be zero.

Subject
Contains the subject text, limited to 256 characters or less. Messages saved with the MAPISaveMail
function are not limited to 256 characters. An empty string indicates no subject text.

NoteText
Contains a string containing text in the message. An empty string indicates no text. For inbound
messages, each paragraph is terminated with a carriage return-line feed pair (0x0d0a). For
outbound messages, paragraphs can be delimited with a carriage return, a line feed, or a carriage
return-line feed pair (0x0d, 0x0a, or 0x0d0a).

MessageType
Contains a message type string used by applications other than interpersonal electronic mail. An
empty string indicates an interpersonal message (IPM) type.

DateReceived
Contains a string indicating the date a message is received. The format is YYYY/MM/DD HH:MM;
hours are measured on a 24-hour clock.

ConversationID
Contains a string indicating the conversation thread identifier to which this message belongs.

Flags
Contains a bitmask of flags. The following flags can be set:
MAPI_RECEIPT_REQUESTED

Indicates a receipt notification is requested.
MAPI_SENT

Indicates the message has been sent.
MAPI_UNREAD

Indicates the message has not been read.
Originator

Contains a MapiFile type describing the sender of the message.
RecipCount

Contains a count of the recipient descriptor types. A value of 0 indicates that no recipients are
included.

FileCount
Contains a count of the file attachment descriptor types. A value of 0 indicates that no file

attachments are included.

 MapiRecip (VB)

The Visual Basic MAPIRecip type contains recipient information.

Type MapiRecip
 Reserved as Long
 RecipClass as Long
 Name as String
 Address as String
 EIDSize as Long
 EntryID as String
End Type

Members

Reserved
Reserved; must be zero.

RecipClass
Classifies the recipient of the message. (Messages can be sorted by recipient class.) This member
can also contain information about the originator of an inbound message.

Name
Contains the name of the recipient that is displayed by the messaging system.

Address
Contains provider-specific message delivery data. This can be used by the messaging system to
identify custom recipients who are not in an address list.

EIDSize
Indicates the size, in bytes, of the data in the EntryID member.

EntryID
Contains a string used by the messaging system to uniquely identify the recipient. Unlike the
contents of the Address member, this data is opaque and is not printable. The messaging system
returns valid EntryID members for recipients or senders included in the address list.

Property Identifiers and Types
All MAPI properties are represented by property tags. A property tag is a 32-bit unsigned integer value
that contains the property's identifier in the high order 16 bits and the property's type in the low order 16
bits. Property tags for all of the properties defined by MAPI are included in the MAPITAGS.H header file.

Property identifiers are used to indicate what a property is used for and who is responsible for it. Property
identifiers are divided by MAPI into ranges; where an identifier falls in the range indicates its use and
ownership.

Property types are used to indicate the format of the property's data. MAPI defines all of the valid types.
Clients and service providers creating new properties must use one of these types. All of the property
types are included in the MAPIDEFS.H header file.

List of Property Identifier Ranges
The following table summarizes the different ranges for property identifiers, describing the owner for the
properties in each range.

Identifier range Description
0000 Reserved by MAPI for the special value

PR_NULL.
0001 - 0BFF Message envelope properties defined by MAPI.
0C00 - 0DFF Recipient properties defined by MAPI.
0E00 - 0FFF Non-transmittable message properties defined

by MAPI.
1000 - 2FFF Message content properties defined by MAPI.
3000 - 3FFF Properties for objects other than messages and

recipients defined by MAPI.
4000 - 57FF Message envelope properties defined by

transport providers.
5800 - 5FFF Recipient properties defined by transport and

address book providers.
6000 - 65FF Non-transmittable message properties defined

by clients.
6600 - 67FF Non-transmittable properties defined by a

service provider. These properties can be
visible or invisible to users.

6800 - 7BFF Message content properties for custom
message classes defined by creators of those
classes.

7C00 - 7FFF Non-transmittable properties for custom
message classes defined by creators of those
classes.

8000 - FFFE Properties defined by clients and occasionally
service providers that are identified by name
through the IMAPIProp::GetNamesFromIDs
and IMAPIProp::GetIDsFromNames methods.

FFFF Reserved by MAPI for the special error value
PROP_ID_INVALID.

The range between 3000 and 3FFF is reserved for properties that are not related to either messages or
recipients. MAPI divides this range into sub-ranges by types of object; the following table shows this
further breakdown.

Identifier range Type of property
3000 - 33FF Common properties that appear on multiple

objects, such as PR_DISPLAY_NAME and
PR_ENTRYID.

3400 - 35FF Message store properties
3600 - 36FF Folder and address book container properties
3700 - 38FF Attachment properties
3900 - 39FF Address book properties
3A00 - 3BFF Messaging user properties

3C00 - 3CFF Distribution list properties
3D00 - 3DFF Profile properties
3E00 - 3FFF Status object properties

List of Property Types
MAPI supports both single-valued and multivalued properties. With a single-valued property, there is one
value of the base type for the property. With a multivalued property, there are multiple values of the base
type.

The single-valued and multivalued property types that are supported by MAPI are described as follows.
For each single-valued type that has a corresponding multivalued type, the multivalued type appears in
parentheses after the single-valued type.

PT_APPTIME (PT_MV_APPTIME)
Double value that is interpreted as date and time. This property type is the same as the OLE type
VT_DATE and is compatible with the Visual Basic time representation.

PT_BINARY (PT_MV_BINARY)
SBinary structure value, a counted byte array.

PT_BOOLEAN (PT_MV_12)
16-bit Boolean value where zero equals FALSE and non-zero equals TRUE. This property type is the
same as the OLE type VT_BOOL.

PT_CLSID (PT_MV_CLSID)
CLSID structure value. This property type is the same as the OLE type VT_CLSID.

PT_CURRENCY (PT_MV_CURRENCY)
64-bit integer intepreted as decimal. This property type is compatible with the Visual Basic
CURRENCY type and is the same as the OLE type VT_CY.

PT_DOUBLE (PT_MV_DOUBLE)
Double value; 64-bit floating point value. This property type is the same as PT_R8 and the OLE type
VT_R8.

PT_ERROR
SCODE value; 32-bit unsigned integer. This property type is the same as the OLE type VT_ERROR.

PT_FLOAT (PT_MV_FLOAT)
32-bit floating point value. This property type is the same as PT_R4 and the OLE type VT_R4.

PT_I2 (PT_MV_I2)
Signed 16-bit integer. This property type is the same as PT_SHORT and the OLE type VT_I2.

PT_I4 (PT_MV_I4)
Signed or unsigned 32-bit integer. This property type is the same as PT_LONG and the OLE type
VT_I4.

PT_I8 (PT_MV_I8)
Signed or unsigned 64-bit integer that uses the LARGE_INTEGER structure. This property type is the
same as the OLE type VT_I8.

PT_LONG (PT_MV_LONG)
Signed or unsigned 32-bit integer. This property type is the same as PT_I4 and the OLE type VT_I4.

PT_LONGLONG (PT_MV_LONGLONG)
Signed or unsigned 64-bit integer. This property type is the same as PT_I8 and the OLE type VT_I8.

PT_NULL
Indicates no property value. This property type is reserved for use with interface methods and is the
same as the OLE type VT_NULL.

PT_OBJECT
Pointer to an object that implements the IUnknown interface. This property type is similar to several
OLE types such as VT_UNKNOWN.

PT_R4 (PT_MV_R4)
4-byte floating point value. This property type is the same as the OLE type VT_R4.

PT_R8 (PT_MV_R8)

8-byte floating point value. This property type is the same as the OLE type VT_DOUBLE.
PT_SHORT (PT_MV_SHORT)

Signed 16-bit integer. This property type is the same as PT_SHORT and the OLE type VT_I2.
PT_STRING8 (PT_MV_STRING8)

Null-terminated 8-bit character string. This property type is the same as the OLE type VT_LPSTR.
PT_SYSTIME (PT_MV_SYSTIME)

64-bit integer data and time value in the form of a FILETIME structure. This property type is the same
as the OLE type VT_FILETIME.

PT_TSTRING (PT_MV_TSTRING)
Properties with this type have the property type reset to PT_UNICODE when compiling with the
UNICODE symbol and to PT_STRING8 when not compiling with the UNICODE symbol. This property
type is the same as the OLE type VT_LPSTR for resulting PT_STRING8 properties and VT_LPWSTR
for PT_UNICODE properties

PT_UNSPECIFIED
Indicates that the property type is unknown. This property type is reserved for use with interface
methods.

 MAPI Versions of 32-Bit Windows Functions

This appendix documents functions from the Win32 application programming interface (API) useful in
the 16-bit environment used by MAPI client and server developers. Most of the functions documented
in this appendix have counterparts published in the Win32 SDK, and some have limitations relative to
their Win32 SDK counterparts. Such limitations are noted for each function. Where possible, if the
calling implementation requests unsupported functionality, the function returns a value that indicates
failure.

Some of the 32-bit Windows functions documented here have been implemented specifically for MAPI.
The MAPIWIN.H header file includes definitions to aid in developing single-source service providers
that run on both Win32 and Win16 API platforms.

MAPI works only with filenames, and other strings passed to it, in the ANSI character set. Applications
that use filenames in the OEM character set must convert them to ANSI before calling MAPI.

Accessing Win32 Information in the MAPIWIN.H Header File

MAPIWIN.H has three sections. The first section defines how to call an available function by different
methods in Win16. Functions included in the first section manage per-instance global variables for
dynamic-link libraries (DLLs). They work on the assumption that all of a DLL's per-instance global
variables exist in a single block of memory.

The second section specifically defines for the Win16 environment functionality that is generally
available in the Win32 environment. This section consists largely of Win32 file input-output functions
that are not supported under Win16 but are implemented in MAPI.DLL using MS-DOS calls. Some
functions of this type have limitations relative to their Win32 counterparts; the limitations are spelled out
in this Appendix. The third section defines conventions that simplify certain common operations.

The following functions have no meaning on Win16, but Microsoft's MAPI implementation defines
macros to make it easier to write common code:

CloseMutexHandle
CreateMutex
DeleteCriticalSection
EnterCriticalSection
InitializeCriticalSection
LeaveCriticalSection
ReleaseMutex
WaitforSingleObject

Syntax and Limitations for Win32 Functions Useful in MAPI Development

The remainder of this appendix lists Win32 functions useful to MAPI developers that have limits,
adaptations, or differences when used in the MAPI development environment. Where applicable, these
limitations are described. Where there are no limitations specifically defined, only the syntax of a
function is included. For detailed descriptions of the Win32 functions, see the Win32 Programmer's
Reference.

Three limitations apply to most of the Win32 functions that MAPI implements. Error codes returned
from these functions or from GetLastError come from MS-DOS and may not always match the Win32
counterpart. Second, MAPI works only with filenames, and other strings passed to it, in the ANSI
character set. Applications that use filenames in the OEM character set must convert them to ANSI
before calling MAPI. And third, security attributes are ignored.

CloseHandle

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL CloseHandle(
 HANDLE hObject
)

Limitations

This function will close only file handles.

CompareFileTime

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

LONG CompareFileTime(
 CONST FILETIME * lpft1,
 CONST FILETIME * lpft2
)

CompareStringA

int CompareStringA(
 LCID Locale,
 DWORD dwCmpFlags,
 LPCSTR lpString1,
 int cchCount1,
 LPCSTR lpString2,
 int cchCount2
)

CompareStringW

int CompareStringW(
 LCID lcid,
 DWORD fdwStyle,
 LPCWSTR lpString1,
 int cch1,
 LPCWSTR lpString2,
 int cch2
)

Limitations

Only accurate for character values less than 128. Characters whose values are greater may not be
compared accurately because the 16-bit implementation does not have the necessary Unicode
mapping tables.

CopyFile

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL CopyFile(
 LPCTSTR lpszExistingFile,
 LPCTSTR lpszNewFile,
 BOOL fFailIfExists
)

CopyMemory

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

VOID CopyMemory (
 PVOID Destination,
 CONST VOID * Source,
 DWORD Length
)

CreateDirectory

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL CreateDirectory(
 LPCTSTR lpszPath,
 LPSECURITY_ATTRIBUTES lpsa
)

Limitations:

LPSECURITY_ATTRIBUTES is not supported; fails if non-null.

CreateFile

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

HANDLE CreateFile(
 LPCTSTR lpszName,
 DWORD fdwAccess,
 DWORD fdwShareMode,
 LPSECURITY_ATTRIBUTES lpsa,
 DWORD fdwCreate,
 DWORD fdwAttrsAndFlags,
 HANDLE hTemplateFile
)

Limitations

Several differences from ordinary Win32 usage occur when using the MAPI version of the CreateFile
function:

· dwFlagsAndAttributes and dwDesiredAccess are ignored.
· lpSecurityAttributes is not supported and the function fails if it is not NULL.
· hTemplateFile is not supported and the function fails if it is nonzero.

DeleteFile

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL DeleteFile(
 LPCTSTR lpszFileName
)

DosDateTimeToFileTime

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL DosDateTimeToFileTime(
 WORD wDOSDate,
 WORD wDOSTime,
 LPFILETIME lpft
)

FBadReadPtr

BOOL FBadReadPtr(
 CONST VOID * lpvPtr,
 UINT cbBytes
)

Limitations

The FBadReadPtr function behaves as does the IsBadReadPtr function but returns FALSE if the
cbBytes parameter is zero regardless of the value of the lpvPtr parameter. This matches the behavior
of Win32 IsBadReadPtr, rather than Win16 IsBadReadPtr.

FileTimeToLocalFileTime

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL FileTimeToLocalFileTime(
 CONST FILETIME * lpft,
 LPFILETIME lpftLocal
)

Limitations

Depends on time zone information in WIN.INI. The UI is included in the mail and fax control panel
applet, and is set by the SetTimeZoneInformation call listed in this Appendix.

FileTimeToDosDateTime

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL FileTimeToDosDateTime(
 CONST FILETIME * lpft,
 LPWORD lpwDOSDate,
 LPWORD lpwDOSTime
)

FileTimeToSystemTime

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL FileTimeToSystemTime(
 CONST FILETIME * lpft,
 LPSYSTEMTIME lpst
)

FillMemory

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

VOID FillMemory (
 PVOID Destination,
 DWORD Length,
 BYTE Fill
)

FindClose

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL FindClose(
 HANDLE hFindFile
)

FindFirstFile

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

HANDLE FindFirstFile(
 LPCTSTR lpFileName,
 LPWIN32_FIND_DATA lpFindFileData
)

Limitations

The dwReserved0, dwReserved1 and cAlternateFileName members are not supported in the
WIN32_FIND_DATA structure.

FindNextFile

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL FindNextFile(
 HANDLE hFindFile,
 LPWIN32_FIND_DATA lpFindFileData
)

Limitations

The dwReserved0, dwReserved1 and cAlternateFileName members are not supported in the
WIN32_FIND_DATA structure.

GetACP

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

UINT GetACP(VOID)

GetCurrentProcessID

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

DWORD GetCurrentProcessId(VOID)

Limitations

Returns HTASK. Value is subject to reuse by the operating system.

GetFileAttributes

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

DWORD GetFileAttributes(
 LPCTSTR lpFileName
)

Limitations

This function won't work on Novell NetWare without FILESCAN rights.

GetFileSize

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

DWORD GetFileSize(
 HANDLE hFile,
 LPDWORD lpdwFileSizeHigh
)

GetFileTime

BOOL GetFileTime(
 HANDLE hFile,
 LPFILETIME lpftCreation,
 LPFILETIME lpftLastAccess,
 LPFILETIME lpftLastWrite
)

Limitations

The time that the file in question was last modified is supported, but not the file creation or access time.
The function fails if either of the latter is requested.

GetFullPathName

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

DWORD GetFullPathName(
 LPCTSTR lpszFile,
 DWORD cchPath,
 LPTSTR lpszPath,
 LPTSTR * lpszFilePart
)

Limitations

This function does not handle ".." path components in lpFileName.

GetLastError

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

DWORD GetLastError(VOID)

Limitations

This function won't be as reliable as it is on Windows NT. If a function in this module fails because an
unsupported feature was requested, no error is returned.

GetLocalTime

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

VOID GetLocalTime(
 LPSYSTEMTIME lpst
)

Limitations

This function returns the current time as local time.

GetSystemTime

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

VOID GetSystemTime(
 LPSYSTEMTIME lpst
)

Limitations

This function depends on the time zone and returns the current time as Greenwich mean time (GMT).
Requires that an earlier call to SetTimeZoneInformation has been made to get the local time zone.

GetTempFileName

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

UINT GetTempFileName(
 LPCTSTR lpszPath,
 LPCTSTR lpszPrefix,
 UINT uUnique,
 LPTSTR lpszTempFile
)

GetTempFileName32

UINT WINAPI GetTempFileName32 (
 LPCSTR lpPathName,
 LPCSTR lpPrefixString,
 UINT uUnique,
 LPSTR lpTempFileName
)

GetTempPath

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

DWORD GetTempPath(
 DWORD cchBuffer,
 LPTSTR lpszTempPath
)

GetTimeZoneInformation

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

DWORD GetTimeZoneInformation(
 LPTIME_ZONE_INFORMATION lptzi
)

GetUserDefaultLCID

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

LCID GetUserDefaultLCID(VOID)

InterlockedDecrement

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

LONG InterlockedDecrement(
 LPLONG lplVal
)

Limitations

This function relies on cooperative multitasking.

InterlockedIncrement

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

LONG InterlockedIncrement(
 LPLONG lplVal
)

Limitations

This function relies on cooperative multitasking.

IsBadBoundedStringPtr

BOOL WINAPI IsBadBoundedStringPtr(
 const void FAR* lpsz,
 UINT cchMax
)

IsBadReadPtr

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL IsBadReadPtr(
 CONST VOID * lpvPtr,
 UINT cbBytes
)

Limitations

This function has been redefined to work as on the Win32 version of FBadReadPtr.

IsBadStringPtrW

BOOL IsBadStringPtrW(
 LPCWSTR lpszStr,
 UINT cchMax
)

LocalFileTimeToFileTime

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL LocalFileTimeToFileTime(
 CONST FILETIME * lpftLocal,
 LPFILETIME lpft
)

Limitations

Requires that an earlier call to SetTimeZoneInformation has been made to get the local time zone.

lstrlenW

int lstrlenW(
 LPCWSTR lpszString
)

lstrcmpW

int lstrcmpW(
 LPCWSTR lpszString1,
 LPCWSTR lpszString2
)

lstrcpyW

LPWSTR lstrcpyW(
 LPWSTR lpszString1,
 LPCWSTR lpszString2
)

MoveFile

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL MoveFile(
 LPCTSTR lpszExisting,
 LPCTSTR lpszNew
)

Limitations

The MAPI version of the MoveFile function won't move a directory. This function always works across
drives, and it always performs a copy operation then deletes the original file, as opposed to truly
performing a move operation.

MoveMemory

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

VOID MoveMemory (
 PVOID Destination,
 CONST VOID * Source,
 DWORD Length
)

MulDiv32

int MulDiv(
 int nMultiplicand,
 int nMultiplier,
 int nDivisor
)

Limitations

The MulDiv32 function supports the MULDIV macro contained in the MAPIWIN.H header file. It takes
32-bit arguments, unlike the native Win16 MulDiv. The MAPI MulDiv32 does not check for overflow on
the nMultiplier parameter.

MultiByteToWideChar

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

int MultiByteToWideChar(
 UINT CodePage,
 DWORD dwFlags,
 LPCSTR lpMultiByteStr,
 int cchMultiByte,
 LPWSTR lpWideCharStr,
 int cchWideChar
)

Limitations

This function is only accurate for character values less than 128. Characters whose values are greater
may not be compared accurately because the 16-bit implementation does not have the necessary
Unicode mapping tables; it does not support Unicode single-byte conversion; works reliably only for
ASCII characters.

ReadFile

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL ReadFile(
 HANDLE hFile,
 LPVOID lpBuffer,
 DWORD NumberOfBytesToRead,
 LPDWORD lpNumberOfBytesRead,
 LPOVERLAPPED lpOverlapped
)

Limitations

The count is limited to 64K. The lpOverlapped parameter is not supported and the function fails if
lpOverlapped is not NULL.

RemoveDirectory

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL RemoveDirectory(
 LPCTSTR lpszDir
)

SetEndOfFile

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL SetEndOfFile(
 HANDLE hFile
)

SetFilePointer

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

DWORD SetFilePointer(
 HANDLE hFile,
 LONG lDistanceToMove,
 PLONG lpDistanceToMoveHigh,
 DWORD dwMoveMethod
)

Limitations

Distance is limited to 2 gigabytes (signed 32-bits). The SetFilePointer function fails if the
lpDistanceToMoveHigh parameter is present and nonzero, unless the value it holds is the sign
extension of a negative distance.

SetTimeZoneInformation

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL SetTimeZoneInformation(
 CONST TIME_ZONE_INFORMATION * lptzi
)

Limitations

Depends on time zone information in WIN.INI. The UI is included in the mail and fax control panel
applet.

Sleep

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

VOID Sleep(
 DWORD cMilliseconds
)

Limitations

This function does not handle the ALT+TAB and ALT+ESC key combinations for task switching.

SystemTimeToFileTime

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL SystemTimeToFileTime(
 CONST SYSTEMTIME * lpst,
 LPFILETIME lpft
)

WideCharToMultiByte

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

int WideCharToMultiByte(
 UINT CodePage,
 DWORD dwFlags,
 LPCWSTR lpWideCharStr,
 int cchWideChar,
 LPSTR lpMultiByteStr,
 int cchMultiByte,
 LPCSTR lpDefaultChar,
 LPBOOL lpUsedDefaultChar
)

Limitations

This function is only accurate for character values less than 128. Characters whose values are greater
may not be compared accurately because the 16-bit implementation does not have the necessary
Unicode mapping tables; it does not support Unicode single-byte conversion; works reliably only for
ASCII characters.

WriteFile

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

BOOL WriteFile(
 HANDLE hFile,
 PCVOID lpBuffer,
 DWORD nNumberOfBytesToWrite,
 PDWORD lpNumberOfBytesWritten,
 POVERLAPPED lpOverlapped
)

Limitations

The lpOverlapped parameter is not supported, and the function fails if it is not NULL.

ZeroMemory

This function entry is part of a MAPI-specific list of Win32 functions. For a complete description, see
Win32 Functions.

VOID ZeroMemory (
 PVOID Destination,
 DWORD Length
)

 Address Types

E-mail addresses in MAPI are defined by two properties. The address type, PR_ADDRTYPE, is a
string property that names the messaging system the address is destined for. It is used by MAPI to
assign responsibility for an e-mail address to the right transport provider. The e-mail address itself,
PR_EMAIL_ADDRESS, is another string whose format varies depending upon PR_ADDRTYPE. It is
not interpreted by MAPI, but by the transport provider and by the messaging system itself.

This appendix lists address types known to MAPI at this time and the corresponding e-mail address
formats. Several of these address types, including SMTP, X400, and FAX are used by a large number
of messaging systems. It is important that all MAPI components agree on the type name and address
format for such common types, so they can interoperate smoothly. MAPI address book providers, MAPI
transport providers, and gateways to messaging systems with MAPI-based clients should all take note
of this specification.

To define a new address type, to make comments or suggestions about the information in this
appendix, or to request more information, send e-mail to mapi@microsoft.com. The following table, and
many of the address type specifications that follow, are work in progress.

Messaging
system

Address type
(PR_ADDRTYPE)

Owner or reference
document

3Com® 3+Mail® 3COM 3Com (3+Open®)
AT&T Easylink
Services

ATT AT&T

cc:Mail™
(proposed)

CCMAIL IBM

CompuServe
(proposed)

COMPUSERVE Compuserve

Microsoft
Exchange Server

EX Microsoft

Facsimile FAX
MSFAX

MCI MAIL MCI MCI
Communications
Corp.

Novell® Message
Handling System

MHS Novell

Microsoft Mail
Server for PC
Networks

MS Microsoft

Microsoft Mail
Server for
Appletalk
Networks

MSA Starnine
Technologies®

The Microsoft
Network

MSN Microsoft

Professional Office
System

PROFS

Internet SMTP Internet Request for
Comments (RFC)
822

SNA Distribution SNADS

System
Telex (proposed) TELEX
X.400 Message
Handling System

X400 CCITT X.400 series
specifications

X.500 Directory
Services

X500 CCITT X.500 series
specifications

 3+Mail (3COM)

This information is based on the Microsoft Mail Server for PC Networks gateway to 3+Mail. The custom
recipient address is in the following format:

[3COM:UserName:Domain:Organization]
 - Or -
[3COM:UserName]
 - Or -
[3COM:UserAlias:Domain:Organization]

 AT&T EasyLink (ATT)

This information is based on the Microsoft Mail for PC Networks gateway to AT&T Easylink. The
custom recipient addresses are in the following formats:

AT&T Mail Address

[ATT:attmail!UserName]

attmail
The "gate name" for the AT&T Mail Network.

!
A delimiter.

UserName
A unique identifier for an individual user.

AT&T MailFAX

[ATT:fax!+FaxTelephoneNumber (/RecipientName) Option]

fax!
Indicates to the AT&T Mail Network that this message is being delivered to a fax machine.

+
Must be specified for AT&T Mail Network to insert the correct country access code.

FaxTelephoneNumber
The local fax telephone number, country code, area code and local exchange.

RecipientName
The recipient of the fax.

Options
Any AT&T Mail options.

An example of this address is:

[ATT:fax!+19085551234(/John Doe) delivery].

AT&T Telex

[ATT:telex!TelexNumber (/Attention)]

telex!
Indicates to the AT&T Mail Network that this is a message for a telex machine.

TelexNumber
The number of the telex machine to which the message is being delivered.

Attention
The name of the recipient of the message.

An example of this address is:

[ATT:telex!900123(Jones MFG CO/John Doe)].

AT&T MailPRINT

[ATT:printer!PrinterTelephoneNumber (/RecipientName) Options]

printer!
Indicates to the AT&T Mail Network that this message is being delivered to a printer.

PrinterTelephoneNumber

The local printer telephone number, country code, area code, and local exchange.
RecipientName

The recipient of the message.
Options

Any AT&T Mail option.

An example of this address type is:

[ATT:printer!19085551234 (/John Doe)].

AT&T Paper

[ATT:Address]

Address
The postal address is entered on one line with semicolons (;) used to separate the address parts. If
the address contains a semicolon, surround it with quotation marks (";").

An example of this address type is:

[ATT:John Doe;123 Main Street; N.Y. 01234].

 Facsimile (FAX, MSFAX)

Support is required for custom recipient addresses in the following format:

[FAX:Dialable | Name @ Canonical | SpecialDialing]

Dialable
A dialable fax phone number that consists of any of the following characters: 0-9, (), -, space.
Examples are 64545 and 9, 1-206-8828080.

Name
Optional field used for inbound routing by Microsoft At Work Fax. MAPI providers that do not support
Microsoft At Work Fax should simply ignore this field. The name field is interpreted by the receiving
machine and can contain any information which helps route the fax to its intended recipient. For
example, this field might be a recipient's e-mail name. This field can include the at sign character
(@).

Canonical
Must be a canonical fax phone number. If a canonical fax phone number is included in the address,
and the provider can process canonical numbers, the provider should always use the canonical
number instead of the dialable phone number.

|
Separator character, ASCII Hex 0x7C. The separator between the subscriber number and special
dialing instructions (such as a postfix or TIA/EIA/IS-141 subaddress) is optional. If the phone number
is in canonical form and a separator is not present, then the special dialing instructions are assumed
to begin with the first character in the local number which is not one of the following: the numerals 0-
9, hyphen (-), space.

SpecialDialing
Must be a postfix, TIA/EIA/IS-141 subaddress or ISDN subaddress. MAPI 1.0 providers can
optionally support these special dialing extensions.

Examples of this address type are:

[FAX:936-7329]
[FAX:1-206-9367329]
[FAX:936-7329 | +1 (206) 936-7329]
[FAX:936-7329 | tedst@ +1 (206) 936-7329]
[FAX:936-7329 | tedst@+1 (206) 936-7329]
[FAX:936-7329 | +1 (206) 9367329|#546]
[FAX:936-7329 | +1 (206) 9364344|,,,,,567]

Note Some service providers create 'MSFAX' formatted addresses but with the 'FAX' address type.
Providers can either handle these addresses, or not accept responsibility for them as they see fit; either
method is acceptable.

Support is optional (but recommended) for custom recipient addresses in the following format:

[MSFAX:Name@ PhoneNumber | SpecialDialing]

Name
Optional field used for inbound routing by Microsoft At Work Fax. MAPI providers that do not support
Microsoft At Work Fax should simply ignore this field. The name field is interpreted by the receiving
machine and can contain any information which helps route the fax to its intended recipient. For
example, this field might be a recipient's e-mail name. This field can include the at sign character
(@).

PhoneNumber
Must be a canonical phone number or dialable phone number.

|
Separator character, ASCII Hex 7c. This is the separator between the subscriber number and
special dialing instructions (such as a postfix or TIA/EIA/IS-141 subaddress). This separator is
optional. If the phone number is in canonical form and a separator is not present, then the special
dialing instructions are assumed to begin with the first character in the local number which is not one
of the following: the numerals 0-9, hyphen (-), period (.), and space.

DialablePhoneNumber
A dialable address is a phone number that consists of any of the following characters: the numerals
0-9, letters A-D, asterisk (*), pound (#), comma (,), exclamation mark (!), uppercase and lowercase w
(W, w), uppercase and lowercase p (P, p), uppercase and lowercase t (T, t), at sign (@), dollar sign
($), question mark (?), hyphen (-), period (.), and space. For example 64545. Dialable addresses are
intended to be used to represent internal phone extensions.

SpecialDialing
Must be a postfix, TIA/EIA/IS-141 subaddress or ISDN subaddress. MAPI 1.0 providers can
optionally support these special dialing extensions.

Examples of this address type are:

[MSFAX: 936-7329]
[MSFAX: +1 (206) 936-7329]
[MSFAX: tedst@+1 (206) 936-7329]
[MSFAX: +1 (206) 9367329|#546]
[MSFAX: +1 (206) 9364344|,,,,,567]

The following table includes descriptions of the components of this address:

Component Description
canonical phone number A phone number in the form:

+CountryCode space
(AreaCode) space
LocalNumber. Examples are +1
(206) 936-4479 and +43
443444. CountryCode and
AreaCode can only contain the
numerals 0 through 9. If the area
code is present it must be
preceded by exactly one ASCII
left parenthesis character
(0x28), and be followed by
exactly one ASCII right
parenthesis character (0x29)
and one ASCII space character
(0x20). The local number must
contain one or more of the
numerals 0 through 9 but must
not include any of the following
characters:
AaBbCcDdPpTtWw*#!,@$?;()|^
CRLF

special dialing Must be a postfix, TIA/EIA/IS-
141 subaddress or ISDN
subaddress. MAPI 1.0 providers
can optionally support these
special dialing extensions.

postfix A string of dialing control

characters and digits used to
complete calls which require
DTMF routing, manual dialing,
or pauses in the dialing
sequence. The string must begin
with one of the following
characters: $, ? W w @ and can
contain any of the following
characters: 0-9 A-D * # , ! W w P
p T t @ $?. An example is +1
(206) 9367329|,,,,,567. This
waits for several seconds after
the main number is dialed
before entering the DTMF tones
567.

TIA/EIA/IS-141 subaddress Used for inbound routing
according to the U.S. standard
TIA/EIA/IS-141. MAPI 1.0
providers that cannot transmit
this subaddress information
should remove this field before
dialing. This field must begin
with the number sign (#). In
typical use, this value uniquely
identifies a recipient. An
example is +1 (206) 9367329|
#543. This example enables
inbound routing to employee
543

ISDN Subaddress For faxing over ISDN. MAPI 1.0
providers that cannot transmit
ISDN subaddresses should
remove this field before dialing.
An ISDN subaddress can begin
with any character except the
following: # $, ? W w @

$ Wait for "billing signal", such as
a credit card prompt tone.

, Indicates that dialing is to be
paused. The duration of a pause
is device specific.

? Indicates that the user is to be
prompted before continuing with
dialing.

W w Dialing should proceed only
after a dialing tone has been
detected.

@ Indicates that dialing is to "wait
for quiet answer" before dialing
the remainder of the number.
This means to wait for at least
one ringback tone followed by
several seconds of silence.

P p Indicates that pulse dialing is to
be used for the digits following it.

T t Indicates that tone (DTMF)
dialing is to be used for the
digits following it.

Note Microsoft supports two FAX address formats. FAX is intended to be used for compatibility with
downlevel systems ¾ including the Microsoft Mail for PC Networks FAX gateway. Although it is
optional, all transport writers are encouraged to support and use the MSFAX standard. The 'FAX'
standard will likely be eliminated in favor of the 'MSFAX' standard in a future release.

For more information on dialable and canonical addresses, see the Win32 Telephony (TAPI)
documentation.

 MCI MAIL (MCI)

This information is based on the Microsoft Mail for PC Networks gateway to MCI MAIL. It may be
incomplete or out of date in certain respects. The custom recipient address is in the following format:

[MCI:UserName\r EMS:EMSName\r MBX:MCIMailbox]

MCI
MCI MAIL address indicator.

UserName
Name of mail recipient. Not used for mail delivery.

EMS
Indicates the name or number in the next field is the recipient's REMS (remote e-mail system)
account.

EMSName
The actual EMS name or number. This can also be an MCI service provided by MCI; consult MCI
Help for more information.

MBX
Indicates this is additional information required by the remote system.

MCIMailbox
Actual MBX (address) for the recipient on the remote system. If the remote system is Microsoft Mail,
MCIMailbox is the full Microsoft Mail address. You can only have one complete MBX address.

There is always a space in front of the EMS: token and another space in front of each MBX: token.
These spaces are required. The carriage-return symbol at the end of the line is in addition to whatever
code your text editor inserts.

The actual message text requires a header separator after the TEXT: token. That is, the first line after
TEXT: should be a line of 78 dash (-) characters to separate the header from the message text. Include
these 78 characters in the TEXT count.

An example of this address type is:

[MCI:John Doe\r EMS:MCI Mail\r MBX:123-4567\r]

The following are other MCI addresses:

MCI MAIL

Example:

[MCI:John Doe at MCI\r EMS:MCI Mail\r MBX:123-4567]

MCI Paper

Example:

[MCI:John Doe\r EMS:MCI Mail\r MBX:Company:ABC, Inc.\r
MBX:Country:Canada\r MBX:Line1:100 - 123 Main Street\r
MBX:Line2:\r MBX:City:Vancouver\r MBX:State:B.C.\r
MBX:Code:V6B 1A1]

EMS

This address type is for Microsoft Mail recipients.

Example:

[MCI:John Doe\r EMS:ems_name\r
MBX:network/postoffice/JohnDoe\r

MBX:\r MBX:\r MBX:\r MBX:\r MBX:]

REMS

This address type is for non-Microsoft Mail recipients.

Example:

[MCI:John Doe\r EMS:Internet\r MBX:JohnDoe@aaa.bbb.bc.ca\r
MBX:\r MBX:\r MBX:\r MBX:\r MBX:]

TELEX

Example:

[MCI:John Doe\r EMS:MCI Mail\r MBX:Country:-\r
MBX:Telex:6501234567\r MBX:Answerback:6507654321]

Fax

Example:

[MCI:John Doe\r EMS:MCI Mail\r MBX:FAXNo:604-123-4567\r
MBX:Retry:4.0\r MBX:Company:ABC Company Inc.\r
MBX:SFax:604-111-1111\r MBX:SPhone:604-222-2222]

 Novell Message Handling System (MHS)

This information is based on the Microsoft Mail for PC Networks gateway to MHS and the SMF 71
specification. It may be incomplete or out of date in certain respects. The custom recipient address is in
the following format:

[MHS:User@Host] for a MHS user on MHS host.

Host
The name of the MHS host.
 - Or -

[MHS:Mailbox@Gateway] for a MSMail user on a MHS gateway

Mailbox
8 ASCII characters

Gateway
The name of the MHS gateway, not MHS host.
 - Or -

[MHS:User@Gateway {Network/Postoffice/Mailbox}] for a MSMail user on MHS gateway/downstream
postoffice.

User
A place holder.

Network/Postoffice/Mailbox
MSMail for PC Networks address.
 - Or -

[MHS:User@Gateway LocalAddress] for non-MSMail user on MHS gateway (general case).

LocalAddress
The user's native address. For example, MSMail, X.400.

 Microsoft Mail for PC Networks (MS)

The custom recipient address is in the following format:

[MS:Network/PostOffice/UserID]

Network
A 10 char (max) name of a MICROSOFT Mail Network.

PostOffice
A 10 character (max) Postoffice name.

UserID
A 10 chararacter (max) name of a PC Mail user.

/
A delimiter.

This address type is also used at times by Microsoft Exchange Server.

 Microsoft Mail for Appletalk Networks (MSA)

The custom recipient address is in the following format:

[MSA:UserID@MS Mail Server]

UserID
Name of Microsoft Mail for AppleTalk user.

MS Mail Server
Name of Microsoft Mail for AppleTalk server.

 The Microsoft Network (MSN)

The custom recipient address is in the following format:

[MSN:UserID]

UserID
The name of the MSN member. For example, [MSN:patsmith].

MSN allows the sender to change the recipient's display name by using the following addressing style:
Pat Smith[MSN:PatSm]. This will resolve on the client to a friendly name of 'Pat Smith' and an address
alias of PatSm. The recipient will see the friendly name when they read the message.

 Professional Office System (PROFS)

This information is based on the Microsoft Mail for PC Networks gateway to PROFS. The GATEWAY
field is part of the gateway architecture, not the PROFS address. The custom recipient address is in
the following format:

[PROFS:Gateway/Node/UserID]

Gateway
The gateway name. Limited to 10 characters.

Node
VM node name. Limited to 8 characters.

UserID
VM user ID. Limited to 8 characters.

 Internet (SMTP)

The format of Internet e-mail addresses is defined in RFC 822. MAPI components should handle any
address that complies with that standard. However, there is a particular form of RFC 822 address that
best encodes MAPI addresses:

display name <e-mail address>

The angle brackets are included as literals. Blanks are common in display names; they need not be
quoted. A typical address might look like this one, which belongs to one of the coauthors of RFC 1521:

Nathaniel Borenstein <nsb@bellcore.com>

If the display name contains characters that have special meaning in SMTP addresses, such as < or
@, the entire display name should be quoted using double quotes. On outbound mail, if the total length
of the e-mail address plus display name exceeds 255 characters, the display name should be dropped.

 SNA Distribution System (SNADS)

This information is based on the Microsoft Mail for PC Networks gateway to SNADS. The GATEWAY
field is part of the gateway architecture, not the SNADS address. The custom recipient address is in
the following format:

[SNADS:Gateway/DistributionGroupName/DistributionElementName]

Gateway
Gateway name. Limited to 10 characters.

DistributionGroupName
Distribution Group Name. Limited to 8 characters.

DistributionElementName
Distribution Element Name. Limited to 8 characters.

 Telex (TELEX) - Proposed

This address type definition is only a proposal. Comments and suggestions are welcome. The custom
recipient address is in the following format:

[TELEX:Recipient@TelexNumber]

At least a telex number is required. For example [TELEX:foobar @ 1-2066354657].

 X.400 Message Handling System (X400)

This information is based on the Microsoft Mail for PC Networks gateway to X.400 mail systems.
Certain fields, particularly "DDA," and the length limitations may not apply in all X.400-based
messaging systems. The custom recipient address is in the following format:

[X400:g=GivenName;s=Surname;o=Organization;ou=OrganizationalUnit;
p=PRMD;a=ADMD;c=Country;]

Label Description Maximum
Length

G= Given name 16
I= Initials 5
S= Surname (required if G, I or Q are

used)
40

Q= Generation Qualifier 3
CN= Common name 64
X.121= X.121 address 15
N-ID= User agent numeric identifier 32
T-TY= Terminal type 3
T-ID= Terminal identifier 24
O= Organization 64
OU1= Organizational unit #1 32
OU2= Organizational unit #2 32
OU3= Organizational unit #3 32
OU4= Organizational unit #4 32
P= Private Management Domain

(PRMD)
16

A= Administrative Management
Domain (ADMD - required)

16

C= Country (required) 2 or 3
DDA= Domain Defined Attribute (format

=> dda:<type>=<value>;)
8, 128

 X.500 Directory Service (X500)

This address type is based on CCITT Recommendations X.500 and the associated APIA - X/OPEN API
specifications and the proposed annex to F.401, Annex F. The custom recipient address is in the
following format:

[X500:/C=CountryCode/O=Organization/OU=OrganizationUnit/CN=CommonName]

The following field length limits apply:

Field Length limit
CountryCode 2 characters
Organization Up to 64 characters
OrganizationUnit Up to 32 characters
CommonName

The following guidelines apply:

· Labels can be uppercase or lowercase.
· Delimiters are slash marks (/) and must be specified before the first value as well as between

values.
· Delimiters can be followed by a space.

An example of this address is:

[X500:/ c=US/ o=Microsoft/ ou=WGA/ cn=TedSt]

 Transport-Neutral Encapsulation Format (TNEF)

TNEF is a serialization of MAPI properties. Here is a summary of the format: The file begins with a 32-
bit signature followed by a 16-bit unsigned integer that is used as a key to cross-reference attachments
to their location within the tagged message text. The remainder of the file is a sequence of TNEF
attributes. Each attribute consists of a class byte, an attribute identifier, the attribute size, the attribute
data, and a 16-bit unsigned checksum of the attachment data. Message attributes appear first in the
TNEF stream, and attachment attributes follow. Attributes belonging to a particular attachment are
grouped together, beginning with the attAttachRenddata attribute.

 TNEF Encoding Example

In the following TNEF encoding, all integers are specified in hexadecimal format. Nonterminal elements
are in italics; constants and anything that always appears exactly as shown are in bold. In addition,
sequential elements run across, and alternative elements run down.

Stream:
TNEF_SIGNATURE Key Object

Key:
a nonzero 16-bit unsigned integer

Object:
Message_Seq
Message_Seq Attach_Seq
Attach_Seq

Message_Seq:
attTnefVersion
attTnefVersion Msg_Attribute_Seq
attTnefVersion attMessageClass
attTnefVersion attMessageClass Msg_Attribute_Seq
attMessageClass
attMessageClass Msg_Attribute_Seq
Msg_Attribute_Seq

attTnefVersion:
LVL_MESSAGE attTnefVersion sizeof(ULONG) 0x00010000 checksum

attMessageClass:
LVL_MESSAGE attMessagClass msg_class_length msg_class checksum

Msg_Attribute_Seq:
Msg_Attribute
Msg_Attribute Msg_Attribute_Seq

Msg_Attribute:
LVL_MESSAGE attribute-ID attribute-length attribute-data checksum

Attach_Seq:
attRenddata
attRenddata Att_Attribute_Seq

attRenddata:
LVL_ATTACHMENT attRenddata sizeof(RENDDATA) renddata checksum

Att_Attribute_Seq:
Att_Attribute
Att_Attribute Att_Attribute_Seq

Att_Attribute:
LVL_ATTACHMENT attribute-ID attribute-length attribute-data checksum

The key is a nonzero, 16-bit unsigned integer that signifies the initial value of the attachment reference
keys. The attachment reference keys are assigned sequentially beginning with the initial value. For
example, if the key was 0x01AF, the first attachment reference key would be 0x01AF, the second would
be 0x01B0, and so on. The TNEF implementation uses the attachment reference keys to link specific
attachments with their position within the tagged message text. The initial key value is passed to the
OpenTnefStream function when the stream is encoded. The key value should be random so that two
different messages do not use the same key.

The TNEF implementation uses the attribute identifier to map attributes to their corresponding MAPI
properties. The attribute identifier is a 32-bit unsigned integer made up of two word values. The high-
order byte is an indication of the data type, such as string or binary, and the low-order byte is a
relatively unique identifier.

All attribute lengths are unsigned long integers. If the data stored is a string or text attribute, the
terminating null character is included in the length.

The checksum is a 16-bit unsigned value that is simply the summation of the individual bytes in the
attribute data. The header information is not included in the checksum.

All numbers in the TNEF format are stored in little endian (that is, in Intel format).

 Mapping of TNEF Message Attributes to MAPI Properties

The following table lists all the message attributes possible in a TNEF stream and their mappings to
MAPI properties. In some cases, multiple MAPI properties are encoded as a single attribute. In these
cases, multiple MAPI properties appear listed for a single TNEF attribute. For further explanation of
specific mappings, see "Comments About the Attributes" later in this chapter.

TNEF attribute MAPI property or properties
attAidOwner PR_OWNER_APPT_ID
attBody PR_BODY
attConversationID PR_CONVERSATION_KEY
attDateEnd PR_END_DATE
attDateModified PR_LAST_MODIFICATION_TIME
attDateRecd PR_MESSAGE_DELIVERY_TIME
attDateSent PR_CLIENT_SUBMIT_TIME
attDateStart PR_START_DATE
attFrom PR_SENDER_ENTRYID and

PR_SENDER_NAME
attMAPIProps For information about this mapping, see

"Comments About the Attributes" later in this
chapter

attMessageClass PR_MESSAGE_CLASS
attMessageID PR_SEARCH_KEY
attMessageStatus PR_MESSAGE_FLAGS
attOriginalMessageClass PR_ORIG_MESSAGE_CLASS
attOwner PR_RCVD_REPRESENTING_ENTRYID and

PR_RCVD_REPRESENTING_NAME
or
PR_SENT_REPRESENTING_ENTRYID and
PR_SENT_REPRESENTING_NAME

attParentID PR_PARENT_KEY
attPriority PR_PRIORITY
attRecipTable PR_MESSAGE_RECIPIENTS
attRequestRes PR_RESPONSE_REQUESTED
attSentFor PR_SENT_REPRESENTING_ENTRYID
attSubject PR_SUBJECT
attTnefVersion For information about this mapping, see

"Comments About the Attributes" later in this
chapter

 Mapping of TNEF Attachment Attributes to MAPI Properties

Attachment attributes are mapped in the same way message attributes are. The following table lists all
the attachment attributes possible in a TNEF stream and their mappings to MAPI properties. For further
explanation of specific mappings, see "Comments About the Attributes" later in this chapter.

TNEF attribute MAPI property or properties
attAttachCreateDate PR_CREATION_TIME
attAttachData PR_ATTACH_DATA_BIN or

PR_ATTACH_DATA_OBJ
attAttachment For information about this mapping, see

"Comments About the Attributes" later in this
chapter

attAttachMetaFile PR_ATTACH_RENDERING
attAttachModifyDate PR_LAST_MODIFICATION_TIME
attAttachRenddata PR_ATTACH_METHOD,

PR_RENDERING_POSITION
attAttachTitle PR_ATTACH_FILENAME
attAttachTransportFilen
ame

PR_ATTACH_TRANSPORT_NAME

 Comments About the Attributes

This section provides additional information about the TNEF attribute to MAPI property mapping for
certain attributes. For more information about the MAPI properties that the attributes are mapped to,
see the reference entries for the individual properties.

 attMAPIProps

The attMAPIProps attribute is special in that it can be used to encapsulate any MAPI property that
does not have a counterpart in the set of existing TNEF-defined attributes. The attribute data is a
counted set of MAPI properties laid end-to-end. The format of attMAPIProps, which allows for any
configuration of MAPI properties, is as follows:

Property_Seq:
property-count Property_Values, ...

Property_Values:
proptag Property
proptag Proptag_Name Property

Property:
Value
value-count Value, ...

Value:
value-data
value-size value-data padding
value-size value-IID value-data padding

Proptag_Name:
name-guid name-kind name-id
name-guid name-kind name-string-length name-string padding

The encapsulation of each property varies in the following ways based on the property identifier and
the property type:

If the property falls in the named property range, then the property tag is immediately followed by the
MAPI property name, consisting of a globally unique identifier (GUID), a kind, and either an identifier or
a Unicode string.

If the property is either multivalued or is of variable length, such as the PT_BINARY, PT_STRING8,
PT_UNICODE, or PT_OBJECT properties, then the number of values, which are encoded as a 32-bit
unsigned long, falls next in the encapsulation followed by the individual values. Each variable-length
value is preceded by its size in bytes encoded as a 32-bit unsigned long. Additionally, each individual
value is padded out to 4-byte boundaries; the padding is not included in the value size.

If the property is of type PT_OBJECT, the value size is followed by the interface identifier (IID) of the
object. The current implementation of TNEF only supports IID_IMessage, IID_IStorage, and
IID_IStream. The size of the IID is included in the value size.

If the object is an embedded message,that is, if the object has a property type of PT_OBJECT and an
IID of IID_IMessage, the value data is encoded as a TNEF stream. The actual encoding of an
embedded message in the MAPI implementation of TNEF is done by opening a second TNEF object
for the original stream and processing the stream inline.

 Attributes with the attDate Prefix

All date properties are stored as DTR structures. A DTR structure is very similar to the SYSTEMTIME
structure defined in the 32-bit Windows header files. The DTR is encoded in TNEF as a sizeof(DTR)
bytes starting at &dtr.wYear. The dates and times for attachment attributes are encoded as DTR
structures. Any MAPI property that does not map to a down-level attribute is encoded as a MAPI
encapsulation in attAttachment.

 attOriginalMessageClass

A message class is stored as a string. The encoded string usually holds the MAPI-specified name of
the message class. The exception is that, to keep compatibility with Microsoft Mail for Windows for
Workgroups 3.1, the following MAPI message classes are mapped to down-level message classes:

MAPI message class Windows for Workgroups Mail 3.x
IPM IPM.Microsoft Mail.Note
IPM.Note IPM.Microsoft Mail.Note
IPM.Schedule.Meeting.Cance
led

IPM.Microsoft Schedule.MtgCncl

IPM.Schedule.Meeting.Reque
st

IPM.Microsoft Schedule.MtgReq

IPM.Schedule.Meeting.Resp.
Neg

IPM.Microsoft Schedule.MtgRespN

IPM.Schedule.Meeting.Resp.
Pos

IPM.Microsoft Schedule.MtgRespP

IPM.Schedule.Meeting.Resp.
Tent

IPM.Microsoft Schedule.MtgRespA

Report.IPM.Note.NDR IPM.Microsoft Mail.Non-Delivery
Report.IPM.Note.RN IPM.Microsoft Mail.Read Receipt

 attConversationID and attParentID

The Windows for Workgroups 3.1 Mail conversation key is a textual string. The MAPI equivalent is a
binary value. TNEF converts the binary data to text and adds a terminating null character.

 attFrom

The attFrom attribute is encoded as two TRP structures laid end-to-end. The format for attFrom is as
follows:

attFrom:
trpidOneOff
(sizeof(TRP) *2) + length display-name + terminator + pad to 2 byte boundary
length address-type:email-address + terminator
display-name terminated and padded
address-type:email-address terminated
zero-fill sizeof(TRP)

 attOwner

The attOwner attribute is encoded as counted strings laid end-to-end. The format for attOwner is as
follows:

attOwner:
16bit-length-display-name (terminator included)
display-name
16bit-length-address-type:email-address (terminator included)
address-type:email-address

The mapping of the attOwner attribute is dependent on the message class of the message being
encoded. If the message is either a Microsoft Schedule+ meeting request or cancellation, the attribute
maps to one of the PR_SENT_REPRESENTING_X properties. If the message is a Microsoft
Schedule+ meeting response of any type, the attribute maps to one of the
PR_RCVD_REPRESENTING_X properties.

 attSentFor

The attSentFor attribute is encoded as counted strings laid end-to-end. The format for attSentFor is as
follows:

attSentFor:
16bit-length-display-name (terminator included)
display-name
16bit-length-address-type:email-address (terminator included)
address-type:email-address

 attRecipTable

When a recipient table is being encoded, each recipients is encoded as a row of MAPI properties. The
format is as follows:

Row_Seq:
row-count Property_Seq, ...

 attPriority

MAPI message priorities are also mapped to TNEF for down-level compatibility. MAPI identifies - 1, 0,
and 1 as low, normal, and high priority respectively. The down-level priorities are 3, 2, and 1.

 attMessageStatus

MAPI message flags must also be mapped to down-level values. All the flags are grouped together and
encoded in a single byte. The mappings are as follows:

MAPI message flags Down-level message flags
MSGFLAG_READ fmsRead
MSGFLAG_UNMODIFE
D

not fmsModified

MSGFLAG_SUBMIT fmsSubmitted
MSGFLAG_HASATTAC
H

fmsHasAttach

MSGFLAG_UNSENT fmsLocal

 attAttachRenddata

The RENDDATA structure describes how and where the attachment is rendered in the message text.

The rendering data is encoded as sizeof(RENDDATA) bytes beginning at &rd.atyp. If the value of the
RENDDATA structure's dwFlags member is set to MAC_BINARY, then the attachment data is stored
in MacBinary format; otherwise, the attachment data is encoded as usual.

 OLE Attachments

OLE attachments, when encoded for compatibility, are encoded as OLE 1.0 stream objects. This
coding standard means that if the original object is really an OLE 2.0 IStorage object, then the object
must be converted to an OLE 1.0 stream. This conversion is performed using
OleConvertIStorageToOLESTREAM function, which is supplied by the OLE DLLs; examples of this
conversion can be found in OLE Programmer's Reference, Volume One.

 Mapping of X.400 P2 Attributes to MAPI Properties

The X/Open CAE Specification API to Electronic Mail (X.400), published by the X/Open Company
Limited and X.400 API Association (1991), describes a recommended implementation of the X.400
(1984) and X.400 (1988) Blue Book specifications.

This appendix describes mappings between the recommended implementation's P2 attributes and
MAPI properties.

 The reference information is presented in two different ways in this appendix:

· X.400 attributes are organized by object.
· All X.400 attributes are combined into one comprehensive list and presented in alphabetical order.

 X.400 Attributes By Object

The following entries contain tables for each object listing the mappings from X.400 P2 attributes to
their corresponding MAPI properties.

 OMP_O_IM_C_BD_PRT

The class OMP_O_IM_C_BD_PRT does not have any attributes that are unique to the class.

 OMP_O_IM_C_BILAT_DEF_BD_PRT

The attributes of the class OMP_O_IM_C_BILAT_DEF_BD_PRT map to MAPI properties as follows:

MH ID/Type MAPI Property
IM_BILATERAL_DATA PR_ATTACH_DATA_BIN

 OMP_O_IM_C_EXTERN_DEF_BD_PRT

The attributes of the class OMP_O_IM_C_EXTERN_DEF_BD_PRT map to MAPI properties as follows:

MH ID/Type MAPI Property
IM_EXTERNAL_DATA PR_ATTACH_DATA_BIN,

PR_ATTACH_FILENAME,
PR_ATTACH_TAG

IM_
EXTERNAL_PARAMETERS

PR_ATTACHMENT_X400_PARAMETER
S

 OMP_O_IM_C_G3_FAX_BD_PRT

The attributes of the class OMP_O_IM_C_G3_FAX_BD_PRT are not mapped to MAPI properties.

MH ID/Type MAPI Property
IM_G3_FAX_NBPS Not mapped to a MAPI property.
IM_IMAGES Not mapped to a MAPI property.

 OMP_O_IM_C_G4_CLASS_1_BD_PRT

The attributes of the class OMP_O_IM_C_G4_CLASS_1_BD_PRT are not mapped to MAPI
properties.

MH ID/Type MAPI Property
IM_G4_CLASS_1_DOCUMEN
T

Not mapped to a MAPI property.

 OMP_O_IM_C_GENERAL_TEXT_BD_PRT

The attributes of the class OMP_O_IM_C_GENERAL_TEXT_BD_PRT are not mapped to MAPI
properties.

MH ID/Type MAPI Property
IM_CHAR_SET_REG Not mapped to a MAPI property.
IM_TEXT Not mapped to a MAPI property.

 OMP_O_IM_C_IA5_TEXT_BD_PRT

The attributes of the class OMP_O_IM_C_IA5_TEXT_BD_PRT are mapped to the following MAPI
properties:

MH ID/Type MAPI Property
IM_REPERTOIRE Not mapped to a MAPI property.
IM_TEXT PR_BODY

 OMP_O_IM_C_INTERPERSONAL_MSG

The attributes of the class OMP_O_IM_C_INTERPERSONAL_MSG map to MAPI properties as
follows:

MH ID/Type MAPI Property
IM_AUTHORIZING_USERS PR_AUTHORIZING_USERS
IM_AUTO_FORWARDED PR_AUTO_FORWARDED
IM_BLIND_COPY_RECIPIENTS PR_DISPLAY_BCC
IM_BODY PR_BODY
IM_COPY_RECIPIENTS PR_DISPLAY_CC
IM_EXPIRY_TIME PR_EXPIRY_TIME
IM_IMPORTANCE PR_IMPORTANCE
IM_INCOMPLETE_COPY PR_INCOMPLETE_COPY
IM_LANGUAGES PR_LANGUAGES
IM_OBSOLETED_IPMS PR_OBSOLETED_IPMS
IM_ORIGINATOR PR_CALLBACK_TELEPHONE_NUMBER,

PR_SENDER_ADDRTYPE,
PR_SENDER_EMAIL_ADDRESS,
PR_SENDER_ENTRYID,
PR_SENDER_NAME,
PR_SENDER_SEARCH_KEY (and all
PR_SENT_REPRESENTING_* properties)

IM_PRIMARY_RECIPIENTS PR_DISPLAY_TO
IM_RELATED_IPMS PR_RELATED_IPMS
IM_REPLIED_TO_IPM PR_PARENT_KEY
IM_REPLY_RECIPIENTS PR_REPLY_RECIPIENT_ENTRIES,

PR_REPLY_RECIPIENT_NAMES
IM_REPLY_TIME PR_REPLY_TIME
IM_SENSITIVITY PR_SENSITIVITY
IM_SUBJECT PR_NORMALIZED_SUBJECT,

PR_SUBJECT, PR_SUBJECT_PREFIX
IM_THIS_IPM PR_SEARCH_KEY

The following constant values are mapped from IM_IMPORTANCE to PR_IMPORTANCE:

Importance MAPI value
IM_HIGH 2
IM_LOW 0
IM_ROUTINE 1

The following constant values are mapped from IM_SENSITIVITY to PR_SENSITIVITY:

IM_SENSITIVITY value PR_SENSITIVITY value
IM_COMPANY_CONFIDENTIAL SENSITIVITY_COMPANY_CONFIDENTI

AL
IM_NOT_SENSITIVE SENSITIVITY_NONE
IM_PERSONAL SENSITIVITY_PERSONAL
IM_PRIVATE SENSITIVITY_PRIVATE

 OMP_O_IM_C_INTERPERSONAL_NOTIF

The attributes of the class OMP_O_IM_C_INTERPERSONAL_NOTIF map to MAPI properties as
follows:

MH ID/Type MAPI Property
IM_CONVERSION_EITS PR_CONVERSION_EITS
IM_IPM_INTENDED_RECIPIENT PR_ORIGINALLY_INTENDED_RECIPIENT

_NAME
IM_IPN_ORIGINATOR PR_CALLBACK_TELEPHONE_NUMBER,

PR_SENDER_ADDRTYPE,
PR_SENDER_EMAIL_ADDRESS,
PR_SENDER_ENTRYID,
PR_SENDER_NAME,
PR_SENDER_SEARCH_KEY (and all
PR_SENT_REPRESENTING_ * properties)

IM_SUBJECT_IPM PR_ORIGINAL_SEARCH_KEY

 OMP_O_IM_C_IPM_IDENTIFIER

The attributes of the class OMP_O_IM_C_IPM_IDENTIFIER map to MAPI properties as follows:

MH ID/Type MAPI Property
IM_USER,
IM_USER_RELATIVE_IDENTIFIER

Construct a GUID from
IM_USER_RELATIVE_IDENTIFIER

 OMP_O_IM_C_ISO_6937_TEXT_BD_PRT

The attributes of the class OMP_O_IM_C_ISO_6937_TEXT_BD_PRT are mapped to the following
MAPI properties:

MH ID/Type MAPI Property
IM_REPERTOIRE Not mapped to a MAPI property.
IM_TEXT PR_ATTACH_DATA_BIN

 OMP_O_IM_C_MESSAGE_BD_PRT

The attributes of the class OMP_O_IM_C_MESSAGE_BD_PRT are mapped as follows:

MH ID/Type MAPI Property
IM_ENVELOPE Not mapped to a MAPI property.
IM_IPM Mapped to an IMessage object embedded

in the message.

 OMP_O_IM_C_MIXED_MODE_BD_PRT

The attributes of the class OMP_O_IM_C_MIXED_MODE_BD_PRT are not mapped to any MAPI
properties.

MH ID/Type MAPI Property
IM_MIXED_MODE_DOCUMENT Not mapped to a MAPI property.

 OMP_O_IM_C_NATIONAL_DEF_BD_PRT

The attributes of the class OMP_O_IM_C_NATIONAL_DEF_BD_PRT are not mapped to MAPI
properties.

MH ID/Type MAPI Property
IM_NATIONAL_DATA Not mapped to a MAPI property.

 OMP_O_IM_C_NON_RECEIPT_NOTIF

The attributes of the class OMP_O_IM_C_NON_RECEIPT_NOTIF map to MAPI properties (when
PR_NON_RECEIPT_NOTIFICATION_REQUESTED = 1 in Recipient table or when the message has
PR_READ_RECEIPT_REQUESTED = 1), as follows:

MH ID/Type MAPI Property
IM_AUTO_FORWARD_COMMENT PR_AUTO_FORWARD_COMMENT
IM_DISCARD_REASON PR_DISCARD_REASON
IM_NON_RECEIPT_REASON PR_NON_RECEIPT_REASON
IM_RETURNED_IPM (Object; no corresponding property)

The following constant values are mapped from IM_DISCARD_REASON to PR_DISCARD_REASON:

IM_DISCARD_REASON value PR_DISCARD_REASON value
IM_NO_DISCARD -1
IM_IPM_EXPIRED 0
IM_IPM_OBSOLETED 1
IM_USER_TERMINATED 2

The following constant values are mapped from IM_NON_RECEIPT_REASON to
PR_NON_RECEIPT_REASON:

IM_NON_RECEIPT_REASON
value

PR_NON_RECEIPT_REASON
value

IM_IPM_AUTO_FORWARDED 1
IM_IPM_DISCARDED 0

 OMP_O_IM_C_ODA_BD_PRT

The attributes of the class OMP_O_IM_C_ODA_BD_PRT are not mapped to MAPI properties.

MH ID/Type MAPI Property
IM_APPLICATION_PROFILE Not mapped to a MAPI property.
IM_ARCHITECTURE_CLASS Not mapped to a MAPI property.
IM_ODA_DOCUMENT Not mapped to a MAPI property.

 OMP_O_IM_C_OR_DESCRIPTOR

The attributes of the class OMP_O_IM_C_OR_DESCRIPTOR map to MAPI properties as follows:

MH ID/Type MAPI Property
IM_FORMAL_NAME Extract name using PR_ENTRYID; for

X.400 address types, build an OR Address
from string address.

IM_FREE_FORM_NAME PR_SENDER_NAME for originator,
PR_DISPLAY_NAME for recipient, or
extract the display name using
PR_SENDER_ENTRYID

IM_TELEPHONE_NUMBER PR_CALLBACK_TELEPHONE_NUMBER
for originator,
PR_PRIMARY_TELEPHONE_NUMBER for
recipient

 OMP_O_IM_C_RECEIPT_NOTIF

The attributes of the class OMP_O_IM_C_RECEIPT_NOTIF map to MAPI properties, as follows:

MH ID/Type MAPI Property
IM_ACKNOWLEDGEMENT_MODE PR_ACKNOWLEDGEMENT_MODE
IM_RECEIPT_TIME PR_RECEIPT_TIME
IM_SUPPLEMENTARY_RECEIPT_INFO PR_REPORT_TEXT

The following constant values are mapped from IM_ACKNOWLEDGEMENT_MODE to
PR_ACKNOWLEDGEMENT_MODE:

IM_ACKNOWLEDGEMENT_
MODE value

PR_ACKNOWLEDGEMENT_
MODE value

IM_AUTOMATIC 1
IM_MANUAL 0

 OMP_O_IM_C_RECIPIENT_SPECIFIER

The attributes of the class OMP_O_IM_C_OR_DESCRIPTOR map to MAPI properties as follows:

MH ID/Type MAPI Property
IM_IPM_RETURN_REQUESTED PR_IPM_RETURN_REQUESTED
IM_NOTIFICATION_REQUEST PR_NON_RECEIPT_NOTIFICATION_

REQUESTED,
PR_READ_RECEIPT_REQUESTED

IM_RECIPIENT PR_ADDRTYPE, PR_DISPLAY_NAME,
PR_EMAIL_ADDRESS, PR_ENTRYID,
PR_OFFICE_LOCATION,
PR_PRIMARY_TELEPHONE_NUMBER
, PR_SEARCH_KEY

IM_REPLY_REQUESTED PR_REPLY_REQUESTED

The following constant values are mapped from IM_NOTIFICATION_REQUEST to the corresponding
MAPI properties:

IM_NOTIFICATION_REQUES
T Value

MAPI Values

IM_ALWAYS PR_NON_RECEIPT_NOTIFICATION_
REQUESTED = TRUE,
PR_READ_RECEIPT_REQUESTED =
TRUE

IM_NEVER PR_NON_RECEIPT_NOTIFICATION_
REQUESTED = FALSE,
PR_READ_RECEIPT_REQUESTED =
FALSE

IM_NON_RECEIPT PR_NON_RECEIPT_NOTIFICATION_
REQUESTED = TRUE,
PR_READ_RECEIPT_REQUESTED =
FALSE

 OMP_O_IM_C_TELETEX_BD_PRT

The attributes of the class OMP_O_IM_C_TELETEX_BD_PRT are mapped to the following MAPI
properties:

MH ID/Type MAPI Property
IM_TELETEX_COMPATIBLE Not mapped to a MAPI property.
IM_TELETEX_DOCUMENT PR_BODY
IM_TELETEX_NBPS Not mapped to a MAPI property.

 OMP_O_IM_C_UNIDENTIFIED_BD_PRT

The attributes of the class OMP_O_IM_C_UNIDENTIFIED_BD_PRT are not mapped to MAPI
properties.

MH ID/Type MAPI Property
IM_UNIDENTIFIED_DATA Not mapped to a MAPI property.
IM_UNIDENTIFIED_TAG Not mapped to a MAPI property.

 OMP_O_IM_C_USA_NAT_DEF_BD_PRT

The attributes of the class OMP_O_IM_C_USA_NAT_DEF_BD_PRT are mapped to the following
MAPI properties:

MH ID/Type MAPI Property
IM_BODY_PART_NUMBER Not mapped to a MAPI property.
IM_USA_DATA Not mapped to a MAPI property.

 OMP_O_IM_C_VIDEOTEX_BD_PRT

The attributes of the class OMP_O_IM_C_VIDEOTEX_BD_PRT are not mapped to MAPI properties.

MH ID/Type MAPI Property
IM_VIDEOTEX_DATA Not mapped to a MAPI property.
IM_VIDEOTEX_SYNTAX Not mapped to a MAPI property.

 Comprehensive X.400 Attributes Reference

The following table contains mappings between X.400 P2 attributes and MAPI properties, listed in
alphabetical order. The name of the object appears in parentheses.

MH ID/Type MAPI Property
IM_ACKNOWLEDGEMENT_MODE
(OMP_O_IM_C_RECEIPT_NOTIF)

PR_ACKNOWLEDGEMENT_MODE

IM_APPLICATION_PROFILE
(OMP_O_IM_C_ODA_BD_PRT)

Not mapped to a MAPI property.

IM_ARCHITECTURE_CLASS
(OMP_O_IM_C_ODA_BD_PRT)

Not mapped to a MAPI property.

IM_AUTHORIZING_USERS
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_AUTHORIZING_USERS

IM_AUTO_FORWARD_COMMENT
(OMP_O_IM_C_NON_RECEIPT_NOTIF)

PR_AUTO_FORWARD_COMMENT

IM_AUTO_FORWARDED
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_AUTO_FORWARDED

IM_BILATERAL_DATA
(OMP_O_IM_C_BILAT_DEF_BD_PRT)

PR_ATTACH_DATA_BIN

IM_BLIND_COPY_RECIPIENTS
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_DISPLAY_BCC

IM_BODY
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_BODY

IM_BODY_PART_NUMBER
(OMP_O_IM_C_USA_NAT_DEF_BD_PRT)

Not mapped to a MAPI property.

IM_CHAR_SET_REG
(OMP_O_IM_C_GENERAL_TEXT_BD_PRT)

Not mapped to a MAPI property.

IM_CONVERSION_EITS
(OMP_O_IM_C_INTERPERSONAL_NOTIF)

PR_CONVERSION_EITS

IM_COPY_RECIPIENTS
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_DISPLAY_CC

IM_DISCARD_REASON
(OMP_O_IM_C_NON_RECEIPT_NOTIF)

PR_DISCARD_REASON

IM_ENVELOPE
(OMP_O_IM_C_MESSAGE_BD_PRT)

Not mapped to a MAPI property.

IM_EXPIRY_TIME
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_EXPIRY_TIME

IM_EXTERNAL_DATA
(OMP_O_IM_C_EXTERN_DEF_BD_PRT)

PR_ATTACH_DATA_BIN,
PR_ATTACH_FILENAME,
PR_ATTACH_TAG

IM_EXTERNAL_PARAMETERS
(OMP_O_IM_C_EXTERN_DEF_BD_PRT)

PR_ATTACHMENT_X400_PARAMETERS

IM_FORMAL_NAME
(OMP_O_IM_C_OR_DESCRIPTOR)

Extract name using PR_ENTRYID; for
X.400 address types, build an OR Address
from string address.

IM_FREE_FORM_NAME
(OMP_O_IM_C_OR_DESCRIPTOR)

PR_SENDER_NAME for originator,
PR_DISPLAY_NAME for recipient, or
extract the display name using

PR_SENDER_ENTRYID
IM_G3_FAX_NBPS
(OMP_O_IM_C_G3_FAX_BD_PRT)

Not mapped to a MAPI property.

IM_G4_CLASS_1_DOCUMENT
(OMP_O_IM_C_G4_CLASS_1_BD_PRT)

Not mapped to a MAPI property.

IM_IMAGES
(OMP_O_IM_C_G3_FAX_BD_PRT)

Not mapped to a MAPI property.

IM_IMPORTANCE
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_IMPORTANCE

IM_INCOMPLETE_COPY
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_INCOMPLETE_COPY

IM_IPM
(OMP_O_IM_C_MESSAGE_BD_PRT)

Mapped to an IMessageobject embedded
in the message.

IM_IPM_INTENDED_RECIPIENT
(OMP_O_IM_C_INTERPERSONAL_NOTIF)

PR_ORIGINALLY_INTENDED_RECIPIEN
T_NAME

IM_IPM_RETURN_REQUESTED
(OMP_O_IM_C_OR_DESCRIPTOR)

PR_IPM_RETURN_REQUESTED

IM_IPN_ORIGINATOR
(OMP_O_IM_C_INTERPERSONAL_NOTIF)

PR_CALLBACK_TELEPHONE_NUMBER,
PR_SENDER_ADDRTYPE,
PR_SENDER_EMAIL_ADDRESS,
PR_SENDER_ENTRYID,
PR_SENDER_NAME,
PR_SENDER_SEARCH_KEY (and all
PR_SENT_REPRESENTING_ *
properties)

IM_LANGUAGES
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_LANGUAGES

IM_MIXED_MODE_DOCUMENT
(OMP_O_IM_C_MIXED_MODE_BD_PRT)

Not mapped to a MAPI property.

IM_NATIONAL_DATA
(OMP_O_IM_C_NATIONAL_DEF_BD_PRT)

Not mapped to a MAPI property.

IM_NON_RECEIPT_REASON
(OMP_O_IM_C_NON_RECEIPT_NOTIF)

PR_NON_RECEIPT_REASON

IM_NOTIFICATION_REQUEST
(OMP_O_IM_C_OR_DESCRIPTOR)

PR_NON_RECEIPT_NOTIFICATION_RE
QUESTED,
PR_READ_RECEIPT_REQUESTED

IM_OBSOLETED_IPMS
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_OBSOLETED_IPMS

IM_ODA_DOCUMENT
(OMP_O_IM_C_ODA_BD_PRT)

Not mapped to a MAPI property.

IM_ORIGINATOR
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_CALLBACK_TELEPHONE_NUMBER,
PR_SENDER_ADDRTYPE,
PR_SENDER_EMAIL_ADDRESS,
PR_SENDER_ENTRYID,
PR_SENDER_NAME,
PR_SENDER_SEARCH_KEY (and all
PR_SENT_REPRESENTING_* properties)

IM_PRIMARY_RECIPIENTS
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_DISPLAY_TO

IM_RECEIPT_TIME PR_RECEIPT_TIME

(OMP_O_IM_C_RECEIPT_NOTIF)
IM_RECIPIENT
(OMP_O_IM_C_OR_DESCRIPTOR)

PR_ADDRTYPE, PR_DISPLAY_NAME,
PR_EMAIL_ADDRESS, PR_ENTRYID,
PR_OFFICE_LOCATION,
PR_PRIMARY_TELEPHONE_NUMBER,
PR_SEARCH_KEY

IM_RELATED_IPMS
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_RELATED_IPMS

IM_REPERTOIRE
(OMP_O_IM_C_IA5_TEXT_BD_PRT)

Not mapped to a MAPI property.

IM_REPERTOIRE
(OMP_O_IM_C_ISO_6937_TEXT_BD_PRT)

Not mapped to a MAPI property.

IM_REPLIED_TO_IPM
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_PARENT_KEY

IM_REPLY_RECIPIENTS
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_REPLY_RECIPIENT_ENTRIES,
PR_REPLY_RECIPIENT_NAMES

IM_REPLY_REQUESTED
(OMP_O_IM_C_OR_DESCRIPTOR)

PR_REPLY_REQUESTED

IM_REPLY_TIME
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_REPLY_TIME

IM_RETURNED_IPM
(OMP_O_IM_C_NON_RECEIPT_NOTIF)

(Object; no corresponding property)

IM_SENSITIVITY
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_SENSITIVITY

IM_SUBJECT
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_NORMALIZED_SUBJECT,
PR_SUBJECT, PR_SUBJECT_PREFIX

IM_SUBJECT_IPM
(OMP_O_IM_C_INTERPERSONAL_NOTIF)

PR_ORIGINAL_SEARCH_KEY

IM_SUPPLEMENTARY_RECEIPT_INFO
(OMP_O_IM_C_RECEIPT_NOTIF)

PR_REPORT_TEXT

IM_TELEPHONE_NUMBER
(OMP_O_IM_C_OR_DESCRIPTOR)

PR_CALLBACK_TELEPHONE_NUMBER
for Originator,
PR_PRIMARY_TELEPHONE_NUMBER
for Recipient

IM_TELETEX_COMPATIBLE
(OMP_O_IM_C_TELETEX_BD_PRT)

Not mapped to a MAPI property.

IM_TELETEX_DOCUMENT
(OMP_O_IM_C_TELETEX_BD_PRT)

PR_BODY

IM_TELETEX_NBPS
(OMP_O_IM_C_TELETEX_BD_PRT)

Not mapped to a MAPI property.

IM_TEXT
(OMP_O_IM_C_GENERAL_TEXT_BD_PRT)

Not mapped to a MAPI property.

IM_TEXT
(OMP_O_IM_C_IA5_TEXT_BD_PRT)

PR_BODY

IM_TEXT
(OMP_O_IM_C_ISO_6937_TEXT_BD_PRT)

PR_ATTACH_DATA_BIN

IM_THIS_IPM
(OMP_O_IM_C_INTERPERSONAL_MSG)

PR_SEARCH_KEY

IM_UNIDENTIFIED_DATA Not mapped to a MAPI property.

(OMP_O_IM_C_UNIDENTIFIED_BD_PRT)
IM_UNIDENTIFIED_TAG
(OMP_O_IM_C_UNIDENTIFIED_BD_PRT)

Not mapped to a MAPI property.

IM_USA_DATA
(OMP_O_IM_C_USA_NAT_DEF_BD_PRT)

Not mapped to a MAPI property.

IM_USER, IM_USER_RELATIVE_IDENTIFIER
(OMP_O_IM_C_IPM_IDENTIFIER)

Construct a GUID from
IM_USER_RELATIVE_IDENTIFIER

IM_VIDEOTEX_DATA
(OMP_O_IM_C_VIDEOTEX_BD_PRT)

Not mapped to a MAPI property.

IM_VIDEOTEX_SYNTAX
(OMP_O_IM_C_VIDEOTEX_BD_PRT)

Not mapped to a MAPI property.

 Mapping of Internet Mail Attributes to MAPI Properties

This appendix describes how a MAPI transport provider or MAPI-aware gateway which connects to the
Internet should translate between MAPI message properties and Simple Message Transport Protocol
(SMTP) message attributes. SMTP is the messaging protocol used on much of the Internet. SMTP
defines a set of message headers (the message envelope) and a message content format. SMTP is
fully documented in a set of two docments, RFC 821 and RFC 822, which can be found at a number of
FTP and WWW sites on the Internet.

The goal of mapping SMTP message attributes to MAPI properties (and vice versa) is to ensure that
the full content of MAPI messages, over and above that which can be encoded using native SMTP
message attributes, can be reliably exchanged among different MAPI components that must
communicate over the Internet. This document is based on work already done on such components at
Microsoft. How to translate between MAPI message properties and X.400 message attributes is
described in the appendix, Mapping of X.400 P2 Attributes to MAPI Properties.

This document assumes familiarity with MAPI transports, TNEF, and SMTP mail. It strives to be
concise rather than abundantly clear.

As a convention, "outbound" refers to mail traveling from a MAPI-compliant UA or MTA to the Internet,
and "inbound" refers to mail traveling from the Internet to a MAPI component.

Addressing

The format of SMTP e-mail addresses is defined in RFC 822. MAPI components should handle any
address that complies with that standard. However, there is a particular form of RFC 822 address that
best encodes MAPI addresses:

 display-name <email-address>

The angle brackets are included as literals. Blanks are common in display names; they need not be
quoted. A typical address might look like this one, which belongs to one of the coauthors of RFC 1521:

 Nathaniel Borenstein <nsb@bellcore.com>

If the display name contains characters that have special meaning in SMTP addresses, such as < or
@, the entire display name should be quoted using double quotes. On outbound mail, if the total length
of the e-mail address plus display name exceeds 255 characters, the display name should be dropped.

The parts of an SMTP address map into MAPI properties as follows:

SMTP address
component

MAPI property

display-name for all
recipients

PR_DISPLAY_NAME

display-name for From
field

PR_SENDER_NAME

display-name for Sender
field

PR_SENT_REPRESENTING_NAME

email-address PR_EMAIL_ADDRESS
implicit, always "SMTP" PR_ADDRTYPE

If there is no display name for an address on inbound mail, the entire e-mail address should be used
instead. The address type is always SMTP.

Recipient properties are taken from the MAPI message's recipient table; sender properties are taken
from the message itself.

Message Envelope

RFC 822 headers are mapped to MAPI properties as follows. PR_SENDER_* is an abbreviation for the
following 5 properties:

PR_SENDER_NAME
PR_SENDER_ADDRTYPE
PR_SENDER_EMAIL_ADDRESS
PR_SENDER_SEARCH_KEY
PR_SENDER_ENTRYID

Similar abbreviations are used for PR_SENT_REPRESENTING_* and other groups of message
properties.

SMTP header MAPI property
From: Outbound: PR_SENDER_*; inbound:

PR_SENDER_* and
PR_SENT_REPRESENTING_*

Date: Outbound: current time; inbound:
PR_MESSAGE_DELIVERY_TIME

To: PR_DISPLAY_NAME and
PR_EMAIL_ADDRESS for recipients
where PR_RECIPIENT_TYPE is
MAPI_TO

Cc: PR_DISPLAY_NAME and
PR_EMAIL_ADDRESS for recipients
where PR_RECIPIENT_TYPE is
MAPI_CC

Bcc: PR_DISPLAY_NAME and
PR_EMAIL_ADDRESS for recipients
where PR_RECIPIENT_TYPE is
MAPI_BCC

Received: No corresponding MAPI property; put

local host name and your component
name here

Return-receipt-to: PR_REPORT_NAME and
PR_REPORT_ENTRYID

Reply-to: PR_REPLY_RECIPIENT_ENTRIES
and
PR_REPLY_RECIPIENT_NAMES

Subject: PR_SUBJECT
No particular length limitation.

MIME-version: Always "1.0"

X-MS-Attachment: For compatibility with MS Mail SMTP

gateway.
filename size mm-dd-yyy hh:mm
Details below.

entire SMTP message PR_TRANSPORT_MESSAGE_HEAD

envelope ERS
header name TBD PR_SEND_RICH_INFO for sender

only.
The TBD header should be used to
determine whether the sender is
capable of interpreting TNEF content
in a reply.

MessageID: PR_TNEF_CORRELATION_KEY
Content-type Either text/plain or multipart/mixed.

See "Message Content" section.

The X-MS-Attachment header is formatted as four tokens, separated by blanks:

 name size date time

The first token is the filename, which may contain embedded blanks, so this header should be parsed
from the right on inbound messages. The size is in bytes; the date is formatted as mm-dd-yyyy, and the
time as hh:mm.

Note MessageID is not mapped to PR_SEARCH_KEY because the SMTP domain has specific
requirements on the format of the message identifier which make it impossible to encode an arbitrary
MAPI message identifier. Instead, MessageID is mapped to PR_TNEF_CORRELATION_KEY. This
property is a transport-defined property that is set by the transport sending an outbound message and
used by a transport receiving an inbound message. For more information, see Developing a TNEF-
Enabled Transport Provider.

Message Content

There are two possible encodings for the message content: one using MIME, the other using
uuencode. MIME is the preferred encoding. In addition, MAPI defines a per-recipient property,
PR_SEND_ RICH_INFO, that governs whether or not TNEF information should be included in an
outgoing message. So there are a total of four ways of encoding message content:

· MIME with TNEF
· MIME without TNEF
· uuencode with TNEF
· uuencode without TNEF

How to choose MIME or uuencode for outbound messages is not specified.

The following properties are excluded from TNEF: PR_SENDER_*, PR_ATTACH_DATA_*, PR_BODY.
All other transmittable message properties are included in the TNEF stream.

Message Text

For outbound messages in MIME mode, the content-type depends on whether there are attachments
and what the message text looks like. If there are attachments, the Content-type is multipart/mixed; the
message text and each attachment become a separate part of the message content, each with its own
content-type. If there are no attachments, the content-type of the message is text/plain and there is
only one part.

The message text is not line-wrapped unless some line exceeds 140 characters in length. If one does,
the entire text is wrapped to 76 columns and the quoted-printable encoding is used to preserve line
breaks. The content-type depends on what characters are found in the message text, as follows:

· If only 7-bit characters are found and no line exceeds 140 characters in length, the message is
ASCII text.
Content-type: text/plain; charset=us-ascii

(Content-Transfer-Encoding=7bit is assumed.)
· If long lines or 8-bit characters are found, the message is text and the character set is determined by

the locale. It should be chosen from the character sets defined by ISO standard 8859.
Content-type: text/plain; charset=iso-8859-1 (or another valid charset)

Content-Transfer-Encoding: quoted-printable

For inbound MIME messages, if the first message content part has Content-type: text/* (that is, any text
type) and its character set is recognized, it is mapped to PR_BODY. A first message content part not
meeting this criterion becomes an attachment. Any subsequent parts also become attachments.

In uuencode mode, message text in outbound messages is line-wrapped to 78 columns, as for MS Mail
3.x. The content-type is "text/plain." To preserve the original message's paragraph breaks under these
circumstances, observe the following conventions in the wrapped text. There are three possible
reasons for ending a line of text, each with its own character sequence:

· Line-break. The original text contained a newline entered by the user (paragraph mark). In the
transport, this maps to a newline with no preceding blanks. If the user enters a newline preceded by
blanks, the blanks should be stripped out.

· Line-nobreak. The original text contained a word too long to fit on a single line of the message. In
the transport, this maps to a newline preceded by two blanks.

· Line-wrap. The original text contained no newline, the text is too long to fit on a single line of the
message, but it can be broken between two words. In the transport, this maps to a newline preceded
by a single blank.

Attached Files and Messages

MIME with TNEF. All attachment properties and content are in the TNEF stream. The TNEF itself is a
single, binary attached file named WINMAIL.DAT, encoded as described for MIME without TNEF.

MIME without TNEF. Attached files are sent as MIME message content parts. The file name is placed
in the name parameter to the Content-type header for the attachment. The character set for the
attachment is placed in the charset parameter to the Content-type; it and the content-transfer-encoding
are determined by scanning the entire attachment content. URL attachments are treated specially:

· If the attachment is a URL (an attached file with extension .URL), and the access mode defined in it
is anonymous FTP, it is encoded as an external message, and the content of the file (the URL) is
copied into the header of the external message.
Content-type: message/external-body; access-type=anon-ftp
(Content-Transfer-Encoding: 7bit is assumed.)

· If only 7-bit characters are found and no line exceeds 140 characters in length, the attachment is
ASCII text.
Content-type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

· If long lines or up to 25% 8-bit characters are found, the attachment content is text and the character
set is determined by the locale. It should be chosen from the character sets defined by ISO standard
8859.
Content-type: text/plain; charset=ISO-8859-1 (or what have you)
Content-Transfer-Encoding: quoted-printable

· If 25% or more of the characters have the high bit set, the attachment is binary. It is encoded using
the Base64 algorithm.

Content-type: application/octet-stream (by default; based on file extension)
Content-Transfer-Encoding: base64

On outbound messages, the content-type should be derived from the filename's three-letter extension.
This mapping exists in the system registry; under there is a string value named "Content Type" that
gives the MIME content type if one is defined. This example is for a TIFF image file:

HKEY_LOCAL_MACHINE\
 Software\
 Microsoft\
 Classes\
 .tif
 Content Type = "image/tiff"

If there is no mapping for the file extension, the default application/octet-stream should be used.
Windows 95 now supports this system registry mapping. Windows NT will support it in a forthcoming
release. Windows 3.x does not support a system registry; implementations are free to choose how they
store this mapping.

On inbound messages, the content-type for an attachment should always be copied to the MAPI
property PR_ATTACH_MIME_TAG. Even if a filename is defined for an attached file, the extension
mapped by the content-type should be used in the PR_ATTACH_FILENAME and
PR_ATTACH_EXTENSION properties.

The name parameter is officially "deprecated" by RFC 821. As standards evolve, Microsoft will consider
specifying an alternate mapping for attached filenames.

Outbound attached messages are sent as
Content-type: message/rfc822

Messages within attached messages are encoded recursively, in their proper place. Inbound message
content parts with Content-Type: multipart/digest are also mapped to embedded messages.

Uuencode with TNEF. All attachment properties and content are in the TNEF stream. The TNEF itself is
a single, binary attached file named WINMAIL.DAT, encoded as described for Uuencode without TNEF.

Uuencode without TNEF. All attached files are treated as binary and uuencoded, following the message
text. The file name is present in the uuencode header:

begin 0755 WINMAIL.DAT
... data ...
end

Attached messages are textized into the message text. The hierarchy of attached messages is always
flattened; that is, messages within attached messages are pulled out to the top level.

Embedded OLE objects are discarded.

General. Attachment rendering positions are transmitted literally, using the property
PR_ATTACH_RENDERING_POSITION in the TNEF. If TNEF is not used, they are lost. Incoming
attachments with no rendering position (including when there is no TNEF) have their rendering position
set to 0xFFFFFFFF, i.e. no position within the message text.

Suggested Configuration Parameters
The following are suggestions only, not requirements. The intent is to provide a convenient list of
parameters which the implementation can choose how to support.

Whether to encode using MIME or uuencode for outbound messages: boolean.

Character set to use for outbound messages: string (copied directly to charset parameter) or
enumeration (translated internally to charset string).

(possibly, if not supplied by the OS) List of mappings between file extensions and content-types.

References
RFC 821 (for information on the SMTP protocol used to communicate with SMTP-based mail agents)

RFC 822 (for addressing and standard message headers)

RFC 1521 (for MIME)

 Regular Expressions

MAPI supports a limited form of regular expression notation. A regular expression specifies a set of
character strings. A member of this set of strings is said to match the regular expression. The regular
expressions allowed by MAPI are constructed as follows:

The following one-character regular expressions match a single character:

1.1.An ordinary character (not one of those discussed in 1.2 below) is a one-character regular
expression that matches itself.

1.2.You form regular expressions using special characters, ".", "*", "[", and the like. If you want to use a
special character literally ¾ without its special meaning ¾ in a regular expression, you must quote it
by preceding it with "\". A backslash (\) followed by any special character is a one-character regular
expression that matches the special character itself. MAPI interprets special characters in strings as
regular expressions only when the relop is RELOP_RE, so do not be tempted to quote the special
characters everywhere.
The special characters are:
a. .,*, [, and \ (dot, star,left square bracket, and backslash, respectively), which are always special,

except when they appear within square brackets ([]; see 1.4).
b. ^ (caret), which is special at the beginning of an entire regular expression (see 3.1 and 3.2), or

when it immediately follows the left of a pair of square brackets ([]) (see 1.4).
c. $ (dollar sign), which is special at the end of an entire regular expression (see 3.2).

1.3.A period (.) is a one-character regular expression that matches any character except NEWLINE.
1.4.A nonempty string of characters enclosed in square brackets ([]) is a one-character regular

expression that matches any single character in that string. If, however, the first character of the
string is a caret (^), the one-character regular expression matches any character except NEWLINE
and the remaining characters in the string. The star (*) has this special meaning only if it occurs first
in the string. The dash (-) can be used to indicate a range of consecutive ASCII characters; for
example, [0-9] is equivalent to [0123456789]. The dash (-) loses this special meaning if it occurs first
(after an initial caret (^), if any) or last in the string. The right square bracket (]) does not terminate
such a string when it is the first character within it (after an initial caret (^), if any); for example, []a-f],
matches either a right square bracket (]) or one of the letters "a" through "f". Dot, star, left bracket,
and the backslash lose their special meaning within such a string of characters.

Use the following rules to construct regular expressions from one-character regular expressions:

2.1 A one-character regular expression matches itself.
2.2 A one-character regular expression followed by a star (*) is a regular expression that matches zero

or more occurrences of the one-character regular expression. If there is any choice, the longest
leftmost string that permits a match is chosen.

2.3 A one-character regular expression followed by \{m\}, \{m,\}, or \{m,n\} is a regular expression that
matches a range of occurrences of the one-character regular expression. The values of m and n
must be nonnegative integers less than 255; \{m\} matches exactly m occurrences; \{m,\} matches at
least m occurrences; \{m,n\} matches any number of occurrences between m and n, inclusive.
Whenever a choice exists, the regular expression matches as many occurrences as possible.

2.4 A concatenation of regular expressions is a regular expression that matches the concatenation of
the strings matched by each component of the regular expression.

2.5 A regular expression enclosed between the character sequences \(and \) is a regular expression
that matches whatever the original regular expression matches. See 2.6 for a discussion of why this
is useful.

2.6 The \n expression matches the same string of characters that was matched by an expression
enclosed between \(and \) earlier in the same regular expression. Here n is a digit; the
subexpression specified is that expression beginning with the nth occurrence of \(counting from the

left. For example, the expression matches a line consisting of two repeated appearances of the
same string.

Finally, you can constrain an entire regular expression to match only an initial segment or final segment
of a line (or both):

3.1 A caret (^) at the beginning of an entire regular expression constrains that regular expression to
match an initial segment of a line.

3.2 A dollar sign ($) at the end of an entire regular expression constrains that regular expression to
match a final segment of a line. The construction ^entire regular expression$ constrains the entire
regular expression to match the entire line.

 Functionality Groups

This appendix provides reference information grouped by functionality. It identifies and describes each
group and lists the reference entries that belong in it.

 Function Groups

The following are groups of related functions.

 Arithmetic Functions

The following functions are used by clients and service providers:

FtAddFt
FtMulDw
FtMulDwDw
FtNegFt
FtSubFt
HexFromBin
ScBinFromHexBounded

 Base Functions

The following functions are used only by clients:

MAPIInitialize
MAPIUninitialize
MAPILogonEx

 Forms Functions

The following functions are used only by clients:

MAPIOpenFormMgr
MAPIOpenLocalFormContainer

 Identifier Functions

The following functions are used by clients and service providers:

HrSzFromEntryID
HrEntryIDFromSz
WrapStoreEntryID
HrComposeEID
HrDecomposeEID
HrComposeMsgID
HrDecomposeMsgID

 Idle Functions

The following functions are used by clients and service providers:

DeregisterIdleRoutine
ChangeIdleRoutine
FtgRegisterIdleRoutine
EnableIdleRoutine

 Initialization Functions

The following entry point functions are implemented by service providers:

HPProviderInit
MSProviderInit
XPProviderInit
ABProviderInit

 IStorage Functions

The following functions are used by clients and service providers:

GetAttribIMsgOnIStg
HrIStorageFromStream
MapStorageSCode
OpenStreamOnFile
OpenIMsgOnIStg
SetAttribIMsgOnIStg

 IUnknown Functions

The following functions are used by clients and service providers:

UlAddRef
UlRelease

 Memory Management Functions

The following functions are used by clients and service providers:

MAPIFreeBuffer
MAPIAllocateBuffer
MAPIAllocateMore
MAPIGetDefaultMalloc
FreePadrlist

 Message Session Functions

The following functions are used by clients and service providers:

OpenIMsgSession
CloseIMsgSession

 Notification Functions

The following functions are used by clients and service providers:

HrAllocAdviseSink
HrThisThreadAdviseSink
ScCopyNotifications
ScCountNotifications
ScRelocNotifications

 Parameter Validation Functions

The following functions are used by clients, service providers, and MAPI:

CheckParameters
CheckParms
UlValidateParameters
UlValidateParms
ValidateParameters
ValidateParms

 Path Name Functions

The following functions are used by clients and service providers:

ScLocalPathFromUNC
ScUNCFromLocalPath

 Preprocessor Functions

The following functions are implemented by service providers:

PreprocessMessage
RemovePreprocessInfo

 Properties Functions

The following functions are used by clients and service providers:

CreateIProp
FPropCompareProp
FPropContainsProp
FPropExists
GetInstance
HrSetOneProp
HrGetOneProp
LPropCompareProp
PpropFindProp
PropCopyMore
ScCopyProps
ScCountProps
ScDupPropset
ScRelocProps
UlPropSize

 RTF Synchronization Functions

The following functions are used by clients and service providers:

RTFSync
WrapCompressedRTFStream

 String Operator Functions

The following functions are used by clients and service providers:

FBinFromHex
FEqualNames
SzFindCh
SzFindLastCh
SzFindSz
UFromSz
UlFromSzHex

 Structure Validation Functions

The following functions are used by clients and service providers:

FBadEntryList
FBadProp
FBadColumnSet
FBadPropTag
FBadRestriction
FBadRglpNameID
FBadRglpszW
FBadRow
FBadRowSet
FBadSortOrderSet

 Table Functions

The following functions are used by clients and service providers:

CreateTable
FreeProws
HrAddColumnsEx
HrQueryAllRows

 Tnef Functions

The following functions are used only by service providers:

OpenTnefStream
OpenTnefStreamEx

 Property Groups

Many of the MAPI properties fall into groups based on which ones are used in conjunction with each
other. The following lists enumerate the groups and provide additional references where appropriate.

 Actual Recipient Properties

The following are the address properties for the messaging user that actually receives the message:

PR_RECEIVED_BY_ADDRTYPE
PR_RECEIVED_BY_EMAIL_ADDRESS
PR_RECEIVED_BY_ENTRYID
PR_RECEIVED_BY_NAME
PR_RECEIVED_BY_SEARCH_KEY

For more information on the address properties, see About Base Address Properties.

 Alternate Recipient Properties

The following are the alternate autoforwarding recipient properties:

PR_ALTERNATE_RECIPIENT
PR_ALTERNATE_RECIPIENT_ALLOWED
PR_ORIGINATOR_REQUESTED_ALTERNATE_RECIPIENT

For more properties related to autoforwarding, see Autoforwarding Properties and Originally Intended
Recipient Properties.

 Attachment Properties

The following are the attachment properties for a message:

PR_ATTACH_DATA_BIN
PR_ATTACH_DATA_OBJ
PR_ATTACH_ENCODING
PR_ATTACH_EXTENSION
PR_ATTACH_FILENAME
PR_ATTACH_LONG_FILENAME
PR_ATTACH_LONG_PATHNAME
PR_ATTACH_METHOD
PR_ATTACH_MIME_TAG
PR_ATTACH_NUM
PR_ATTACH_PATHNAME
PR_ATTACH_RENDERING
PR_ATTACH_SIZE
PR_ATTACH_TAG
PR_ATTACH_TRANSPORT_NAME
PR_HASATTACH
PR_PHYSICAL_RENDITION_ATTRIBUTES
PR_RENDERING_POSITION
PR_TNEF_CORRELATION_KEY

For more information on attachments, see About Message Attachments.

 Autoforwarding Properties

The following are the autoforwarding properties for a message:

PR_AUTO_FORWARD_COMMENT
PR_AUTO_FORWARDED
PR_REDIRECTION_HISTORY

For more properties related to autoforwarding, see Alternate Recipient Properties and Originally
Intended Recipient Properties.

 Base Address Properties

The following are the base address properties for all messaging users:

PR_ADDRTYPE
PR_DISPLAY_NAME
PR_EMAIL_ADDRESS
PR_ENTRYID
PR_SEARCH_KEY

For more information on the address properties, see About Base Address Properties.

 Certificate Properties

The following are the ASN.1 certificate properties:

PR_ORIGINATOR_CERTIFICATE
PR_RECIPIENT_CERTIFICATE
PR_USER_CERTIFICATE

 Content Properties

The following are the content properties in the envelope of a message:

PR_CONTENT_CONFIDENTIALITY_ALGORITHM_ID
PR_CONTENT_CORRELATOR
PR_CONTENT_IDENTIFIER
PR_CONTENT_INTEGRITY_CHECK
PR_CONTENT_LENGTH
PR_CONTENT_RETURN_REQUESTED

For more information on message content and envelopes, see Types of Message Properties.

 Conversation Properties

The following are the conversation thread properties for a message:

PR_CONVERSATION_INDEX
PR_CONVERSATION_TOPIC
PR_OBSOLETED_IPMS
PR_RELATED_IPMS

For more properties related to conversation threads, see Original Author Properties and Original
Represented Sender Properties.

For more information on conversations, see About Conversation Tracking.

 Conversion Properties

The following are the message text conversion properties:

PR_CONVERSION_EITS
PR_CONVERSION_PROHIBITED
PR_CONVERSION_WITH_LOSS_PROHIBITED
PR_CONVERTED_EITS
PR_EXPLICIT_CONVERSION
PR_IMPLICIT_CONVERSION_PROHIBITED
PR_ORIGINAL_EITS

 Criticality Properties

The following are the criticality properties for a message:

PR_IMPORTANCE
PR_ORIGINAL_SENSITIVITY
PR_PRIORITY
PR_SECURITY
PR_SENSITIVITY

For more information on criticality properties, see About Message Delivery Options.

 Dialog Box Control Properties

The following are the properties for a dialog box control element:

PR_CONTROL_FLAGS
PR_CONTROL_ID
PR_CONTROL_STRUCTURE
PR_CONTROL_TYPE
PR_DELTAX
PR_DELTAY
PR_XPOS
PR_YPOS

For more information on dialog boxes, see About Display Tables.

 Folder Properties

The following are the properties relating to folders:

PR_ASSOC_CONTENT_COUNT
PR_COMMON_VIEWS_ENTRYID
PR_CONTENT_COUNT
PR_CONTENT_UNREAD
PR_DEFAULT_VIEW_ENTRYID
PR_FINDER_ENTRYID
PR_FOLDER_TYPE
PR_PARENT_ENTRYID
PR_STATUS
PR_SUBFOLDERS
PR_VALID_FOLDER_MASK
PR_VIEWS_ENTRYID

For more information on folders, see Folders.

 Form Properties

The following are the properties for a form:

PR_FORM_CATEGORY
PR_FORM_CATEGORY_SUB
PR_FORM_CLSID
PR_FORM_CONTACT_NAME
PR_FORM_DESIGNER_GUID
PR_FORM_DESIGNER_NAME
PR_FORM_HIDDEN
PR_FORM_HOST_MAP
PR_FORM_MESSAGE_BEHAVIOR
PR_FORM_VERSION
PR_ICON
PR_MINI_ICON

For more information on forms, see MAPI Form Architecture.

 General Object Properties

The following are the properties for any general object:

PR_ACCESS
PR_ACCESS_LEVEL
PR_COMMENT
PR_MAPPING_SIGNATURE
PR_OBJECT_TYPE
PR_RECORD_KEY

 Identity Properties

The following are the address properties constituting a service provider's identity as defined within a
messaging system:

PR_IDENTITY_DISPLAY
PR_IDENTITY_ENTRYID
PR_IDENTITY_SEARCH_KEY

For more information on the address properties, see About Base Address Properties.

For more information on identity, see About Providing Session Identity.

 IPM Properties

The following are the interpersonal message (IPM) properties:

PR_IPM_OUTBOX_ENTRYID
PR_IPM_SENTMAIL_ENTRYID
PR_IPM_SUBTREE_ENTRYID
PR_IPM_WASTEBASKET_ENTRYID
PR_SENTMAIL_ENTRYID

For more information on interpersonal message properties, see About the IPM Subtree.

 Message Properties

The following are the general properties for a message:

PR_ACKNOWLEDGEMENT_MODE
PR_AUTHORIZING_USERS
PR_CORRELATE
PR_CORRELATE_MTSID
PR_DELETE_AFTER_SUBMIT
PR_DISCLOSURE_OF_RECIPIENTS
PR_DL_EXPANSION_HISTORY
PR_DL_EXPANSION_PROHIBITED
PR_INCOMPLETE_COPY
PR_LANGUAGES
PR_MESSAGE_CLASS
PR_MESSAGE_DELIVERY_ID
PR_MESSAGE_FLAGS
PR_MESSAGE_SECURITY_LABEL
PR_MESSAGE_SIZE
PR_MESSAGE_SUBMISSION_ID
PR_MESSAGE_TOKEN
PR_MSG_STATUS
PR_ORIG_MESSAGE_CLASS
PR_RECIPIENT_REASSIGNMENT_PROHIBITED
PR_REPLY_RECIPIENT_ENTRIES
PR_REPLY_RECIPIENT_NAMES
PR_REPLY_REQUESTED
PR_REQUESTED_DELIVERY_METHOD
PR_TRANSPORT_MESSAGE_HEADERS
PR_X400_CONTENT_TYPE

For more information on message properties, see Types of Message Properties.

 Message Service Properties

The following are the properties for a message service:

PR_SERVICE_DELETE_FILES
PR_SERVICE_DLL_NAME
PR_SERVICE_ENTRY_NAME
PR_SERVICE_EXTRA_UIDS
PR_SERVICE_NAME
PR_SERVICE_SUPPORT_FILES
PR_SERVICE_UID

For more information on message services, see About Message Services.

 Original Author Properties

The following are the address properties for the original author of a message:

PR_ORIGINAL_AUTHOR_ADDRTYPE
PR_ORIGINAL_AUTHOR_EMAIL_ADDRESS
PR_ORIGINAL_AUTHOR_ENTRYID
PR_ORIGINAL_AUTHOR_NAME
PR_ORIGINAL_AUTHOR_SEARCH_KEY

For more information on the address properties, see About Base Address Properties.

 Original Messaging User Properties

The following are the address properties for a messaging user or distribution list entry copied from one
address book to another:

PR_ORIGINAL_DISPLAY_NAME
PR_ORIGINAL_ENTRYID
PR_ORIGINAL_SEARCH_KEY

For more information on the address properties, see About Base Address Properties.

 Original Represented Sender Properties

The following are the address properties for a messaging user being represented by the original
sender:

PR_ORIGINAL_SENT_REPRESENTING_ADDRTYPE
PR_ORIGINAL_SENT_REPRESENTING_EMAIL_ADDRESS
PR_ORIGINAL_SENT_REPRESENTING_ENTRYID
PR_ORIGINAL_SENT_REPRESENTING_NAME
PR_ORIGINAL_SENT_REPRESENTING_SEARCH_KEY

For more information on the address properties, see About Base Address Properties.

 Original Sender Properties

The following are the address properties for the original sender of a message:

PR_ORIGINAL_SENDER_ADDRTYPE
PR_ORIGINAL_SENDER_EMAIL_ADDRESS
PR_ORIGINAL_SENDER_ENTRYID
PR_ORIGINAL_SENDER_NAME
PR_ORIGINAL_SENDER_SEARCH_KEY

For more information on the address properties, see About Base Address Properties.

 Originally Intended Recipient Properties

The following are the properties for the messaging user originally intended to be the recipient:

PR_ORIGINALLY_INTENDED_RECIP_ADDRTYPE
PR_ORIGINALLY_INTENDED_RECIP_EMAIL_ADDRESS
PR_ORIGINALLY_INTENDED_RECIP_ENTRYID
PR_ORIGINALLY_INTENDED_RECIPIENT_NAME

For more information on the address properties, see About Base Address Properties. Note that
PR_ORIGINALLY_INTENDED_RECIPIENT_NAME is not one of the address properties.

For more properties related to autoforwarding, see Alternate Recipient Properties and Autoforwarding
Properties.

 Origination Properties

The following are the origination properties for a message:

PR_ORIGIN_CHECK
PR_ORIGINATING_MTA_CERTIFICATE
PR_ORIGINATOR_AND_DL_EXPANSION_HISTORY
PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED
PR_ORIGINATOR_NON_DELIVERY_REPORT_REQUESTED
PR_ORIGINATOR_RETURN_ADDRESS

 Physical Delivery Properties

The following are the physical delivery properties for a message:

PR_PHYSICAL_DELIVERY_BUREAU_FAX_DELIVERY
PR_PHYSICAL_DELIVERY_MODE
PR_PHYSICAL_DELIVERY_REPORT_REQUEST
PR_PHYSICAL_FORWARDING_ADDRESS
PR_PHYSICAL_FORWARDING_ADDRESS_REQUESTED
PR_PHYSICAL_FORWARDING_PROHIBITED
PR_REGISTERED_MAIL_TYPE

 Proof of Progress Properties

The following are the properties for proof of message progress:

PR_PROOF_OF_DELIVERY
PR_PROOF_OF_DELIVERY_REQUESTED
PR_PROOF_OF_SUBMISSION
PR_PROOF_OF_SUBMISSION_REQUESTED

 Provider Properties

The following are the properties for service providers:

PR_AB_PROVIDER_ID
PR_MDB_PROVIDER
PR_OWN_STORE_ENTRYID
PR_PROVIDER_DISPLAY
PR_PROVIDER_DLL_NAME
PR_PROVIDER_ORDINAL
PR_PROVIDER_UID
PR_RESOURCE_FLAGS
PR_RESOURCE_PATH
PR_RESOURCE_TYPE
PR_STATUS_CODE
PR_STATUS_STRING
PR_STORE_ENTRYID
PR_STORE_RECORD_KEY
PR_STORE_STATE
PR_STORE_SUPPORT_MASK

For more information on service providers, see Service Provider Basics.

 Recipient List Properties

The following are the recipient list properties for a message:

PR_DISPLAY_BCC
PR_DISPLAY_CC
PR_DISPLAY_TO
PR_MESSAGE_CC_ME
PR_MESSAGE_RECIP_ME
PR_MESSAGE_TO_ME
PR_ORIGINAL_DISPLAY_BCC
PR_ORIGINAL_DISPLAY_CC
PR_ORIGINAL_DISPLAY_TO

 Remote Transfer Properties

The following are the properties for a remote transfer:

PR_MESSAGE_DOWNLOAD_TIME
PR_REMOTE_PROGRESS
PR_REMOTE_PROGRESS_TEXT
PR_REMOTE_VALIDATE_OK

For more information on remote transfers, see Remote Transport Architecture.

 Report Properties

The following are the properties for a report message:

PR_DELIVERY_POINT
PR_DISCARD_REASON
PR_DISCRETE_VALUES
PR_IPM_RETURN_REQUESTED
PR_NDR_DIAG_CODE
PR_NDR_REASON_CODE
PR_NON_RECEIPT_NOTIFICATION_REQUESTED
PR_NON_RECEIPT_REASON
PR_READ_RECEIPT_REQUESTED
PR_REPORT_TAG
PR_REPORT_TEXT
PR_REPORTING_DL_NAME
PR_REPORTING_MTA_CERTIFICATE
PR_RETURNED_IPM
PR_SUPPLEMENTARY_INFO
PR_TYPE_OF_MTS_USER

For more information on reports, see About Report Messages.

For more properties related to reports, see Report Recipient Properties.

 Report Recipient Properties

The following are the address properties for the recipient of a report:

PR_READ_RECEIPT_ENTRYID
PR_READ_RECEIPT_SEARCH_KEY
PR_REPORT_ENTRYID
PR_REPORT_NAME
PR_REPORT_SEARCH_KEY

For more information on the address properties, see About Base Address Properties.

For more properties related to reports, see Report Properties.

 Represented Recipient Properties

The following are the address properties for a messaging user being represented by the receiving user:

PR_RCVD_REPRESENTING_ADDRTYPE
PR_RCVD_REPRESENTING_EMAIL_ADDRESS
PR_RCVD_REPRESENTING_ENTRYID
PR_RCVD_REPRESENTING_NAME
PR_RCVD_REPRESENTING_SEARCH_KEY

For more information on the address properties, see About Base Address Properties.

 Represented Sender Properties

The following are the address properties for a messaging user being represented by the sender:

PR_SENT_REPRESENTING_ADDRTYPE
PR_SENT_REPRESENTING_EMAIL_ADDRESS
PR_SENT_REPRESENTING_ENTRYID
PR_SENT_REPRESENTING_NAME
PR_SENT_REPRESENTING_SEARCH_KEY

For more information on the address properties, see About Base Address Properties.

 Reserved Properties

The following properties are reserved for use by MAPI 1.0:

PR_AB_DEFAULT_DIR
PR_AB_DEFAULT_PAB
PR_AB_PROVIDERS
PR_AB_SEARCH_PATH
PR_AB_SEARCH_PATH_UPDATE
PR_PREPROCESS
PR_RECIPIENT_STATUS
PR_RTF_SYNC_BODY_COUNT
PR_RTF_SYNC_BODY_CRC
PR_RTF_SYNC_BODY_TAG
PR_RTF_SYNC_PREFIX_COUNT
PR_RTF_SYNC_TRAILING_COUNT
PR_SERVICES
PR_STORE_PROVIDERS
PR_TRANSPORT_KEY
PR_TRANSPORT_PROVIDERS

 Rich Text Properties

The following are the Rich Text Format (RTF) properties:

PR_RTF_COMPRESSED
PR_RTF_IN_SYNC
PR_SEND_RICH_INFO

For more information on formatted text, see About Supporting Formatted Text.

 Schedule Properties

The following are the properties for a schedule message:

PR_DELEGATION
PR_END_DATE
PR_OWNER_APPT_ID
PR_RESPONSE_REQUESTED
PR_START_DATE

For more information on schedule messages, see About Scheduling Properties.

 Sender Properties

The following are the address properties for the current message sender:

PR_SENDER_ADDRTYPE
PR_SENDER_EMAIL_ADDRESS
PR_SENDER_ENTRYID
PR_SENDER_NAME
PR_SENDER_SEARCH_KEY

For more information on the address properties, see About Base Address Properties.

 Specialized Usage Properties

The following are the properties with specialized usage:

PR_ANR
PR_NULL
PR_SEARCH

 Subject Properties

The following are the message subject properties:

PR_NORMALIZED_SUBJECT
PR_ORIGINAL_SUBJECT
PR_SUBJECT
PR_SUBJECT_PREFIX

For more information on subject properties, see About Message Subject Properties.

 Supplemental Name Properties

The following are the supplemental name properties for a messaging user:

PR_7BIT_DISPLAY_NAME
PR_MHS_COMMON_NAME
PR_TRANSMITTABLE_DISPLAY_NAME

 Table Access Properties

The following are the table access properties:

PR_CONTAINER_CONTENTS
PR_CONTAINER_HIERARCHY
PR_FOLDER_ASSOCIATED_CONTENTS
PR_MESSAGE_ATTACHMENTS
PR_MESSAGE_RECIPIENTS
PR_RECEIVE_FOLDER_SETTINGS

For more information on table access, see Types of Tables.

 Table Row Properties

The following are the properties for a row entry in a table:

PR_DEPTH
PR_DISPLAY_TYPE
PR_INSTANCE_KEY
PR_PARENT_DISPLAY
PR_ROW_TYPE
PR_ROWID

For more information on table rows, see Retrieving Rows.

 Template Properties

The following are the template dialog box properties for an address book container:

PR_CREATE_TEMPLATES
PR_DEF_CREATE_DL
PR_DEF_CREATE_MAILUSER
PR_SELECTABLE

For more information on template identifiers, see About Types of Address Book Identifiers.

 Time Properties

The following are the properties for tracking the progress of a message through time:

PR_CLIENT_SUBMIT_TIME
PR_CREATION_TIME
PR_DEFERRED_DELIVERY_TIME
PR_DELIVER_TIME
PR_EXPIRY_TIME
PR_LAST_MODIFICATION_TIME
PR_LATEST_DELIVERY_TIME
PR_MESSAGE_DELIVERY_TIME
PR_ORIGINAL_DELIVERY_TIME
PR_ORIGINAL_SUBMIT_TIME
PR_PROVIDER_SUBMIT_TIME
PR_RECEIPT_TIME
PR_REPLY_TIME
PR_REPORT_TIME

For more information on time properties on messages, see About Message Delivery Options.

 Unused Properties

The following properties are not used or supported in MAPI 1.0:

PR_ATTACHMENT_X400_PARAMETERS
PR_CAPABILITIES_TABLE
PR_CONTAINER_CLASS
PR_CONTAINER_MODIFY_VERSION
PR_CONTENTS_SORT_ORDER
PR_CONVERSATION_KEY
PR_CREATION_VERSION
PR_CURRENT_VERSION
PR_DISC_VAL
PR_FILTERING_HOOKS
PR_HEADER_FOLDER_ENTRYID
PR_IPM_ID
PR_IPM_OUTBOX_SEARCH_KEY
PR_IPM_SENTMAIL_SEARCH_KEY
PR_IPM_SUBTREE_SEARCH_KEY
PR_IPM_WASTEBASKET_SEARCH_KEY
PR_MODIFY_VERSION
PR_PARENT_KEY
PR_PRIMARY_CAPABILITY
PR_TRANSPORT_STATUS
PR_X400_DEFERRED_DELIVERY_CANCEL

 User Personal Information Properties

The following are the user personal information properties for a messaging user:

PR_ACCOUNT
PR_ASSISTANT
PR_ASSISTANT_TELEPHONE_NUMBER
PR_BUSINESS_FAX_NUMBER
PR_BUSINESS_TELEPHONE_NUMBER
PR_BUSINESS2_TELEPHONE_NUMBER
PR_CALLBACK_TELEPHONE_NUMBER
PR_CAR_TELEPHONE_NUMBER
PR_COMPANY_NAME
PR_COUNTRY
PR_DEPARTMENT_NAME
PR_GENERATION
PR_GIVEN_NAME
PR_GOVERNMENT_ID_NUMBER
PR_HOME_FAX_NUMBER
PR_HOME_TELEPHONE_NUMBER
PR_HOME2_TELEPHONE_NUMBER
PR_INITIALS
PR_ISDN_NUMBER
PR_KEYWORD
PR_LOCALITY
PR_LOCATION
PR_MOBILE_TELEPHONE_NUMBER
PR_OFFICE_LOCATION
PR_ORGANIZATIONAL_ID_NUMBER
PR_OTHER_TELEPHONE_NUMBER
PR_PAGER_TELEPHONE_NUMBER
PR_POST_OFFICE_BOX
PR_POSTAL_ADDRESS
PR_POSTAL_CODE
PR_PRIMARY_FAX_NUMBER
PR_PRIMARY_TELEPHONE_NUMBER
PR_RADIO_TELEPHONE_NUMBER
PR_STATE_OR_PROVINCE
PR_STREET_ADDRESS
PR_SURNAME
PR_TELEX_NUMBER
PR_TITLE

For more information on the user personal information properties, see About Messaging User Objects.

 Structure Groups

The following are groups of related structures.

 Address Structures

The following structures are used by clients and service providers:

ADRENTRY
ADRLIST
ADRPARM

 Display Table Structures

The following structures are used by clients and service providers:

DTBLBUTTON
DTBLCHECKBOX
DTBLCOMBOBOX
DTBLDDLBX
DTBLEDIT
DTBLGROUPBOX
DTBLLABEL
DTBLLBX
DTBLMVDDLBOX
DTBLMVLISTBOX
DTBLPAGE
DTBLRADIOBUTTON
DTCTL
DTPAGE

 Form Structures

The following structures are used by clients and service providers:

FORMPRINTSETUP
SMAPIFormInfoArray
SMAPIFormProp
SMAPIFormPropArray
SMAPIFormPropEnumVal
SMAPIVerb
SMAPIVerbArray
SMessageClassArray

 ID Structures

The following structures are used by clients and service providers:

ENTRYID
ENTRYLIST
FLATENTRY
FLATENTRYLIST
FLATMTSIDLIST
GUID
IID
MAPINAMEID
MAPIUID
MTSID

 Notification Structures

The following structures are used by clients and service providers:

ERROR_NOTIFICATION
EXTENDED_NOTIFICATION
NEWMAIL_NOTIFICATION
NOTIFICATION
NOTIFKEY
OBJECT_NOTIFICATION
STATUS_OBJECT_NOTIFICATION
TABLE_NOTIFICATION

 Property Structures

The following structures are used by clients and service providers:

SPropAttrArray
SPropProblem
SPropProblemArray
SPropTagArray
SPropValue

 Restriction Structures

The following structures are used by clients and service providers:

SAndRestriction
SBitMaskRestriction
SCommentRestriction
SComparePropsRestriction
SContentRestriction
SExistRestriction
SNotRestriction
SOrRestriction
SPropertyRestriction
SRestriction
SSizeRestriction
SSubRestriction

 Simple MAPI Structures

The following structures are used by clients and service providers:

MapiFileDesc
MapiMessage
MapiRecipDesc

 Table Structures

The following structures are used by clients and service providers:

SRow
SRowSet
SSortOrder
SSortOrderSet

 TNEF Structures

The following structures are used by clients and service providers:

STnefProblem
STnefProblemArray

A
address book
A MAPI object that manages a collection of one or more types of recipient available to a client
application. A recipient can be a messaging user or a distribution list. The recipients are stored in
address book containers that are organized hierarchically. At a given workstation an address book
includes recipients from every address book container furnished by every address book provider
in the current profile. Address books implement the IAddrBook : IUnknown interface.

address book container
A MAPI object that contains recipient information furnished by an address book provider. Address
book containers implement the IABContainer:IMAPIContainer interface.

address book provider
A MAPI service provider object that manages zero or more address book containers, enabling
users to address messages and create recipients. An address book provider can furnish
containers or templates or both. A fax address book provider, for example, typically furnishes
messaging user and distribution list templates but no containers. Address book providers
implement the IABProvider:IUnknown interface. See also address book container, container,
message, template.

address properties
A fundamental set of five properties for every recipient that describes the recipient's e-mail
address and address type, display name, entry identifier, and search key. For more information,
see About Base Address Properties.

advise sink
A MAPI object that registers for and receives notifications of specific events in other objects. The
notification of an event is asynchronous to the event itself, that is, it is communicated at an
indeterminate time following the event, and the object generating the event does not wait for any
response to the notification. An advise sink provides a callback function for events that occur in a
message store, address book, or session. Advise sinks implement the
IMAPIAdviseSink:IUnknown interface.

ambiguous name resolution
(ANR) See name resolution.

application form library
A form library that supplies forms to a particular workstation. Forms installed in an application form
library are available to every MAPI client application on that workstation, regardless of what
message store or profile is currently active. See also folder form library, personal form library.

ASN
(Abstract Syntax Notation) An ISO standard for encoding of human-readable symbols, such as
header tags, into condensed binary form. ASN.1 corresponds to CCITT standards X.208 (for the
notation) and X.209 (for the encoding rules). In turn it forms part of the specifications for the X.400
and X.500 series of standards, as well as for various other specifications.

associated contents table
A table of information associated with a folder and normally stored in the "hidden" or associated
part of that folder. It typically contains forms that are installed into the folder and view descriptors
that are associated with the folder. See also associated information, contents table, form, standard

contents table, view descriptor.

associated information
Additional information kept in a folder with a specific purpose for a client application, such as a
view or a form definition. Associated information is typically not visible to the user. See also
associated contents table.

attachment
A MAPI object that contains additional data, such as a file or OLE object, associated with a
message. Attachments implement the IAttach:IMAPIProp interface.

attachment table
A MAPI table object that provides access to information about a message's attachments. Each
row represents a message attachment.

B
bookmark
A marker that identifies a position within a table.

C
canonical form
A conventional and normalized form of any entity, such as an address, phone number, or identifier,
that could exist or be presented in several different forms. An entity's canonical form is regarded
as the most straightforward of its possible forms and the one that best facilitates interactions with
other entities of the same type, particularly comparisons. In MAPI, canonical form is most often
applied to e-mail addresses.

CCITT
The International Telegraph and Telephone Consultative Committee, an international standards
committee and division of the United Nations that defines standards, such as the Electronic Data
Interchange (EDI) data standard. Now called the International Telecommunications Union (ITU).
CCITT stands for Comite Consultatif International Telegraphique et Telephonique, the committee's
original French name. See also X.400, X.435, X.500.

client
See client application.

client application
A program that enables its user to interact with an underlying messaging system by calling
functions or interface methods implemented by the MAPI subsystem or a service provider. These
functions and methods are known collectively as the client interface. See also messaging
application, service provider interface.

client extension
A program component that adds to the feature set of a client application, for example a handler for
custom commands. Client extensions implement the IExchExt:IUnknown interface or one of its
sibling interfaces. For more information, see Interfaces for Extending the Microsoft Exchange
Client.

client interface
The set of interfaces and functions used by a client application. The client interface has four
components: MAPI, Simple MAPI, Common Messaging Calls (CMC), and the OLE Messaging
Library. The last three components are layers between the client application and the MAPI
component, and they make calls to MAPI. The client interface can use one or more of these four
components in any combination. For more information, see Selecting a Client Interface.

CMC
See Common Messaging Calls.

common dialog box
A Microsoft Windows dialog box that is provided with the MAPI SDK. A client application uses
common dialog boxes to promote an appearance both consistent within the application and
consistent with other Windows-based applications. See also dialog box.

Common Messaging Calls
(CMC) A set of functions that is based upon the standard developed by the X.400 Application
Programming Interface Association (XAPIA) and that is a component of the MAPI client interface.
CMC is a cross-platform function set that enables a client application to be independent of the
actual messaging system, operating system, and hardware used. It provides a layer between the
client application and the MAPI client interface component. See also Simple MAPI, OLE

Messaging Library.

Common Messaging Calls data extension
A data structure that is used to add features to Common Messaging Calls (CMC) functions and
structures. Data extensions can add members to existing data structures or parameters to existing
CMC functions.

compound entry identifier
An entry identifier that is created by combining the entry identifier of a message store and the
entry identifier of a message within the store. Compound entry identifiers are used by a client
application to open messages from a nondefault message store provider. MAPI, Simple MAPI,
and Common Messaging Calls applications can all use compound entry identifiers.

configuration file
A formatted file used to define a form and to install it into a form library.using the
IMAPIFormContainer::InstallForm method. Configuration files must have the .CFG filename
extension.

connection number
A number that uniquely identifies an individual registration for a notification. A client application
uses this number to cancel its registration.

container
A MAPI object that holds one or more other MAPI objects. Examples of containers are address
book containers, distribution lists, and folders. Containers implement the
IMAPIContainer:IMAPIProp interface. See also address book container, distribution list, folder,
form container.

contents table
A MAPI table object that provides access to a summary view of entries in a folder or in an address
book container. Each row represents a folder, a message, or a recipient, depending on which
provider is implementing the table. See also associated contents table, standard contents table.

conversation thread
A series of messages that pertain to the same topic. The topic is held in the
PR_CONVERSATION_TOPIC property of each message in the thread. This property and the
PR_CONVERSATION_INDEX property facilitate sorting of messages by threads.

custom recipient
See one-off address.

custom recipient entry identifier
See one-off entry identifier.

custom recipient table
See one-off table.

custom recipient template entry identifier
See one-off template entry identifier.

D
data extension
See Common Messaging Calls data extension.

DBCS
(Double-Byte Character Set) A mapping of a collection of characters to a set of values each of
which can be either one or two bytes. Commonly used for encoding languages requiring more
than 256 characters, such as Japanese Kanji. See also Unicode.

default profile
Configuration information about a session's set of message services, with which a client
application logs on if no other such configuration information is specified. See also message
service, profile, session.

delegate access
The ability of one messaging user to send or receive messages on behalf of another user and to
access that other user's message store. The messaging users in a delegation are commonly
human users, but either the delegator or the delegate could be a software application.

Deleted Items folder
A folder within the interpersonal message (IPM) subtree that is designated to hold messages
marked for deletion. Also referred to as the wastebasket. See also IPM subtree.

delivery report
(DR) A report message sent to a message sender that indicates the message has been delivered
to a particular recipient. A delivery report can be generated by the MAPI spooler, a message
transfer agent, or a transport provider. The recipient may or may not have read the message.

dialog box
A window displayed in the user interface (UI) to solicit input from the user. Its contents are
controlled by a display table.

disk instance
A temporary file that contains executable files for a form if those executable files are not yet
resident on the user's local disk. A disk instance is created any time a form is loaded from a form
library.

display name
A character string that represents a MAPI object in the user interface (UI). Service providers
assign display names to their objects by setting each object's PR_DISPLAY_NAME property.

display table
A MAPI table object that describes the layout of a dialog box. Each row in the table represents a
control in the dialog box. Each column in the table holds data about one property of the control,
such as its location, size, or type. A display table is used to display details of a messaging user, a
distribution list, or a container. It can also be used to display and edit configuration parameters for
a service provider.

distribution list
A MAPI object that identifies a grouping of message recipients. A distribution list can contain

individual messaging users and other distribution lists. Distribution lists implement the
IDistList:IMAPIContainer interface. See also messaging user, recipient.

domain
See messaging domain.

E
Electronic Data Interchange
(EDI) A standard for integrating data with various native formats into a message, which has been
defined by the International Telegraph and Telephone Consultative Committee (CCITT) standards
body, now called the International Telecommunications Union (ITU), and is implemented in the
X.435 message-handling standard.

entry identifier
A binary value that distinguishes a MAPI object from other objects of the same type and permits
clients and providers to open and access the object. Part of the entry identifier represents the
service provider that defines the object, and part represents the individual object. Entry identifiers
allow the MAPI subsystem to determine which service provider should handle a particular object.
An object's entry identifier is stored in its PR_ENTRYID property. See also compound entry
identifier, one-off entry identifier, one-off template entry identifier, long-term entry identifier, short-
term entry identifier, record key, search key.

entry point function
A function in a message service dynamic-link library (DLL) called by MAPI at logon time for
configuration purposes. For more information, see About Message Service Entry Point Functions.

event
A change in an object's state that can generate a notification, such as a critical error occurring or
the object being modified.

event mask
A bitmask that is used to indicate one or more types of event notifications. Advise sink objects
register for specific notifications using the event mask. See also advise sink, notification.

extension
See client extension, Common Messaging Calls data extension.

F
folder
A message store container object that holds messages and other folders. MAPI folders implement
the IMAPIFolder:IMAPIContainer interface. See also header folder, IPM subtree, receive folder,
root folder, search-results folder.

folder form library
A form library that supplies forms to a particular folder. Forms installed in a folder form library are
available to every user of that folder. See also application form library, personal form library.

foreign system
An X.400 messaging term indicating a messaging system outside the messaging domain of the
local X.400 network.

form
A MAPI object that enables a user of a client application to interact with a message of a particular
message class. User interaction is controlled by a form server application and is based on MAPI
properties corresponding to controls on the form. Form objects implement the
IMAPIForm:IUnknown and IMAPIFormInfo:IMAPIProp interfaces.

form activation
The process of starting a form server to enable a user to work with a particular form within a client
application.

form container
A MAPI object that stores form definitions. A form container can be used to locate a form definition
and to activate the appropriate form server. Form containers implement the
IMAPIFormContainer:IUnknown interface. See also form resolution.

form library
A form container as seen through the user interface (UI). MAPI distinguishes several types of form
library, including the application form library, folder form library, and personal form library.

form library provider
A MAPI service provider object that manages one or more form libraries. Like most service
providers it is a dynamic-link library (DLL). Form library providers implement the
IMAPIFormMgr:IUnknown interface. See also form library.

form resolution
The process of mapping the message class of a particular message to the class identifier of the
form server for that message, and of locating the form for that message in the appropriate form
container. Form resolution determines which piece of code should be activated to manage
interaction with a particular message.

form server
An application that manages a user's interaction with a form, for example responding to menu
commands. Form servers implement the IMAPIForm:IUnknown and
IPersistMessage:IUnknown interfaces, and can optionally implement the
IMAPIViewAdviseSink:IUnknown interface. See also form viewer.

form viewer
A client application that is capable of launching a form. See also form server.

fuzzy level
A value that describes the degree of exactness or looseness desired when searching through a
container for a target string. Lower levels of fuzziness indicate more exact matching. Higher levels
return matches for more varied forms of the target string and usually require more execution time.

G
GAL
See global address list.

gateway
Software that links two or more dissimilar messaging systems, that is, systems that use different
transport protocols. A gateway provides address translation and protocol and storage conversion.
See also messaging system, messaging domain.

global address list
(GAL) A MAPI address book container that holds recipient entries for an entire organization and is
available to all e-mail users in that organization.

H
hands-off state
A condition in which a form's storage object is unavailable for either read or write access. A form is
placed in the hands-off state during a save operation to permanent storage. See also uninitialized
state, normal state, no-scribble state. For more information, see About Form States.

header folder
A special folder exposed by a remote transport provider. A client application can open the header
folder to view only the message headers at the remote message store and decide for each
message whether it is worth downloading for reading or can simply be deleted at the remote site.

hierarchy table
A MAPI table object that provides access to the tree organization of a MAPI container. Each row
represents the hierarchical position of a container held within the parent container. For example, a
hierarchy table is used by message store providers to display the folder hierarchy.

hook
See messaging hook provider.

hook provider
See messaging hook provider.

I
IID
See interface identifier.

Inbox
A folder within the interpersonal message (IPM) subtree that is designated as the default
destination for incoming messages. See also IPM subtree, receive folder.

information service
See message service.

interface
A collection of related methods exposed by a given class of objects. There is normally a one-to-
one correspondence between an object class and an interface, for example address book objects
and the IAddrBook interface. All interfaces inherit either directly or indirectly from IUnknown. See
also MAPI interface.

interface identifier
(IID) A constant that represents a particular interface and is used to request a pointer to the
interface in order to call its methods. For example, the IID for the IAddrBook interface is
IID_IAddrBook. Interface identifiers are defined using the IID structure, which is a specialized
GUID structure.

International Telecommunications Union
(ITU) See CCITT.

interpersonal message
(IPM) A message that is sent or received by a human user rather than an application or process.
Interpersonal messages have message class IPM.Note. See also IPC message, non-IPM
message.

interprocess communication
(IPC) The exchange of data between two or more processes or applications. This exchange takes
place solely through software, without any human intervention.

IPC message
A message that is sent and received by interprocess communication rather than by human users.
See also interpersonal message, non-IPM message.

IPM
See interpersonal message.

IPM subtree
(interpersonal message subtree) An area of a folder hierarchy reserved by MAPI for interpersonal
message (IPM) applications. Only information stored within the IPM subtree is visible to IPM
users. Folders are commonly created to handle incoming, outgoing, sent, and deleted
interpersonal messages. These, together with any other folders created for IPM usage, constitute
a subtree of the message store which can be accessed through the message store's
PR_IPM_SUBTREE_ENTRYID property. The default names for the common folders are the
Inbox, Outbox, Sent Items folder, and Deleted Items folder.

K
key
A binary value associated with a MAPI object that can be compared with another binary value for
the purpose of determining the relationship between the objects. Commonly used keys include the
record key and the search key.

L
local message store
A message store provider that keeps its data on the user's local disk.

logon
The process by which a messaging user establishes a session with a messaging system through
the MAPI subsystem. Logon typically involves the verification of the user's name and password
and the user's selection of a valid profile. A user can log on to more than one messaging system
at the same time.

logoff
The process by which a messaging user ends a session with the MAPI subsystem and the
messaging system or systems it was logged on to.

long-term entry identifier
An entry identifier associated permanently with a MAPI object and unique in a global scope. It is
stored with the object and in other appropriate places so that it can be used for multiple
operations. See also short-term entry identifier.

M
mail user
See messaging user.

MAPI
(Messaging Application Programming Interface) A messaging architecture and a client interface
component.

As a messaging architecture, MAPI enables multiple applications to interact with multiple
messaging systems across a variety of hardware platforms. See also MAPI subsystem,
messaging system.

As a client interface component, MAPI is the complete set of functions and object-oriented
interfaces that forms the foundation for the MAPI subsystem's client application and service
provider interfaces. In comparison with Simple MAPI, Common Messaging Calls (CMC), and the
OLE Messaging Library, MAPI provides the highest performance and greatest degree of control to
messaging-based applications and service providers.

MAPI interface
A set of related methods that describe the behavior of a MAPI object. All MAPI interfaces derive
from the OLE base interface, IUnknown.

MAPI object
An object that supports the OLE Component Object Model (COM), implementing one or more
interfaces derived from the IUnknown interface. It is implemented or used by a MAPI compliant
service provider or client application, or by MAPI itself.

MAPI spooler
A MAPI process that handles the sending and receiving of messages between client applications
and most messaging systems. A tightly coupled message store and transport provider does not
use the spooler. See also client application, messaging system.

MAPI subsystem
The set of dynamic-link libraries (DLLs) provided by MAPI that enable interaction between client
applications and service providers. The MAPI subsystem DLLs implement the MAPI spooler, the
client interface, the service provider interface, and the support object.

message
A MAPI object containing information that can be sent to one or more recipients by means of a
messaging system, or posted to a public folder. The principal parts of a message are the message
content and the message envelope. Messages implement the IMessage:IMAPIProp interface.
See also message text, post, recipient.

message body
See message text.

message class
A character string property that is assigned to every MAPI message, identifying the type of the
message. The message class determines behavior such as selecting the appropriate receive
folder and launching a form for the message. Message class strings are stored in the
PR_MESSAGE_CLASS property.

message content
The portion of a message representing the information the sender wishes to communicate to each
recipient. The message content includes the message text and any attachment objects. It
excludes the message envelope. Messages of the same message class are expected to have
similar content structure.

message envelope
The portion of a message used for routing and delivery to each recipient. The message envelope
includes the address properties for each recipient, header information such as the sender and
subject, and specifications for responding and exception handling. It excludes the message
content. See also message text.

message preprocessor
A dynamic-link library (DLL) that runs on a client workstation and operates on outbound messages
before they are given to any transport provider. For example, a message preprocessor might
make a local copy of every outgoing message. A message preprocessor can be called selectively
based on each recipient's address type or entry identifier. See also messaging hook provider.

message service
A group of one or more related service providers installed and configured by a single body of
code. For example, CompuServe might furnish an address book provider, message store
provider, and transport provider all designed to interface with the CompuServe message service.

message service table
A MAPI table object that provides access to information about every message service in the
current profile, such as the service's name, service providers, and associated files.

message site
A MAPI object that handles the manipulation of form objects. Message site objects implement the
IMAPIMessageSite:IUnknown interface.

message store
A MAPI object that contains messages and folders organized hierarchically and that implements
the IMsgStore:IMAPIProp interface. See also folder, message.

message store provider
A MAPI service provider object that manages a message store, handling message distribution,
organization, and storage. Message store providers implement the IMSProvider:IUnknown
interface.

message store table
A MAPI table object that provides access to information about every message store in the current
profile.

message text
The principal content of an interpersonal message, that is, a message of message class
IPM.Note. Message text can optionally be used in other message classes. It is the main portion of
the message content, typically displayed to each recipient as an immediate result of opening the
message. It excludes any attachment objects. Also referred to as the message body.

message transfer agent
(MTA) The X.400 term for the part of a message transfer system (MTS) that interfaces with clients

of that MTS. A MAPI transport provider commonly interfaces with a message transfer agent.

message transfer system
(MTS) The X.400 term for a messaging system.

messaging application
A program that uses the MAPI client interface to pass messaging requests, such as requests to
send and receive messages, to and from a messaging system. A messaging application is a type
of client application.

messaging domain
A collection of interconnected messaging users that share a common addressing scheme and
transport protocol. Communication with a messaging user in the same messaging domain does
not involve reformatting or address translation. Communication with a messaging user in another
messaging domain typically requires the use of a gateway. Also referred to as a domain or a site.

messaging hook provider
A MAPI service provider object that runs on the same machine as the MAPI spooler and performs
special processing on inbound and outbound messages. Messaging hook providers implement
the ISpoolerHook:IUnknown interface. A messaging hook provider can be called for all inbound
messages, all outbound messages, or both. Also referred to as a spooler hook or a hook provider.
See also message preprocessor.

messaging service
See message service.

messaging system
A product that enables electronic communication over a network, such as fax, CompuServe, or the
Internet. Typical clients of a messaging system include an individual computer with a modem and
a local area network with a gateway.

messaging transport provider
See transport provider.

messaging user
 A MAPI object that describes an individual recipient of a message. Messaging users implement
the IMailUser:IMAPIProp interface. See also distribution list.

MTA
See message transfer agent.

MTS
See message transfer system.

multivalued property
A property that can contain many values of the same type. Its property type has MV_FLAG set,
and its property value contains multiple values of the specified property type. See also single-
valued property. For more information, see About Property Types.

N
name resolution
The process of associating a string with a valid address for a particular messaging system. An
unresolved name lacks an entry identifier. The names of all recipients for a message must be
resolved before the message can be sent. See also recipient, resolved recipient, unresolved
recipient.

name space
The set of all possible named property names within a property set. The GUID that is part of each
property's name is unique to each property set and guarantees that no property names from
different name spaces can be the same.

named property
A user-defined property whose principal designation is by a unique name rather than by a property
identifier. Because of name-identifier mapping, a named property is valid in any messaging
domain and any session. Every named property belongs to a property set, each member of which
uses the same GUID for the first part of its name. For more information, see About Named
Properties.

name-identifier mapping
A bidirectional, persistent one-to-one mapping between the name and the property identifier of a
named property. Name-identifier mapping is provided by certain implementations of the
IMAPIProp::GetIDsFromNames and IMAPIProp::GetNamesFromIDs methods. For more
information, see About Support for Named Properties.

NDR
See nondelivery report.

no-scribble state
A condition in which a form's storage object is available only for read access; write access is
prohibited. A form is placed in the no-scribble state during a save operation to enable the
operation to finish uninterrupted. See also uninitialized state, normal state, hands-off state. For
more information, see About Form States.

non-IPM message
(non-interpersonal message) A message that is meant to be sent or received by an application
rather than by a human user, such as a notification from a workgroup scheduling application or an
IPC message. See also interpersonal message.

nondelivery report
(NDR) A report message sent to a message sender that indicates the message could not be
delivered to a particular recipient. A nondelivery report can be generated by the MAPI spooler, a
message transfer agent, or a transport provider. Many situations can cause nondelivery reports to
be generated, such as an inaccurate recipient address, unavailable transport providers, or an
inoperative network.

nonread notification
(NRN) See nonread report.

nonread report
(NRN) A report message from a message store provider to a message sender that indicates the

message was not read by a particular recipient, that is, the client application did not display the
message contents to the recipient before the recipient deleted the message or before a specified
expiration time.

nontransmittable property
A property that is not sent along with the message it is associated with. Nontransmittable
properties are typically those that apply only in the sending environment, such as
PR_DELETE_AFTER_SUBMIT, or only in the receiving environment, such as PR_HASATTACH.
See also transmittable property.

normal state
A condition in which a form's storage object is available for both read and write access. A form is
typically in the normal state unless a save or close operation is in process. See also uninitialized
state, no-scribble state, hands-off state. For more information, see About Form States.

notification
A communication advising a MAPI object of the occurrence of an event in another MAPI object.
The notification is asynchronous to the event, that is, it is communicated at an indeterminate time
following the event, and the object generating the event does not wait for any response to the
notification. The object receiving the notification is referred to as the advise sink. Advise sinks
register for notification of specific events in an object, such as critical errors, by calling that
object's Advise method. See also registration.

O
OID
(object identifier) A value specifying the nature of an X.400 object. MAPI uses OIDs for various
purposes, such as indicating the types of attached files. "Object" is a much more generalized
concept in X.400 than in object-oriented programming. It can mean an algorithm, application, body
part type, character set, external parameter, or message type, among other things. Also, it usually
refers to a class of things, such as CRC-32, rather than one particular implementation of a 32-bit
CRC (cyclic redundancy code).

OLE Messaging Library
An OLE Automation programming interface that is a component of the MAPI client interface and is
used primarily by Visual Basic and Visual C and C++ client application developers. The OLE
Messaging Library furnishes programmable objects, like Microsoft Excel objects and Microsoft
Access objects, that make available properties and methods that can then be managed by Visual
Basic (VB) and Visual Basic for Applications (VBA) programs. It provides a layer between the
client application and the MAPI client interface component. See also Simple MAPI, Common
Messaging Calls.

OLE Messaging collection
An object that contains zero or more OLE Messaging objects of the same type. The OLE
Messaging Library supports two types of collections: large collections and small collections. With
large collections, you can use the object's methods to get the first, next, last, and previous items
within the collection. With small collections, you can access all items in the collection using an
implied index.

OLE Messaging object
An object contained in the OLE Messaging Library, such as a session object, folder object, or
message object, that exposes properties and methods. See the OLE Messaging Library
documentation in the MAPI SDK.

one-off
British jargon for something that is used only once and not retained permanently.

one-off address
A messaging address that represents a recipient that is not in the current address book. A one-off
address is created by a client application or a service provider, either by presenting a complete
address string for name resolution or by using a template supplied by an address book provider.
An address string without an explicit address type is assumed to be an Internet address. Also
referred to as a custom recipient. See also one-off template entry identifier.

one-off entry identifier
An entry identifier created from a one-off address and a display name. Also referred to as a
custom recipient entry identifier. For more information, see About Types of Address Book
Identifiers.

one-off table
A MAPI table object that provides access to information about supported one-off templates. Also
referred to as a custom recipient table.

one-off template
A template for creating a one-off address.

one-off template entry identifier
An entry identifier held in an address book provider's one-off table and used to access a one-off
template for creating a one-off address. Also referred to as a custom recipient template entry
identifier. For more information, see About Types of Address Book Identifiers.

Outbox
A folder within the interpersonal message (IPM) subtree that is designated to hold outgoing
messages until they are sent. See also IPM subtree.

P
PAB
See personal address book.

personal address book
(PAB) A modifiable MAPI address book container that holds recipient entries either created by the
user or copied from other address book containers. Each session can optionally designate a
container to act as the PAB. Personal address book objects are commonly contained in files with
the .PAB filename extension.

personal folders
A personal message store as seen through the user interface (UI).

personal form library
A form library that supplies forms to a particular client application. Forms installed in a personal
form library reside in a hidden folder of the default message store and are available only to the
creating client application. See also application form library, folder form library.

personal message store
(PST) A MAPI message store object that is created by a user and is stored in a file with the .PST
filename extension.

post
The action of storing a message in a publicly known location such as a public folder. A message is
posted for the purpose of making a single copy widely available for reading by human users or
processing by an application.

primary identity
An object, commonly an address book entry, that represents the user of a MAPI session. The
primary identity is supplied by a service provider and exposed in the properties
PR_IDENTITY_ENTRYID, PR_IDENTITY_SEARCH_KEY, and PR_IDENTITY_DISPLAY.

probe
An X.400 messaging term indicating a message that has a specific message class identifier but no
content. A probe is used by X.400 message senders to determine whether a message of a
particular message class can be sent to a particular recipient, and if so, how.

profile
Configuration information about the set of message services for a session. Profiles are created
from information stored in the MAPI configuration file, MAPISVC.INF. A profile can be modified by
MAPI, a service provider, or a MAPI configuration interface. See also message service.

profile name
A text string that identifies a particular profile.

profile section
A MAPI object providing access to the configuration information of a service provider or message
service. A profile section can contain information provided or used by MAPI, a message service, a
service provider, or a client application.

profile table
A MAPI table object that provides access to the name of every profile on a particular computer.

property
A data attribute of a MAPI object that implements the IMAPIProp:IUnknown interface. Such an
object exposes its defined properties to other objects that call IMAPIProp. The same property can
be defined on more than one type of MAPI object. The information that designates a MAPI
property is contained in its property tag. The property's actual data contents are held in its
property value. See also named property. For more information, see Properties.

property identifier
A unique 16-bit integer value that identifies a particular property. The property identifier is
contained in the high-order 16 bits of the property tag. See also named property. For more
information, see About Property Identifiers.

property page
One section or page of the dialog box of a property sheet, accessed by selecting one of the
property sheet tabs.

property set
A group of named properties specified by a GUID. Each named property in the set has the GUID
as part of its name, so the GUID identifies a name space. A property set can be user-defined, in
which case there is no restriction on the individual property names. In a MAPI-defined name
space such as PS_PUBLIC_STRINGS, names must be selected that do not conflict with existing
names. For more information, see About Property Names and Property Sets.

property sheet
A common dialog box that is used to display configuration information to the user and to enable
the user to modify that information. A property sheet contains a collection of one or more property
pages. For more information, see property page.

property tag
A 32-bit unsigned integer value that contains the unique identifier and type of a property. The high-
order 16 bits contain the property identifier, and the low-order 16 bits contain the property type.
See also named property, property value. For more information, see About Property Tags.

property type
A 16-bit integer value that describes the data type for a property and whether it can contain a
single value or multiple values. The property type is contained in the low-order 16 bits of the
property tag. For more information, see About Property Types.

property value
The current data contents of a property. A property value can consist of a single item of data or
multiple items of data. See also multivalued property, single-valued property, property tag. For
more information, see About Property Values.

provider
See service provider.

provider table
A MAPI table object that provides access to information about every currently loaded service
provider.

proxy address
A non-native e-mail address for a recipient, that is, an address meaningful outside of the
recipient's messaging domain, such as an Internet or fax address.

PST
See personal message store.

public folder
One of a set of folders made available by a message store and visible to every messaging user
that logs on to that message store.

R
read flag
A flag setting, MSGFLAG_READ, that is used in the PR_MESSAGE_FLAGS property of a
message to mark it as having been read. The read flag can be set in a variety of situations,
including opening, printing, and copying of the message. The read flag being set does not
necessarily indicate that the message has been physically read by a human user or acted upon by
an application.

read notification
(RN) See read report.

read receipt
See read report.

read report
(RN) A report message from a message store provider to a message sender that indicates the
read flag has been set for the message by a particular recipient. A read report can be sent in a
variety of situations; its being sent does not guarantee the intended recipient has physically read
the message.

receive folder
A MAPI folder object that is designated as the destination for any incoming message belonging to
a particular message class. Typically, the receive folder is the Inbox in the interpersonal message
(IPM) subtree. See also IPM subtree.

recipient
A user or group of users designated to receive a particular message. A recipient can be a
messaging user, distribution list, or one-off address.

recipient list
A collection of recipients associated with a message. A recipient list can contain zero or more
recipients of any type, in any combination, and in any order.

recipient table
A MAPI table object that provides access to information about the recipient list of a message.
Each row in the table contains information about one recipient.

record key
A binary value that can be directly compared with other record keys to help find references to a
MAPI object. An object's record key is stored in its PR_RECORD_KEY property. See also search
key, entry identifier.

registration
A request on the part of a client application or MAPI to receive notifications about a specific type of
event. See also notification.

registry provider
See form library provider.

report

A message sent to a recipient providing the status of a message that recipient had originated and
sent. A report can be generated by a service provider, a messaging system component, or the
MAPI subsystem. See also delivery report, nondelivery report, read report, nonread report.

resolution
See form resolution, name resolution.

resolved recipient
A messaging user or distribution list that has been assigned an entry identifier and an address for
a particular messaging system. See also name resolution, unresolved recipient.

restriction
A set of criteria imposed against a table to filter the rows of the table, limiting a user's view of the
table's data to only those rows that meet the criteria.

root folder
The MAPI folder object that appears at the top of a message store's folder hierarchy. Only one
root folder can exist in a message store. Root folders are invisible to the user because of their
inability to be moved, copied, renamed, or deleted. Like most folders, a root folder can contain
messages and other folders. See also IPM subtree.

rule
A specification of an automated response to a particular event. Rules are commonly used to route
incoming e-mail; such a rule could, for example, store an incoming message meeting certain
conditions in a specified folder. A rule can be implemented by a notification callback function or a
messaging hook provider. It can be applied to personal folders and to a public folder.

S
search key
A binary value that can be directly compared with other search keys to help find objects related to
a MAPI object. An object's search key is stored in its PR_SEARCH_KEY property. See also record
key, entry identifier.

search-results folder
A MAPI folder object that contains links to messages that match specified search criteria. A
search-results folder can be saved across sessions if desired. It cannot contain other folders or
messages, nor can a folder or message be created in it or moved into it.

section
A part of either a session profile or a form configuration file containing interrelated items of
information. See also profile section.

secure property
A property of a profile section with a property tag in the range 0x6600 through 0x67FF. A secure
property is set by a service provider, and is encrypted and invisible to a client application. To view
a secure property, it is necessary to ask specifically to view it. Secure properties are typically used
for credentials such as passwords.

Sent Items folder
A folder within the interpersonal message (IPM) subtree that is designated to hold copies of
messages after they are sent. These copies are saved only if the message store provider supports
this functionality and the user of the client application requests it. See also IPM subtree.

service provider
A MAPI component that allows a client application to use the services of a messaging system. A
service provider is typically part of a message service and offers address book, form
management, spooler hook, message store, or transport services. See also address book
provider, form library provider, messaging hook provider, message store provider, transport
provider.

service provider interface
(SPI) The set of interfaces and functions that are implemented or used by service providers. The
MAPISPI.H header file contains definitions of all the interface methods and functions in the service
provider interface.

session
An active connection between a client application and the MAPI subsystem. As part of the logon
procedure, which initiates the session, the client application selects a profile, which identifies the
available messaging operations and the service providers available to handle the operations. A
session implements the IMAPISession:IUnknown interface.

session handle
A handle to a session initiated by a client application using Simple MAPI or Common Messaging
Calls. Session handles are returned by the MAPILogon or MAPILogonEx function at logon time.

shared session
A MAPI session that can be used by multiple client applications on a given computer.

short-term entry identifier
An entry identifier of limited duration and scope. It is typically used only for a single operation and
is not stored for later use. It can, however, be converted into a long-term entry identifier.

Simple Mail Transfer Protocol
(SMTP) A protocol designed for reliable and efficient electronic mail transfer that is widely used in
government and education facilities and on the Internet.

Simple MAPI
A set of functions that is a component of the MAPI client interface and that enables basic
messaging features to be added to a client application. It provides a layer between the client
application and the MAPI client interface component. See also Common Messaging Calls, OLE
Messaging Library.

single-valued property
A property for which the data structure contains one property value of the specified property type.
See also multivalued property. For more information, see About Property Types.

site
See messaging domain.

SPI
See service provider interface.

spooler
See MAPI spooler.

spooler hook
See messaging hook provider.

standard contents table
A table of the information in a folder that is normally visible to the user. It typically contains
messages and subfolders that belong to the folder. See also associated contents table, contents
table, form, message, view descriptor.

status table
A MAPI table object that provides access to information about each service provider in the active
profile, the MAPI spooler and MAPI subsystem, and the address book. The status table describes
the state of a MAPI session.

store-and-forward messaging
A messaging model wherein messages are forwarded from a local message store to a component
that saves and delivers them if possible. If delivery is not possible with the requested transport
provider, this component either forwards messages to another transport provider or holds onto
them until the requested transport provider is available. With MAPI, the MAPI spooler performs the
store-and-forward function.

subscription
See registration.

support object

A MAPI object presented to a service provider at logon time that furnishes implementations of
commonly used methods as well as certain contextual data such as the last error. For more
information, see Using Support Objects.

T
table
A MAPI object that provides access to a summary view of object data in row and column format.
Tables implement the IMAPITable:IUnknown interface. Each row represents an instance of an
object; each column represents a property on that object. See also associated contents table,
attachment table, contents table, display table, hierarchy table, message service table, message
store table, one-off table, profile table, provider table, recipient table, standard contents table,
status table.

Telephony Application Programming Interface
(TAPI) A set of functions that allows applications to use telephone lines for transporting data
across a network without requiring information on details of how the transport process works.

template
A common dialog box that is used for creating new address book entries, such as a one-off
address, of a particular type. A template can be viewed as an entire schema that specifies the
properties for the dialog box and the code that relates them.

template identifier
An entry identifier for a recipient that enables its address book provider to control its behavior if it
is copied into a different address book container. A template identifier can support a messaging
user or a distribution list and allows the destination provider to access the original provider's
implementation. The template identifier is held in the recipient's PR_TEMPLATEID property. For
more information, see About Types of Address Book Identifiers.

tightly coupled
Describes a relationship between two or more providers that enables them to communicate
directly with each other without using all of the interface provided by MAPI. A tightly coupled
message store provider and transport provider can bypass the MAPI spooler. A tightly coupled
address book provider and transport provider can pass a recipient between them using only an
entry identifier and without opening a property interface.

TNEF
See Transport-Neutral Encapsulation Format.

transmittable property
A property that is sent along with the message it is associated with. Transmittable properties are
those that apply in both the sending and receiving environments, such as PR_IMPORTANCE and
PR_RTF_COMPRESSED. See also nontransmittable property.

Transport-Neutral Encapsulation Format
(TNEF) A MAPI-defined method of passing MAPI message properties that are not supported by a
messaging system. The outbound transport provider invokes the method to bundle all the
unsupported properties into a single binary stream. The transport provider may then have to
encode the stream into a format its messaging system can handle. The stream accompanies the
message through the transport process as an attachment, is decoded if necessary by the inbound
transport provider, and is finally passed to TNEF to reconstitute the MAPI properties. See also
property.

transport provider
A MAPI service provider object that is responsible for transferring messages between a message

store and an underlying messaging system that delivers the messages. Transport providers
implement the IXPProvider:IUnknown interface.

U
Unicode
A mapping of most known language characters to a set of 16-bit values. Unicode is a worldwide
encoding standard and is used exclusively by Windows NT at the system level. See also DBCS.

uninitialized state
A condition in which a form's storage object is available only for write access; read access is
prohibited. A form is placed in the uninitialized state from the time of its creation until it has been
loaded with default or supplied data. See also normal state, no-scribble state, hands-off state. For
more information, see About Form States.

unresolved recipient
A messaging user or distribution list that has not been assigned an entry identifier and an address
for a particular messaging system. See also name resolution, resolved recipient.

V
verb
A command appearing in the menu of a form. MAPI defines standard verbs like Compose, Send,
and Close.

view
A list of parameters and operations applied to a MAPI table object, commonly the contents table of
a folder. A view defines a particular way to display the data in the table, for example which
columns, in which display order, and in which sort order. Some applications enable views to be
saved.

view context
A MAPI object that supports commands for printing and saving a form and for navigating between
forms. View contexts implement the IMAPIViewContext:IUnknown interface.

view descriptor
A message of a specific message class which appears in the associated contents table of a folder
and specifies a view on that folder. A view descriptor encodes the information in the view for use
by a client application.

W
wastebasket
See Deleted Items folder.

Windows Messaging System
(WMS) The MAPI subsystem that is implemented on any of the Microsoft Windows operating
systems.

X
X.400
An international message-handling standard for connecting e-mail networks and for connecting
users to e-mail networks. X.400 is published by the International Telegraph and Telephone
Consultative Committee (CCITT) standards body, now called the International
Telecommunications Union (ITU). The X.400 Application Programming Interface Association
(XAPIA) defines programming interfaces to X.400. MAPI applications are fully interoperable with
X.400 messaging applications.

X.435
An international message-handling standard that is published by the International Telegraph and
Telephone Consultative Committee (CCITT) standards body, now called the International
Telecommunications Union (ITU), and that implements the Electronic Data Interchange (EDI)
standard for integrating data with various native formats into a message.

X.500
An international message-handling standard for directory services, published by the International
Telegraph and Telephone Consultative Committee (CCITT) standards body, now called the
Internal Telecommunications Union (ITU).

XAPIA
The X.400 Application Programming Interface Association, the standards-setting body for
programming interfaces to X.400 components. XAPIA also defines the Common Messaging Calls
inteface component.

Legal Information

Microsoft OLE Messaging Library Programmer's Reference
Information in this document is subject to change without notice. This document is provided for
informational purposes only and Microsoft Corporation makes no warranties, either express or implied,
in this document. The entire risk of the use or the results of the use of this document remains with the
user. Companies, names, and data used in examples herein are fictitious unless otherwise noted. No
part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1996 Microsoft Corporation. All rights reserved.

Microsoft, Visual Basic, Visual C++, Windows, Windows NT, and Win32 are registered trademarks of
Microsoft Corporation.

Introduction

The Microsoft® OLE Messaging Library exposes messaging objects for use by Microsoft® Visual
Basic® and Microsoft® Visual C++® applications.

The OLE Messaging Library lets you quickly and easily add to your Visual Basic application the ability
to send and receive mail messages and to interact with folders and address books. You can create
programmable messaging objects, then use their properties and methods to meet the needs of your
application.

When you combine messaging objects with other programmable objects exposed by Microsoft Access,
Microsoft Excel, and Microsoft Word, you can quickly build custom applications that cover all your
business needs. For example, with these powerful building blocks you can build a custom application
that allows your users to extract information from a database, copy it to a spreadsheet for analysis,
then create a report with the results and mail the report to several people.

The Microsoft OLE Messaging Library does not represent a new messaging model. It represents an
additional interface to the Messaging Application Programming Interface (MAPI) model, designed to
handle the most common tasks for client developers using Visual Basic and Visual C++.

This guide assumes that you are familiar with the Microsoft Visual Basic programming model. To help
you use the OLE Messaging Library, this guide provides a short overview of the MAPI architecture. For
complete reference information, see the MAPI Programmer's Reference.

The Microsoft OLE Messaging Library requires installation of MAPI and a tool that supports OLE
Automation. OLE Automation is supported by the following Microsoft applications:

· Microsoft Visual Basic version 4.0
· Microsoft Visual Basic for Applications
· Microsoft Access version 2.0 or later
· Microsoft Excel version 5.0 or later
· Microsoft Project version 4.0 or later
· Microsoft Visual C++ version 1.5 or later

Note Microsoft Visual Basic version 3.0 does not support multivalued properties.

Quick Start

The following sample program demonstrates how easy it is to add messaging to your applications
when you use Visual Basic or Visual Basic for Applications.

In this example, we first create a Session object and log on. We then create a Message object and set
its properties to indicate the message recipient, its subject, and the content of the message. We then
call the Message object's Send method to transmit the message.

' You must install the MAPI SDK, registering the
' OLE Messaging Library, to run this sample code
' This sample uses Visual Basic 3.0 error handling.
'
Function QuickStart()
Dim objSession As Object ' Session object
Dim objMessage As Object ' Message object
Dim objOneRecip As Object ' Recipient object

 On Error GoTo error_olemsg

 ' create a session then log on, supplying username and password
 Set objSession = CreateObject("MAPI.Session")
 ' change the parameters to valid values for your configuration
 objSession.Logon 'profileName:="Princess Leia"

 ' create a message and fill in its properties
 Set objMessage = objSession.Outbox.Messages.Add
 objMessage.Subject = "Gift of droids"
 objMessage.Text = "Help us, Obi-wan. You are our only hope."

 ' create the recipient
 Set objOneRecip = objMessage.Recipients.Add
 objOneRecip.Name = "Obi-wan Kenobi"
 objOneRecip.Type = mapiTo
 objOneRecip.Resolve

 ' send the message and log off
 objMessage.Send showDialog:=False
 MsgBox "The message has been sent"
 objSession.Logoff
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Exit Function

End Function

The OLE Messaging Library invalidates the Message object after you call its Send method. In this
example, the developer's code logs off to end the session after sending the message, but if you were to
continue the MAPI session, you could avoid potential errors by setting the Message object to Nothing.

About Installation

The OLE Messaging Library is installed with the MAPI Software Development Kit (SDK). The MAPI
SDK setup program registers the OLE Messaging Library for subsequent use by tools that support OLE
Automation.

Note In the current release, the OLE Messaging Library is installed only as part of the MAPI SDK. No
separate setup program is provided.

When you use the OLE Messaging Library with a tool that supports OLE Automation, verify that the tool
has referenced the OLE Messaging Library. For example, when you are using Microsoft Visual Basic
version 4.0, choose the References command from the Tools menu, and select the check box for
OLE/Messaging 1.0 Object Library.

When the OLE Messaging Library is available, the following flag is set in the file WIN.INI:

[Mail]
OLEMessaging=1

The OLEMsgPersistenceTimeout registry setting controls how quickly the OLE Messaging Library
shuts down and unloads from memory after all messaging objects are released by client applications.
On Win32® systems, the setting appears at the following registry location:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows Messaging Subsystem

For 16-bit Microsoft® Windows® systems, the OLEMsgPersistenceTimeout setting appears within the
[MAPI] section of the WIN.INI file.

About This Guide

Overview defines the MAPI terms used in this guide and compares the OLE Messaging Library with the
other MAPI programming interfaces. It then describes the design of the OLE Messaging Library,
defining the objects and the collections of objects that are available to you with the OLE Messaging
Library. This section also explains the relationships between these objects.

Programming Tasks offers sample Visual Basic code for many common programming tasks, such as
creating and sending a message, posting a message to a public folder, navigating through folders,
searching through address books, and handling errors.

Objects, Properties, and Methods contains comprehensive reference information for the properties and
methods of all objects and collection objects.

The appendixes offer additional background information about OLE Automation, the technology used
by the OLE Messaging Library.

The best way to learn about the OLE Messaging Library is to alternate your reading with hands-on
programming. You can use the sample code that is provided with the OLE Messaging Library. For
information about the sample code, see the Release Notes.

Overview

This section offers a brief introduction to MAPI and describes how the OLE Messaging Library fits into
the mix of MAPI programming interfaces. It provides a short description of OLE Automation, which is
the basis of the design of the OLE Messaging Library. The section concludes with a conceptual
overview of the OLE Messaging Library.

Introduction to MAPI

MAPI defines a complete architecture for messaging applications. The architecture specifies several
well-defined components. This allows system administrators to mix and match components to support
a broad range of vendors, computing devices, and communication protocols.

The MAPI architecture can be used for e-mail, scheduling, personal information managers, bulletin
boards, and online services that run on mainframes, personal computers, and hand-held computing
devices. The comprehensive architectural design allows MAPI to serve as the basis for a common
information exchange.

The MAPI architecture defines messaging clients that interact with various messaging services through
the MAPI programming interfaces, as shown in the following diagram.

{ewc msdncd, EWGraphic, groupx841 0 /a "MAPI.BMP"}

The MAPI architecture

To use the messaging services, a client must first establish a session. A session is a specific
connection between the client and the MAPI interface based on information provided in a profile. The
profile contains configuration and user preference information. For example, the profile contains the
names of various supporting files, the time interval to check for new messages, and other settings,
such as whether to remember the user's password or to prompt the user for the password during each
logon. A successful logon is required to enable the client's use of the MAPI system.

After establishing a MAPI session, the client can use the MAPI services. MAPI defines three primary
services: Address Books, Message Transports, and Message Stores.

The Address Book service is similar to a telephone directory or Yellow Pages. The Address Book can
be thought of as a permanent database that contains valid addressing information. An entry in the
Address Book is called an address entry and consists of a display name, e-mail type, and e-mail
address. The display name refers to the name, such as a person's full name, that an application
displays to its users. You can provide a display name, and the Address Book service looks up the
display name and provides the corresponding messaging system address.

The Message Transport supports communication between different devices and different underlying
messaging systems.

The Message Store stores messages in a hierarchical structure that consists of one or more folders. A
folder can be a personal folder that contains an individual's messages, or a public folder, similar to a
bulletin board or online forum, that is accessible to many users. Each folder can contain messages or
other folders. A message represents a communication that is sent from the sender to one or more
recipients or that gets posted in a public folder. A message can include an attachment, a document that
is attached to and sent with the message.

Several properties can be associated with the message: its subject, importance, and delivery
properties, such as the time it is sent and received, and whether to notify the sender when the
message is delivered and read. Some message properties identify the message as part of a
conversation. The conversation properties allow you to group related messages and identify the
sequence of comments and replies in the thread of the conversation.

The message can have one or more recipients; a recipient can be an individual or a distribution list.
The distribution list can contain individuals and other distribution lists. For messages that are posted to
public folders, the recipient can also be the public folder itself. Before sending a message, you can
resolve each recipient; this means you should check each recipient against the Address Book to make
sure the messaging address is valid.

MAPI Programming Interfaces

Microsoft provides several programming interfaces for MAPI, so that developers working in a wide
variety of development environments can use this common message exchange.

The following figure shows the OLE Messaging Library as a layer that is built on top of MAPI. This is
similar to the way that function calls to the Common Messaging Calls (CMC) interface are mapped to
the underlying MAPI interfaces. It also demonstrates that the OLE Messaging Library is available to
both Visual Basic/Visual Basic for Applications (VBA) and C/C++ programmers.

{ewc msdncd, EWGraphic, groupx841 1 /a "MAPI.BMP"}

The OLE Messaging Library interface layer

It is important to recognize that the OLE Messaging Library does not offer access to all of the features
of MAPI. In particular, it is designed primarily for clients and is not suitable for service providers.

The following table summarizes the programming interfaces that Microsoft provides for MAPI.

Programming
interface

Description

MAPI custom
controls

User interface elements for Visual Basic
version 3.0 developers. (Note: These will
be superseded by the OLE Messaging
Library.)

Simple MAPI Functions for C/C++ client developers that
allow access to the Inbox (no access to
MAPI properties). Most developers should
probably use either CMC or MAPI rather
than Simple MAPI.

OLE Messaging
Library

Programmable messaging objects for
Visual Basic/VBA and C/C++
developers.

Common Messaging
Calls (CMC)

Functions for C/C++ client developers;
X.400 API Association (XAPIA) standard.

MAPI OLE interfaces for C/C++ developers. Full
access to all MAPI programming
interfaces. Implemented by service
providers and called by clients.

MAPI Custom Controls and the OLE Messaging Library

Although both the MAPI custom controls and the OLE Messaging Library are designed for Visual Basic
programmers, they represent significantly different capabilities.

A control is a user interface element that enables you to display data for the user. The custom controls
are usually more convenient to use or offer more specialized capabilities than the standard user
interface controls, such as the list box, combo box, command button, and option button.

A programmable object may offer some user interface capabilities, but that is usually not its primary
purpose. It offers the very powerful ability to interact with existing OLE objects. For a familiar example,
consider the data access objects provided with Microsoft Visual Basic version 3.0 Professional Edition
and subsequent versions. The data access library lets you create and use such database objects as
tables and queries. As the data access library lets you use database objects, the OLE Messaging
Library lets you add messaging to your applications.

The existing MAPI controls for use with Simple MAPI and Visual Basic version 3.0 will be superseded
by the OLE Messaging Library.

MAPI Functions and the OLE Messaging Library

Compared to the function-call interfaces of traditional application programming interface (API) libraries,
an OLE Automation object library yields faster development and code that is easier to read, debug and
maintain.

The OLE Messaging Library also takes care of many programming details for you, such as memory
management and keeping count of the number of objects in collections.

The following table compares a traditional function-call interface, such as CMC or Simple MAPI, with
the OLE Messaging Library interface.

Task or code Function-call
interface

OLE Messaging
Library

Dim mFiles() As MapiFile
Dim mRecips() As
MapiRecip

Requires arrays of
these structures to
be declared, even if
the developer does
not use them.

Automatically
manages these
structures as child
objects of the parent
Message object.

ReDim mRecips(0)
ReDim mFiles(0)

Structures are
resized by re-
dimensioning arrays.

Objects are added to
collections with the
Add method.

mMessage.RecipCount
= 1

Requires developer
to indicate the
number of recipients
and attachments.

Automatically
determines the
number of objects in
these collections.

Error handling Each function call
returns an error
code.

Integrated with
Visual Basic error
handling during both
design and run time.

Return values Returned implicitly in
the parameters of
the function call.

Returned as an
explicit result of a
method or in object
properties.

As programming tasks grow more complex, the function-call approach becomes increasingly unwieldly.
In contrast, the OLE Messaging Library expands gracefully to encompass greater complexity. A well-
planned, thorough framework of collections, objects, methods, and properties can neatly encompass
very complex systems.

Introduction to OLE Automation

The OLE Messaging Library is based on the capabilities provided by OLE Automation. The OLE
Messaging Library allows you to create instances of programmable messaging objects that you can
reference with tools that support OLE Automation, such as Visual Basic.

For the purposes of this documentation, an object is an OLE Automation object: a software component
that exposes its properties and methods. Such an object follows the Visual Basic programming model
and lets you get properties, set properties, and call methods.

You can think of programmable objects as additions or extensions to the programmable objects that
are offered as part of Visual Basic, such as forms and controls. Forms and controls expose their
properties and methods so that developers can tailor these objects for the needs of their programs. In
addition to the forms and controls, Visual Basic allows for the definition of a wide variety of other
programmable objects by providing the CreateObject and LoadObject functions. Note that these
functions do not have specialized names, like "CreateSpreadsheet" or "CreateDatabase." They are
general-purpose functions that enable an open-ended number of programmable objects, including the
OLE Messaging Library.

Throughout this section, Visual Basic will be used as a concrete example of a tool that supports OLE
Automation, but the statements about Visual Basic apply to all such tools.

Visual Basic scripts drive the OLE Messaging Library. The scripts can also drive other libraries that
support OLE Automation, such as the libraries of programmable objects provided by Microsoft Excel
version 5.0 and Microsoft Access version 2.0. Visual Basic can call many different programmable
object libraries and can act as the glue that holds all of these objects together.

Each library can create its own objects, set properties, and call methods. The Visual Basic program
coordinates the work of all the libraries; for example, it can direct the Microsoft Access object to find
data in a specific table, direct the Microsoft Excel object to run calculations using that data, and then
direct OLE Messaging Library objects to create a message that contains the results of those
calculations and send the message to several recipients.

OLE Messaging Library Object Design

The OLE Messaging Library is designed for ease of use and convenience. It implements the MAPI
functions most used by client applications. The OLE Messaging Library is not designed for
development of service providers. (For more information about service providers, see Introduction to
MAPI.)

This section of the guide describes the design of the OLE Messaging Library.

Note This OLE Messaging Library design does not represent a one-to-one correspondence to MAPI
objects. The description of the OLE Messaging Library object design does not always apply to the
MAPI programming interface.

The OLE Messaging Library defines the following objects:

· AddressEntry
· Attachment
· Attachments collection
· Field
· Fields collection
· Folder
· Folders collection
· InfoStore
· InfoStores collection
· Message
· Messages collection
· Recipient
· Recipients collection
· Session

The objects supported in the OLE Messaging Library can be grouped into three categories:

· High-level objects
· Child objects that are created automatically when the high-level objects are created
· Collections, or groups of objects of the same type

High-Level Objects

The high-level objects include the Session, Folder, and Message objects. Other objects are accessible
only from these high-level objects.

C/C++ programmers can access all high-level objects. Visual Basic programmers can create only the
Session object, using the Visual Basic CreateObject function with the string "MAPI.Session."

In your Visual Basic application, you must usually use code of the following form to create the high-
level session object:

Dim objSession As Object
Set objSession = CreateObject("MAPI.Session")

C/C++ programmers use the globally unique identifiers (GUIDs) for these objects, defined in the type
library for the OLE Messaging Library. The following code fragment demonstrates how to create a
Session object and call its Logon method:

// create a Session object and log on using IDispatch interface
// to the OLE Messaging library
#include <ole2.h>
#include <stdio.h>
#include <stdlib.h> // for exit
#define dispidM_Logon 119 // get constants for all props, methods
// allows you to save cost of GetIdsFromNames calls
// can generate yourself by calling GetIdsFromNames for all
// properties and methods
// GUID values for Session defined in the type library
static const CLSID GUID_OM_SESSION =
{0x3FA7DEB3, 0x6438, 0x101B, {0xAC, 0xC1, 0, 0xAA, 0, 0x42, 0x33, 0x26}};
void main(void)
{
HRESULT hr;

/* interface pointers */
LPUNKNOWN punk = NULL; // IUnknown *; used to get IDispatch *
DISPPARAMS dispparamsNoArgs = {NULL, NULL, 0, 0};
VARIANT varRetVal;
IDispatch * pSession;

 //Initialize OLE.
 hr = OleInitialize(NULL);
 printf("OleInitialize returned 0x%lx\n", hr);
 VariantInit(&varRetVal);
// Create an instance of the OLE Messaging Library Session object
// Ask for its IDispatch interface.
 hr = CoCreateInstance(GUID_OM_SESSION,
 NULL,
 CLSCTX_SERVER,
 IID_IUnknown,
 (void FAR* FAR*)&punk);
 printf("CoCreateInstance returned 0x%lx\n", hr);
 if (S_OK != hr)
 exit(1);
 hr = punk->QueryInterface(IID_IDispatch, (void FAR* FAR*)&pSession);
 punk->Release(); // no longer needed; release it

 printf("QI for IID_IDispatch returned 0x%lx\n", hr);
 if (S_OK != hr)
 exit(1);
// Logon using the session object; call its Logon method
 hr = pSession->Invoke(dispidM_Logon, // value = 119
 IID_NULL,
 LOCALE_SYSTEM_DEFAULT,
 DISPATCH_METHOD,
 &dispparamsNoArgs,
 &varRetVal,
 NULL,
 NULL);
 printf("Invoke returned 0x%lx\n", hr);
 printf("Logon call returned 0x%lx\n", varRetVal.lVal);
// do other things here...
// when done, release the Session dispatch object and shut down OLE
 pSession->Release();
 OleUninitialize();

The following table lists the GUIDs for the objects accessible to C/C++ programmers:

OLE Messaging
Library Object

GUID

Session object 3FA7DEB36438101BACC100AA00423326
Folder object 3FA7DEB56438101BACC100AA00423326
Message object 3FA7DEB46438101BACC100AA00423326

High-Level Objects and Child Objects

All OLE Messaging Library objects can be considered as relative to a Session object. The following
diagram shows the logical hierarchy for the OLE Messaging Library.

Session
 Folder
 Folders Collection
 Folder...
 Messages Collection
 Message
 Recipients Collection
 Recipient
 AddressEntry
 Fields Collection
 Field
 Fields Collection
 Field
 Attachments Collection
 Attachment
 Fields Collection
 Field
 InfoStores Collection
 InfoStore
 Folder...

In addition to the hierarchy of objects, each object has properties and methods. The hierarchy is
important because it determines the correct syntax to use in your Visual Basic applications. In your
Visual Basic code, the relationship between a parent object and a child object is denoted by the left-to-
right sequence of the objects in the Visual Basic statement.

Object Collections

A collection is a group of objects of the same type. In the OLE Messaging Library, the name of the
collection takes the plural form of the individual OLE Messaging Library object. For example, the
Messages collection is the name of the collection that contains Message objects. The OLE Messaging
Library supports the following collections:

· Attachments
· Fields
· Folders
· InfoStores
· Messages
· Recipients

There are two kinds of collections: small collections and large collections.

For small collections, the OLE Messaging Library maintains a count of the number of objects in the
collection. The Attachments, InfoStores, Recipients, and Fields collections can be characterized this
way. You can access individual items using an index into the collection. You can also add and delete
items from the collection (except for the InfoStores collection, which is read-only for the OLE
Messaging Library).

Small collections, with a known number of member objects, have the Item property, the Count
property, and an implied temporary Index property, assigned by the OLE Messaging Library. Index
properties are valid only during the current MAPI session and can change as your application adds and
deletes objects. The first Index value is 1. The Visual Basic For Each statement operates only on
small collections.

For example, in an Attachments collection with three Attachment objects, the first attachment is
referred to as Attachments.Item(1), the second as Attachments.Item(2), and the third as
Attachments.Item(3). If your application deletes the second attachment, the third attachment becomes
the second and Attachments.Item(3) has the value Nothing. The Count property is always equal to the
highest Index in the collection.

Other applications can add and delete objects while your application is running. The Count property is
not updated until you re-create or refresh the collection. For example, you call the Message object's
Update method to refresh the count in its Attachments and Recipients collections.

For large collections, the OLE Messaging Library does not maintain a count of the number of objects.
The Messages and Folders collections are characterized as large collections. Instead of keeping a
count, the collections support methods that let you get the first, next, previous, and last item in the
collection. The Visual Basic For Each statement does not operate on large collections.

For large collections, with an unknown number of member objects, MAPI assigns a permanent, unique
string ID property when the individual member object is created. These identifiers do not change from
one MAPI session to another. You can call the Session object's GetFolder or GetMessage methods,
specifying the unique identifier, to obtain the individual Folder or Message objects. You can also use
the GetFirst and GetNext methods to move from one object to the next in these collections.

Note When you want to use a collection, create a variable that refers to that collection to ensure
correct operation of the GetFirst, GetNext, GetPrevious, and GetLast methods.

For example, the following two code fragments are not equivalent:

' sample 1: the collection returns the same message both times!
Set objMessage = objInBox.Messages.GetFirst
...
Set objMessage = objInBox.Messages.GetNext

' sample 2: use an explicit variable to refer to the collection;
' the Get methods return two different messages
Set objMsgColl = objSession.Inbox.Messages
Set objMessage = objMsgColl.GetFirst
...
Set objMessage = objMsgColl.GetNext

Code sample 1 causes the OLE Messaging Library to create a new Messages collection and to
reinitialize the value of the collection's "current message." The GetFirst and GetNext method calls
return the same value for objMessage.

Code sample 2 uses the existing collection objMsgColl, so the GetFirst and GetNext calls function as
expected for collections with more than one item.

The collections in the OLE Messaging Library are specifically designed for messaging applications.
The definition of collections in this document may differ slightly from the definitions of collections in the
OLE programming documentation. Where there are differences, the description of the operation of the
OLE Messaging Library supersedes the other documentation.

Programming Tasks

This section describes some of the common programming tasks you can perform with the OLE
Messaging Library. The first task your application must do is obtain a valid Session object as described
in Starting a Session with MAPI.

Category Programming tasks
General Programming Tasks Starting a Session with MAPI

Handling Errors
Improving Application Performance
Viewing MAPI Properties

Working with Messages Adding Attachments to a Message
Customizing a Folder or Message
Checking for New Mail
Creating and Sending a Message
Deleting a Message
Making Sure the Message Gets
There
Reading a Message from the
Inbox
Searching for a Message
Securing Messages

Working with Addresses Changing an Existing Address
Entry
Selecting Recipients from the
Address Book
Using Addresses

Working with Folders Accessing Folders
Copying a Message to Another
Folder
Customizing a Folder or Message
Moving a Message to Another
Folder
Searching for a Folder

Working with Public Folders Posting Messages to a Public
Folder
Working with Conversations

Note that you cannot create new distribution lists, new folders, or new address book entries using the
OLE Messaging Library. However, you can use other applications or tools, such as the Microsoft
Exchange Client, to create these objects. After you create the objects, you can then access them using
the OLE Messaging Library.

The following table summarizes the programming procedures that you must use to perform these
tasks. Note that all tasks require a Session object and successful logon.

Programming task Procedure
Accessing Folders 1. Access the Folder object's

Folders property to obtain its
collection of subfolders.
2. Use the Folders collection's
GetFirst, GetNext, GetPrevious,
and GetLast methods to navigate
through the subfolders.

Adding Attachments to a
Message

1. Create or obtain the Message
object that is to include the
attachment.
2. Call the Message object's
Attachments collection's Add
method.

Changing an Existing
Address Entry

1. Obtain a valid AddressEntry
object.
2. Update the Name, Type, or
Address property.
3. Call the Update method.

Checking for New Mail Maintain a count of the number of
messages in the Inbox folder that
have the Unread property set to
TRUE.
- or -
Sort messages by time and count
messages received after a specified
time.

Copying a Message to
Another Folder

1. Obtain the source message that
you want to copy.
2. Call the destination folder's
Messages collection's Add method,
supplying the source message
properties as parameters.
3. Copy the source Message
object's Sender and Recipients
properties to the new Message
object.
4. Call the new Message object's
Update method.

Creating and Sending a
Message

1. Call the Messages collection's
Add method to create a Message
object.
2. Set the Message object's Text,
Subject, and other message
properties.
3. Call the message's Recipients
collection's Add method to add a
recipient.
4. Set the Recipient object's Name,
Address, or AddressEntry
property.
5. Call the Recipient object's
Resolve method to validate the
address information.
6. Call the Message object's Send
method.

Customizing a Folder or
Message

1. Create or obtain the Folder or
Message object that will have the

custom properties.
2. Call the object's Fields collection's
Add method.

Deleting a Message 1. Select the message you want to
delete.
2. Call the Message object's Delete
method.

Handling Errors Use the Microsoft Visual Basic On
Error Goto statement to add
exception-handling code just as you
would in any Visual Basic
application.

Improving Application
Performance

Each dot in a Visual Basic statement
directs the OLE Messaging Library
to create a temporary internal object.
Use explicit variables when you
reuse messaging objects.

Making Sure the Message
Gets There

1. Set the Message object's
DeliveryReceipt and/or
ReadReceipt property to TRUE.
2. Call the Message object's Send
method.

Moving a Message to
Another Folder

Use the same procedure as Copying
A Message To Another Folder, and
then delete the original source
message from its folder.

Posting Messages to a
Public Folder

1. Use a procedure similar to
Creating and Sending a Message,
where you specify the name of the
public folder as the Recipient name.
- or -
1. Call the public folder's Messages
collection's Add method to create a
Message object.
2. Set the Message object's Text,
Subject, ConversationSubject,
ConversationIndex, TimeSent,
TimeReceived, and other message
properties.
3. Set the Message object's Unread,
Submitted, and Sent properties to
TRUE.
4. Call the Message object's Send
or Update method to post the
message.

Reading a Message from
the Inbox

1. Call the session's Inbox folder's
GetFirst, GetNext, GetPrevious,
and GetLast methods to obtain a
Message object.
2. Obtain the Message object's Text
property.

Searching for a Folder Use the Session object's GetFolder
method to obtain the folder from its
known ID value.
- or -
Call the Folders collection's Get
methods to get individual folder
objects. You can then compare
properties of each folder with the
desired properties.

Searching for a Message Use the Session object's
GetMessage method to obtain the
message from its known ID value.
- or -
Call the Messages collection's Get
methods to get individual message
objects. You can then compare
properties of each message with the
desired properties.

Securing Messages 1. Set the Message object's
Encrypted and/or Signed
properties to TRUE.
2. Perform processing on the
message's Text property to encrypt
or sign the message.
3. Call the Message object's Send
method.

Selecting Recipients from
the Address Book

1. Call the session's AddressBook
method to use the MAPI
AddressBook dialog.
2. Set a Recipients collection object
to the Recipients collection returned
by the AddressBook dialog.
3. Use that Recipients collection or
copy individual recipients from it.

Starting a Session with
MAPI

1. Create or obtain a Session object.
2. Call the Session object's Logon
method.

Using Addresses 1. Set the message's Recipient
object's Address property to a full
address.
2. Call the Recipient object's
Resolve method.

Viewing MAPI Properties Specify the Fields item with a MAPI
property tag.

Working with Conversations 1. Set the message's
ConversationTopic property.
2. Set the message's
ConversationIndex property.
3. Send the message by calling the
Send method.- or -

3. Post the message in the public
folder by setting the Submitted
property to TRUE.

It is important to understand the hierarchy of the OLE Messaging Library objects, because the
hierarchical relationships between objects determine the correct syntax of Visual Basic statements. The
relative positions of these objects in the hierarchy indicate how the objects appear from left to right in a
Visual Basic statement.

In the sample code that appears in this guide, individual statements are often broken across several
lines. The underscore character (_) appears as a line continuation character, indicating that the
statement is continued on the next line. This convention is used in an attempt to make the material
easy to read.

All sample code that appears in this guide is also available in the form of a Microsoft Excel version 5.0
spreadsheet that contains Visual Basic for Applications modules. For information about the
spreadsheet that contains the sample code, see the Release Notes.

Accessing Folders

Folders can be organized in a hierarchy, allowing you to access folders within folders. A child folder
within a parent folder is also called a subfolder. Subfolders appear within the parent Folder object's
Folders collection.

You cannot use the OLE Messaging Library to create new folders. However, after another application,
such as the Microsoft Exchange Client, has created a folder, you can use the OLE Messaging Library
to access the folder.

There are two general approaches for accessing folders:

· Obtaining the folder directly by calling the Session object's GetFolder method.
· Navigating folders using the Folders collection's Get methods.

To obtain the folder directly using the GetFolder method, you must have the folder's identifier. In the
following example, the identifier is stored in the variable strFolderID:

Function Session_GetFolder()
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If strFolderID = "" Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 'equivalent to:
 ' Set objFolder = objSession.GetFolder(folderID:=strFolderID)
 If objFolder Is Nothing Then
 Set objMessages = Nothing
 MsgBox "Unable to retrieve folder with specified ID"
 Exit Function
 End If
 MsgBox "Folder set to " & objFolder.Name
 Set objMessages = objFolder.Messages
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Set objFolder = Nothing
 Set objMessages = Nothing
 MsgBox "Folder is no longer available; no active folder"
 Exit Function
End Function

To navigate through the hierarchy of folders, start with a known or available folder, such as the Inbox or
Outbox, and examine its Folders collection. You can use the Folders collection's GetFirst and GetNext
methods to get each folder in the collection. When you have a subfolder, you can examine its
properties, such as its name, to see whether it is the desired folder. The following sample code
navigates through all existing subfolders of the Inbox:

Function TestDrv_Util_ListFolders()
 On Error GoTo error_olemsg

 If objFolder Is Nothing Then
 MsgBox "must select a folder object; see Session menu"
 Exit Function
 End If
 If 2 = objFolder.Class Then ' verify Folder object
 x = Util_ListFolders(objFolder) ' use current global folder
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

' Function: Util_ListFolders
' Purpose: Recursively list all folders below the current folder
' See documentation topic: Folders collection
Function Util_ListFolders(objParentFolder As Object)
Dim objFoldersColl As Object ' the child Folders collection
Dim objOneSubfolder As Object 'a single Folder object
 On Error GoTo error_olemsg
 If Not objParentFolder Is Nothing Then
 MsgBox ("Folder name = " & objParentFolder.Name)
 Set objFoldersColl = objParentFolder.Folders
 If Not objFoldersColl Is Nothing Then ' loop through all
 Set objOneSubfolder = objFoldersColl.GetFirst
 While Not objOneSubfolder Is Nothing
 x = Util_ListFolders(objOneSubfolder)
 Set objOneSubfolder = objFoldersColl.GetNext
 Wend
 End If
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

See Also

Searching for a Folder

Adding Attachments to a Message

You can add one or more attachments to a message. You add each attachment to the Attachments
collection, using the Message object's Attachments property. The relationship between the Message
object and an attachment is shown here.

Message object
Attachments collection

Attachment object
Type property
Source property

The OLE Messaging Library supports three different kinds of attachments: files, links to files, and OLE
objects. An attachment's type is specified by its Type property. To add an attachment, use the related
Attachment object property or method appropriate for that type, as shown in the following table.

Attachment
type

Related attachment object property or
method

mapiFileData ReadFromFile method
mapiFileLink Source property
mapiOLE ReadFromFile method

The following example demonstrates inserting a file as an attachment. This example assumes that the
application has already created the Session object variable objSession and successfully called the
Session object's Logon method, as described in Starting a Session with MAPI.

' Function: Attachments_Add_Data
' Purpose: Demonstrate the Add method for type = mapiFileData
' See documentation topic: Adding Attachments To A Message,
' Add method (Attachments collection)
Function Attachments_Add_Data()
Dim objMessage As Object ' local
Dim objRecip As Object ' local

 On Error GoTo error_olemsg
 If objSession Is Nothing Then
 MsgBox ("must first log on; use Session->Logon")
 Exit Function
 End If
 Set objMessage = objSession.Outbox.Messages.Add
 If objMessage Is Nothing Then
 MsgBox "could not create a new message in the Outbox"
 Exit Function
 End If
 With objMessage ' message object
 .Subject = "attachment test"
 .Text = "Have a nice day."
 Set objAttach = .Attachments.Add ' add an attachment
 If objAttach Is Nothing Then
 MsgBox "Unable to create new Attachment object"
 Exit Function
 End If
 With objAttach
 .Type = mapiFileData
 .Position = 0 ' Some apps render at start of message
 .Name = "c:\smiley.bmp"

 .ReadFromFile "c:\smiley.bmp"
 End With
 objAttach.Name = "smiley.bmp"
 .Update ' update the message
 End With
 MsgBox "Created message, added 1 mapiFileData attachment, updated"
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

Note that setting a position value within the message can cause some viewers to overwrite the
character that appears at that position in the message. You can insert the attachment at various places
in the message text.

' objMessage and objAttach as defined above
 objMessage.Text = " " & objMessage.Text ' add space for attachment
 objAttach.position = 1
 objMessage.Update

The OLE Messaging Library does not actually place the attachment within the message; that is the
responsibility of the messaging client application. However, to avoid these display problems with some
viewers, you can specify a position value that indicates either the start or the end of the message. You
can also use the value -1, which indicates that the attachment should be sent with the message, but
should not be rendered by the application.

To insert an attachment of type mapiOLE, use code similar to the mapiFileData type example. Set the
attachment type to mapiOLE and make sure that the specified file is a valid OLE docfile (a file saved
by an OLE-aware application such as Microsoft Word version 6.0 that uses the OLE interfaces
IStorage and IStream).

To add an attachment of type mapiFileLink, set the Type property to mapiFileLink and set the
Source property to the file name. The following sample code demonstrates this type of attachment:

' Function: Attachments_Add
' Purpose: Demonstrate the Add method for type = mapiFileLink
' See documentation topic: Adding Attachments To A Message,
' Add method (Attachments collection)
Function Attachments_Add()
 On Error GoTo error_olemsg

 If objAttachColl Is Nothing Then
 MsgBox "must first select an attachments collection"
 Exit Function
 End If
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = mapiFileLink
 .Position = 0 ' place at start of message
 .Source = "\\server\bitmaps\honey.bmp" ' modify UNC name
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type mapiFileLink"

 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

See Also

Position Property (Attachment Object)

Creating and Sending a Message

Changing an Existing Address Entry

The OLE Messaging Library lets you change existing address entries in the personal address book.

To change an existing address entry
1. Select the AddressEntry object to modify. You can obtain the AddressEntry object in several ways,

including the following:
· Call the Session object's AddressBook method to let the user select recipients. The method

returns a Recipients collection. Examine each Recipient object's AddressEntry property to obtain
its child AddressEntry object.

· Use the Message object's Sender property to obtain an AddressEntry object.
· Examine a Message object's Recipients collection to obtain an individual Recipient object, then

use its AddressEntry property to obtain its child AddressEntry object.
2. Change individual properties of the AddressEntry object, such as the Name, Address, or Type

property.
3. Call the AddressEntry object's Update method.

Note that the OLE Messaging Library only supports changes to the personal address book. It does not
support changes to the global address list.

The following sample code demonstrates this procedure:

' Function: AddressEntry_Update
' Purpose: Demonstrate the Update method
' (Note: OLE Messaging Library only affects the PAB)
' See documentation topic: Update method AddressEntry object
Function AddressEntry_Update()
Dim objRecipColl As Object ' Recipients collection
Dim objNewRecip As Object ' New recipient

 On Error GoTo error_olemsg
 If objSession Is Nothing Then
 MsgBox "must log on first"
 Exit Function
 End If
 Set objRecipColl = objSession.AddressBook ' let user select
 If objRecipColl Is Nothing Then
 MsgBox "must select someone from the address book"
 Exit Function
 End If
 Set objNewRecip = objRecipColl.Item(1)
 With objNewRecip.AddressEntry
 .Name = .Name & " the Magnificent"
 .Type = "X.500" ' you can update the type, too...
 .Update
 End With
 MsgBox "Updated an address entry name: " & _
 objNewRecip.AddressEntry.Name
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

See Also

Using Addresses

Selecting Recipients from the Address Book

Checking for New Mail

The Inbox contains new messages. When users refer to new messages, they can indicate messages
that arrive after the last time that they read messages, or they can indicate all unread messages.
Depending on the needs of your application users, your applications can check various message
properties to determine whether there is new mail.

The following sample code tracks new messages by checking for messages in the Inbox with the
Unread property value TRUE:

' Function: Util_CountUnread
' Purpose: Count unread messages in a folder
' See documentation topic: Checking For New Mail;
' Unread property (Message)
Function Util_CountUnread()
Dim cUnread As Integer ' counter

 On Error GoTo error_olemsg
 If objMessages Is Nothing Then
 MsgBox "must select a messages collection"
 Exit Function
 End If
 Set objMessage = objMessages.GetFirst
 cUnread = 0
 While Not objMessage Is Nothing ' loop through all messages
 If True = objMessage.Unread Then
 cUnread = cUnread + 1
 End If
 Set objMessage = objMessages.GetNext
 Wend
 MsgBox "Number of unread messages = " & cUnread
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

You can also check for new messages by counting the messages received after a specified time. For
example, your application can maintain a variable that represents the time of the latest message
received, based on the Message object's TimeReceived property. The application can periodically
check for all messages with a TimeReceived value greater than the saved value. When new
messages are found, the application updates its count of new messages and updates the saved value.

See Also

TimeReceived Property (Message Object)

Reading a Message from the Inbox

Copying a Message to Another Folder

The procedure documented in this section demonstrates a way to copy message properties using the
Message object's Add method that is supported in the OLE Messaging Library.

Note Using OLE Messaging Library version 1.0, the Message object's Sender property and other
read-only properties of the Message object are not preserved using the procedure in this section. To
preserve these properties using this procedure, you must append their text fields to read-write
properties, such as the Message object's Text property.

To copy a message from one folder to another folder using the OLE Messaging Library
1. Obtain the source message that you want to copy.
2. Call the destination folder's Messages collection's Add method, supplying the source message

properties as parameters.

The hierarchy of objects is as follows:

Session object
Folder object (for Inbox, Outbox)

Messages collection
Message object

InfoStores collection
InfoStore object

Folder object
Messages collection

Message object

To obtain the source message that you want to copy, first obtain its folder, then obtain the message
within the folder's Messages collection. For more information about finding messages, see Searching
for a Message.

To obtain the destination folder, you can use the following approaches:

· Use the Folders collection's Get methods to search for a specific folder.
· Call the Session object's GetFolder method with a string parameter that specifies the FolderID, a

unique identifier for that folder.

For more information about finding folders, see Searching for a Folder.

The following example demonstrates how to copy the first message that appears in the Inbox folder.
The message is copied to the Outbox, but could as easily be copied to any folder with a known
identifier and therefore accessible using the Session object's GetFolder method. This example
assumes that the application has already created the Session object variable objSession and
successfully called the Session object's Logon method, as described in Starting a Session with MAPI.

'/********************************/
' Function: Util_CopyMessage
' Purpose: Utility functions that demonstrates code to copy a message
' See documentation topic: Copying A Message To Another Folder
Function Util_CopyMessage()
' obtain the source message to copy
' for this sample, just use the first message in the Inbox
' assume session object already created
Dim objDestFolder As Object ' destination folder
Dim objCopyMsg As Object ' new message that is the copy
Dim strRecipName As String ' copy of recipient name from original message

Dim i As Integer ' loop counter

 On Error GoTo error_olemsg
 If objOneMsg Is Nothing Then
 MsgBox "must first select message"
 Exit Function
 End If
 If objFolder Is Nothing Then
 MsgBox "must first select a folder"
 Exit Function
 End If
 strFolderID = objFolder.Id
 ' Copy to the destination folder
 Set objDestFolder = objSession.GetFolder(strFolderID)
 If objDestFolder Is Nothing Then
 MsgBox "Unable to create destination folder for ID " _
 & strFolderID
 Exit Function
 Else
 MsgBox "Copying message to destination folder " _
 & objDestFolder.Name
 End If
 Set objCopyMsg = objDestFolder.Messages.Add _
 (Subject:=objOneMsg.Subject, _
 Text:=objOneMsg.Text, _
 Type:=objOneMsg.Type, _
 importance:=objOneMsg.importance)
 If objCopyMsg Is Nothing Then
 MsgBox "Unable to create new message in destination folder"
 Exit Function
 End If
 ' copy all the recipients
 For i = 1 To objOneMsg.Recipients.Count Step 1
 strRecipName = objOneMsg.Recipients.Item(i).Name
 If strRecipName <> "" Then
 Set objOneRecip = objCopyMsg.Recipients.Add
 If objOneRecip Is Nothing Then
 MsgBox "unable to create recipient in message copy"
 Exit Function
 End If
 objOneRecip.Name = strRecipName
 End If
 Next i
 ' copy other properties; a few listed here as an example
 objCopyMsg.Sent = objOneMsg.Sent
 objCopyMsg.Text = objOneMsg.Text
 objCopyMsg.Unread = objOneMsg.Unread
 objCopyMsg.Update
 ' if *moving* a message to another folder, delete the original msg:
 ' objOneMsg.Delete
 ' move operation implies that the original message is removed
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)

 Exit Function ' so many steps to succeed; just exit on error

End Function

Note that this procedure does not preserve all message properties. Also note that you cannot copy
from the From property.

See Also

Moving a Message to Another Folder

Creating and Sending a Message

Creating and sending a message is easy when you use the OLE Messaging Library.

To create and send a message
1. Establish a session with the MAPI system.
2. Call the Messages collection's Add method to create a Message object.
3. Supply values for the Message object's Subject and Text properties.
4. Call the Recipients collection's Add method for each recipient.
5. Call the Message object's Send method.

The following sample demonstrates each of these steps for a message sent to a single recipient:

' This sample also appears as the "Quick Start" sample in the section
"Overview"
Function QuickStart()
Dim objSession As Object ' Session object
Dim objMessage As Object ' Message object
Dim objOneRecip As Object ' Recipient object

 On Error GoTo error_olemsg

 ' create a session then log on, supplying username and password
 Set objSession = CreateObject("MAPI.Session")
 ' change the parameters to valid values for your configuration
 objSession.Logon 'profileName:="Princess Leia", _
 'profilePassword:="go_rebels"

 ' create a message and fill in its properties
 Set objMessage = objSession.Outbox.Messages.Add
 objMessage.Subject = "Gift of droids"
 objMessage.Text = "Help us, Obi-wan. You are our only hope."

 ' create the recipient
 Set objOneRecip = objMessage.Recipients.Add
 objOneRecip.Name = "Obi-wan Kenobi"
 objOneRecip.Type = mapiTo
 objOneRecip.Resolve

 ' send the message and log off
 objMessage.Update
 objMessage.Send showDialog:=False
 MsgBox "The message has been sent"
 objSession.Logoff
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

Note When you edit an object other than the Message object, save your changes using the Update
method before you clear or reuse the variable that refers to the object. If you do not use the Update

method, your changes can be lost without warning.

After calling the Message object's Send method, you should not try to access the Message object
again. The Send method invalidates the Message object.

See Also

Adding Attachments to a Message

Customizing a Folder or Message

Customizing a Folder or Message

The OLE Messaging Library allows customization and extensibility by offering the Field object and
Fields collection. A Field object includes a name, a data type, and a value property. An object that
supports fields, in effect, lets you add your own custom properties to the object.

The OLE Messaging Library supports the use of fields with the Message and Folder objects.

For example, consider that you want to add a "Keyword" property to messages so that you can
associate a string with the message. You may wish to use a self-imposed convention that values of the
"Keyword" are restricted to a small set of strings. You can then organize your messages by the
"Keyword" property.

The following example shows how to add the field to the Message object:

' Function: Fields_Add
' Purpose: Add a new field object to the Fields collection
' See documentation topic: Add method (Fields collection)
Function Fields_Add()
Dim cFields As Integer ' count of Fields in the collection
Dim objNewField As Object ' new Field object

 On Error GoTo error_olemsg
 If objFieldsColl Is Nothing Then
 MsgBox "must first select Fields collection"
 Exit Function
 End If
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
 If objNewField Is Nothing Then
 MsgBox "could not create new Field object"
 Exit Function
 End If
 cFields = objFieldsColl.Count
 MsgBox "new Fields collection count = " & cFields
 ' you can now write code that searches for
 ' messages with this "custom property"
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

Note that the new field information specified by the Add method is not actually saved until you call the
Message object's Update method.

Note that MAPI stores all custom properties that represent date and time information using Greenwich
Mean Time (GMT). The OLE Messaging Library converts these properties so that the values appear to
the user in local time.

For a complete list of the valid Field object data types, see the reference documentation for the Fields
collection's Add method.

See Also

Field Object

Fields Collection Object

Creating and Sending a Message

Deleting a Message

The Message object's Delete method deletes the message.

To delete a message
1. Select the message you want to delete.
2. Call the Message object's Delete method.
3. Set the Message object to Nothing.

You should not try to access the message after deleting it. Doing so can produce unpredictable results.

See Also

Searching for a Message

Handling Errors

The OLE Messaging Library raises exceptions for all errors. When you write Visual Basic applications
that use the OLE Messaging Library, use the same run-time error-handling techniques that you use in
all your Visual Basic applications: the Visual Basic On Error Goto statement.

Note that the error values and error-handling techniques vary slightly depending on whether you are
using Visual Basic version 4.0 or older versions of Visual Basic for Applications.

When you use older versions of Visual Basic for Applications, use the Err function to obtain the status
code and the Error$ function to obtain a descriptive error message, as in the following example:

' Visual Basic for Applications error handling
MsgBox "Error number " & Err & " description. " & Error$(Err)

When you use Visual Basic 4.0, use the Err object's Number property to obtain the status code and
use its Description property to obtain the error message, as in the following example:

'' Visual Basic version 4.0 error handling
MsgBox "Error " & Err.Number & " description. " & Err.Description

Depending on your version of Microsoft Visual Basic, the error code will be returned as a long integer
or as a short integer, and you should appropriately define the value of the error codes checked by your
program.

When you use Visual Basic 4.0, the error value is set to the value of the MAPI HRESULT, a long
integer error code. When you use Visual Basic for Applications, the run-time error value is equal to the
sum of 1000 and the low-order word of the HRESULT. (This is because Visual Basic 3.0 reserves all
run-time error values below 1000 for its own errors.)

The example in this section checks for an error corresponding to the MAPI error code
MAPI_E_USER_CANCEL, which has the value 0x80040113. Visual Basic 4.0 users can check directly
for this value. Visual Basic for Applications users check for the value of the low-order word plus 1000.
The low-order word is 0x0113, or 275, so the value returned by Visual Basic for Applications is 1275.

' demonstrates error handling for Logon
' Function: TestDrv_Util_CreateSessionAndLogon
' Purpose: Call the utility function Util_CreateSessionAndLogon
' See documentation topic: Handling Errors;
' Creating And Sending A Message
Function TestDrv_Util_CreateSessionAndLogon()
Dim bFlag As Boolean
 On Error GoTo error_olemsg
 bFlag = Util_CreateSessionAndLogon()
 MsgBox "bFlag = " & bFlag
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

' Function: Util_CreateSessionAndLogon
' Purpose: Demonstrate common error handling for Logon
' See documentation topic: Handling Errors
Function Util_CreateSessionAndLogon() As Boolean
 On Error GoTo err_CreateSessionAndLogon

 Set objSession = CreateObject("MAPI.Session")
 objSession.Logon
 Util_CreateSessionAndLogon = True
 Exit Function

err_CreateSessionAndLogon:
 If (Err = 1275) Then
' VB4.0 version:
' If (Err.Number = MAPI_E_USER_CANCEL) Then
 MsgBox "User pressed Cancel"
 Else
 MsgBox "Unrecoverable Error:" & Err
 End If
 Util_CreateSessionAndLogon = False
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

When an error occurs in the MAPI subsystem, the OLE Messaging Library supplies the error value
returned by MAPI. However, the value can be returned from any of several different levels of software.
The lowest level of software is that which interacts directly with hardware, such as a mouse driver or
video driver. Higher levels of software move toward greater device independence and greater
generality.

The following diagram suggests the different levels of software in Visual Basic applications that use the
OLE Messaging Library. Visual Basic applications reside at the highest level and interact with the OLE
Messaging Library at the next lower level. The OLE Messaging Library interacts with the MAPI system
software, and the MAPI system software interacts with a lower layer of software, the operating system.

{ewc msdncd, EWGraphic, groupx842 0 /a "MAPI.BMP"}

Software components in a Visual Basic application using the OLE Messaging Library

Errors can occur at any level or at the interface between any two levels. For example, a user of your
application without security permissions can be denied access to an address book entry. The lowest
level in this diagram, the operating system, returns the error to the next higher level, and so on, until
the error is returned to the highest level in this diagram, the Visual Basic application.

It is often useful to provide a general error handling capability that will display the complete HRESULT
or error code value returned by the OLE Messaging Library.

For more information about run-time error handling and the Err object, see your product's Visual Basic
documentation. For a listing of the MAPI error values, see Appendix A, Error Codes.

See Also

Error Codes

Starting a Session with MAPI

Improving Application Performance

This section describes how your Visual Basic code can operate most efficiently when you use
messaging objects. Note that this section is written primarily for Visual Basic programmers rather than
for C programmers.

To access OLE Messaging Library objects, you create Visual Basic statements that concatenate the
object names in sequence from left to right, separating objects with a "dot," the period character. For
example, consider the following Visual Basic statement.

Set objMessage = objSession.Inbox.Messages.GetFirst

The OLE Messaging Library creates an internal object for each dot that appears in the statement. For
example, the portion of the statement that says "objSession.Inbox" directs the OLE Messaging Library
to create an internal Folder object that represents the user's Inbox. The next portion, ".Messages,"
directs the OLE Messaging Library to create an internal Messages collection object. The final part,
".GetFirst," directs the OLE Messaging Library to create an internal Message object that represents the
first message in the user's Inbox. The statement contains three dots; the OLE Messaging Library
creates three internal objects.

The best rule of thumb is to remember that dots are expensive. For example, the following two lines of
code are very inefficient:

' warning: do not code this way, this is inefficient
MsgBox "Text: " & objSession.Inbox.Messages.MoveFirst.Text
MsgBox "Subj: " & objSession.Inbox.Messages.MoveFirst.Subject

While this code generates correct results, it is not very efficient. For the first statement, the OLE
Messaging Library creates internal objects that represent the Inbox, its Messages collection, and its
first message. After the application displays the text, these internal objects are discarded. In the next
line, the same internal objects are generated again. A more efficient approach would be to generate the
internal objects only once:

With objSession.Inbox.Messages.MoveFirst
 MsgBox "Text: " & .Text
 MsgBox "Subj: " & .Subject
End With

When your application needs to use an object more than once, define a variable for the object and set
its value. The following sample code is very efficient when your application reuses the Folder,
Messages collection, or Message objects:

' very efficient when the objects will be reused
Set objInboxFolder = objSession.Inbox
Set objInMessages = objInboxFolder.Messages
Set objOneMessage = objInMessages.MoveFirst
With objOneMessage
 MsgBox "The Message Text: " & .Text
 MsgBox "The Message Subject: " & .Subject
End With

Now that you understand that a dot in a statement directs the OLE Messaging Library to create a new
internal object, it is easy to see that the following sample is not correct:

' error: collection returns the same message both times
MsgBox("first msg: " & inBoxObj.Messages.GetFirst)
MsgBox("next msg: " & inBoxObj.Messages.GetNext)

The OLE Messaging Library creates a temporary internal object that represents the Messages
collection, then discards it after displaying the first message. The second statement directs the OLE
Messaging Library to create another new temporary object that represents the Messages collection.
This Messages collection is new and has no state information; that is, this new collection has not called
GetFirst. The GetNext statement causes it to display its first message again.

Use the Visual Basic With statement or explicit variables to generate the expected results. The
following example uses explicit variables:

' Use the Visual Basic With statement
With objSession.Inbox.Messages
 Set objMessage = .GetFirst
 '...
 Set objMessage = .GetNext
End With
' Use explicit variables to refer to the collection;
Set objMsgColl = objSession.Inbox.Messages
Set objMessage = myMsgColl.GetFirst
...
Set objMessage = myMsgColl.GetNext

For more information about improving the performance of your applications, see your Microsoft Visual
Basic programming documentation.

See Also

Handling Errors

Making Sure the Message Gets There

The Message object contains two properties that can direct the underlying MAPI system to report
successful receipt of the message: DeliveryReceipt and ReadReceipt.

When you set these properties to TRUE and send the message, the underlying MAPI system
automatically tracks the message for you. When you set the DeliveryReceipt property, the MAPI
system automatically generates a message to the sender reporting when the recipient receives the
message. When you set the ReadReceipt property, the MAPI system automatically generates a
message to the sender reporting when the recipient reads the message.

See Also

Securing Messages

Moving a Message to Another Folder

The procedure documented in this section demonstrates a way to move message properties using the
Message object's Add and Delete methods supported in the OLE Messaging Library.

Note Using OLE Messaging Library version 1.0, the Message object's Sender property and other
read-only properties of the Message object are not preserved using the procedure in this section. To
preserve these properties using this procedure, you must append their text fields to read-write
properties, such as the Message object's Text property.

To move a message from one folder to another
1. Obtain the source message that you want to copy.
2. Call the destination folder's Messages collection's Add method, supplying source message

properties as parameters.
3. Call the source message's Delete method to delete the original source message from its folder.

For the complete sample, see Copying a Message to Another Folder. The final lines of code for the
procedure should delete the original message:

' "Move" implies explicit delete of the initial message
objOneMsg.Delete

See Also

Copying a Message to Another Folder

Posting Messages to a Public Folder

To post a message to a public folder, create a message within the public folder by calling the folder's
Messages collection Add method. Then add your subject and message text as you would for other
messages.

Note that for messages in public folders, you must also set a few more message properties than you
would when sending a message to a recipient. When you post a message to a public folder, the
components of the MAPI architecture that usually handle a message and set its properties do not
manage the message. Your application must set the Unread, Submitted, and Sent properties to
TRUE, and must set the TimeSent and TimeReceived properties to the current time.

When you are ready to make the message available, call the Send or Update method.

Note When posting messages in a public folder, you cannot use the OLE Messaging Library to set
the Sender property. The Sender and related underlying properties are not present for a message
created by the OLE Messaging Library.

For more information about the complete procedure for sending messages, see Creating And Sending
A Message.

To create a message within a public folder
1. Call the Messages collection's Add method to create a Message object.
2. Set the Message object's Text, Subject, ConversationSubject, ConversationIndex, TimeSent,

TimeReceived, and other message properties as desired.
3. Set the Message object's Unread, Submitted, and Sent properties to TRUE.
4. Call the Message object's Send or Update method.

Note that when you post a message, you must explicitly set the TimeSent and TimeReceived
properties. When you send a message using the Send method, the MAPI system assigns the values of
these properties for you. However, when you post the message by setting the Submitted property,
your application must set the time properties. Set both time properties to the same value, just before
you set the Submitted property to TRUE.

' Function: Util_New_Conversation
' Purpose: Set properties to start a new conversation in a public folder
' See documentation topic: Working With Conversations;
' Posting Messages To A Public Folder
Function Util_NewConversation()
Dim objRecipColl As Object
Dim i As Integer
Dim objNewMsg As Object ' new message object
Dim strNewIndex As String
 On Error GoTo error_olemsg

' objPublicFolder is a global variable that indicates
' the folder in which you want to post the message
 Set objNewMsg = objPublicFolder.Messages.Add
 If objNewMsg Is Nothing Then
 MsgBox "unable to create a new message for the public folder"
 Exit Function
 End If
 strConversationFirstMsgID = objNewMsg.Id 'save for reply
 With objNewMsg
 .Subject = "used space vehicle wanted"

 .ConversationTopic = .Subject
 .ConversationIndex = Util_GetEightByteTimeStamp() ' utility
 .Text = "Wanted: Apollo or Mercury spacecraft with low mileage."
 .TimeSent = Time
 .TimeReceived = .TimeSent
 .Submitted = True
 .Unread = True
 .Sent = True
 .Update
 .Send showDialog:=False
 End With
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

For complete information about the ConversationIndex property, see Working With Conversations.

See Also

Searching for a Folder

Creating and Sending a Message

Working with Conversations

Reading a Message from the Inbox

After establishing a Session object and successfully logging on to the system, a user can access the
Inbox. The Inbox is the default folder for mail received by the user.

As described in OLE Messaging Library Object Design, the OLE Messaging Library objects are
organized in a hierarchy. The Session object at the topmost level allows access to a Folder. Each
Folder contains a Messages collection, and the Messages collection contains individual Message
objects. The text of the message appears in the Message object's Text property.

Session object
Folder object

Messages collection
Message object

Text property

To obtain an individual message, the application must move down through this object hierarchy to the
Text property. The following example uses the Session object's Inbox property to obtain a Folder
object, then uses the Folder object's Messages property to obtain a Messages collection object, and
calls the Messages collection's methods to get a specific message.

This example assumes that the application has already created the Session object variable objSession
and successfully called the Session object's Logon method, as described in the section, Starting a
Session with MAPI:

Dim objSession As Object ' Session object
Dim objInboxFolder As Object ' Folder object
Dim objInMessages As Object ' Messages collection
Dim objOneMsg As Object ' Message object
...
' move down through the hierarchy
Set objInboxFolder = objSession.Inbox
Set objInMessages = objInboxFolder.Messages
Set objOneMsg = objInMessages.GetFirst
MsgBox "The message text: " & objOneMsg.Text

Note Use the Visual Basic keyword Set whenever you initialize a variable that represents an object.
When you set an object variable without using the Set keyword, Visual Basic generates an error
message.

The example above declares several object variables. However, it is also possible to access the
message with fewer variables. The following sample is equivalent to the sample code above:

Set objOneMsg = objSession.Inbox.Messages.GetFirst
MsgBox "The message text: " & objOneMsg.Text

You should declare an individual variable when the application needs to access an object more than
once. When an object is accessed repeatedly, variables can help make your code efficient. For more
information, see Improving Application Performance.

See Also

Creating and Sending a Message

Improving Application Performance

Searching for a Message

Searching for a Folder

Two frequently used folders, the Inbox and the Outbox, are available through Session object
properties. To access these folders, simply set a Folder object to the corresponding property.

To access other folders, search for the folder using one of the following techniques:

· Call the Session object's GetFolder method with a string parameter that specifies the FolderID, a
unique identifier for the folder.

· Use the Get methods to navigate through the Folders collection. Search for a specific folder by
comparing the current folder's properties with the desired properties.

Using the Session Object's GetFolder Method

When you know the unique identifier for the folder you are looking for, you can call the Session object's
GetFolder method.

The unique identifier for the folder, established at the time the folder is created, is stored in its ID
property. The ID property is a string representation of the MAPI entry identifier and its value is
determined by the service provider.

The following code fragment contains code that saves the identifier for the folder, then uses it in a
subsequent GetFolder call:

' Function: Session_GetFolder
' Purpose: Demonstrate how to set a folder object
' See documentation topic: Session object GetFolder method
Function Session_GetFolder()
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If strFolderID = "" Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 'equivalent to:
 ' Set objFolder = objSession.GetFolder(folderID:=strFolderID)
 If objFolder Is Nothing Then
 Set objMessages = Nothing
 MsgBox "Unable to retrieve folder with specified ID"
 Exit Function
 End If
 MsgBox "Folder set to " & objFolder.Name
 Set objMessages = objFolder.Messages
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Set objFolder = Nothing
 Set objMessages = Nothing
 MsgBox "Folder is no longer available; no active folder"
 Exit Function
End Function

Using the Get Methods

When you are looking for a folder within a Folders collection, you can navigate down through the
collection, examining properties of each Folder object to determine whether it is the folder you want.

The OLE Messaging Library supports the GetFirst, GetLast, GetNext, and GetPrevious methods for
the Folders collection object.

The following sample demonstrates how to use the Get methods to search for the specified folder:

' Function: TestDrv_Util_GetFolderByName
' Purpose: Call the utility function Util_GetFolderByName
' See documentation topic: Item property (Folder object)
Function TestDrv_Util_GetFolderByName()
Dim fFound As Boolean
 fFound = Util_GetFolderByName("Junk mail")
 If fFound Then
 MsgBox "Folder named 'Junk mail' found"
 Else
 MsgBox "Folder named 'Junk mail' not found"
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

' Function: Util_GetFolderByName
' Purpose: Use Get* methods to search for a folder
' See documentation topic: Searching For a Folder
Function Util_GetFolderByName(strSearchName As String) As Boolean
Dim objOneFolder As Object ' local; temp version of folder object

 On Error GoTo error_olemsg
 Util_GetFolderByName = False ' default; assume failure
 If objFolder Is Nothing Then
 MsgBox "must first select a folder; such as Session->Inbox"
 Exit Function
 End If
 Set objFoldersColl = objFolder.Folders ' Folders collection
 If objFoldersColl Is Nothing Then
 MsgBox "no subfolders; not found"
 Exit Function
 End If
 ' get the first folder in the collection
 Set objOneFolder = objFoldersColl.GetFirst
 ' loop through all the folders in the collection
 Do While Not objOneFolder Is Nothing
 If objOneFolder.Name = strSearchName Then
 Exit Do ' found it, leave the loop
 Else ' keep searching
 Set objOneFolder = objFoldersColl.GetNext
 End If
 Loop

 ' exit from the do while loop comes here
 ' if objOneFolder is valid, the folder is found
 If Not objOneFolder Is Nothing Then
 Util_GetFolderByName = True ' success; set to False above
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

You can also navigate upward by using the Parent property.

See Also

Searching for a Message

Searching for a Message

To access a message, search for the message using one of the following techniques:

· Call the Session object's GetMessage method with a string parameter that specifies the
MessageID, a unique identifier for the message.

· Use the Get methods to navigate through the folder's Messages collection. Search for a specific
message by comparing the current Message object's properties with the desired properties.

Using the Session Object's GetMessage Method

When you know the unique identifier for the message you are looking for, you can call the Session
object's GetMessage method.

The message identifier specifies a unique identifier that is created for the Message object at the time it
is created. The identifier is accessible through the object's ID property.

The following code fragment contains code that saves the identifier for the folder, then uses it in a
subsequent GetMessage call:

' Function: Session_GetMessage
' Purpose: Demonstrate how to set a message object using GetMessage
' See documentation topic: GetMessage method (Session object)
Function Session_GetMessage()
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If strMessageID = "" Then
 MsgBox ("Must first set message ID variable; see Message->ID")
 Exit Function
 End If
 Set objOneMsg = objSession.GetMessage(strMessageID)
 If objOneMsg Is Nothing Then
 MsgBox "Unable to retrieve message with specified ID"
 Exit Function
 End If
 MsgBox "GetMessage returned msg with subject: " & objOneMsg.Subject
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Set objOneMsg = Nothing
 MsgBox "Message is no longer available; no active message"
 Exit Function
End Function

Using the Get Methods

When you are looking for a message within a Messages collection, you can navigate through the
collection, examining properties of each Message object to determine if it is the message you want.

The OLE Messaging Library supports the GetFirst, GetLast, GetNext, and GetPrevious methods for
the Messages collection object.

The following sample demonstrates how to use the Get methods to search for the specified message:

' Function: TestDrv_Util_GetMessageByName
' Purpose: Call the utility function Util_GetMessageByName
' See documentation topic: Item property (Message object)
Function TestDrv_Util_GetMessageByName()
Dim fFound As Boolean
 On Error GoTo error_olemsg

 fFound = Util_GetMessageByName("Junk mail")
 If fFound Then
 MsgBox "Message named 'Junk mail' found"
 Else
 MsgBox "Message named 'Junk mail' not found"
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

' Function: Util_GetMessageByName
' Purpose: Use Get* methods to search for a message
' See documentation topic: Searching for a message
' search through the messages for one with a specific subject
Function Util_GetMessageByName(strSearchName As String) As Boolean
Dim objOneMessage As Object ' local; temp version of message object

 On Error GoTo error_olemsg
 Util_GetMessageByName = False ' default; assume failure
 If objFolder Is Nothing Then
 MsgBox "must first select a folder; such as Session->Inbox"
 Exit Function
 End If
 Set objMessages = objFolder.Messages
 Set objOneMessage = objMessages.GetFirst
 If objOneMessage Is Nothing Then
 MsgBox "no messages in the folder"
 Exit Function
 End If
 ' loop through all the messages in the collection
 Do While Not objOneMessage Is Nothing
 If objOneMessage.Subject = strSearchName Then
 Exit Do ' found it, leave the loop
 Else ' keep searching
 Set objOneMessage = objMessages.GetNext
 End If
 Loop
 ' exit from the do while loop comes here
 ' if objOneMessage is valid, the message was found
 If Not objOneMessage Is Nothing Then
 Util_GetMessageByName = True ' success
 End If
 Exit Function

error_olemsg:

 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

See Also

Searching for a Folder

Securing Messages

The Message object contains two properties that specify security for the message: the Encrypted and
Signed properties. When you want to request that your message be secured, set these flags to TRUE.

Note that these flags simply represent a request to the underlying messaging service. Whether the
message is encrypted or signed depends on whether these security measures are implemented by
your messaging service.

Neither MAPI nor the OLE Messaging Library performs encryption or digital signing. The OLE
Messaging Library simply sets the appropriate MAPI properties so that the proper request for security
is delivered to the messaging service. For more information about the capabilities of your messaging
service, contact your Microsoft Exchange Server system administrator.

Dim objMessage As Object ' assume valid Message object
'...
objMessage.Encrypted = True
objMessage.Send

See Also

Making Sure the Message Gets There

Selecting Recipients from the Address Book

After establishing a Session object and successfully logging on to the system, the user can access the
address book to select recipients. You can select recipients from any address book, such as the global
address list or the personal address book.

As described in OLE Messaging Library Object Design, the OLE Messaging Library objects are
organized in a hierarchy. The Session object at the topmost level contains an AddressBook method
that lets your application users select recipients from an address book. The method returns a
Recipients collection, which contains individual Recipient objects. The Recipient object in turn specifies
an AddressEntry object. This hierarchy is shown in the following diagram.

Recipients collection
Recipient object

Address property (full address)
AddressEntry object

Address property (e-mail address)
Type property

To obtain an individual Address property that can be used to address and send messages, the
application must move down through this object hierarchy. The following code example uses the
Recipients collection returned by the Session object's AddressBook method.

This example assumes that the application has already created the Session object variable objSession
and successfully called the Session object's Logon method, as described in Starting a Session with
MAPI:

' Function: Session_AddressBook
' Purpose: Set the global variable that contains the current recipients
' collection to that returned by the Session AddressBook method
' See documentation topic: AddressBook method (Session object)
Function Session_AddressBook()
 On Error GoTo err_Session_AddressBook

 If objSession Is Nothing Then
 MsgBox "must first create MAPI session and logon"
 Exit Function
 End If
 Set objRecipColl = objSession.AddressBook(_
 Title:="Select Attendees", _
 forceResolution:=True, _
 recipLists:=1, _
 toLabel:="&OLE Messaging") ' appears on button
 ' Note: initial value not used
 ' parameter not used in call: Recipients:=objInitRecipColl
 MsgBox "Name of first recipient = " & objRecipColl.Item(1).Name
 Exit Function

err_Session_AddressBook:
 If (Err = 91) Then ' MAPI dlg-related function that sets an object
 MsgBox "No recipients selected"
 Else
 MsgBox "Unrecoverable Error:" & Err
 End If
 Exit Function
End Function

See Also

Changing an Existing Address Entry

Using Addresses

Starting a Session with MAPI

As described in OLE Messaging Library Object Design, all messaging objects are relative to the
Session object. One of the first tasks of every application is to create a valid Session object and call its
Logon method.

The Session object is created using the Visual Basic function CreateObject. The following code
demonstrates how to perform this common startup task:

Function Util_CreateSessionAndLogon() As Boolean
 On Error GoTo err_CreateSessionAndLogon

 Set objSession = CreateObject("MAPI.Session")
 objSession.Logon
 Util_CreateSessionAndLogon = True
 Exit Function

err_CreateSessionAndLogon:
 If (Err = 1275) Then ' VB4.0 uses "Err.Number"
 MsgBox "User pressed Cancel"
 Else
 MsgBox "Unrecoverable Error:" & Err
 End If
 Util_CreateSessionAndLogon = False
 Exit Function

End Function

When no parameters are supplied to the Logon method, as in the example above, the OLE Messaging
Library displays an application-modal logon dialog box that prompts the application user to select a
user profile. Based on the characteristics of the selected profile, the underlying MAPI system logs on
the user or prompts for password information.

You can also choose to use your own application's dialog box to obtain the parameters needed to log
on, rather than using the MAPI logon dialog box. The following example obtains the profile name and
password information and directs the Logon method not to display a logon dialog box:

' Function: Session_Logon_NoDialog
' Purpose: Call the Logon method, set parameter to show no dialog
' See documentation topic: Logon Method (Session object)
Function Session_Logon_NoDialog()
 On Error GoTo error_olemsg
 ' can set strProfileName, strPassword from a custom form
 ' adjust these parameters for your configuration
 If objSession Is Nothing Then
 Set objSession = CreateObject("MAPI.Session")
 End If
 If Not objSession Is Nothing Then
 ' configure these parameters for your needs either here
 ' or in the function Util_Initialize
 objSession.Logon profileName:=strProfileName, _
 showDialog:=False
 End If
 Exit Function

error_olemsg:

 If 1273 = Err Then
 MsgBox "cannot logon: incorrect profile name or password"
 Exit Function
 End If
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

Note Your Visual Basic application should be able to handle cases that occur when a user provides
incorrect profile or password information, or that occur when a user cancels from the Logon dialog box.
For more information, see Handling Errors.

After establishing a Session object and successfully logging on to the system, the user has access to
several default objects provided by the Session object, including the Inbox and Outbox folders. For
more information, see Reading a Message from the Inbox.

See Also

Reading a Message from the Inbox

Creating and Sending a Message

Using Addresses

In general, MAPI supports two kinds of addressing:

· Addresses that the MAPI system looks up for you in your address book, based on a display name
that you supply.

· Addresses that represent custom addresses, that are used as supplied without lookup.

The OLE Messaging Library supports both kinds of addresses with its Recipient object. To look up an
address name, you supply the Name property only. To use custom addresses, you supply the full
address in the Address property.

The address book can be thought of as a database in persistent storage, managed by the MAPI
system, that contains valid addressing information that is associated with a display name. The display
name represents the way that a person's name might be displayed for your application users, using
that person's full name, rather than the e-mail address that the messaging system uses to transmit the
message. For example, the display name "John Doe" could be mapped to the e-mail address "johnd."

In contrast to the address book, the objects that you create with the OLE Messaging Library are
temporary objects that reside in memory. When you fill in the Recipient object's Name property with a
display name, you must then resolve the address. To resolve the address means that you ask the
MAPI system to look up the display name in the database and supply you with the corresponding
address. When the display name is ambiguous, or can match more than one entry in the address book,
the MAPI system prompts you to select from a list of possible matching names.

The Recipient object's Name property represents the display name. Call the Recipient object's
Resolve method to resolve the display name.

After the Recipient object is resolved, it has a child AddressEntry object that contains a copy of the
valid addressing information from the database. The child AddressEntry object is accessible from the
Recipient object's AddressEntry property. The Recipient object and AddressEntry object properties
are related as follows.

OLE Messaging Library
property

MAPI property Description

Recipient.Address Combination of
PR_ADDR_TYPE and
PR_EMAIL_ADDRESS

Full address;
AddressEntry
object's Type
and Address
properties

Recipient.Name PR_DISPLAY_NAME Display name
Recipient.AddressEntry.Add
ress

PR_EMAIL_ADDRESS E-mail address

Recipient.AddressEntry.Typ
e

PR_ADDR_TYPE E-mail type

Recipient.AddressEntry.Na
me

PR_DISPLAY_NAME Display name

Recipient.AddressEntry.ID PR_ENTRYID Unique identifier
for the address
entry

The Recipient object's Address property represents a full address, that is, the combination of address
type and e-mail address that MAPI uses to send a message. The full address represents the same
information that appears in the AddressEntry Address and Type properties.

You can also supply a complete recipient address. By manipulating the address yourself, you direct the
MAPI system to send the message to the full address that you supply without using the database. In

this case, you must also supply the display name. When you supply a custom address, the Recipient
object's Address property must use the following syntax.

TypeValue:AddressValue

There is also a third method of working with addresses. You can directly obtain and use the Recipient
object's child AddressEntry object from messages that have already been successfully sent through the
messaging system.

For example, to reply to a message, you can use a Message object's Sender property to get a valid
AddressEntry object. When you work with valid AddressEntry objects, you do not have to call the
Resolve method.

Note When you use existing AddressEntry objects, do not try to modify them. In general, do not write
directly to the Recipient object's child AddressEntry object properties.

In summary, you can provide addressing information in three different ways:

· Obtain the correct addressing information for a known display name. Set the Recipient object's
Name property and call the Recipient object's Resolve method. Note that the Resolve method can
display a dialog box.

· Use an existing valid address entry, such as the Message object's Sender property, when you are
replying to a message. Set the Recipient object's AddressEntry property to an existing
AddressEntry object that is known to be valid. (You do not need to call the Resolve method.)

· Create a custom address. Set the Recipient object's Address property, using the correct syntax as
described above (use the colon character (:) to separate the address type from the address), and
call the Resolve method.

The following sample code demonstrates these three kinds of addresses:

' Function: Util_UsingAddresses
' Purpose: Set addresses three ways
' See documentation topic: Using Addresses
Function Util_UsingAddresses()
Dim objNewMessage As Object ' new message object for example
Dim strAddrEntryID As String ' ID value from AddressEntry object
Dim strName As String ' Name from AddressEntry object
 On Error GoTo error_olemsg
 If objOneMsg Is Nothing Then
 MsgBox "Must select a message"
 Exit Function
 End If
 With objOneMsg.Recipients.Item(1).AddressEntry
 strAddrEntryID = .Id
 strName = .Name
 End With
 Set objNewMessage = objSession.Outbox.Messages.Add
 If objNewMessage Is Nothing Then
 MsgBox "Unable to add a new message"
 Exit Function
 End If
 ' add three recipients
 ' 1. look up entry in address book specified by profile
 Set objOneRecip = objNewMessage.Recipients.Add(_
 Name:=strName, _
 Type:=mapiTo)
 If objOneRecip Is Nothing Then

 MsgBox "Unable to add recipient using Display Name"
 Exit Function
 End If
 objOneRecip.Resolve
 ' 2. add a custom recipient
 Set objOneRecip = objNewMessage.Recipients.Add(_
 Address:="SMTP:davidhef@microsoft.com", _
 Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using custom addressing"
 Exit Function
 End If
 objOneRecip.Resolve

 ' 3. add a valid address entry object, such as Message.Sender
 Set objOneRecip = objNewMessage.Recipients.Add(_
 entryID:=strAddrEntryID, _
 Name:=strName, _
 Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using existing AddressEntry ID"
 Exit Function
 End If

 objNewMessage.Text = "expect 3 different recipients"
 MsgBox ("count = " & objNewMessage.Recipients.Count)
 ' you can also call resolve for the whole collection
 ' objNewMessage.Recipients.Resolve (True) ' resolve all; show dialog

 objNewMessage.Subject = "test"
 objNewMessage.Update ' update the message
 x = objNewMessage.Send(showDialog:=False)
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Exit Function

End Function

See Also

Sender Property (Message Object)

Resolve Method (Recipient Object)

Changing an Existing Address Entry

Viewing MAPI Properties

You can use a feature of the OLE Messaging Library's Fields collection object to view the values of
MAPI properties.

The Fields collection's Item property allows you to specify the actual property tag value as an identifier.
A property tag is a 32-bit unsigned integer that contains the property identifier in its high-order 16 bits
and the property type (its underlying data type) in the low-order 16 bits. The OLE Messaging Library
also supports multivalued properties, or properties that represent arrays of values. A multivalued
property appears to the Visual Basic application as a variant array; that is, you can use the For... Next
statement to access individual array entries.

The OLE Messaging Library works with three types of message properties:

· Standard MAPI properties named in the OLE Messaging Library object description language (ODL)
file.

· Standard MAPI properties not named in the OLE Messaging Library ODL file.
· Properties named and created by the application.

The Fields collection exposes standard MAPI properties not named in the ODL file and properties
named and created by the application. Although the Field object provides a Delete method, you should
note that some standard MAPI properties, such as those created by MAPI system components, cannot
be deleted.

Note that MAPI stores all custom properties that represent date and time information using Greenwich
Mean Time (GMT). The OLE Messaging Library converts these properties so that the values appear to
the user in local time.

Note A complete discussion of MAPI properties is beyond the scope of this guide. MAPI properties
are defined and covered in detail in the MAPI Programmer's Reference.

' Function: Fields_Selector
' Purpose: View a MAPI property by supplying a property tag value as
' the Item value
' See documentation topics: Viewing MAPI Properties;
' Item property (Fields collection)
Function Fields_Selector()
Dim lValue As Long
Dim strMsg As String

 On Error GoTo error_olemsg

 If objFieldsColl Is Nothing Then
 MsgBox "must first select a Fields collection"
 Exit Function
 End If
 ' you can provide a dialog here so users enter MAPI proptags...
 ' or select property names from a list; for now, hard-coded value
 lValue = &h1a001e
 ' &H1a = PR_MESSAGE_CLASS; &H001e = 30 = PT_STRING8
 ' high-order 16 bits is property id; low-order is property type
 Set objOneField = objFieldsColl.Item(lValue)
 If objOneField Is Nothing Then
 MsgBox "Could not get the Field using the value " & lValue
 Exit Function
 Else

 strMsg = "Used the value " & lValue & " to access the property"
 strMsg = strMsg & "PR_MESSAGE_CLASS: type = " & objOneField.Type
 strMsg = strMsg & "; value = " & objOneField.Value
 MsgBox strMsg
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

See Also

Field Object

Customizing a Folder or Message

Working with Conversations

Three Message object properties let you show complex relationships among messages by defining
them as part of a conversation. A conversation is a series of messages, consisting of an initial message
and all messages sent in reply to the initial message. When the initial message or a reply elicits
additional messages, the resulting messages are called a conversation thread. A thread represents a
subset of messages in the conversation.

The conversation properties Conversation, ConversationTopic, and ConversationIndex give you
another way to organize and display messages. Rather than simply organizing messages by subject,
time received, or sender, you can show rich and complex relationships among messages. The
Conversation property is a binary value that uniquely identifies the conversation. All messages within
the same conversation use the same value for the Conversation property. The ConversationTopic
property is a string that describes the overall subject of the conversation. The ConversationIndex
property is an index that you can use to represent the relationships between messages and replies.

When you start an initial message, set the Conversation property to a unique value, such as a globally
unique identifier (GUID). Set the ConversationTopic property to an appropriate value that will apply to
all messages within the conversation. For many applications, the message Subject property is
appropriate.

You can use your own convention to decide how to use the ConversationIndex property. However, it
is recommended that you adopt the same convention used by the Microsoft Exchange Client message
viewer, so that you can use that viewer's user interface to show the relationships between messages in
a conversation.

By convention, Microsoft Exchange Server uses ConversationIndex values that represent
concatenated time stamp values. The first time stamp in the string represents the original message.
When a new message represents a reply to a conversation message, it copies the ConversationIndex
string of the message it is replying to, and appends a time stamp value to the end of the string. The
new string value is used as the ConversationIndex value of the new message.

When you use this convention, you can easily see relationships among messages when you sort the
messages by ConversationIndex values.

The following code sample provides a utility function, Util_GetEightByteTimeStamp, which can be
used to build Microsoft Exchange Server-compatible ConversationIndex values. The utility function
calls the OLE function CoCreateGuid to obtain the time stamp value from a GUID data structure. The
GUID value is composed of a time stamp and a machine identifier; the utility function saves the part
that contains the time stamp.

' declarations for the Util_GetEightByteTimeStamp function
Type GUID
 Guid1 As Long
 Guid2 As Long
 Guid3 As Long
 Guid4 As Long
End Type
Declare Function CoCreateGuid Lib "COMPOBJ.DLL" (pGuid As GUID) As Long
' Note: Use "OLE32.DLL" for Windows NT, Win95 platforms
Global Const S_OK = 0
' end declarations section

' Function: Util_GetEightByteTimeStamp
' Purpose: Generate a time stamp for use in conversations
' See documentation topic: Working With Conversations
Function Util_GetEightByteTimeStamp() As String
Dim lResult As Long

Dim lGuid As GUID
 ' Exchange conversation is a unique 8-byte value
 ' Exchange client viewer sorts by concatenated properties
 On Error GoTo error_olemsg

 lResult = CoCreateGuid(lGuid)
 If lResult = S_OK Then
 Util_GetEightByteTimeStamp = _
 Hex$(lGuid.Guid1) & Hex$(lGuid.Guid2)
 Else
 Util_GetEightByteTimeStamp = "00000000" ' zeroes
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Util_GetEightByteTimeStamp = "00000000"
 Exit Function

End Function

When you start a new conversation, set the Conversation property to a complete GUID value. Set the
ConversationIndex property to the value returned by this function, as follows:

' new conversation
o bjMessage.ConversationIndex = Util_GetEightByteTimeStamp()

When you are replying to a message in an existing conversation, append the time stamp value to that
message's ConversationIndex value:

' reply within an existing conversation
Dim objOriginalMsg As Object ' assume valid
Dim strNewIndex As String
'...
' copy the original topic and
' append the current time stamp to the original time stamp
objMessage.ConversationTopic = objOriginalMsg.ConversationTopic
strNewIndex = objOriginalMsg.ConversationIndex _
 & Util_GetEightByteTimeStamp()
objMessage.ConversationIndex = strNewIndex

For additional sample code, see Posting Messages To a Public Folder.

See Also

Posting Messages to a Public Folder

Objects, Properties, and Methods

This reference contains property and method information for the OLE Messaging Library objects.

The following table summarizes each object's properties and methods.

Object Properties Methods
AddressE
ntry

Address, Application, Class,
DisplayType, Fields, ID,
Name, Parent, Session,
Type

Delete, Details,
Update

Attachme
nt

Application, Class, Index,
Name, Parent, Position,
Session, Source, Type

Delete,
ReadFromFile,
WriteToFile

Attachme
nts
(collectio
n)

Application, Class, Count,
Item, Parent, Session

Add, Delete

Field Application, Class, ID,
Index, Name, Parent,
Session, Type, Value

Delete,
ReadFromFile,
WriteToFile

Fields
(collectio
n)

Application, Class, Count,
Item, Parent, Session

Add, Delete,
SetNamespace

Folder Application, Class, Fields,
FolderID, Folders, ID,
MAPIOBJECT*, Messages,
Name, Parent, Session,
StoreID

Update

Folders
(collectio
n)

Application, Class, Parent,
Session

GetFirst, GetLast,
GetNext, GetPrevious

InfoStore Application, Class, ID,
Index, Name, Parent,
ProviderName, RootFolder,
Session

(none)

InfoStore
s
Collectio
n

Application, Class, Count,
Item, Parent, Session

(none)

Message Application, Attachments,
Class, Conversation,
ConversationIndex,
ConversationTopic,
DeliveryReceipt, Encrypted,
Fields, FolderID, ID,
Importance, MAPIOBJECT*,
Parent, ReadReceipt,
Recipients, Sender, Sent,
Session, Signed, Size,
StoreID, Subject, Submitted,
Text, TimeReceived,
TimeSent, Type, Unread

Delete, Options,
Send, Update

Message
s
(collectio
n)

Application, Class, Parent,
Session

Add, Delete, GetFirst,
GetLast, GetNext,
GetPrevious, Sort

Recipient Address, AddressEntry,
Application, Class,
DisplayType, Index, Name,
Parent, Session, Type

Delete, Resolve

Recipient
s
(collectio
n)

Application, Class, Count,
Item, Parent, Resolved,
Session

Add, Delete, Resolve

Session Application, Class,
CurrentUser, Inbox,
InfoStores, MAPIOBJECT*,
Name, OperatingSystem,
Outbox, Parent, Session,
Version

AddressBook,
GetAddressEntry,
GetFolder,
GetInfoStore,
GetMessage, Logoff,
Logon

* The MAPIOBJECT property is not available to Visual Basic applications. For more information, see
the reference for the MAPIOBJECT property.

This reference is organized by object, consisting of a brief summary of each object that lists its
properties and methods, followed by reference documentation for the individual properties and
methods. The properties and methods are organized alphabetically.

To avoid duplication, the section All OLE Messaging Library Objects describes the properties that have
the same meaning for all OLE Messaging Library objects. These are:

· Application property
· Class property
· Parent property
· Session property

See Also

Overview

Programming Tasks

All OLE Messaging Library Objects

All OLE Messaging Library objects contain the properties Application, Class, Parent, and Session.
The Application and Session properties have the same values for all objects within a given session.
The Parent property indicates the logical parent of the object. The Class property is an integer value
that identifies the OLE Messaging Library object.

Note that for the Session object, the Parent and Session properties are assigned the value Nothing.
The Session object represents the highest level in the OLE Messaging Library object hierarchy and has
no parent.

To reduce duplication, the detailed reference for these common ("superclass") properties appears only
once, in this section.

Many objects also have a Type property, but the Type property is not defined for all objects and its
meaning varies depending on the object. The following table summarizes the Type property.

Object Description of the Type property
AddressEntry The messaging system: SMTP, Fax, and so

on
Attachment Attachment type: mapiFileData,

mapiFileLink, or mapiOLE
Field The field data type: vbInteger, vbLong, and

so on
Message The message class: IPM.Note, and so on
Recipient Recipient type: To, Cc, or Bcc line

For detailed information about the Type property, see the reference documentation for each object.

The following table lists the properties that are common to all OLE Messaging Library objects and that
have the same meaning for all objects.

Properties

Property name Type Access
Application String Read-only
Class Long Read-only
Parent Object Read-only
Session Session object Read-only

 Application Property

The Application property returns the name of the active application, which is the OLE Messaging
Library, "OLE/Messaging." Read-only.

Syntax

object.Application

Data Type

String

Remarks

The Application property always contains the string "OLE/Messaging."

Note that this behavior for the Microsoft OLE Messaging Library differs from other implementations of
OLE Automation servers. Many OLE Automation servers are based on executables (files that take the
extension .EXE) and return an object value. The OLE Messaging Library is based on the MAPI
subsystem, which is implemented by dynamic link libraries (files that take the extension .DLL).

Example

' Function: Session_Application
' Purpose: Display the Application property of the Session object
' See documentation topic: Application property
Function Session_Application()
Dim objSession As Object
 ' error handling
 Set objSession = CreateObject("MAPI.Session")
 If Not objSession Is Nothing Then
 MsgBox "Session's Application property = " _
 & objSession.Application
 End If
 ' error handling
End Function

See Also

Version Property (Session Object)

 Class Property

The Class property returns the OLE Messaging Library object. Read-only.

Syntax

object.Class

Data Type

Long

Remarks

The Class property contains a numeric constant that identifies the OLE Messaging Library object. The
following values are defined.

OLE Messaging
Library object

Class ID
value

Value

AddressEntry 8 mapiAddressEntry
Attachment 5 mapiAttachment
Attachments
(collection)

21 mapiAttachments

Field 6 mapiField
Fields (collection) 22 mapiFields
Folder 2 mapiFolder
Folders (collection) 18 mapiFolders
InfoStore 1 mapiInfoStore
InfoStores
(collection)

17 mapiInfoStores

Message 3 mapiMsg
Messages
(collection)

19 mapiMessages

Recipient 4 mapiRecipient
Recipients
(collection)

20 mapiRecipients

Session 0 mapiSession

Example

' Function: Util_DecodeObjectClass
' Purpose: Decode the long integer class value,
' show the related object name
' See documentation topic: Class property
Function Util_DecodeObjectClass(lClass As Long)
 ' error handling here...
 Select Case (lClass)
 Case mapiSession:
 MsgBox ("Session object; class = " & lClass)
 Case mapiMsg:
 MsgBox ("Message object; class = " & lClass)
 End Select
 ' error handling
End Function

' Function: TestDrv_Util_DecodeObjectClass
' Purpose: Call the utility function DecodeObjectClass for Class values
' See documentation topic: Class property
Function TestDrv_Util_DecodeObjectClass()
 ' error handling here...
 If objSession Is Nothing Then
 MsgBox "Need to set the Session object: Session->Logon"
 Exit Function
 End If
 ' expect type mapiSession = 0 for Session object
 Util_DecodeObjectClass (objSession.Class)
 Set objMessages = objSession.Inbox.Messages
 Set objOneMsg = objSession.Inbox.Messages.GetFirst
 If objOneMsg Is Nothing Then ' empty inbox
 Exit Function
 End If
 ' expect type mapiMessage = 3 for Message object
 Util_DecodeObjectClass (objOneMsg.Class)
 ' error handling here...
End Function

See Also

All OLE Messaging Library Objects

 Parent Property

The Parent property returns the parent of the object. Read-only.

Syntax

object.Parent

Data Type

Object

Remarks

The Parent property in the OLE Messaging Library currently returns the immediate parent of an object.
For example, the immediate parent for each object is shown in the following table.

OLE Messaging Library
object

Immediate parent in object
hierarchy

AddressEntry (returned by
Session.CurrentUser)

Session object

AddressEntry (all others) Recipient object
Attachment Attachments collection
Attachments (collection) Message object
Field Fields collection
Fields (collection) Message or Folder object
Folder (Inbox, Outbox, Root
folder)

Session object

Folder (all others) Folders collection
Folders (collection) Folder object
InfoStore InfoStores collection
InfoStores (collection) Session object
Message Messages collection
Messages (collection) Folder object
Recipient Recipients collection
Recipients (collection) Message object
Session (not defined)

Note that the Parent property represents the immediate parent of the object, rather than the logical
parent of the object. For example, a folder contains a Messages collection, which contains Message
objects. The Parent property for a message is the immediate parent, the Messages collection, rather
than the logical parent, the Folder object.

The Session object represents the highest level in the hierarchy of OLE Messaging Library objects and
its Parent property is set to Nothing.

Example

This example displays the name of the parent Messages collection of a message:

' Function: Message_Parent
Function Message_Parent()
 ' error handling here
 If objOneMsg Is Nothing Then
 MsgBox "Need to select a message; see Messages->Get*"

 Exit Function
 End If
 ' Immediate parent of message is the messages collection
 MsgBox "Message immediate parent class = " & objOneMsg.Parent.Class
 ' error handling code
End Function

To get to the folder, you have to take the parent of the Messages collection object:

' Function: Messages_Parent
' Purpose: Display the Messages collection Parent class value
' See documentation topic: Parent property
Function Messages_Parent()
 ' error handling here...
 If objMessages Is Nothing Then
 MsgBox "No active messages collection"
 Exit Function
 End If
 MsgBox "Messages collection parent has class value: " & _
 objMessages.Parent.Class
 Exit Function
 ' error handling here...
End Function

See Also

Class Property

Folder Object

Message Object

Session Object

 Session Property

The Session property returns the top-level Session object associated with the specified OLE
Messaging Library object. Read-only.

Syntax

Set objSession = object.Session

Data Type

Object

Remarks

The Session object represents the highest level in the OLE Messaging Library object hierarchy. Its
Session property is set to Nothing.

Example

' Function: Folder_Session
' Purpose: Access the Folder's Session property and display its name
' See documentation topic: Session property
Function Folder_Session()
Dim objSession2 As Object ' session object to get the property
 ' error handling here...
 If objFolder Is Nothing Then
 MsgBox "No active folder; please select Session->Inbox"
 Exit Function
 End If
 Set objSession2 = objFolder.Session
 If objSession2 Is Nothing Then
 MsgBox "Unable to access Session property"
 Exit Function
 End If
 MsgBox "Folder's Session property name = " & objSession2.Name
 Set objSession2 = Nothing
 ' error handling here...
End Function

See Also

Session Object

 AddressEntry Object

The AddressEntry object defines valid addressing information for a given messaging system. An
address usually represents a person or process to which the messaging system can deliver messages.

The AddressEntry object is often used as a child object of the Recipient object. In this context, the
AddressEntry object represents a copy of valid addressing information that is obtained from the
address book during a call to the Recipient object's Resolve method. When you obtain the
AddressEntry object in this context, you should not modify its properties.

Properties

Property name Type Access
Address String Read/write
Application String Read-only
Class Long Read-only
DisplayType Long Read-only
Fields Fields collection

object
Read-only

ID String Read-only
Name String Read/write
Parent Object Read-only
Session Session object Read-only
Type String Read/write

Methods

Method name Parameters
Delete (none)
Details (optional) parentWindow as

Long
 Update (none)

See Also

Recipient Object

 Address Property (AddressEntry Object)

The Address property specifies the messaging address of an address list entry or message recipient.
Read/write.

Syntax

objAddrEntry.Address

Data Type

String

Remarks

The AddressEntry object's Address property provides a unique string to identify a message recipient
and routing information for messaging systems. The format of the address string is specific to each
messaging system.

The AddressEntry object's Address and Type properties combine to form the full address, the
complete messaging address that appears in the Recipient object's Address property. The Recipient
object's Address property uses the following syntax:

TypeValue:AddressValue

The AddressEntry object's Address property corresponds to the MAPI property
PR_EMAIL_ADDRESS.

Example

' Set up a series of object variables
' Set the Folder and Messages variables; from Session_Inbox
 Set objFolder = objSession.Inbox
 Set objMessages = objFolder.Messages
' Set the Message object variable; from Messages_GetFirst()
 Set objOneMsg = objMessages.GetFirst
' Set the Recipients collection variable; from Message_Recipients()
 Set objRecipColl = objOneMsg.Recipients
' Set the Recipient object variable; from Recipients_FirstItem()
 If 0 = objRecipColl.Count Then
 MsgBox "No recipients in the list"
 Exit Function
 End If
 iRecipCollIndex = 1
 Set objOneRecip = objRecipColl.Item(iRecipCollIndex)
' set the AddressEntry object variable; from Recipient_AddressEntry()
 Set objAddrEntry = objOneRecip.AddressEntry
' from Util_CompareFullAddressParts()
' display the values
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & objAddrEntry.Address
 MsgBox strMsg

See Also

Address Property (Recipient Object)

 Delete Method (AddressEntry Object)

The Delete method deletes the specified address from the address book.

Note The OLE Messaging Library supports the Delete method only for the personal address book.

Syntax

objAddressEntry.Delete()

Parameters

objAddressEntry
Required. The AddressEntry object.

Remarks

The Delete method fails if both the Address and ID properties are empty.

Example

Function AddressEntry_Delete()
 ' error handling here...
 If objAddrEntry Is Nothing Then
 MsgBox "must select an AddressEntry object"
 Exit Function
 End If
 objAddrEntry.Delete
 Set objAddrEntry = Nothing
 Exit Function
 ' error handling
End Function

See Also

Add Method (Recipients Collection)

 Details Method (AddressEntry Object)

The Details method displays a dialog box that provides detailed information about an AddressEntry
object.

Syntax

objAddressEntry.Details([parentWindow])

Parameters

objAddressEntry
Required. The AddressEntry object.

parentWindow
Optional. Long. The parent window handle for the details dialog box. A value of 0 (the default, when
no value is supplied) specifies a modal dialog box.

Remarks

The dialog box always contains at least the display name and address of the address entry. For
AddressEntry objects, the method fails if both the Address and ID properties are empty.

The parentWindow parameter value must be valid or the OLE Messaging Library will not display the
dialog box.

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object and
Recipients collection), AddressBook and Logon methods (Session object).

See Also

Update Method (AddressEntry Object)

 DisplayType Property (AddressEntry Object)

The DisplayType property returns the type of the address entry. This property enables special
processing based on the type, such as displaying an icon associated with that type. Read-only.

Syntax

objAddressEntry.DisplayType

Data Type

Long

Remarks

You can use the display type to sort or to filter address entries.

The following values are defined:

Displaytype value Description
mapiUser Local user
mapiDistList Distribution list
mapiForum Public folder
mapiAgent Agent
mapiOrganization Organization
mapiPrivateDistList Private distribution list
mapiRemoteUser Remote user

See Also

Add Method (Recipients Collection)

 Fields Property (AddressEntry Object)

The Fields property returns a single field (a Field object) or a collection of fields (a Fields collection
object) of the Folder object. Read-only.

Syntax

objAddressEntry.Fields

objAddressEntry.Fields(index)

objAddressEntry.Fields(proptag)

objAddressEntry.Fields(name)

index
Short integer (less than or equal to 65535). Specifies the index within the collection.

proptag
Long integer (greater than or equal to 65536). Specifies the property tag value for the MAPI property
to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type

Object

Remarks

Fields provide a generic access mechanism that allows Visual Basic and Visual C++ programmers to
retrieve the value of any MAPI property using either a name or a MAPI property tag. To access using
the property tag, use Folder.Fields.Item(proptag), where proptag is the 32-bit MAPI property tag
associated with the MAPI property in question, such as PR_MESSAGE_CLASS. To access a Field
object using a name, use Folder.Fields.Item(name), where name is a string that represents the custom
property name.

See Also

Fields Collection

 ID Property (AddressEntry Object)

The ID property returns the unique identifier of the object as a string. Read-only.

Syntax

objAddressEntry.ID

Data Type

String

Remarks

You can use the AddressEntry object's ID property as a parameter to the Recipient object's Add
method.

MAPI systems assign a permanent, unique ID string when an object is created. These identifiers do not
change from one MAPI session to another.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters.

Example

This example copies information from an AddressEntry object to a Recipient object:

' Function: Recipients_Add_EntryID
' Purpose: Add a new recipient to the collection using AddressEntry ID
Function Recipients_Add_EntryID()
Dim strID As String ' ID from Message.Sender
Dim strName As String ' name from Message.Sender
Dim objNewMsg As Object ' new msg; set its recipient using ID
Dim objNewRecip As Object ' Recipient of new message, set from ID, name
 ' error handling
 strID = objOneMsg.Sender.Id 'Address Entry object ID
 strName = objOneMsg.Sender.Name
 Set objNewMsg = objSession.Outbox.Messages.Add
 If objNewMsg Is Nothing Then
 MsgBox "Could not create a new message"
 Exit Function
 End If
 objNewMsg.Subject = "Sample message from OLE Messaging Library"
 objNewMsg.Text = "Called Recipients.Add method w/ entryID parameter"
 Set objNewRecip = objNewMsg.Recipients.Add(_
 entryID:=strID, _
 Name:=strName)
 If objNewRecip Is Nothing Then
 MsgBox "Could not create a new recipient"
 Exit Function
 End If
 objNewMsg.Update
 objNewMsg.Send showDialog:=False
 MsgBox "Created a new message in the Outbox and sent it"
 Exit Function
 ' error handling
End Function

See Also

Add Method (Recipients Collection)

 Name Property (AddressEntry Object)

The Name property returns or sets the display name or alias of the AddressEntry object as a string.
Read/write.

Syntax

objAddressEntry.Name

Data Type

String

Remarks

The AddressEntry object is typically used as a copy of valid addressing information obtained from the
address book after you have called the Recipient object's Resolve method.

When you obtain the AddressEntry object in this context, you should not modify its properties. To
request resolution of a display name, use the Recipient object's Name property instead. Set the Name
property and call the Recipient object's Resolve method.

The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

Example

' for values of variables, see AddressEntry Address property
' Recipient and AddressEntry display names are the same
 strMsg = "Recipient name = " & objOneRecip.Name
 strMsg = strMsg & "; AddressEntry name = " & objAddrEntry.Name
 MsgBox strMsg

See Also

Recipient Object

Resolve Method (Recipient Object)

Using Addresses

 Type Property (AddressEntry Object)

The Type property specifies the address type, such as SMTP, Fax, or X.400. Read/write.

Syntax

objAddressEntry.Type

Data Type

String

Remarks

The AddressEntry object's Type property specifies the address type. This is usually a tag referring to
the messaging system that routes messages to this address, such as SMTP or Fax.

The AddressEntry object's Address and Type properties combine to form the full address, the
complete messaging address that appears in the Recipient object's Address property. The Recipient
Address uses the following syntax:

TypeValue:AddressValue

The Type property corresponds to the MAPI property PR_ADDRTYPE.

Example

See the example for the AddressEntry object's Address property.

See Also

Address Property (AddressEntry Object)

Address Property (Recipient Object)

 Update Method (AddressEntry Object)

The Update method saves AddressEntry object changes in the MAPI system.

Syntax

objAddressEntry.Update([makePermanent, refreshObject])

Parameters

objAddressEntry
Required. The AddressEntry object.

makePermanent
Optional. Boolean. TRUE indicates that the property cache is flushed and all changes are committed
in the underlying store. FALSE indicates that the property cache is flushed and not committed to the
store. The default value is TRUE.

refreshObject
Optional. Boolean. TRUE indicates that the property cache is reloaded from the values in the
underlying store. FALSE indicates that the property cache is not reloaded. The default value is
FALSE.

Remarks

Changes to objects are not permanently saved in the MAPI system until you call the Update method
with the makePermanent parameter set to TRUE.

For improved performance, the OLE Messaging Library caches property changes in private storage
and updates either the object or the underlying store only when you explicitly request such an update.
For efficiency, you should make only one call to Update with its makePermanent parameter set to
TRUE.

The makePermanent and refreshObject parameters combine to cause the following changes:

refreshObject =
TRUE

refreshObject =
FALSE

makePermanent =
TRUE

Commit all changes,
flush the cache, and
reload the cache
from the store.

Commit all changes
and flush the cache.

makePermanent =
FALSE

Flush the cache and
reload the cache
from the store.

Flush the cache.

Call Update(FALSE, TRUE) to flush the cache and then reload the values from the store.

Example

The following example changes the display name for the valid AddressEntry address:

' Function: AddressEntry_Update
' Purpose: Demonstrate the Update method
' (Note: OLE Messaging Library only affects the PAB)
Function AddressEntry_Update()
Dim objRecipColl As Object ' Recipients collection
Dim objNewRecip As Object ' New recipient

 ' error handling omitted...
 Set objRecipColl = objSession.AddressBook

 If objRecipColl Is Nothing Then
 MsgBox "must select someone from the address book"
 Exit Function
 End If
 Set objNewRecip = objRecipColl.Item(1)
 With objNewRecip.AddressEntry
 .Name = .Name & " the Magnificent"
 .Type = "X.500" ' you can also change the Type
 .Update
 End With
 MsgBox "Updated an address entry name: " & _
 objNewRecip.AddressEntry.Name
 Exit Function
 ' error handling omitted
End Function

See Also

Recipient Object

 Attachment Object

The Attachment object represents a document that is an attachment of a message.

Properties

Property name Type Access
Application String Read-only
Class Long Read-only
Index Long Read-only
Name String Read/write
Parent Object Read-only
Position Long Read/write
Session Session object Read-only
Source String Read/write
Type Long Read/write

Methods

Method name Parameters
Delete (none)
ReadFromFile fileName as String
WriteToFile fileName as String

See Also

Attachments Collection

 Delete Method (Attachment Object)

The Delete method deletes the attachment.

Syntax

objAttachment.Delete()

Parameters

objAttachment
Required. The Attachment object.

Remarks

The Attachment object is set to Nothing and is removed from memory, but the change is not
permanent until you use the Update, Send, or Delete method on the parent Message object.

See Also

Delete Method (Attachments Collection)

 Index Property (Attachment Object)

The Index property returns the index number for the Attachment object within the Attachments
collection. Read-only.

Syntax

objAttachment.Index

Data Type

Long

Remarks

The Index property indicates the attachment's position within the parent Attachments collection.

An index value should not be considered to be a static value that remains constant for the duration of a
session. The index can change whenever an update occurs to a parent object, such as the message or
folder.

Example

Function Attachments_GetByIndex()
Dim lIndex As Long
Dim objOneAttach As Object ' assume valid attachment
 ' set error handler here
 If objAttachColl Is Nothing Then
 MsgBox "must select an Attachments collection"
 Exit Function
 End If
 If 0 = objAttachColl.Count Then
 MsgBox "must select collection with 1 or more attachments"
 Exit Function
 End If
 ' prompt user for index; for now, use 1
 Set objOneAttach = objAttachColl.Item(1)
 MsgBox "Selected attachment 1: " & objOneAttach.Name
 lIndex = objOneAttach.Index ' save index to retrieve this later
 ' ...get same attachment object later
 Set objOneAttach = objAttachColl.Item(lIndex)
 If objOneAttach Is Nothing Then
 MsgBox "Error, could not reselect the attachment"
 Else
 MsgBox "Reselected attachment " & lIndex & _
 " using index: " & objOneAttach.Name
 End If
 Exit Function

See Also

Attachments Collection

Item Property (Attachments Collection)

 Name Property (Attachment Object)

The Name property returns or sets the display name of the Attachment object as a string. Read/write.

Syntax

objAttachment.Name

Data Type

String

Remarks

The Name property corresponds to the MAPI property PR_ATTACH_FILENAME.

Example

See the example for the Attachment object's Index property.

See Also

Attachment Object

 Position Property (Attachment Object)

The Position property returns or sets the position of the attachment within the body text of the
message. Read/write.

Syntax

objAttachment.Position

Data Type

Long

Remarks

The Position property is a long integer describing where the attachment should be placed in the
message body. The attachment overwrites the character present at that position. Applications cannot
place two attachments in the same location within a message, and attachments cannot be placed
beyond the end of the message body.

The OLE Messaging Library does not manage rendering of the attachment within the message. The
Position property simply provides directions for the rendering application.

The value -1 indicates that the attachment is present, but is not rendered. The value 0 and other
positive values indicate an index to the text character within the message.

The Position property corresponds to the MAPI property PR_RENDERING_POSITION.

Example

' from the function Attachments_Add()
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = mapiFileLink
 .Position = 0 ' place at beginning of message
 .Source = "\\server\bitmaps\honey.bmp" ' UNC name
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type mapiFileLink"

See Also

Add Method (Attachments Collection)

Text Property (Message Object)

 ReadFromFile Method (Attachment Object)

The ReadFromFile method loads the contents of an attachment from a file.

Syntax

objAttachment.ReadFromFile(fileName)

Parameters

objAttachment
Required. The Attachment object.

fileName
Required. The full path and file name to read. For example, C:\DOCUMENT\BUDGET.XLS.

Remarks

The ReadFromFile method replaces the existing contents of the Attachment object, if any.

The ReadFromFile method operates slightly differently, depending on the value of the Attachment
object's Type property. The following table describes its operation.

Attachm
ent Type
property

ReadFromFile operation

mapiFile
Data

Copies the contents of the specified file to the
attachment.

mapiFileL
ink

Not supported; generates the run-time error
MAPI_E_NO_SUPPORT.

mapiOLE The specified file must be a valid OLE docfile, such as
a file previously written by the WriteToFile method
with a mapiOLE type setting.

Note that ReadFromFile does not support mapiFileLink attachments.

The term "OLE docfile" indicates that the file is written by an application such as Microsoft Word 6.0 or
later that writes files using the OLE IStorage and IStream interfaces.

Note OLE Messaging Library version 1.0 does not support ReadFromFile for mapiFileLink types.
This call generates the run-time error MAPI_E_NO_SUPPORT.

See Also

Add Method (Attachments Collection)

Type Property (Attachment Object)

WriteToFile Method (Attachment Object)

 Source Property (Attachment Object)

The Source property returns or sets the full path name of the attachment data file for mapiFileLink
attachments. The Source property returns or sets the OLE class name of the attachment for mapiOLE
attachments. Read/write.

Syntax

objAttachment.Source

Data Type

String

Remarks

The OLE Messaging Library does not synchronize the Source property and the ReadFromFile
method. For mapiFileData and mapiOLE attachments, when you change the Source property to
indicate a different file, you must also explicitly call the ReadFromFile method to update the object
data. Similarly, when you call ReadFromFile with data from a different file, you must change the
Source property.

The value of the Source property depends on the value of the Type property, as described in the table
below.

Type
property

Source property

mapiFileDat
a

Not used; contains an empty string.

mapiFileLin
k

Specifies a full path name in a universal naming
convention (UNC) format, such as \\SALES\INFO\
PRODUCTS\NEWS.DOC.

mapiOLE Specifies the registered OLE class name of the
attachment, such as "Word.Document" or
"PowerPoint.Show."

The UNC format is suitable for sending attachments to recipients who have access to a common file
server.

The Source property corresponds to the MAPI property PR_ATTACH_PATHNAME.

Example

' from the function Attachments_Add()
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = mapiFileLink
 .Position = 0 ' place at end of message
 .Source = "\\server\bitmaps\honey.bmp" ' UNC name
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type mapiFileLink"

See Also

Add Method (Attachments Collection)

Type Property (Attachment Object)

 Type Property (Attachment Object)

The Type property describes the attachment type. Read/write.

Syntax

objAttachment.Type

Data Type

Long

Remarks

Three attachment types are supported:

Type property Valu
e

Description

mapiFileData 1 Attachment is the contents of a file.
(Default value.)

mapiFileLink 2 Attachment is a link to a file.
mapiOLE 3 Attachment is an OLE object.

The value of the Type property determines the valid values for the Source property.

The Attachment object Type property corresponds to the MAPI property PR_ATTACH_METHOD.

Example

' from the function Attachments_Add()
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = mapiFileLink
 .Position = 0 ' place at end of message
 .Source = "\\server\bitmaps\honey.bmp" ' UNC name
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type mapiFileLink"

See Also

Add Method (Attachments Collection)

ReadFromFile Method (Attachment Object)

Source Property (Attachment Object)

WriteToFile Method (Attachment Object)

 WriteToFile Method (Attachment Object)

The WriteToFile method saves the attachment to a file in the file system. Note that if the file already
exists, this method overwrites it without warning.

Syntax

objAttachment.WriteToFile(file name)

Parameters

objAttachment
Required. The Attachment object.

file name
Required. String. The full path and file name for the saved attachment. For example, C:\
DOCUMENT\BUDGET.XLS.

Remarks

The WriteToFile method overwrites the file without warning if a file of that name already exists. Your
application should check for the existence of the file before calling WriteToFile.

The WriteToFile method operates slightly differently, depending on the value of the Attachment object's
Type property. The following table describes its operation.

Attachm
ent Type
property

WriteToFile operation

mapiFile
Data

Copies the contents of the specified file to the
attachment.

mapiFileL
ink

(Not supported)

mapiOLE Writes the file as an OLE docfile format.

WriteToFile does not support mapiFileLink attachments.

See Also

ReadFromFile Method (Attachment Object)

 Attachments Collection Object

The Attachments collection contains one or more Attachment objects.

The Attachments collection is considered a small collection, which means that it supports count and
index values that let you access individual attachment objects through the Item property. The
Attachments collection supports the Visual Basic For Each statement.

Properties

Property name Type Access
Application String Read-only
Class Long Read-only
Count Long Read-only
Item Object Read-only
Parent Object Read-only
Session Session object Read-only

Methods

Method
name

Parameters

Add (optional) name as String, (optional) position as
Long,
(optional) type as Long, (optional) source as String

Delete (none)

See Also

Attachment Object

Object Collections

 Add Method (Attachments Collection)

The Add method creates a new Attachment object in the Attachments collection.

Syntax

Set objAttachment = objAttachColl.Add([name, position, type, source])

Parameters

objAttachment
On successful return, contains the new Attachment object.

objAttachColl
Required. The Attachments collection object.

name
Optional. String. The display name of the attachment. The default value is an empty string. To allow
a user to click on the attachment that appears in the message and activate an associated
application, supply the full filename, including the file extension.

position
Optional. Long. The position of the attachment within the body text of the message. The default
value is 0.

type
Optional. Long. The type of attachment; either mapiFileData, mapiFileLink, or mapiOLE. The
default value is mapiFileData.

source
Optional. String. The file name that contains the data for the attachment. The specified file name
must be in the appropriate format for the attachment type, specified by the type parameter. The
default value is an empty string. See the following remarks for a complete description.

Remarks

The Add method parameters correspond to the Name, Position, Type, and Source properties of the
Attachment object. The source parameter is also closely related to the ReadFromFile method's
filename parameter.

You can supply the data for the attachment at the same time that you add the attachment to the
collection. The Add method operates differently, depending on the value of the type parameter. The
following table describes its operation.

Value of
type
paramete
r

Value of source parameter

mapiFile
Data

Specifies a full path and file name that contains the
data for the attachment. For example, C:\DOCUMENT\
BUDGET.XLS. The data is read into the attachment.

mapiFile
Link

Specifies a full path name in a universal naming
convention (UNC) format, such as \\SALES\INFO\
PRODUCTS\NEWS.DOC. The attachment is a link, so
the Add method does not read the data.

mapiOLE Specifies a full path and file name to a valid OLE
docfile. For example, C:\DOCUMENT\BUDGET2.XLS.
The data is read into the attachment.

When the type parameter has the value mapiFileLink, the source parameter is a full path name in a

UNC format. This is suitable for sending attachments to recipients who have access to a common file
server. Note that when you use the type mapiFileLink, the OLE Messaging Library does not validate
the filename.

If you do not specify the type and source parameters when you call the Add method, you must later
explicitly set these properties. For mapiFileData and mapiOLE types, you must also call the
ReadFromFile method on the new Attachment object to load the attachment's content.

The Index of the new Attachment object equals the new Count of the Attachments collection. The
attachment is saved in the MAPI system when you Update or Send the parent Message object.

See Also

Count Property (Attachments Collection)

ReadFromFile Method (Attachment Object)

Type Property (Attachment Object)

 Count Property (Attachments Collection)

The Count property returns the number of Attachment objects in the collection. Read-only.

Syntax

objAttachColl.Count

Data Type

Long

Example

This example stores in an array the names of all Attachment objects in the collection:

' from the sample function, TstDrv_Util_SmallCollectionCount
' objAttachColl is an Attachments collection
x = Util_SmallCollectionCount(objAttachColl)

Function Util_SmallCollectionCount(objColl As Object)
Dim strItemName(100) As String ' Names of objects in collection
Dim i As Integer ' loop counter
 On Error GoTo error_olemsg
 If objColl Is Nothing Then
 MsgBox "Must supply a valid collection object as a parameter"
 Exit Function
 End If
 If 0 = objColl.Count Then
 MsgBox "No items in the collection"
 Exit Function
 End If
 For i = 1 To objColl.Count Step 1
 strItemName(i) = objColl.Item(i).Name
 If 100 = i Then ' max size of string array
 Exit Function
 End If
 Next i
 ' error handling here...
End Function

See Also

Item Property (Attachments Collection)

 Delete Method (Attachments Collection)

The Delete method deletes the entire Attachments collection.

Syntax

objAttachColl.Delete()

Parameters

objAttachColl
Required. The Attachments collection object.

Remarks

The object or collection is set to Nothing and it is removed from memory, but the change is not
permanent until you use the Update, Send, or Delete method on the parent Message object that
contained the deleted Attachments collection.

Be cautious using Delete with collections, since the method deletes all objects that are members of the
collection.

See Also

Delete Method (Attachment Object)

Message Object

 Item Property (Attachments Collection)

The Item property works like the accessor property to return a single item from a collection. Read-only.

Syntax

objAttachColl.Item(index)

index
An integer that ranges from 1 to object.Count, or a string that specifies the name of the object.

Data Type

Object

Remarks

The Item property works like the accessor property for small collections.

Example

' from Util_SmallCollectionCount(objColl As Object)
' This sample obtains the collection as a variable
' so it *must* use the Item property
Dim strItemName(100) as String
 ' error handling omitted from this fragment...
 For i = 1 To objColl.Count Step 1
 strItemName(i) = objColl.Item(i).Name
 If 100 = i Then ' max size of string array
 Exit Function
 End If
 Next i

See Also

Count Property (Attachments Collection)

 Field Object

A Field object represents a property of an object. The Field object gives you the ability to add or access
properties of a Folder, Message, or AddressEntry object.

Properties

Property name Type Access
Application String Read-only
Class Long Read-only
ID Long Read-only
Index Long Read-only
Name String Read-only
Parent Object Read-only
Session Session object Read-only
Type Integer Read/write
Value Variant Read/write

Methods

Method name Parameters
Delete (none)
ReadFromFile fileName as String
WriteToFile fileName as String

Remarks

You can add additional properties tailored for your specific application with the Fields collection object.
Before adding a field for a Message, Folder, or AddressEntry object, please review the properties that
are already provided by the OLE Messaging Library. Many of the most common attributes are already
offered. For example, Subject and Priority are already defined as Message object properties.

Note that the predefined MAPI properties are unnamed when they are accessed in Field objects. For
these MAPI properties, the Name property is an empty string.

The Field object also supports multivalued MAPI properties. The multivalued property appears to the
Visual Basic application as a variant array; that is, you can use the For... Next statement to access
individual array entries, as shown in the following sample program.

 Dim rgstr(0 To 9) As String
 ' Build array of values for MV prop
 For i = 0 To 9
 rgstr(i) = "String" + Str(i)
 Next

 ' Create MV field on the message. Note that we don't specify
 ' the array as third argument to Fields.Add, but add separately.
 Set f = msg.Fields.Add("FancyName", vbString + vbArray)
 f.Value = rgstr ' Set value of the new field.
 ' Save/send the message, logoff, etc.

... ' code that reads the multivalued properties
 Dim rgstr As Variant
 Set f = msg.Fields.Item("FancyName") ' Get MV Field from the message
 rgstr = f.Value ' Get array of values into a variant

 For i = LBound(rgret) To UBound(rgret)
 MsgBox rgret(i)
 Next i

For more information about MAPI properties, see the reference documentation for the Fields Collection
and the MAPI Programmer's Reference.

See Also

Fields Collection

 Delete Method (Field Object)

The Delete method deletes the user-defined or optional Field object.

Syntax

objField.Delete

Parameters

objField
Required. The Field object.

Remarks

This method only deletes user-defined fields and fields that represent properties considered optional by
the underlying provider.

The object or collection is set to Nothing and it is removed from memory, but the change is not
permanent until you use the Update, Send, or Delete method on the parent object (either the parent
Folder or Message object) that contained the deleted Field object.

See Also

Add Method (Fields Collection)

 ID Property (Field Object)

The ID property returns the unique identifier of the object as a long integer. Read-only.

Syntax

objField.ID

Data Type

Long

Remarks

The Field object ID property is unique among identifier properties supported in the OLE Messaging
Library. The Field object identifier is a long integer that corresponds to a MAPI property tag value. All
other identifier properties are hexadecimal strings.

Example

' The ID property is a long value, not a string
' fragment from the function Field_ID()
' verify that objOneField is valid, then access
 MsgBox "ID is high-order word: 0x" & Hex(objOneField.Id)

See Also

Type Property (Field Object)

Value Property (Field Object)

 Index Property (Field Object)

The Index property returns the index number of this Field object within the Fields collection. Read-only.

Syntax

objField.Index

Data Type

Long

Remarks

An index value should not be considered to be a static value that remains constant for the duration of a
session. The index can change whenever an update occurs to a parent object, such as the message or
folder.

Example

' set up a variable as an index to access a small collection
' fragment from the functions Fields_FirstItem, Fields_NextItem
 If objFieldsColl Is Nothing Then
 MsgBox "must first select a Fields collection"
 Exit Function
 End If
 If 0 = objFieldsColl.Count Then
 MsgBox "No fields in the collection"
 Exit Function
 End If
' Fragment from Fields_FirstItem
 iFieldsCollIndex = 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 ' verify that the Field object is valid...
' Fragment from Fields_NextItem
 If iFieldsCollIndex >= objFieldsColl.Count Then
 iFieldsCollIndex = objFieldsColl.Count
 MsgBox "Already at end of Fields collection"
 Exit Function
 End If
 iFieldsCollIndex = iFieldsCollIndex + 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 ' verify that the Field object is valid...

See Also

Count Property (Fields Collection)

Fields Collection

 Name Property (Field Object)

The Name property returns the name of the field as a string. Read-only.

Syntax

objField.Name

Data Type

String

Remarks

The Name property is read-only. You set the name of the Field object at the time you create it, when
you call the Fields collection's Add method.

Note that Field objects used to access MAPI properties do not have names. Names can appear only on
the custom properties that you create. For more information, see the Item property documentation for
the Fields collection.

Example

' fragment from Fields_Add
Dim objNewField As Object ' new Field object
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
 If objNewField Is Nothing Then
 MsgBox "could not create new Field object"
 Exit Function
 End If
 cFields = objFieldsColl.Count
 MsgBox "new Fields collection count = " & cFields
' fragment from Field_Name; modified to use objNewField for active Field
 If "" = objNewField.Name Then
 MsgBox "Field has no name; ID = " & objNewField.Id
 Else
 MsgBox "Field name = " & objNewField.Name
 End If

See Also

Add Method (Fields Collection)

 ReadFromFile Method (Field Object)

The ReadFromFile method loads the value of a string or binary field from the specified file.

Syntax

objField.ReadFromFile(fileName)

Parameters

objField
Required. The Field object.

fileName
Required. The full path and file name to read. For example, C:\DOCUMENT\BUDGET.XLS.

Remarks

The ReadFromFile method reads the string or binary value from the specified file name and stores it
as the value of the Field object. It replaces any previously existing value for the field.

Note that ReadFromFile is not supported for simple types, such as Integer, Long, and Boolean. Visual
Basic provides common functions to read and write these base types to and from files. The
ReadFromFile method fails if the Type property of the Field object is not a string or binary type.

Note that some binary types are converted to a hexadecimal string format when they are stored as
Field values. Comparison operations on the Value property and the actual contents of the file can
return "not equal," even though the values are equivalent.

ReadFromFile returns MAPI_E_INTERFACE_NOT_SUPPORTED for Field objects obtained from a
Folder object's Fields collection.

See Also

WriteToFile Method (Field Object)

 Type Property (Field Object)

The Type property returns or sets the data type of the Field object. Read/write.

Syntax

objField.Type

Data Type

Integer

Remarks

The Type property specifies the data type of the Field object and determines the range of valid values
that can be supplied for the Value property. You can set the value of the Type property by calling the
Fields collection's Add method.

Valid data types are described in the following table.

Type Descripti
on

Numer
ic
value

OLE variant
type

MAPI
property
type

vbNull Null 1 VT_NULL PT_NULL
vbIntege
r

Integer 2 VT_I2 PT_I2

vbLong Long
integer

3 VT_I4 PT_LONG

vbSingle 4-byte
real
(floating
point)

4 VT_R4 PT_R4

vbDoubl
e

Double
(8-byte
real)

5 VT_R8 PT_DOUBL
E

vbCurre
ncy

Currency 6 VT_CY PT_CURRE
NCY PT_I8

vbDate Date 7 VT_DATE PT_APPTIM
E,
PT_SYSTIM
E

vbString String 8 VT_BSTR PT_STRING
8,
PT_UNICOD
E,
PT_CLSID,
PT_BINARY

vbBoole
an

Boolean 11 VT_BOOL PT_BOOLE
AN

vbDataO
bject

Data
object

13 VT_UNKNO
WN

PT_OBJECT

vbBlob Blob 65 VT_BLOB PT_BLOB

Note that the types vbNull and vbDataObject are not supported in version 1.0.

Note that MAPI stores all custom properties that represent date and time information using Greenwich

Mean Time (GMT). The OLE Messaging Library converts these properties so that the values appear to
the user in local time.

Example

' Fragment from Fields_Add; uses the type "vbString"
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
' verify that objNewField is a valid Field object
' Fragment from Field_Type; display the integer type value
 MsgBox "Field type = " & objOneField.Type

See Also

Value Property (Field Object)

 Value Property (Field Object)

The Value property returns or sets the value of the Field object. Read/write.

Syntax

objField.Value

Data Type

Variant

Remarks

The value of the Field object represents a value of the type specified by the Type property. For
example, when the Field object has the Type property vbBoolean, the Value property can take the
value TRUE or FALSE. When the Field object has the Type property vbInteger, the Value property can
contain a short integer.

Example

' fragment from function Field_Type()
' after validating the Field object objOneField
 MsgBox "Field type = " & objOneField.Type
' fragment from function Field_Value()...
 MsgBox "Field value = " & objOneField.Value

See Also

ID Property (Field Object)

Type Property (Field Object)

 WriteToFile Method (Field Object)

The WriteToFile method saves the field value to a file in the file system.

Syntax

objField.WriteToFile(fileName)

Parameters

objField
Required. The Field object.

fileName
Required. The full path and file name for the saved field; for example, C:\DOCUMENT\
BUDGET.XLS.

Remarks

The WriteToFile method writes the string or binary value of the Field object to the specified file name.
It overwrites any existing information in that file.

Note that WriteToFile is not supported for simple types, such as Integer, Long, and Boolean. Visual
Basic provides common functions to read and write these base types to and from files. The
WriteToFile method fails if the Type property of the Field is not a string or binary type.

Note that some binary types are represented in hexadecimal string format by the OLE Messaging
Library and written in binary format. Comparison operations on the Value property and the actual
contents of the file can return "not equal," even though the values are equivalent.

In addition, support for types can vary among providers. Not all providers support both the String and
Binary property types.

See Also

ReadFromFile Method (Field Object)

 Fields Collection Object

The Fields collection represents one or more Field objects. Field objects give you the ability to access
properties of the object. These include the predefined underlying MAPI properties and your own
custom user-defined properties.

Properties

Property name Type Access
Application String Read-only
Class Long Read-only
Count Long Read-only
Item Object Read-only
Parent Object Read-only
Session Session object Read-only

Methods

Method name Parameters
Add name as String, Class as Long,

value as Variant, (optional)
PropsetID as String

Delete (none)
SetNamespace PropsetID as String

Remarks

MAPI defines a set of properties with identifiers less than the value 0x8000. These are known as
unnamed properties because they are usually accessed using the identifier rather than a name. You
can access these MAPI-defined properties using the Fields collection. All MAPI properties are
accessible except those of types PT_OBJECT and PT_CLSID.

You can also extend the properties available through MAPI by defining your own properties. These
user-defined properties, defined using a name and automatically assigned an identifier value greater
than 0x8000 by the OLE Messaging Library, are known as named properties. (C++ programmers can
access the property name in the MAPI structure MAPINAMEID and convert it to the property tag
value.)

All named properties are defined as part of a property set, which is also known in the context of the
OLE Messaging Library as a namespace.

A property set is defined by a GUID, or unique identifier. The OLE Messaging Library represents this
GUID as a string of hexadecimal characters. Such identifiers are usually referenced using a constant
that starts with the characters PS_, such as PS_PUBLIC_STRINGS, the default property set for all
properties created using the OLE Messaging Library.

You can also choose to organize your custom properties within their own semantic space by defining
your own property set. The Add and SetNamespace methods and the Item property let you specify
the property set identifier to be used for property access. When creating your own property set, you
should be aware that MAPI reserves several property set identifiers for specific purposes. The following
table lists reserved property sets:

Reserved Property Set Description
PS_PUBLIC_STRINGS Default property set for custom

properties added using the OLE
Messaging Library.

PS_MAPI Allows providers to supply
names for the unnamed
properties (properties with
identifiers less than 0x8000).

PS_ROUTING_DISPLAY_NA
ME

Display name properties that are
translated between messaging
domains.

PS_ROUTING_EMAIL_ADDR
ESSES

E-mail addresses that are
translated between messaging
domains.

PS_ROUTING_ADDRTYPE E-mail address types that are
translated between messaging
domains.

PS_ROUTING_ENTRYID Long-term entry identifiers that
are translated between
messaging domains.

PS_ROUTING_SEARCH_KEY Search keys that are translated
between messaging domains.

To create your own GUID that identifies your property set, you can either use the Win32 command-line
utility UUIDGEN or you can call the OLE function CoCreateGuid to supply one for you, as
demonstrated in the following code:

' declarations required for the call to CoCreateGuid
Type GUID
 Guid1 As Long
 Guid2 As Long
 Guid3 As Long
 Guid4 As Long
End Type
Declare Function CoCreateGuid Lib "OLE32.DLL" (pGuid As GUID) As Long
Global Const S_OK = 0
Dim strPropID as String
Dim lResult As Long
Dim lGuid As GUID

' call CoCreateGuid, then convert the result to a hex string
 lResult = CoCreateGuid(lGuid)
 If lResult = S_OK Then
 strPropID = Hex$(lGuid.Guid1) & Hex$(lGuid.Guid2)
 strPropID = myHexString & Hex$(lGuid.Guid3)
 strPropID = myHexString & Hex$(lGuid.Guid4)
 Else
 ' ... handle error...
 End If
'
The Fields collection is considered a small collection, which means that it supports count and index
values that let you access individual Field objects through the Item property. The Fields collection
supports the Visual Basic For Each statement.

Note that MAPI stores all custom properties that represent date and time information using Greenwich
Mean Time (GMT). The OLE Messaging Library converts these properties so that the values appear to
the user in local time.

For more information about properties and property sets, see the topic, "About Named Properties," in

the MAPI Programmer's Reference. For more information about UUIDGEN and CoCreateGuid, see
the Win32 SDK documentation.

Example

To uniquely identify Field objects in the Fields collection, use the Field object's Name property or an
index:

Set objOneField = objFolder.Fields.Item("BalanceDue")
Set objAnotherField = objMessage.Fields.Item("Keyword")
Set objThirdField = objMessage.Fields.Item(3)

See Also

SetNamespace Method (Fields Collection)

Object Collections

 Add Method (Fields Collection)

The Add method creates a new Field object in the Fields collection.

Syntax

Set objField = objFieldsColl.Add (name, Class[, value] [, PropsetID])

Parameters

objField
On successful return, contains the new Field object.

objFieldsColl
Required. The Fields collection object.

name
Required. A string that represents the display name of the field.

Class
Required. A constant long integer that represents the data type for the field, such as string or integer.
The Class parameter represents the same values as the Field object's Type property. The following
types are allowed:

Type
property

Description Numeric
value

OLE variant type

vbNull Null 1 VT_NULL
vbInteger Integer 2 VT_I2
vbLong Long integer 3 VT_I4
vbSingle 4-byte real

(floating point)
4 VT_R4

vbDouble Double (8-
byte real)

5 VT_R8

vbCurrency Currency 6 VT_CY
vbDate Date 7 VT_DATE
vbString String 8 VT_BSTR
vbBoolean Boolean 11 VT_BOOL
vbDataObje
ct

Data object 13 VT_UNKNOWN

vbBlob Blob 65 VT_BLOB

value
Optional. Variant. The value of the field, of the data type specified in the type parameter. When no
value is supplied, no data is present for the object. You must make subsequent calls to the Field
object's ReadFromFile method.

PropsetID
Optional. String. Specifies the identifier of the property set, represented as a string of hexadecimal
characters. When the identifier is not present, the property is created within the default property set.
The default property set is either the property set specified to the SetNamespace method, or the
initial default property set value, PS_PUBLIC_STRINGS.

Remarks

Support for the Add method is provider-dependent.

The method parameters correspond to the Name, Type, and Value properties of the Field object.

The Index of the new Field object equals the new Count of the Fields collection. The field is saved in

the MAPI system when you Update or Send the parent object.

When you use the vbBlob type, you supply the value in the form of a hexadecimal string that contains
the hexadecimal representation of the bytes in the binary object (such as a hexadecimal dump of the
object).

Note that MAPI stores all custom properties that represent date and time information using Greenwich
Mean Time (GMT). The OLE Messaging Library converts these properties so that the values appear to
the user in local time.

The OLE Messaging Library does not support MAPI properties of types PT_OBJECT and PT_CLSID.
All others, however, are available through the Fields collection.

Example

' Fragment from Fields_Add; uses the type "vbString"
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
' verify that objNewField is a valid Field object
' Fragment from Field_Type; display the integer type value
 MsgBox "Field type = " & objOneField.Type

See Also

Count Property (Fields Collection)

Field Object

SetNamespace Method (Fields Collection)

 Count Property (Fields Collection)

The Count property returns the number of Field objects in the collection. Read-only.

Syntax

objFieldsColl.Count

Data Type

Long

Example

This example maintains a global variable as an index into the small collection, and uses the Count
property to check its validity:

' from Fields_NextItem
' iFieldsCollIndex is an integer used as an index
' check for empty collection...
' check index upper bound
 If iFieldsCollIndex >= objFieldsColl.Count Then
 iFieldsCollIndex = objFieldsColl.Count
 MsgBox "Already at end of Fields collection"
 Exit Function
 End If
 ' index is < count; can be incremented by 1
 iFieldsCollIndex = iFieldsCollIndex + 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 If objOneField Is Nothing Then
 MsgBox "Error, cannot get this Field object"
 Exit Function
 Else
 MsgBox "Selected field " & iFieldsCollIndex
 End If

See Also

Field Object

 Delete Method (Fields Collection)

The Delete method deletes all user-defined fields of the Fields collection object.

Syntax

objFieldsColl.Delete

Parameters

objFieldsColl
Required. The Fields collection object.

Remarks

This method deletes all user-defined fields and all fields considered optional by the underlying provider.

The object or collection is set to Nothing and it is removed from memory, but the change is not
permanent until you use the Update, Send, or Delete method on the parent Message object that
contained the deleted Fields collection.

Be cautious using Delete with collections, since the method deletes all member objects within a
collection.

See Also

Field Object

 Item Property (Fields Collection)

The Item property works like the accessor property to return a single item from a collection. Read-only.

Syntax

objFieldsColl.Item(index)

objFieldsColl.Item(proptag)

objFieldsColl.Item(name [, propsetID])

objFieldsColl
Required. Specifies the Fields collection object.

index
Short integer (less than or equal to 65535; &Hffff). Specifies the index within the collection.

proptag
Long integer (greater than or equal to 65536). Specifies the property tag value for the MAPI property
to be retrieved.

name
String. Specifies the name of the user-defined property.

propsetID
Optional. String. Contains the unique identifier for the property set, represented as a string of
hexadecimal characters. When propsetID is not supplied, the property set used for the access is the
default property set value set by this collection's SetNamespace method, or the initial default
property set value, PS_PUBLIC_STRINGS.

Data Type

Object

Remarks

The Item property in the Fields collection object allows access to the predefined MAPI properties and
to your own custom user-defined properties.

The long value greater than 65,535 represents a property tag. A property tag is a 32-bit unsigned
integer that contains the property identifier in its high-order 16 bits and the property type (its underlying
data type) in the low-order 16 bits. All MAPI properties are accessible except those of types
PT_OBJECT and PT_CLSID.

Several macros for C/C++ programmers are available in the MAPI SDK to help manipulate the property
tag data structure. The macros PROP_TYPE and PROP_ID extract the property type and property
identifer from the property tag. The macro PROP_TAG builds the property tag from the provided type
and identifier components.

For example, you can use the following function to access a custom user-defined property using its
property name:

' from the function Fields_ItemByName()
 ' error handling here...
 If objFieldsColl Is Nothing Then
 MsgBox "must first select Fields collection"
 Exit Function
 End If
 Set objOneField = objFieldsColl.Item("Keyword")
 If objOneField Is Nothing Then
 MsgBox "could not select Field object"
 Exit Function

 End If
 If "" = objOneField.Name Then
 MsgBox "Field has no name; ID = " & objOneField.Id
 Else
 MsgBox "Field name = " & objOneField.Name
 End If

You can also use the Item property to access MAPI properties. Note that the built-in MAPI properties
are unnamed properties that can only be accessed using the numeric value. They cannot be accessed
using a string that represents the name. The following example accesses the MAPI property
PR_MESSAGE_CLASS:

' from the function Fields_Selector()
 ' ... error handling here
 ' you can provide a dialog to allow entry for MAPI proptags
 ' or select property names from a list; for now, hard-coded
 lValue = &h1a001e ' &H1a = PR_MESSAGE_CLASS;
 ' &H001e = 30 = PT_STRING8
 ' high-order 16 bits is property id; low-order is property type
 Set objOneField = objFieldsColl.Item(lValue)
 If objOneField Is Nothing Then
 MsgBox "Could not get the Field using the value " & lValue
 Exit Function
 Else
 strMsg = "Used " & lValue & " to access the MAPI property "
 strMsg = strMsg & "PR_MESSAGE_CLASS: type = " & objOneField.Type
 strMsg = strMsg & "; value = " & objOneField.Value
 MsgBox strMsg
 End If

The OLE Messaging Library also supports multivalued MAPI properties.

You can also choose to access properties from other property sets, including your own, by either
setting the propsetID parameter or by calling the SetNamespace method to set that property set's
unique identifier. For more information, see the reference documentation for the SetNamespace
method.

See Also

SetNamespace Method (Fields Collection)

Customizing a Folder or Message

Viewing MAPI Properties

Field Object

 SetNamespace Method (Fields Collection)

The SetNamespace method selects the property set that is to be used for subsequent property
accesses using the Add method and Item property.

Syntax

objFieldsColl.SetNamespace PropsetID

Parameters

objFieldsColl
Required. The Fields collection object.

PropsetID
Required. String. Contains a unique identifier that identifies the property set, represented as a string
of hexadecimal characters. The PropsetID identifies the property set to be used for subsequent
property accesses using the Field object and Fields collection. An empty string resets the default to
the property set PS_PUBLIC_STRINGS.

Remarks

The initial default value for the property set is PS_PUBLIC_STRINGS. To create your own property set
for your named properties, supply a unique property set identifier to SetNamespace. This property set
then replaces PS_PUBLIC_STRINGS as the default property set for all subsequent named property
accesses using this object. The default property set is used unless explicitly overridden by the optional
PropsetID parameter. The value is set only for the current object; to continue using the same property
set for all objects, you must call SetNamespace for each Message object.

To define a new property set, obtain a string that contains hexadecimal characters representing a
unique identifier. You can obtain this identifier using either the Win32 command-line utility UUIDGEN or
by calling the Win32 function CoCreateGuid.

See Also

Fields Collection

 Folder Object

The Folder object represents a folder or container within the MAPI system. Folders can contain
subfolders and messages.

Properties

Property name Type Access
Application String Read-only
Class Long Read-only
Fields Fields collection

object
Read-only

FolderID String Read-only
Folders Folders collection

object
Read-only

ID String Read-only
MAPIOBJECT Object Read/write (Note:

Not available to
Visual Basic
applications.)

Messages Messages
collection object

Read-only

Name String Read/write
Parent Object Read-only
Session Session object Read-only
StoreID String Read-only

Methods

Method name Parameters
Update (none)

Remarks

Changes to the folder are not saved by MAPI until you call the Update method.

The ID property is unique and read-only. MAPI assigns a unique identifier when the Folder object is
created. Its value does not change.

Note that the OLE Messaging Library does not support methods to allow you to create new folders.

See Also

Folders Collection

 Fields Property (Folder Object)

The Fields property returns a single field (a Field object) or a collection of fields (a Fields collection
object) of the Folder object. Read-only.

Syntax

objFolder.Fields

objFolder.Fields(index)

objFolder.Fields(proptag)

objFolder.Fields(name)

index
Short integer (less than or equal to 65535). Specifies the index within the collection.

proptag
Long integer (greater than or equal to 65536). Specifies the property tag value for the MAPI property
to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type

Object

Remarks

Fields provide a generic access mechanism that allows Visual Basic programmers to retrieve the value
of any property associated with the Folder object using either a name or a property tag. To access
using the property tag, use Folder.Fields.Item(proptag), where proptag is the 32-bit MAPI property tag
associated with the property in question, such as PR_MESSAGE_CLASS. To access a Field object
using a name, use Folder.Fields.Item(name), where name is a string that represents the custom
property name.

Example

This example displays the field name or identifier value of all Field objects within the collection:

' many properties are MAPI properties and have no names
' for those properties, display the ID
' fragment from Field_Name
' assume objFieldColl, objOneField are valid objects
For i = 1 to objFieldColl.Count Step 1
 Set objOneField = objFieldColl.Index(i)
 If "" = objOneField.Name Then
 MsgBox "Field has no name; ID = " & objOneField.Id
 Else
 MsgBox "Field name = " & objOneField.Name
 End If
Next i

See Also

Field Object

 FolderID Property (Folder Object)

The FolderID property returns the unique identifier of this subfolder's parent folder as a string. Read-
only.

Syntax

objFolder.FolderID

Data Type

String

Remarks

MAPI systems assign a permanent, unique identifier string when an object is created. These identifiers
do not change from one MAPI session to another.

Note that MAPI systems do not require identifier values to be binary comparable. Accordingly, two
identifier values can be different, yet refer to the same object. You can compare identifiers using the
MAPI CompareEntryIDs method. For more information, see the MAPI Programmer's Reference.

The FolderID property corresponds to the MAPI property PR_PARENT_ENTRYID, converted to a
string of hexadecimal characters.

Example

' fragment from Session_Inbox
 Set objFolder = objSession.Inbox
' fragment from Folder_FolderID
 strFolderID = objFolder.FolderID
 MsgBox "Parent Folder ID = " & strFolderID
' can later restore using objSession.GetFolder(strFolderID)
' fragment from Session_GetFolder
 If "" = strFolderID Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 ' error checking here...

See Also

ID Property (Folder Object)

 Folders Property (Folder Object)

The Folders property specifies a collection of subfolders within the parent folder. Read-only.

Syntax

objFolder.Folders

Data Type

Object

Example

This example lists all the names of all subfolders of the specified folder:

' fragment from Session_Inbox
 Set objFolder = objSession.Inbox
' from TstDrv_Util_ListFolders
 If 2 = objFolder.Class Then ' verify Folder object
 x = Util_ListFolders(objFolder) ' use current global folder
 End If

' complete function for Util_ListFolders
Function Util_ListFolders(objParentFolder As Object)
Dim objFoldersColl As Object ' the child Folders collection
Dim objOneSubfolder As Object 'a single Folder object
 ' set up error handler here
 If Not objParentFolder Is Nothing Then
 MsgBox ("Folder name = " & objParentFolder.Name)
 Set objFoldersColl = objParentFolder.Folders
 If Not objFoldersColl Is Nothing Then ' loop through all
 Set objOneSubfolder = objFoldersColl.GetFirst
 While Not objOneSubfolder Is Nothing
 x = Util_ListFolders(objOneSubfolder)
 Set objOneSubfolder = objFoldersColl.GetNext
 Wend
 End If
 End If
 Exit Function
 ' error handler here
End Function

See Also

Folders Collection

 ID Property (Folder Object)

The ID property returns the unique identifier of this Folder object as a string. Read-only.

Syntax

objFolder.ID

Data Type

String

Remarks

MAPI systems assign a permanent, unique identifier string when an object is created. These identifiers
do not change from one MAPI session to another.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters.

Example

' save the current ID and restore using Session.GetFolder
' fragment from Session_Inbox
 Set objFolder = objSession.Inbox
' fragment from Folder_FolderID
 strFolderID = objFolder.ID
 MsgBox "Current Folder ID = " & strFolderID
' can later restore using objSession.GetFolder(strFolderID)
' fragment from Session_GetFolder
 If "" = strFolderID Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 ' error checking here...

See Also

Folders Property (Folder Object)

GetFolder Method (Session Object)

 MAPIOBJECT Property (Folder Object)

The MAPIOBJECT property returns an IUnknown pointer to this Folder object. Not available to Visual
Basic applications. Read/write.

Syntax

objFolder.MAPIOBJECT

Data Type

Variant (VT_UNKNOWN)

Remarks

The MAPIOBJECT property is not available to Visual Basic programs. It is available only to C/C++
programs that use the OLE Messaging Library. The MAPIOBJECT property is an IUnknown object,
which is not supported by Visual Basic. Visual Basic supports IDispatch objects. For more information,
see the Microsoft OLE Programmer's Reference.

See Also

Introduction to OLE Automation

How Programmable Objects Work

 Messages Property (Folder Object)

The Messages property returns a Messages collection object within the folder. Read-only.

Syntax

objFolder.Messages

Data Type

Object

Example

' from the QuickStart sample
' use the Messages property of the Outbox folder
 Set objSession = CreateObject("MAPI.Session")
 objSession.Logon
 Set objMessage = objSession.Outbox.Messages.Add

See Also

ID Property (Message Object)

Message Object

Messages Collection

 Name Property (Folder Object)

The Name property returns or sets the name of the Folder object as a string. Read/write.

Syntax

objFolder.Name

Data Type

String

Remarks

The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

Example

Dim objFolder As Object ' assume valid folder
MsgBox "Folder name = " & objFolder.Name

See Also

GetFolder Method (Session Object)

 StoreID Property (Folder Object)

The StoreID property returns the identifier of the Store object in which this Folder object resides. Read-
only.

Syntax

objFolder.StoreID

Data Type

String

Remarks

The StoreID property corresponds to the MAPI property PR_STORE_ENTRYID, converted to a string
of hexadecimal characters.

Note that MAPI systems do not require identifier values to be binary comparable. Accordingly, two
identifier values can be different, yet refer to the same object. You can compare identifiers using the
MAPI method CompareEntryIDs. For more information, see the MAPI Programmer's Reference.

Example

' from the sample function Folder_ID
 strFolderID = objFolder.ID
' from the sample function Folder_StoreID
 strFolderStoreID = objFolder.storeID
' can use these IDs with Session.GetFolder()
' from the sample function Session_GetFolder
 Set objFolder = objSession.GetFolder(folderID:=strFolderID, _
 storeID:=strFolderStoreID)

See Also

GetFolder Method (Session Object)

 Update Method (Folder Object)

The Update method saves the folder in the MAPI system.

Syntax

objFolder.Update([makePermanent, refreshObject])

Parameters

objFolder
Required. The Folder object.

makePermanent
Optional. Boolean. TRUE indicates that the property cache is flushed and all changes are committed
in the underlying store. FALSE indicates that the property cache is flushed and not committed to the
store. The default value is TRUE.

refreshObject
Optional. Boolean. TRUE indicates that the property cache is reloaded from the values in the
underlying store. FALSE indicates that the property cache is not reloaded. The default value is
FALSE.

Remarks

Changes to Folder objects are not permanently saved in the MAPI system until you call the Update
method with the makePermanent parameter set to TRUE.

For improved performance, the OLE Messaging Library caches property changes in private storage
and updates either the object or the underlying store only when you explicitly request such an update.
For efficiency, you should make only one call to Update with its makePermanent parameter set to
TRUE.

The makePermanent and refreshObject parameters combine to cause the following changes:

refreshObject =
TRUE

refreshObject =
FALSE

makePermanent =
TRUE

Commit all changes,
flush the cache, and
reload the cache
from the store.

Commit all changes
and flush the cache.

makePermanent =
FALSE

Flush the cache and
reload the cache
from the store.

Flush the cache.

Call Update(FALSE, TRUE) to flush the cache and then reload the values from the store.

See Also

Folders Collection

 Folders Collection Object

The Folders collection contains one or more Folder objects.

The Folders collection is considered a large collection, which means that you must use a Folder object
identifier value or the Get methods to access individual Folder objects within the collection.

Properties

Property name Type Access
Application String Read-only
Class Long Read-only
Parent Object Read-only
Session Session object Read-only

Methods

Method name Parameters
GetFirst (none)
GetLast (none)
GetNext (none)
GetPrevious (none)

Remarks

Large collections, such as the Folders collection, do not maintain a count of the number of objects in
the collection. Instead you must use the GetFirst, GetNext, GetLast, and GetPrevious methods to
access individual items in the collection. You can also access a specific folder by using the Session
object's GetFolder method.

Example

To refer to a unique Folder object within the Folders collection, use the collection's GetFirst and
GetNext methods or use the FolderID value as the index.

The following code sample demonstrates the Get methods. The sample assumes that you have three
subfolders within your Inbox and three subfolders within your Outbox. After this code runs, the three
folders in the Inbox are named Blue, Red, and Orange (in that order), and the three folders in the
Outbox are named Gold, Purple, and Yellow (in that order).

Dim objSession As Object
Dim objMessage As Object
Dim objFolder As Object

Set objSession = CreateObject("MAPI.Session")
objSession.Logon "User", "", True
With objSession.Inbox.Folders
 Set objFolder = .GetFirst
 objFolder.Name = "Blue"
 Set objFolder = .GetNext
 objFolder.Name = "Red"
 Set objFolder = .GetLast
 objFolder.Name = "Orange"
End With
With objSession.Outbox.Folders
 Set objFolder = .GetFirst

 objFolder.Name = "Gold"
 Set objFolder = .GetNext
 objFolder.Name = "Purple"
 Set objFolder = .GetLast
 objFolder.Name = "Yellow"
End With
objSession.Logoff

See Also

Object Collections

 GetFirst Method (Folders Collection)

The GetFirst method returns the first object in the Folders collection. Returns Nothing if no first object
exists.

Syntax

Set objFolder = objFoldersColl.GetFirst()

Parameters

objFolder
On successful return, represents the first Folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Remarks

The Get methods are similar to the Find and Move methods that are used with Microsoft Access
databases. The Get methods take a different name from these methods because they use a different
syntax.

See Also

Type Property (Message Object)

Folder Object

 GetLast Method (Folders Collection)

The GetLast method returns the last object in the Folders collection. Returns Nothing if no last object
exists.

Syntax

Set objFolder = objFoldersColl.GetLast()

Parameters

objFolder
On successful return, represents the last Folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Remarks

The Get methods are similar to the Find and Move methods that are used with Microsoft Access
databases. The Get methods take a different name from these methods because they use a different
syntax.

See Also

Folder Object

 GetNext Method (Folders Collection)

The GetNext method returns the next object in the Folders collection. Returns Nothing if no next
object exists, or when already positioned at the end of the collection.

Syntax

Set objFolder = objFoldersColl.GetNext()

Parameters

objFolder
On successful return, represents the next Folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Remarks

The Get methods are similar to the Find and Move methods that are used with Microsoft Access
databases. The Get methods take a different name from these methods because they use a different
syntax.

See Also

Folder Object

 GetPrevious Method (Folders Collection)

The GetPrevious method returns the previous object in the Folders collection. Returns Nothing if no
previous object exists, or when already positioned at the first folder in the collection.

Syntax

Set objFolder = objFoldersColl.GetPrevious()

Parameters

objFolder
On successful return, represents the previous Folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Remarks

The Get methods are similar to the Find and Move methods that are used with Microsoft Access
databases. The Get methods take a different name from these methods because they use a different
syntax.

See Also

Folder Object

 InfoStore Object

The InfoStore object provides access to the root folder for that information store.

Properties

Property name Type Access
Application String Read-only
Class Long Read-only
ID String Read-only
Index Long Read-only
Name String Read-only
Parent InfoStores

collection object
Read-only

ProviderName String Read-only
RootFolder Folder object Read-only
Session Session object Read-only

Methods

(None.)

Remarks

The store provides access to its folder hierarchy through the RootFolder property. This property
contains the Folder object that represents the root of the IPM tree.

You can also retrieve an InfoStore object with a known identifier by calling the Session object's
GetInfoStore method.

Example

Dim objInfoStore as Object
Set objInfoStore = objSession.InfoStores.Item(1)
Set objFolder = objInfoStore.RootFolder

See Also

GetInfoStore Method (Session Object)

InfoStores Collection

 ID Property (InfoStore Object)

The ID property returns the unique identifier of this InfoStore object as a string. Read-only.

Syntax

objInfoStore.ID

Data Type

String

Remarks

MAPI systems assign a permanent, unique identifier string when an object is created. These identifiers
do not change from one MAPI session to another. The InfoStore identifier can be used in subsequent
calls to the Session object's GetInfoStore method.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters.

Example

Dim strInfoStoreID as String ' hex string version of ID
Dim objInfoStore as Object ' assume valid
 strInfoStoreID = objInfoStore.Id ' global variable
 MsgBox "InfoStore ID = " & strInfoStoreID
'...this ID can be used as the parameter to the Session method
 Set objInfoStore = objSession.GetInfoStore(strInfoStoreID)

See Also

InfoStores Collection

 Index Property (InfoStore Object)

The Index property returns the index number for the InfoStore object within the parent InfoStores
collection. Read-only.

Syntax

objInfoStore.Index

Data Type

Long

Remarks

The Index property indicates this object's position within the parent collection.

Example

Function InfoStoresGetByIndex()
Dim lIndex As Long
Dim objOneInfoStore As Object ' assume valid InfoStore
 ' set error handler here
 If objInfoStoreColl Is Nothing Then
 MsgBox "must select an InfoStores collection"
 Exit Function
 End If
 If 0 = objInfoStoreColl.Count Then
 MsgBox "must select collection with 1 or more InfoStores"
 Exit Function
 End If
 ' prompt user for index; for now, use 1
 Set objOneInfoStore = objInfoStoreColl.Item(1)
 MsgBox "Selected InfoStore 1: " & objOneInfoStore.Name
 lIndex = objOneInfoStore.Index ' save index to retrieve this later
 ' ...get same InfoStore object later
 Set objOneInfoStore = objInfoStoreColl.Item(lIndex)
 If objOneInfoStore Is Nothing Then
 MsgBox "Error, could not reselect the InfoStore"
 Else
 MsgBox "Reselected InfoStore " & lIndex & _
 " using index: " & objOneInfoStore.Name
 End If
 Exit Function

See Also

InfoStores Collection

Item Property (InfoStores Collection)

 Name Property (InfoStore Object)

The Name property returns the name of the InfoStore object as a string. Read-only. The string "Public
Folders" is the name of the InfoStore object that contains the public folders. Read-only.

Syntax

objInfoStore.Name

Data Type

String

Remarks

The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

Example

Dim objInfoStore As Object ' assume valid InfoStore object
MsgBox "Store name = " & objInfoStore.Name

See Also

GetInfoStore Method (Session Object)

 ProviderName Property (InfoStore Object)

The ProviderName property returns the name of the InfoStore provider as a string. Read-only.

Syntax

objInfoStore.ProviderName

Data Type

String

Remarks

The ProviderName property corresponds to the MAPI property PR_PROVIDER_DISPLAY.

Example

Dim objInfoStore As Object ' assume valid InfoStore object
MsgBox "Store name = " & objInfoStore.Name

See Also

GetInfoStore Method (Session Object)

 RootFolder Property (InfoStore Object)

The RootFolder property returns a folder object representing the root of the IPM tree for this InfoStore
object. Read-only.

Syntax

set objFolder = objInfoStore.RootFolder

Data Type

Object (Folder object)

Remarks

The RootFolder property provides a convenient way to get to this commonly used Folder object.

In addition to the general ability to navigate through the formal collection and object hierarchy, the OLE
Messaging Library supports properties that allow your application to directly access the most common
folder objects:

· The IPM subtree
· Inbox
· Outbox

Some message stores also support a way to obtain the root folder. For more information, see the
documentation for the Session object's GetFolder method.

Example

' from InfoStores_RootFolder
 If objInfoStore Is Nothing Then
 MsgBox "must first select an InfoStore object"
 Exit Function
 End If
 Set objFolder = objInfoStore.RootFolder
 If objFolder Is Nothing Then
 MsgBox "Unable to retrieve InfoStore root folder"
 Set objMessages = Nothing
 Exit Function
 End If
 If objFolder.Name = "" Then
 MsgBox "Folder set to folder with no name, ID = " & objFolder.Id
 Else
 MsgBox "Folder set to: " & objFolder.Name
 End If
 Set objMessages = objFolder.Messages
 Exit Function

See Also

Folder Object

GetFolder Method (Session Object)

Inbox Property (Session Object)

Outbox Property (Session Object)

 InfoStores Collection Object

The InfoStores collection provides access to all store objects available to this session. Each store
object in turn offers access to the root of the folder hierarchy in that store. This is used primarily to
obtain access to the public folders.

Properties

Property name Type Access
Application String Read-only
Class Long Read-only
Count Long Read-only
Item InfoStore object Read-only
Parent Session object Read-only
Session Session object Read-only

Methods

(None.)

Remarks

The InfoStores collection is considered a small collection, which means that it supports count and index
values that let you access individual InfoStore objects through the Item property. The InfoStores
collection supports the Visual Basic For Each statement.

The OLE Messaging Library does not support methods to add or remove store objects from the
collection.

In general, you cannot assume that the InfoStore object's Name properties are unique. This means that
you cannot rely on the name to retrieve the store from the collection. However, you can iterate through
all objects in the collection using the InfoStores collection object's Item property, and then examine
properties of the individual InfoStore objects. You can also rely on the InfoStore object's ID property,
which is guaranteed to be unique.

See Also

InfoStore Object

 Count Property (InfoStores Collection)

The Count property returns the number of InfoStore objects in the collection. Read-only.

Syntax

objInfoStoresColl.Count

Data Type

Long

Example

This example maintains a global variable as an index into the small collection, and uses the Count
property to check its validity:

' from InfoStores_NextItem
' iInfoStoresCollIndex is an integer used as an index
' check for empty collection...
' check index upper bound
 If iInfoStoresCollIndex >= objInfoStoresColl.Count Then
 iInfoStoresCollIndex = objInfoStoresColl.Count
 MsgBox "Already at end of InfoStores collection"
 Exit Function
 End If
 ' index is < count; can be incremented by 1
 iInfoStoresCollIndex = iInfoStoresCollIndex + 1
 Set objInfoStore = objInfoStoresColl.Item(iInfoStoresCollIndex)
 If objInfoStore Is Nothing Then
 MsgBox "Error, cannot get this InfoStore object"
 Exit Function
 Else
 MsgBox "Selected InfoStore " & iInfoStoresCollIndex
 End If

See Also

InfoStore Object

 Item Property (InfoStores Collection)

The Item property works like the accessor property to return a single item from a collection. Read-only.

Syntax

objInfoStoresColl.Item(index)

objInfoStoresColl
Required. Specifies the InfoStores collection object.

index
Contains a long integer.

Data Type

Object

Remarks

The Item property returns an InfoStore object.

Example

' from InfoStores_NextItem
' iInfoStoresCollIndex is an integer used as an index
' check for empty collection...
' check index upper bound
 If iInfoStoresCollIndex >= objInfoStoresColl.Count Then
 iInfoStoresCollIndex = objInfoStoresColl.Count
 MsgBox "Already at end of InfoStores collection"
 Exit Function
 End If
 ' index is < count; can be incremented by 1
 iInfoStoresCollIndex = iInfoStoresCollIndex + 1
 Set objInfoStore = objInfoStoresColl.Item(iInfoStoresCollIndex)
 If objInfoStore Is Nothing Then
 MsgBox "Error, cannot get this InfoStore object"
 Exit Function
 Else
 MsgBox "Selected InfoStore " & iInfoStoresCollIndex
 End If

See Also

InfoStore Object

 Message Object

The Message object represents a single message, item, document, or form in a folder.

Properties

Property name Type Access
Application String Read-only
Attachments Attachments

collection object
Read-only

Class Long Read-only
Conversation (Obsolete. Do not

use.)
Read/write

ConversationIndex String Read/write
ConversationTopic String Read/write
DeliveryReceipt Boolean Read/write
Encrypted Boolean Read/write
Fields Fields collection

object
Read-only

FolderID String Read-only
ID String Read-only
Importance Long Read/write
MAPIOBJECT (Not for use with

Visual Basic.)
Read/write (Note:
Not available to
Visual Basic
applications.)

Parent Object Read-only
ReadReceipt Boolean Read/write
Recipients Recipients object Read-only
Sender AddressEntry object Read-only
Sent Boolean Read/write
Session Session object Read-only
Signed Boolean Read/write
Size Long Read-only
StoreID String Read-only
Subject String Read/write
Submitted Boolean Read/write
Text String Read/write
TimeReceived Variant (Date/Time) Read/write
TimeSent Variant (Date/Time) Read/write
Type String Read/write
Unread Boolean Read/write

Methods

Method name Parameters
Delete (none)
Options (optional) parentWindow as Long

Send (optional) saveCopy as Boolean, (optional)
showDialog as Boolean, (optional)
parentWindow as Long

Update (none)

Remarks

The Message object is considered a high-level object.

Visual Basic programmers can create new message objects using the Messages collection's Add
method.

C/C++ programmers can create new message objects using the OLE function CoCreateInstance.

See Also

GetMessage Method (Session Object)

Messages Collection

Messages Property (Folder Object)

 Attachments Property (Message Object)

The Attachments property returns a single Attachment object or an Attachments collection. Read-only.

Syntax

Set objAttachColl = objMessage.Attachments

Set objOneAttach = objMessage.Attachments(index)

objAttachColl
Object. An Attachments collection object.

objMessage
Object. The Message object.

objOneAttach
Object. A single Attachment object.

index
Long. Specifies the number of the attachment within the Attachments collection. Ranges from 1 to
the value specified by the Attachments collection's Count property.

Example

This example uses the Attachments property to retrieve an attachment for the message:

' from the sample function Message_Attachments
 Set objAttachColl = objOneMsg.Attachments
 If objAttachColl Is Nothing Then
 MsgBox "unable to set Attachments collection"
 Exit Function
 Else
 MsgBox "Attachments count for this msg: " & objAttachColl.Count
 iAttachCollIndex = 0 ' reset global index variable
 End If
' from the sample function Attachments_FirstItem
 iAttachCollIndex = 1
 Set objAttach = objAttachColl.Item(iAttachCollIndex)

See Also

Attachment Object

Attachments Collection

 Conversation Property (Message Object)

The Conversation property is obsolete. This property has been replaced by the ConversationIndex
and ConversationTopic properties.

See Also

ConversationIndex Property (Message Object)

ConversationTopic Property (Message Object)

Working With Conversations

 ConversationIndex Property (Message Object)

The ConversationIndex property specifies the index to the conversation thread of the message.
Read/write.

Syntax

objMessage.ConversationIndex

Data Type

String

Remarks

The ConversationIndex property is a string that represents a hexadecimal number. Valid characters
within the string include the numbers 0 through 9 and the letters A through F (uppercase or lowercase).

A conversation is a group of related messages that have the same ConversationTopic property value.
In a discussion application, for example, users can save original messages and response messages.
Messages can be tagged with the ConversationIndex property so that users can group messages by
conversation.

You can use your own convention to decide how this index should be used. However, it is
recommended that you adopt the same convention that is used by the Microsoft Exchange Client
message viewer, so that you can use that viewer's user interface to show the relationships between
messages in a conversation.

By convention, Microsoft Exchange Server uses ConversationIndex values that represent
concatenated time stamp values. The first time stamp in the string represents the original message.
When a new message represents a reply to a conversation message, it copies the ConversationIndex
string of the message it is replying to, and then appends a time stamp value to the end of the string.
The new string value is used as the ConversationIndex value of the new message.

When you use this convention, you can see relationships among messages when you sort the
messages by ConversationIndex values.

The ConversationIndex property corresponds to the MAPI property PR_CONVERSATION_INDEX.

Example

The following example takes advantage of an OLE function that is available on computers that run the
OLE Messaging Library. The CoCreateGUID function returns a value that consists of a time stamp and
a machine identifier; this sample code saves the part that contains the time stamp.

' declarations section
Type GUID ' global unique identifier; contains a time stamp
 Guid1 As Long
 Guid2 As Long
 Guid3 As Long
 Guid4 As Long
End Type
' function appears in OLE32.DLL on Windows/NT and Windows 95
Declare Function CoCreateGuid Lib "COMPOBJ.DLL" (pGuid As GUID) As Long
Global Const S_OK = 0 ' return value from CoCreateGuid

Function Util_GetEightByteTimeStamp() As String
Dim lResult As Long
Dim lGuid As GUID
 ' Exchange conversation is a unique 8-byte value

 ' Exchange client viewer sorts by concatenated properties
 On Error GoTo error_olemsg

 lResult = CoCreateGuid(lGuid)
 If lResult = S_OK Then
 Util_GetEightByteTimeStamp = _
 Hex$(lGuid.Guid1) & Hex$(lGuid.Guid2)
 Else
 Util_GetEightByteTimeStamp = "00000000" ' zeroes
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Util_GetEightByteTimeStamp = "00000000"
 Exit Function
End Function

Function Util_NewConversation()
Dim i As Integer
Dim objNewMsg As Object ' new message object
Dim strNewIndex As String ' value for ConversationIndex
' ... error handling...
 Set objNewMsg = objSession.Outbox.Messages.Add
' ... error handling...
 With objNewMsg
 .Subject = "used space vehicle wanted"
 .ConversationTopic = .Subject
 .ConversationIndex = Util_GetEightByteTimeStamp() ' utility
 .Text = "Wanted: Apollo or Mercury spacecraft with low mileage."
 ' or you could pick the public folder from the address book
 Set objOneRecip = .Recipients.Add(Name:="Car Ads", Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to create the public folder recipient"
 Exit Function
 End If
 .Recipients.Resolve
 .Update
 .Send showDialog:=False
 End With
End Function

A subsequent reply to a message should copy the ConversationTopic property and append its own
time stamp to the original message's time stamp, as shown in the following example:

Function Util_ReplyToConversation()
Dim objPublicFolder As Object
Dim i As Integer
Dim objOriginalMsg As Object ' original message in public folder
Dim objNewMsg As Object ' new message object for reply
Dim strPublicFolderID As String ' ID for public folder

 Set objNewMsg = objSession.Outbox.Messages.Add
' error checking...obtain objOriginalMsg and check that it is valid
 With objNewMsg

 .Text = "How about a slightly used Gemini?" ' new text
 .Subject = objOriginalMsg.Subject ' copy original properties
 .ConversationTopic = objOriginalMsg.ConversationTopic
 ' append time stamp; compatible with Microsoft Exchange client
 .ConversationIndex = objOriginalMsg.ConversationIndex & _
 Util_GetEightByteTimeStamp() ' append new
 ' message was sent to a public folder so can copy recipient
 Set objOneRecip = .Recipients.Add(_
 Name:=objOriginalMsg.Recipients.Item(1).Name, _
 Type:=mapiTo)
 ' ...more error handling
 .Recipients.Resolve
 .Update
 .Send showDialog:=False
 End With
' ... error handling
End Function

See Also

Conversation Property

ConversationTopic Property (Message Object)

Working With Conversations

 ConversationTopic Property (Message Object)

The ConversationTopic property specifies the name of the conversation thread. Read/write.

Syntax

objMessage.ConversationTopic

Data Type

String

Remarks

A conversation is a group of related messages. The ConversationTopic property is the string that
describes the overall topic of the conversation. To be defined as messages within the same
conversation, the messages must have the same value in their ConversationTopic property. The
ConversationIndex property represents an index that indicates a sequence of messages within that
conversation.

When you start an initial message, set the ConversationTopic property to an appropriate value that
will apply to all messages within the conversation. For many applications, the message Subject
property is appropriate.

Note that the OLE Messaging Library does not automatically copy the ConversationTopic property to
other messages. When your application manages messages that represent replies to an original
message, you should set the ConversationTopic property to the same value as the original message.

To change the ConversationTopic for all messages in a conversation thread, you must change the
property within each message in that thread.

The ConversationTopic property corresponds to the MAPI property PR_CONVERSATION_TOPIC.

Example

See the example for the ConversationIndex property.

See Also

Conversation Property

ConversationIndex Property (Message Object)

Working With Conversations

 Delete Method (Message Object)

The Delete method deletes the Message object.

Syntax

objMessage.Delete

Parameters

objMessage
Required. The Message object.

Remarks

The Delete method permanently deletes the message from the system. Such a deleted message
cannot be recovered. Before calling the Delete method, the application can prompt the user to verify
whether the message should be permanently deleted.

See Also

Delete Method (Messages Collection)

 DeliveryReceipt Property (Message Object)

The DeliveryReceipt property is TRUE if a delivery-receipt notification message is requested.
Read/write.

Syntax

objMessage.DeliveryReceipt

Data Type

Boolean

Remarks

Set the DeliveryReceipt property to TRUE to obtain a message when the recipients receive the
message. The default setting for the OLE Messaging Library is FALSE.

The DeliveryReceipt property corresponds to the MAPI property
PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED.

See Also

Making Sure The Message Gets There

ReadReceipt Property (Message Object)

 Encrypted Property (Message Object)

The Encrypted property is TRUE if the message has been encrypted. Read/write.

Syntax

objMessage.Encrypted

Data Type

Boolean

Remarks

The OLE Messaging Library does not encrypt or digitally sign the message. The Encrypted property is
dependent upon the messaging or information store provider.

The Encrypted property corresponds to the SECURITY_ENCRYPTED flag of the MAPI property
PR_SECURITY.

See Also

Securing Messages

Signed Property (Message Object)

 Fields Property (Message Object)

The Fields property returns a single field (a Field object) or a collection of fields (a Fields collection
object) of the Message object. Read-only.

Syntax

objMessage.Fields

objMessage.Fields(index)

index
Specifies the name of the field or the number of the field.

Data Type

Field object or Fields collection

Remarks

Field and Fields collection objects give you the ability to add custom fields to a message or to directly
examine the underlying MAPI properties of the object. For more information, see the reference topics
for the Field object and the Fields collection.

Example

' from Message_Fields
 Set objFieldsColl = objOneMsg.Fields
' from Fields_FirstItem
 iFieldsCollIndex = 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 If objOneField Is Nothing Then
 MsgBox "error, cannot get this Field object"
 Else
 MsgBox "Selected field " & iFieldsCollIndex
 End If

See Also

Field Object

Fields Collection

 FolderID Property (Message Object)

The FolderID property returns the unique identifier of the folder in which the message resides. Read-
only.

Syntax

objMessage.FolderID

Data Type

String

Remarks

Save the folder identifier to retrieve the folder at a later time using the Session object's GetFolder
method.

MAPI systems assign a permanent, unique identifier string when an object is created. These identifiers
do not change from one MAPI session to another.

The FolderID property corresponds to the MAPI property PR_PARENT_ENTRYID, converted to a
string of hexadecimal characters.

See Also

GetFolder Method (Session Object)

 ID Property (Message Object)

The ID property returns the unique identifier of this message object. Read-only.

Syntax

objMessage.ID

Data Type

String

Remarks

MAPI systems assign a permanent, unique identifier string when an object is created. These identifiers
do not change from one MAPI session to another.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters.

Example

' Save id of last message accessed; use at startup
' from the sample function Message_ID
 strMessageID = objOneMsg.Id

' ... on shutdown, save the ID to storage
' ... on startup, get the ID from storage and restore
' from the sample function Session_GetMessage
 Set objOneMsg = objSession.GetMessage(strMessageID)

See Also

GetMessage Method (Session Object)

 Importance Property (Message Object)

The Importance property returns or sets the importance of the message as one of mapiNormal (the
default), mapiLow, or mapiHigh. Read/write.

Syntax

objMessage.Importance

Data Type

Long (Enumeration)

Remarks

The following values are defined:

Constant Value Description
mapiLow 0 Low priority
mapiNormal 1 Normal priority

(default)
mapiHigh 2 High priority

The Importance property corresponds to the MAPI property PR_IMPORTANCE.

Example

This example sets the importance of a message as high:

' from the sample function QuickStart:
 Set objMessage = objSession.Outbox.Messages.Add
 ' error checking here to verify the message was created...
 objMessage.Subject = "Gift of droids"
 objMessage.Text = "Help us, Obi-wan. You are our only hope."
 objMessage.Importance = mapiHigh
 objMessage.Send

See Also

Send Method (Message Object)

 MAPIOBJECT Property (Message Object)

The MAPIOBJECT property returns an IUnknown pointer to this Message object. Not available to
Visual Basic applications. Read/write.

Syntax

objMessage.MAPIOBJECT

Data Type

Variant (VT_UNKNOWN)

Remarks

The MAPIOBJECT property is not available to Visual Basic programs. It is available only to C/C++
programs that use the OLE Messaging Library. The MAPIOBJECT property is an IUnknown object,
which is not supported by Visual Basic. Visual Basic supports IDispatch objects. For more information,
see the Microsoft OLE Programmer's Reference.

See Also

Introduction to OLE Automation

How Programmable Objects Work

 Options Method (Message Object)

The Options method displays a message options dialog box where the user can change the
submission options for a message.

Syntax

objMessage.Options([parentWindow])

Parameters

objMessage
Required. The Message object.

parentWindow
Optional. Long. The parent window handle for the options dialog box. A value of 0 (the default)
specifies an application-modal dialog box.

Remarks

The options are provider-specific and are registered by the provider. Providers are not required to
register option sheets. When providers do not register options, the Options method returns the error
code MAPI_E_NOT_FOUND.

Per-message options are properties of a message that control its behavior after submission. The per-
message options are part of the message envelope, not its content.

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Send method (Message object), Resolve method (Recipient object and Recipients collection),
AddressBook and Logon methods (Session object).

See Also

Send Method (Message Object)

 ReadReceipt Property (Message Object)

The ReadReceipt property is TRUE if a read-receipt notification message is requested. Read/write.

Syntax

objMessage.ReadReceipt

Data Type

Boolean

Remarks

The ReadReceipt property corresponds to the MAPI property PR_READ_RECEIPT_REQUESTED.

See Also

DeliveryReceipt Property (Message Object)

Making Sure The Message Gets There

 Recipients Property (Message Object)

The Recipients property returns a single Recipient object or a Recipients collection object. Read-only.

Syntax

Set objRecipColl = objMessage.Recipients

Set objOneRecip = objMessage.Recipients(index)

objRecipColl
Object. A Recipients collection object.

objMessage
Object. The Message object.

objOneRecip
Object. A single Recipient object.

index
Long. Specifies the number of the recipient within the Recipients collection. Ranges from 1 to the
value specified by the Recipients collection's Count property.

Data Type

Object

Example

The Recipients property itself is read-only, indicating that you cannot set the value of this property to
indicate another collection. However, you can change individual Recipient objects within the collection,
add Recipient objects to the collection, and remove Recipient objects from the collection.

This example copies each of the recipients from the original message objOneMsg to the copy
objCopyMsg:

' from the sample function Util_CopyMessage
 For i = 1 To objOneMsg.Recipients.Count Step 1
 strRecipName = objOneMsg.Recipients.Item(i).Name
 If strRecipName <> "" Then
 Set objOneRecip = objCopyMsg.Recipients.Add
 If objOneRecip Is Nothing Then
 MsgBox "unable to create recipient in message copy"
 Exit Function
 End If
 objOneRecip.Name = strRecipName
 End If
 Next i

See Also

Recipient Object

 Send Method (Message Object)

The Send method sends the message to the recipients via the MAPI system.

Syntax

objMessage.Send([saveCopy, showDialog, parentWindow])

Parameters

objMessage
Required. The Message object.

saveCopy
Optional. Boolean. If TRUE or omitted, saves a copy of the Message in a user folder, such as the
Sent Messages folder.

showDialog
Optional. Boolean. If TRUE, displays a Send Message dialog box where the user can change the
message contents or recipients. The default value is FALSE.

parentWindow
Optional. Long. The parent window handle for the Send Message dialog box. A value of 0 (the
default) specifies that any dialog box displayed is application-modal. The parentWindow parameter
is ignored unless showDialog is TRUE.

Remarks

The Send method is similar to the Update method, except Send ignores the parent Folder object of
the message and saves the message in the current user's default Outbox folder. Messaging systems
retrieve messages from the Outbox and transport them to the recipients.

Note that the Send method invalidates the Message object. Attempts to access the original Message
object result in an error. The original Message object does not have to be set to Nothing, but it should
not be used for subsequent operations. Use a new Message object to obtain the message from the
Outbox or from the Sent Messages folder.

Note that there is one case in which the OLE Messaging Library does not display the dialog box when
showDialog is set to TRUE: The dialog box is not displayed when the recipient has a null display name.
The dialog box is displayed for a null recipient (when the Recipient object is set to Nothing).

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options method (Message object), Resolve method (Recipient object and Recipients
collection), AddressBook and Logon methods (Session object).

See Also

Creating and Sending a Message

Posting Messages to a Public Folder

Sent Property (Message Object)

Submitted Property (Message Object)

 Sender Property (Message Object)

The Sender property returns the originator or original author of a message as an AddressEntry object.
Read-only.

Syntax

Set objAddrEntry = objMessage.Sender

objAddrEntry
Object. The returned AddressEntry object that represents the message author.

objMessage
Object. The Message object.

Data Type

Object

Remarks

The Sender property corresponds to the MAPI property PR_SENDER_ENTRYID.

Example

This example displays the name of the sender of a message:

' from the sample function Message_Sender
 Set objAddrEntry = objOneMsg.Sender
 If objAddrEntry Is Nothing Then
 MsgBox "Could not set the address entry object from the Sender"
 Exit Function
 End If
 MsgBox "Message was sent by " & objAddrEntry.Name

See Also

TimeReceived Property (Message Object)

 Sent Property (Message Object)

The Sent property is TRUE if the message has been sent through the MAPI system. Read/write.

Syntax

objMessage.Sent

Data Type

Boolean

Remarks

In general, there are three different kinds of messages: messages that get sent, messages that get
posted, and messages that get saved. Messages that get sent are characterized by traditional e-mail
messages sent to a recipient or public folder. Messages that get posted are characterized by
messages created in a public folder. Messages that get saved are characterized by messages that are
created and saved without either sending or posting.

For all three kinds of messages, you use the Submitted, Sent, and Unread properties and the Send
or Update methods.

The following table summarizes the use of the message properties and methods for these three kinds
of messages.

Kind
of
mess
age

Meth
od

Submitted
property

Sent
property

Unread
property

Gets
sent

Send Send method
sets TRUE

Spooler sets
TRUE

Spooler sets
TRUE

Gets
poste
d

Upda
te

Application
sets FALSE

Application
sets TRUE

Application
sets TRUE

Gets
saved

Upda
te

Application
sets FALSE

Application
sets FALSE

Application
sets TRUE

For messages that get sent, the Sent property can be written until the time that you call the Send or
Update method. Note that changing the Sent property to TRUE does not cause the message to be
sent. Only the Send method actually causes the message to be transmitted. After you call the Send
method, the messaging system controls the Sent property and changes it to a read-only property.

A common use for writing a value to the Sent property is to set the property to FALSE so that an
electronic mail system can save pending, unsent messages in an Outbox folder, or to save work-in-
progress messages in a Pending folder before committing the messages to a public information store.
Note that you can cause an error if you set the property incorrectly.

The Sent property is changed using the following sequence. When you call the Send method to send a
message to a recipient, the message is moved to the Outbox and the Message object's Submitted
property is set to TRUE. When the messaging system spooler actually starts transporting the message,
the Sent property is set to TRUE.

When the message is not sent using the Send method, the MAPI system does not change the Sent
property. For posted and saved messages that call the Update method, you should set the value of
the Sent property to TRUE just before you post the message.

The Sent property corresponds to the MAPI property PR_MESSAGE_FLAGS and the flag
MSGFLAG_UNSEND.

See Also

Creating and Sending a Message

Posting Messages to a Public Folder

Submitted Property (Message Object)

 Signed Property (Message Object)

The Signed property is TRUE if the message has been tagged with a digital signature. Read/write.

Syntax

objMessage.Signed

Data Type

Boolean

Remarks

The Signed property is dependent upon the messaging or information store provider. The OLE
Messaging Library does not actually encrypt or digitally sign the message.

The Signed property corresponds to the SECURITY_SIGNED flag of the MAPI property
PR_SECURITY.

See Also

Encrypted Property (Message Object)

Securing Messages

 Size Property (Message Object)

The Size property returns the approximate size in bytes of the message. Read-only.

Syntax

objMessage.Size

Data Type

Long

Remarks

The Size property is not valid until after the first Update or Send operation.

The Size property corresponds to the MAPI property PR_MESSAGE_SIZE.

See Also

Attachments Property (Message Object)

Text Property (Message Object)

 StoreID Property (Message Object)

The StoreID property represents the unique identifier for the information store that contains this
message. Read-only.

Syntax

objMessage.StoreID

Data Type

String

Remarks

The StoreID property corresponds to the MAPI property PR_STORE_ENTRYID, converted to a string
of hexadecimal characters.

See Also

GetMessage Method (Session Object)

Sent Property (Message Object)

 Subject Property (Message Object)

The Subject property returns or sets the subject of the message as a string. Read/write.

Syntax

objMessage.Subject

Data Type

String

Remarks

The Subject property corresponds to the MAPI property PR_SUBJECT.

Example

This example sets the subject of a message:

Dim objMessage As Object ' assume valid message
objMessage.Subject = "Microsoft Bob: Check It Out"

See Also

Text Property (Message Object)

 Submitted Property (Message Object)

The Submitted property is TRUE when the message has been submitted. Read/write.

Syntax

objMessage.Submitted

Data Type

Boolean

Remarks

In general, there are three different kinds of messages: messages that get sent, messages that get
posted, and messages that get saved. Messages that get sent are characterized by traditional e-mail
messages sent to a recipient or public folder. Messages that get posted are characterized by
messages created in a public folder. Messages that get saved are characterized by messages that are
created and saved without either sending or posting.

For all three kinds of messages, you use the Submitted, Sent, and Unread properties and the Send
or Update methods.

The following table summarizes the use of the message properties and methods for these three kinds
of messages.

Kind
of
mess
age

Meth
od

Submitted
property

Sent
property

Unread
property

Gets
sent

Send Send method
sets TRUE

Spooler sets
TRUE

Spooler sets
TRUE

Gets
poste
d

Upda
te

Application
sets FALSE

Application
sets TRUE

Application
sets TRUE

Gets
saved

Upda
te

Application
sets FALSE

Application
sets FALSE

Application
sets TRUE

For messages that get sent, you create the message and then call the Send method. When the Send
method is successful, the Submitted property is set to TRUE. The value does not change after that
point. For messages sent to a public folder, the Send method sets the Submitted property (rather than
the Sent property) to TRUE.

For messages that get posted, you create the message directly within a public folder and call Update.
When you create the message within the public folder, some viewers do not allow the message to
become visible to others until you set the Submitted property to TRUE.

The Submitted property corresponds to the MAPI property PR_MESSAGE_FLAGS.

See Also

Send Method (Message Object)

Sent Property (Message Object)

 Text Property (Message Object)

The Text property returns or sets the body text of the message as a string. Read/write.

Syntax

objMessage.Text

Data Type

String

Remarks

The maximum size of the body text can be limited by the tool that you use to manipulate string
variables (such as Microsoft Visual Basic).

Note that the Text property is a plain text representation of the message body and does not support
formatted text.

The Text property corresponds to the MAPI property PR_BODY.

Example

This example sets the body text of a message:

Dim objMessage As Object ' assume valid message
objMessage.Text = "Thank you for buying Microsoft Home(TM) products."

See Also

Subject Property (Message Object)

 TimeReceived Property (Message Object)

The TimeReceived property sets or returns the date and time the message was received as a vbDate
variant data type. Read/write.

Syntax

objMessage.TimeReceived

Data Type

Variant (vbDate format)

Remarks

The TimeReceived and TimeSent properties set and return dates and times as the local time for the
user's system.

When you send messages using the Message object's Send method, the MAPI system sets the
TimeReceived and TimeSent properties for you. However, when you post messages in a public folder,
you must first explicitly set these properties. For a message posted to a public folder, set both
properties to the same time value.

Note that the TimeReceived and TimeSent properties represent local time. However, when you
access MAPI time properties through the Fields collection's Item property, the time values represent
Greenwich Mean Time.

The TimeReceived property corresponds to the MAPI Property PR_MESSAGE_DELIVERY_TIME.

Example

This example displays the date and time a message was sent and received:

' from the sample function Message_TimeSentAndReceived
 ' verify that objOneMsg is valid, then...
 With objOneMsg
 strMsg = "Message sent " & Format(.TimeSent, "Short Date")
 strMsg = strMsg & ", " & Format(.TimeSent, "Long Time")
 strMsg = strMsg & "; received "
 strMsg = strMsg & Format(.TimeReceived, "Short Date") & ", "
 strMsg = strMsg & Format(.TimeReceived, "Long Time")
 MsgBox strMsg
 End With

See Also

Item Property (Fields Collection)

TimeSent Property (Message Object)

 TimeSent Property (Message Object)

The TimeSent property sets or returns the date and time the message was sent as a vbDate variant
data type. Read/write.

Syntax

objMessage.TimeSent

Data Type

Variant (vbDate format)

Remarks

The TimeReceived and TimeSent properties return dates and times as the local time for the user's
system.

When you send messages using the Message object's Send method, the MAPI system sets the
TimeReceived and TimeSent properties for you. However, when you post messages in a public folder,
you must first explicitly set these properties. For a message posted to a public folder, set both
properties to the same time value.

Note that the TimeReceived and TimeSent properties represent local time. However, when you
access MAPI time properties through the Fields collection Item property, the time values represent
Greenwich Mean Time.

The TimeSent property corresponds to the MAPI Property PR_CLIENT_SUBMIT_TIME.

Example

This example displays the date a message was sent and received:

' from the sample function Message_TimeSentAndReceived
 ' verify that objOneMsg is valid, then...
 With objOneMsg
 strMsg = "Message sent " & Format(.TimeSent, "Short Date")
 strMsg = strMsg & ", " & Format(.TimeSent, "Long Time")
 strMsg = strMsg & "; received "
 strMsg = strMsg & Format(.TimeReceived, "Short Date") & ", "
 strMsg = strMsg & Format(.TimeReceived, "Long Time")
 MsgBox strMsg
 End With

See Also

Item Property (Fields Collection)

TimeReceived Property (Message Object)

 Type Property (Message Object)

The Type property returns or sets the MAPI message class for the message. Read/write.

Syntax

objMessage.Type

Data Type

String

Remarks

The Type property returns or sets the MAPI message class for the message. By default, the OLE
Messaging Library sets the Type value of new messages to the MAPI message class IPM.Note.

The OLE Messaging Library does not impose any restrictions on this value except that it be a valid
string value. You can set the value to any string that is meaningful for your application. MAPI uses
message class strings in the form IPM.application.subClass or IPC.application.subClass.

For more information about MAPI message classes, see the MAPI Programmer's Reference.

The Type property corresponds to the MAPI property PR_MESSAGE_CLASS.

See Also

GetFirst Method (Messages Collection)

 Unread Property (Message Object)

The Unread property is TRUE if the message has not been read by the current user. Read/write.

Syntax

objMessage.Unread

Data Type

Boolean

Remarks

When you post a message to a public folder, you should set the Unread, Submitted, and Sent
properties to TRUE before calling the Send or Update method.

The Unread property corresponds to the MAPI property PR_MESSAGE_FLAGS.

See Also

Posting a Message to a Public Folder

Sent Property (Message Object)

 Update Method (Message Object)

The Update method saves the message in the MAPI system.

Syntax

objMessage.Update([makePermanent, refreshObject])

Parameters

objMessage
Required. The Message object.

makePermanent
Optional. Boolean. TRUE indicates that the property cache is flushed and all changes are committed
to the underlying store. FALSE indicates that the property cache is flushed and not committed to the
store. The default value is TRUE.

refreshObject
Optional. Boolean. TRUE indicates that the property cache is reloaded from the values in the
underlying store. FALSE indicates that the property cache is not reloaded. The default value is
FALSE.

Remarks

Changes to Message objects are not permanently saved in the MAPI system until you call the Update
method with the makePermanent parameter set to TRUE.

For improved performance, the OLE Messaging Library caches property changes in private storage
and updates either the object or the underlying store only when you explicitly request such an update.
For efficiency, you should make only one call to Update with its makePermanent parameter set to
TRUE.

The makePermanent and refreshObject parameters combine to cause the following changes:

refreshObject =
TRUE

refreshObject =
FALSE

makePermanent =
TRUE

Commit all changes,
flush the cache, and
reload the cache
from the store.

Commit all changes
and flush the cache.

makePermanent =
FALSE

Flush the cache and
reload the cache
from the store.

Flush the cache.

Call Update(FALSE, TRUE) to flush the cache and then reload the values from the store.

Example

This example changes the subject of the first message in a folder:

Set objMessage = objSession.Inbox.GetFirst
' ... verify message
objMessage.Subject = "This is the new subject"
objMessage.Update

To add a new Message object, use the Add method followed by the Update method. This example
saves a new message:

Dim objMessage As Object ' message object
' ...

Set objMessage = objSession.Outbox.Messages.Add
objMessage.Subject = "Microsoft Bob(TM)"
objMessage.Text = "This is incredible, you've got to see it!"
objMessage.Update makePermanent:=True

See Also

Send Method (Message Object)

 Messages Collection Object

The Messages collection object contains one or more Message objects.

The Messages collection is considered a large collection, which means that you must use a Message
identifier value or the Get methods to access individual Message objects within the collection.

Properties

Property name Type Access
Application String Read-only
Class Long Read-only
Parent Object Read-only
Session Session object Read-only

Methods

Method name Parameters
Add (optional) subject as String, (optional) text as

String, (optional) type as String, (optional)
importance as Long

Delete (none)
GetFirst (optional) filter as Variant
GetLast (optional) filter as Variant
GetNext (none)
GetPrevious (none)
Sort sortOrder as Long

Remarks

The collection does not maintain a count of the number of Message objects in the collection. Use the
GetFirst, GetLast, GetNext, and GetPrevious methods to access the Message objects in the
collection.

The order in which items are returned by GetFirst, GetNext, GetPrevious, and GetLast depends on
whether the messages are sorted or not. The Message objects within a collection can be sorted by
delivery time, either ascending or descending.

When the items are unsorted, these methods do not return the items in any specified order. The best
programming approach to use with unsorted collections is to assume that you can access all items
within the collection, but that the order of the objects is undefined.

See Also

Object Collections

 Add Method (Messages Collection)

The Add method creates and returns a new Message object in the Messages collection.

Syntax

Set objMessage = objMsgColl.Add([subject, text, type, importance])

Parameters

objMessage
On successful return, represents the new Message object added to the collection.

objMsgColl
Required. The Messages collection object.

subject
Optional. String. The subject of the message. When this parameter is not supplied, the default value
is an empty string.

text
Optional. String. The body text of the message. When this parameter is not supplied, the default
value is an empty string.

type
Optional. String. The message class of the message, such as the default, IPM.Note.

importance
Optional. Long. The priority of the message. The following values are defined:

Constant Value Description
mapiLow 0 Low priority
mapiNormal 1 Normal priority

(default)
mapiHigh 2 High priority

Remarks

The method parameters correspond to the Subject, Text, Type, and Importance properties of the
Message object.

You should create new messages in the Outbox folder.

Example

This example adds a new message to a folder:

' from the sample function Util_ReplyToConversation
 Set objNewMsg = objSession.Outbox.Messages.Add
 ' verify objNewMsg created successfully...then supply properties
 With objNewMsg
 .Text = "How about a slightly used Gemini?" ' new text
 .Subject = objOriginalMsg.Subject ' copy original properties
 .ConversationTopic = objOriginalMsg.ConversationTopic
 ' append time stamp; compatible with Microsoft Exchange client
 Set objOneRecip = .Recipients.Add(_
 Name:=objOriginalMsg.Recipients.Item(1).Name, _
 Type:=mapiTo)
 .Recipients.Resolve
 .Update
 .Send showDialog:=False
 End With

See Also

Delete Method (Message Object)

 Delete Method (Messages Collection)

The Delete method deletes all messages in the collection.

Syntax

objMsgColl.Delete()

Parameters

objMsgColl
Required. The Messages collection object.

Remarks

Deletes all member objects within the collection.

Moves the deleted folders and messages to the Deleted Messages folder, if the user has enabled this
option. If the folders and messages are already in the Deleted Messages folder, the Delete method
permanently deletes them, and they cannot be recovered.

Be cautious using Delete with collections, since the method deletes all member objects within a
collection. For example, this code deletes all of the messages in a folder:

objFolder.Messages.Delete

See Also

Add Method (Messages Collection)

 GetFirst Method (Messages Collection)

The GetFirst method returns the first object in the collection. Returns Nothing if no first object exists.

Syntax

Set objMessage = objMsgColl.GetFirst([filter])

Parameters

objMessage
On successful return, represents the first Message object in the collection.

objMsgColl
Required. The Messages collection object.

filter
Optional. String. Specifies the message class of the object, such as the default value, IPM.Note.
Corresponds to the Type property of the Message object.

Remarks

The Get methods are similar to the Find and Move methods that are used with Microsoft Access
databases. The Get methods take a different name from these methods because they use a different
syntax.

See Also

Message Object

 GetLast Method (Messages Collection)

The GetLast method returns the last object in the collection. Returns Nothing if no last object exists.

Syntax

Set objMessage = objMsgColl.GetLast([filter])

Parameters

objMessage
On successful return, represents the last Message object in the collection.

objMsgColl
Required. The Messages collection object.

filter
Optional. String. Specifies the message class of the object, such as the default value, IPM.Note.
Corresponds to the Type property of the Message object.

Remarks

The Get methods are similar to the Find and Move methods that are used with Microsoft Access
databases. The Get methods take a different name from these methods because they use a different
syntax.

See Also

Update Method (Message Object)

 GetNext Method (Messages Collection)

The GetNext method returns the next object in the Messages collection. Returns Nothing if no next
object exists.

Syntax

Set objMessage = objMsgColl.GetNext()

Parameters

objMessage
On successful return, represents the next Message object in the collection.

objMsgColl
Required. The Messages collection object.

Remarks

The Get methods are similar to the Find and Move methods that are used with Microsoft Access
databases. The Get methods take a different name from these methods because they use a different
syntax.

See Also

Update Method (Message Object)

 GetPrevious Method (Messages Collection)

The GetPrevious method returns the previous object in the collection. Returns Nothing if no previous
object exists.

Syntax

Set objMessage = objMsgColl.GetPrevious()

Parameters

objMessage
On successful return, represents the previous Message object in the collection.

objMsgColl
Required. The Messages collection object.

Remarks

The Get methods are similar to the Find and Move methods that are used with Microsoft Access
databases. The Get methods take a different name from these methods because they use a different
syntax.

See Also

Update Method (Message Object)

 Sort Method (Messages Collection)

The Sort method sorts the messages in the collection according to the specified sort order.

Syntax

objMsgColl.Sort(sortOrder)

Parameters

objMsgColl
Required. The Messages collection object.

sortOrder
Required. Long. The specified sort order, one of the following values:

Value Numeric value Description
mapiNone 0 No sort
mapiAscending 1 Ascending sort
mapiDescending 2 Descending sort

See Also

Update Method (Message Object)

 Recipient Object

Represents a recipient of a message.

Properties

Property name Type Access
Address String Read/write
AddressEntry AddressEntry object Read/write
Application String Read-only
Class Long Read-only
DisplayType Long Read-only
Index Long Read-only
Name String Read/write
Parent Object Read-only
Session Session object Read-only
Type Long Read/write

Methods

Method name Parameters
Delete (none)
Resolve (optional) showDialog as

Boolean

See Also

AddressEntry Object

Recipients Collection

 Address Property (Recipient Object)

The Address property specifies the full address for this recipient. Read/write.

Syntax

objRecipient.Address

Data Type

String

Remarks

Sets the value of the Recipient object's Address property to specify a custom address. The Recipient
Address uses the following syntax:

TypeValue:AddressValue

where TypeValue and AddressValue correspond to the values of the AddressEntry object's Type and
Address properties.

The Recipient object's Address property represents the full address, the complete messaging address
used by the MAPI system.

The OLE Messaging Library sets the value of the Recipient object's Address property for you when
you supply the Name property and call its Resolve method.

The Address property corresponds to the MAPI properties PR_EMAIL_ADDRESS and
PR_EMAIL_TYPE.

Example

' from the sample function Util_CompareAddressParts
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & objAddrEntry.Address
 MsgBox strMsg ' compare address components

See Also

AddressEntry Object

Name Property (Recipient Object)

Resolve Method (Recipient Object)

 AddressEntry Property (Recipient Object)

The AddressEntry property specifies the AddressEntry object for this recipient. Read/write.

Syntax

objRecipient.AddressEntry

Data Type

Object (AddressEntry object)

Remarks

The AddressEntry property indicates the AddressEntry object for this recipient. For a complete
description of the relationship between the AddressEntry object and the Recipient object, see Using
Addresses.

Accessing the AddressEntry property forces resolution of an unresolved recipient name. If the name
cannot be resolved, the OLE Messaging Library reports an error. For example, when the recipient
contains an empty string, the resolve operation returns MAPI_E_AMBIGUOUS_RECIP.

Example

This example compares the Address property of the Recipient object with the Address and Type
properties of its child AddressEntry object, accessible through its AddressEntry property, to
demonstrate the relationships between these properties.

' from the sample function Session_AddressEntry
 If objOneRecip Is Nothing Then
 MsgBox "must select a recipient"
 Exit Function
 End If
 Set objAddrEntry = objOneRecip.AddressEntry
 If objAddrEntry Is Nothing Then
 MsgBox "no valid AddressEntry for this recipient"
 Exit Function
 End If
' from the sample function Util_CompareAddressParts
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & objAddrEntry.Address
 MsgBox strMsg ' compare address components
 strMsg = "Recipient name = " & objOneRecip.Name
 strMsg = strMsg & "; AddressEntry name = " & objAddrEntry.Name
 MsgBox strMsg ' compare display names (should be same)

See Also

AddressEntry Object

 Delete Method (Recipient Object)

The Delete method deletes the Recipient object.

Syntax

objRecipient.Delete()

Parameters

objRecipient
Required. The Recipient object.

Remarks

The object is set to Nothing and it is removed from memory. The change is not permanent until you
use the Update, Send, or Delete method on the parent Message object.

See Also

Send Method (Message Object)

Update Method (Message Object)

 DisplayType Property (Recipient Object)

The DisplayType property identifies the recipient type. This property enables special processing based
on the type, such as displaying an icon associated with that type. Read-only.

Syntax

objRecipient.DisplayType

Parameters

objRecipient
Required. The Recipient object.

Data Type

Long

Remarks

You can use the display type to sort or to filter recipients.

The following values are defined:

DisplayType value Description
mapiUser Local user
mapiDistList Distribution list
mapiForum Public folder
mapiAgent Agent
mapiOrganization Organization
mapiPrivateDistList Private distribution list
mapiRemoteUser Remote user

See Also

Item Property (Recipients Collection)

 Index Property (Recipient Object)

The Index property returns the index number of this Recipient object within the Recipients collection.
Read-only.

Syntax

objRecipient.Index

Data Type

Long

Remarks

The index number indicates an index within the array of Recipients collection object.

An index value should not be considered to be a static value that remains constant for the duration of a
session. The index can change whenever an update occurs to a parent object, such as the message or
folder.

Example

' from the sample function Recipients_NextItem
' after some similar validation...
 If iRecipCollIndex >= objRecipColl.Count Then
 iRecipCollIndex = objRecipColl.Count
 MsgBox "Already at end of recipient list"
 Exit Function
 End If
 ' index is < count; can be incremented by 1
 iRecipCollIndex = iRecipCollIndex + 1
 Set objOneRecip = objRecipColl.Item(iRecipCollIndex)
' from the sample function Recipient_Index
 If objOneRecip Is Nothing Then
 MsgBox "must first select a recipient"
 Exit Function
 End If
 MsgBox "Recipient index = " & objOneRecip.Index

See Also

Count Property (Recipients Collection)

Item Property (Recipients Collection)

 Name Property (Recipient Object)

The Name property specifies the name of this Recipient object. Read/write.

Syntax

objRecipient.Name

Data Type

String

Remarks

The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

Example

' from the sample function Util_CompareFullAddressParts()
Dim strMsg As String
 ' validate objects... then display
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & objAddrEntry.Address
 MsgBox strMsg ' compare address parts

 strMsg = "Recipient name = " & objOneRecip.Name
 strMsg = strMsg & "; AddressEntry name = " & objAddrEntry.Name
 MsgBox strMsg ' compare display names (should be same)

See Also

Recipient Object

 Resolve Method (Recipient Object)

The Resolve method resolves address information. When the Recipient object's Name property is
supplied, looks up the corresponding address from the address book. When the Recipient object's
Address property is supplied, resolves as a custom address.

Syntax

objRecipient.Resolve([showDialog])

Parameters

objRecipient
Required. The Recipient object.

showDialog
Optional. Boolean. If TRUE (the default value), displays a dialog box to prompt the user to resolve
ambiguous names.

Remarks

The Resolve method operates when the AddressEntry property is set to Nothing. Its operation
depends on whether you supply the Recipient Name or Address property.

When you supply the Name property, Resolve looks up the Recipient object's Name property in the
address book. When a recipient is resolved, the recipient object's Address property contains the full
address and its AddressEntry property contains a reference to an AddressEntry object that represents
a copy of information in the address book.

Note that the Resolve method does not validate the Recipient object's Type property.

When you specify a custom address by supplying the Recipient object's Address property, the
Resolve method does not attempt to compare the address against the address book.

To avoid delivery errors, clients should always resolve recipients before submitting a message to the
MAPI system. Resolving the recipient name means either finding a matching address in an address list
or having the user select an address from a dialog box.

The Resolve method uses the address list specified in the profile, such as the global address book or
the personal address book.

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object and
Recipients collection), AddressBook and Logon methods (Session object).

See Also

Resolve Method (Recipients Collection)

Resolved Property (Recipients Collection)

 Type Property (Recipient Object)

The Type property specifies the type of the Recipient object; an integer value that indicates either To,
Cc, or Bcc. Read/write.

Syntax

objRecipient.Type

Data Type

Long

Remarks

The Type property applies to all Recipient objects in the Recipients collection. The property has the
following defined values:

Recipient type Value Description
mapiTo 1 The recipient is on the To line.
mapiCc 2 The recipient is on the Cc line.
mapiBcc 3 The recipient is on the Bcc line.

The Type property corresponds to the MAPI property PR_RECIPIENT_TYPE.

See Also

Address Property (Recipient Object)

Resolve Method (Recipient Object)

 Recipients Collection Object

The Recipients collection object specifies the recipients of a message.

Properties

Property name Type Access
Application String Read-only
Class Long Read-only
Count Long Read-only
Item Recipient object Read-only
Parent Object Read-only
Resolved Boolean Read-only
Session Session object Read-only

Methods

Method name Parameters
Add (optional) name as String, (optional) address as

String, (optional) type as Long, (optional)
entryID as String

Delete (none)
Resolve (optional) showDialog as Boolean

Remarks

The Recipients collection is considered a small collection, which means that it supports count and
index values that let you access individual Recipient objects through the Item property. The Recipients
collection supports the Visual Basic For Each statement.

See Also

Object Collections

 Add Method (Recipients Collection)

The Add method creates a new Recipient object in the Recipients collection.

Syntax

Set objRecipient = objRecipColl.Add([name, address, type] | [entryID])

Parameters

objRecipient
On successful return, represents the new Recipient object added to the collection.

objRecipColl
Required. The Recipients collection object.

name
Optional. String. The display name of the recipient. When this parameter is not present, the property
of the new object is set to an empty string.

address
Optional. String. The address of the recipient. When this parameter is not present, the property of
the new object is set to an empty string.

type
Optional. Long. The type of recipient; the initial value for the Recipient object's Type property. The
following values are valid:

Recipient
type

Value Description

mapiTo 1 The recipient is on the To line.
mapiCc 2 The recipient is on the Cc line.
mapiBcc 3 The recipient is on the Bcc line.

When this parameter is not present, the object uses the default value mapiTo.
entryID

Optional. String. The identifier of a valid AddressEntry object for this recipient. No default value is
supplied for the entryID parameter. When present, the other parameters are not used. When not
present, the method uses the name, address, and type parameters to determine the recipient.

Remarks

The name, address, and type parameters correspond to the Recipient object's Name, Address, and
Type properties, respectively. The entryID parameter corresponds to the child AddressEntry object's ID
property. When the entryID parameter is present, the other parameters are not used.

When no parameters are present, an empty Recipient object is created.

You can access the child AddressEntry object through the Recipient object's AddressEntry property.

Call the Resolve method after you add a recipient.

The Index of the new Recipient object equals the new Count of the Recipients collection. The recipient
is actually saved in the MAPI system when you Update or Send the parent message object.

Example

This example adds three recipients to a message. The address for the first recipient is resolved using
the display name. The second recipient is a custom address, so the resolve operation does not modify
it. The third recipient is taken from an existing valid AddressEntry object. The Resolve operation does
not affect this recipient.

' from the sample function "Using Addresses"

 ' add 3 recipient objects to a valid message object
 ' 1. look up entry in address book
 Set objOneRecip = objNewMessage.Recipients.Add(_
 Name:=strName, _
 Type:=mapiTo)
 ' error handling...verify objOneRecip
 objOneRecip.Resolve

 ' 2. add a custom recipient
 Set objOneRecip = objNewMessage.Recipients.Add(_
 Address:="SMTP:davidhef@microsoft.com", _
 Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using custom addressing"
 Exit Function
 End If
 objOneRecip.Resolve

 ' 3. add a valid address entry object, such as Message.Sender
 ' assume valid address entry ID, name from an existing message
 Set objOneRecip = objNewMessage.Recipients.Add(_
 entryID:=strAddrEntryID, _
 Name:=strName, _
 Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using existing AddressEntry ID"
 Exit Function
 End If

 objNewMessage.Text = "expect 3 different recipients"
 MsgBox ("count = " & objNewMessage.Recipients.Count)

See Also

Resolve Method (Recipients Collection)

 Count Property (Recipients Collection)

The Count property returns the number of Recipient objects in the collection. Read-only.

Syntax

objRecipColl.Count

Data Type

Long

Example

This example uses the Count property as a loop counter to copy all recipients from one Recipients
collection to another.

' from the sample function Util_CopyMessage
' Copy all Recipient objects from one collection to another
' ... verify valid message object objOneMsg
 For i = 1 To objOneMsg.Recipients.Count Step 1
 strRecipName = objOneMsg.Recipients.Item(i).Name
 If strRecipName <> "" Then
 Set objOneRecip = objCopyMsg.Recipients.Add
 If objOneRecip Is Nothing Then
 MsgBox "unable to create recipient in message copy"
 Exit Function
 End If
 objOneRecip.Name = strRecipName
 End If
 Next i

See Also

Item Property (Recipients Collection)

 Delete Method (Recipients Collection)

The Delete method deletes all Recipients in the collection.

Syntax

objRecipColl.Delete()

Parameters

objRecipColl
Required. The Recipients collection object.

Remarks

The object or collection is set to Nothing and it is removed from memory, but the change is not
permanent until you use the Update, Send, or Delete method on the parent object that contained the
deleted object or collection.

Be cautious using Delete with collections, since the method deletes all member objects within a
collection.

See Also

Delete Method (Recipient Object)

Send Method (Message Object)

Update Method (Message Object)

 Item Property (Recipients Collection)

The Item property returns a single Recipient from the collection. Read-only.

Syntax

objRecipColl.Item(index)

objRecipCol
Required. Specifies the Recipients collection object.

index
An integer that ranges from 1 to objRecipColl.Count, or a string that specifies the name of the
object.

Data Type

Object

Remarks

The Item property works like the accessor property for a small collection.

Example

' list all recipient names in the collection
 strRecips = "" ' initialize string
 Set objRecipsColl = objOriginalMsg.Recipients
 Count = objRecipsColl.Count
 For i = 1 To Count Step 1
 Set objOneRecip = objRecipsColl.Item(i)
 strRecips = strRecips & objOneRecip.Name & "; "
 Next i
 MsgBox "Message recipients: " & strRecips

See Also

Count Property (Recipients Collection)

 Resolve Method (Recipients Collection)

The Resolve method searches the Recipients collection to resolve names.

Syntax

objRecipColl.Resolve([showDialog])

Parameters

objRecipColl
Required. The Recipients collection object.

showDialog
Optional. Boolean. If TRUE (the default value), displays a dialog box to prompt the user to resolve
ambiguous names.

Remarks

Calling the Recipients collection's Resolve method is similar to calling the Resolve method for each
Recipient object in the collection; any ambiguous addresses are resolved as unambiguous addresses.
However, calling the Resolve method on the Recipients collection also forces an update to the Count
and Item properties and to all Recipient objects in the collection. Any Recipient variable previously set
to an object in the collection is invalidated by the Resolve call and should be retrieved again from the
collection.

The Resolve method of the Recipient object itself does not invalidate the object. For more information
about the individual Resolve operation, see the reference documentation for the Recipient object's
Resolve method.

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object),
AddressBook and Logon methods (Session object).

Example

' from the sample function Util_NewConversation
' create a valid new message object in the Outbox
 With objNewMsg
 .Subject = "used space vehicle wanted"
 ' ... set other properties here...
 Set objOneRecip = .Recipients.Add(Name:="Car Ads", Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to create the public folder recipient"
 Exit Function
 End If
 .Recipients.Resolve
 End With

See Also

Resolve Method (Recipient Object)

Resolved Property (Recipients Collection)

 Resolved Property (Recipients Collection)

The Resolved property is TRUE if all of the recipients in the collection are resolved. Read-only.

Syntax

objRecipColl.Resolved

Data Type

Boolean

Remarks

All Recipient objects in the collection are considered resolved when all Recipient objects have a valid
AddressEntry object in the AddressEntry property.

You should resolve all addresses. Whenever you supply a display name to obtain an address from the
address book or supply a custom address, you should call the Resolve method to ensure that the
AddressEntry property is valid.

When the Recipients collection's Resolved property is not TRUE, use either the collection's Resolve
method or the Resolve method for each Recipient object in the collection.

When you use existing valid AddressEntry objects, you do not need to explicitly call the Recipient
object's Resolve method.

See Also

Resolve Method (Recipient Object)

 Session Object

The Session object contains session-wide settings and options. It also contains properties that return
top-level objects, such as CurrentUser.

Properties

Property name Type Access
Application String Read-only
Class Long Read-only
CurrentUser AddressEntry object Read-only
Inbox Folder object Read-only
InfoStores InfoStores object Read-only
MAPIOBJECT Object Read/write (Note:

Not available to
Visual Basic
applications.)

Name String Read-only
OperatingSystem String Read-only
Outbox Folder object Read-only
Parent Object; set to

Nothing
(Not applicable)

Session Object; set to
Nothing

(Not applicable)

Version String Read-only

Methods

Method name Parameters
AddressBook (optional) recipients as Object, (optional) title

as String, (optional) oneAddress as Boolean,
(optional) forceResolution as Boolean,
(optional) recipLists as long, (optional) toLabel
as String, (optional) ccLabel as String,
(optional) bccLabel as String, (optional)
parentWindow as Long

GetAddressEntr
y

entryID as String

GetInfoStore storeID as String
GetFolder folderID as String, storeID as String
GetMessage messageID as String, storeID as String
Logoff (none)
Logon (optional) profileName as String, (optional)

profilePassword as String, (optional)
showDialog as Boolean, (optional) newSession
as Boolean, (optional) parentWindow as Long

Remarks

After you create a new Session object, use the Logon method to initiate a MAPI session.

See Also

Logon Method (Session Object)

 AddressBook Method (Session Object)

The AddressBook method displays the MAPI dialog box that allows the user to select entries from the
address book. The selections are returned in a Recipients collection object.

Syntax

Set objRecipients = objSession.AddressBook([recipients, title, oneAddress, forceResolution,
recipLists, toLabel, ccLabel, bccLabel, parentWindow])

Parameters

objRecipients
On successful return, the Recipients collection object. When the user does not select any names
from the dialog box, AddressBook returns Nothing.

objSession
Required. The Session object.

recipients
Optional. Object. A Recipients collection object that provides the initial value for the recipient list
boxes in the address book. (Note: This initial Recipient collection is ignored in the OLE Messaging
Library.)

title
Optional. String. The title or caption of the address book dialog box. The default value is an empty
string.

oneAddress
Optional. Boolean. Allows the user to enter or select only one address. The default value is FALSE.

forceResolution
Optional. Boolean. If TRUE, attempts to resolve all names before closing the address book. Prompts
the user to resolve any ambiguous names. The default value is TRUE.

recipLists
Optional. Long. The number of recipient list boxes to display in the address book dialog box:

recipLists Action
0 Displays no list boxes. The user can interact

with the address book dialog box but no
recipients are returned by this method.

1 Displays one list box (default) for mapiTo
recipients.

2 Displays two list boxes; mapiTo and mapiCc
recipients.

3 Displays three list boxes; mapiTo, mapiCc,
and mapiBcc recipients.

toLabel
Optional. String. The caption for the button associated with the first list box. Ignored if recipLists is
less than 1. If omitted, the default value "To:" is displayed.

ccLabel
Optional. String. The caption for the button associated with the second list box. Ignored if recipLists
is less than 2. If omitted, the default value "CC:" is displayed.

bccLabel
Optional. String. The caption for the button associated with the third list box. Ignored if recipLists is
less than 3. If omitted, the default value "BCC:" is displayed.

parentWindow
Optional. Long. The parent window handle for the address book dialog box. A value of 0 (the default)

specifies that any dialog box displayed is application modal.

Remarks

The AddressBook method returns Nothing if the user cancels the dialog box.

To provide an access key for the list boxes, include an ampersand (&) character in the string for the
label argument. For example, if toLabel is "&Attendees:", users can press ALT+A to move the focus to
the first recipient list box.

When you use the AddressBook method to let the user select recipients for a new message, you must
use two different Recipients collections. This is required because the Recipients property of the
Message object is read-only. Use the following procedure:

1. Call Session.AddressBook, which returns a new Recipients collection.
2. Call Messages.Add to create a new message.
3. Loop through the Recipients collection returned by Session.AddressBook, adding each recipient to

the message's Recipients collection by calling the message's Recipients.Add method.
Note that you must update both the Recipient and the AddressEntry properties of the destination
Recipient object, as demonstrated in the following example:

Dim objNewRecip(MAX_RECIPS) as Object ' array of new recipients
'...
 Set objNewMessage = objSession.Outbox.Messages.Add
 Set objRecipColl = objSession.AddressBook(_
 Title:="Select Recipients", _
 recipLists:=3) 'use default labels
 ' now add to the new message
 Count = objRecipColl.Count ' error checking omitted...
 With objNewMessage.Recipients
 For i = 1 To Count Step 1
 Set objRecip = objRecipColl.Item(i)
 Set objNewRecip(i) = .Add(_
 entryID:=objRecip.AddressEntry.ID, _
 type:=objRecip.type)
 objNewRecip(i).Name = objNewRecip(i).AddressEntry.Name
 objNewRecip(i).address = objNewRecip(i).AddressEntry.type _
 & ":" & objNewRecip(i).AddressEntry.address
 objNewRecip(i).Resolve
 Next i
 End With
 objNewMessage.Update 'save it

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object and
Recipients collection), Logon method (Session object).

Note The initial Recipients collection, as specified in the recipients parameter, is not used in the OLE
Messaging Library.

Example

The following example displays an address book dialog box labeled "Select Attendees" with three
recipient lists:

 If objSession Is Nothing Then
 MsgBox "must first create MAPI session and logon"

 Exit Function
 End If
 Set objRecipColl = objSession.AddressBook(_
 Title:="Select Attendees", _
 forceResolution:=True, _
 recipLists:=3, _
 toLabel:="&Very Important People") ' on button
 ccLabel:="&Carbon Recipients")
 bccLabel:="&Secret Recipients")
 ' Note: initial value not used in version 1.0
 ' parameter not used in call: Recipients:=objInitRecipColl
 MsgBox "Name of first recipient = " & objRecipColl.Item(1).Name
 Exit Function

See Also

AddressEntry Object

Recipients Collection

 CurrentUser Property (Session Object)

The CurrentUser property returns the active user as an AddressEntry object. Read-only.

Syntax

objSession.CurrentUser

Data Type

Object (AddressEntry object)

Remarks

The CurrentUser property returns Nothing when no user is logged on.

Example

The example logs on if necessary, then creates strings containing information about the current user:

 If objSession Is Nothing Then
 MsgBox ("Must log on first")
 Exit Function
 End If
 Set objAddrEntry = objSession.CurrentUser
 If objAddrEntry Is Nothing Then
 MsgBox "Could not set the address entry object"
 Exit Function
 Else
 MsgBox "full address = " & objAddrEntry.Type & ":" _
 & objAddrEntry.Address
 End If

See Also

AddressEntry Object

 GetAddressEntry Method (Session Object)

The GetAddressEntry method returns an AddressEntry object.

Syntax

Set objAddressEntry = objSession.GetAddressEntry(entryID)

Parameters

objAddressEntry
On successful return, represents the AddressEntry object specified by entryID.

objSession
Required. The Session object.

entryID
Required. String that specifies the unique identifier of the address entry.

Example

The following example displays the name of a user from a MAPI address list:

' from the function Session_GetAddressEntry
 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If "" = strAddressEntryID Then
 MsgBox ("Must first set string variable; see AddressEntry->ID")
 Exit Function
 End If
 Set objAddrEntry = objSession.GetAddressEntry(strAddressEntryID)
 MsgBox "full address = " & objAddrEntry.Type & ":" _
 & objAddrEntry.Address

See Also

Using Addresses

AddressEntry Object

GetFolder Method (Session Object)

GetMessage Method (Session Object)

 GetFolder Method (Session Object)

The GetFolder method returns a Folder object from a MAPI information store.

Syntax

Set objFolder = objSession.GetFolder(folderID [, storeID])

Parameters

objFolder
On successful return, contains the Folder object with the specified identifier. When the folder does
not exist, GetFolder returns Nothing.

objSession
Required. The Session object.

folderID
Required. String that specifies the unique identifier of the folder. When you provide an empty string,
some providers return the root folder. See the remarks for more information.

storeID
Optional. String that specifies the unique identifier of the store. The default value is an empty string,
which corresponds to the default store.

Remarks

The GetFolder method allows you to obtain any folder for which you know the identifier.

For some message stores, you can also obtain the root folder by supplying an empty string as the
value for folderID. When the message store does not support returning the root folder, the call returns
the error value MAPI_E_NOT_FOUND.

The root folder is the parent of the folder that represents the IPM subtree. The IPM subtree is the
hierarchy of folders for all messages whose message class starts with IPM, such as IPM.Note.

Note that the root folder differs from the IPM root folder. You can obtain the IPM root folder with the
InfoStores object's RootFolder property, or when you use the Parent property to trace up through the
hierarchy of folders. You can only obtain the root folder by calling GetFolder with the empty string
supplied for the folderID parameter.

Example

The following example uses the GetFolder method to obtain a specific folder from a MAPI information
store:

' from the function Session_GetFolder
' requires a global variable that contains the folder ID
' uses a global variable that contains the store ID if present
 If strFolderID = "" Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 If strFolderStoreID = "" Then ' if it's not there, don't use it
 Set objFolder = objSession.GetFolder(strFolderID)
 Else
 Set objFolder = objSession.GetFolder(folderID:=strFolderID, _
 storeID:=strFolderStoreID)
 End If
 If objFolder Is Nothing Then
 Set objMessages = Nothing

 MsgBox "Unable to retrieve folder with specified ID"
 Exit Function
 End If
 MsgBox "Folder set to " & objFolder.Name
 Set objMessages = objFolder.Messages

See Also

Folder Object

ID Property (Folder Object)

 GetInfoStore Method (Session Object)

The GetInfoStore method returns an InfoStore object that can be used to navigate through both public
folders and the user's personal folders.

Syntax

Set objInfoStore = objSession.GetInfoStore(storeID)

Parameters

objInfoStore
On successful return, contains the InfoStore object with the specified identifier. When the InfoStore
object does not exist, GetInfoStore returns Nothing.

objSession
Required. The Session object.

storeID
Required. String that specifies the unique identifier of the store to retrieve.

Remarks

The GetInfoStore method allows you to obtain any information store for which you know the identifier.

Example

The following example uses the GetInfoStore method to obtain a specific store:

' from the function Session_GetInfoStore
' requires a global variable that contains the info store ID
Dim strInfoStoreID as String ' ID as hex string
Dim objInfoStore As Object ' InfoStore object
 If strInfoStoreID = "" Then
 MsgBox ("Must first set Store ID variable")
 Exit Function
 End If
 Set objInfoStore = objSession.GetInfoStore(
 storeID:=strInfoStoreID)
 ' error handling...
 MsgBox "InfoStore set to " & objInfoStore.Name

See Also

Folder Object

ID Property (Folder Object)

 GetMessage Method (Session Object)

The GetMessage method returns a Message object from a MAPI information store.

Syntax

Set objMessage = objSession.GetMessage(messageID [, storeID])

Parameters

objMessage
On successful return, GetMessage returns a Message object. When the specified messageID does
not exist, GetMessage returns Nothing.

objSession
Required. The Session object.

messageID
Required. String that specifies the unique identifier of the message.

storeID
Optional. String that specifies the unique identifier of the store. The default value is an empty string,
which corresponds to the default store.

Example

The following example displays the subject of a message from a MAPI information store:

' fragment from Session_GetMessage
' requires the parameter strMessageID;
' also uses strMessageStoreID if it is defined
 If strMessageID = "" Then
 MsgBox ("Must first set message ID variable; see Message->ID")
 Exit Function
 End If
 If strMessageStoreID = "" Then ' not present
 Set objOneMsg = objSession.GetMessage(strMessageID)
 Else
 Set objOneMsg = objSession.GetMessage(messageID:=strMessageID, _
 storeID:=strMessageStoreID)
 End If

See Also

ID Property (Message Object)

Message Object

 Inbox Property (Session Object)

The Inbox property returns a Folder object representing the current user's default Inbox folder. Read-
only.

Syntax

objSession.Inbox

Data Type

Object (Folder object)

Remarks

This property returns Nothing when the current user does not have an Inbox folder.

In addition to the general ability to navigate through the formal collection and object hierarchy, the OLE
Messaging Library supports properties that let your application directly access the most common folder
objects:

· The IPM subtree
· Inbox
· Outbox

The following sample code uses the Session object's Inbox property to initialize a Folder object:

' from the function Session_Inbox
 ' make sure the Session object is valid...
 Set objFolder = objSession.Inbox
 If objFolder Is Nothing Then
 MsgBox "Failed to open Inbox"
 Exit Function
 End If
 MsgBox "Folder name = " & objFolder.Name
 Set objMessages = objFolder.Messages
 If objMessages Is Nothing Then
 MsgBox "Failed to open folder's Messages collection"
 Exit Function
 End If

See Also

Folder Object

Outbox Property (Session Object)

 InfoStores Property (Session Object)

The InfoStores property returns an InfoStores object representing a collection of available information
stores. Each InfoStore object contains a root folder object. Read-only.

Syntax

objSession.InfoStores

Data Type

Object (InfoStores object)

Remarks

You can access public folders through the InfoStores collection. The public folders are maintained in
their own InfoStore object that is distinct from the InfoStore object that contains the user's personal
messages.

When you know the unique identifier for the InfoStore object, you can also call the Session object's
GetInfoStore method.

For more information, see the reference documentation for the InfoStores collection and the InfoStore
object.

Example

' from the functions Session_InfoStores, InfoStores_FirstItem,
' and InfoStore.Name
' make sure the Session object is valid...
Dim objSession as Object ' Session object
Dim objInfoStoresColl as Object ' InfoStores collection
Dim objInfoStore as Object ' InfoStore object
' assume valid Session object
 Set objInfoStoresColl = objSession.InfoStores
 If objInfoStoresColl Is Nothing Then
 MsgBox "Could not set InfoStores collection"
 Exit Function
 End If
 If 0 = objInfoStoresColl.Count Then
 MsgBox "No InfoStores in the collection"
 Exit Function
 End If
 iInfoStoresCollIndex = 1
 Set objInfoStore = objInfoStoresColl.Item(iInfoStoresCollIndex)
 If objInfoStore Is Nothing Then
 MsgBox "error, cannot get this InfoStore object"
 Exit Function
 Else
 MsgBox "Selected InfoStores " & iInfoStoresCollIndex
 End If
 If "" = objInfoStore.Name Then
 MsgBox "Active InfoStore has no name; ID = " & objInfoStore.Id
 Else
 MsgBox "Active InfoStore has name: " & objInfoStore.Name
 End If

See Also

InfoStores Collection

InfoStore Object

 Logoff Method (Session Object)

The Logoff method logs off from the MAPI system.

Syntax

objSession.Logoff()

Parameters

objSession
Required. The Session object.

Example

The following example logs off from the MAPI system:

' from the function Session_Logoff
 If Not objSession Is Nothing Then
 objSession.Logoff
 MsgBox "Logged off; reset global variables"
 Else
 MsgBox "No active session"
 End If

See Also

Logon Method (Session Object)

 Logon Method (Session Object)

The Logon method logs on to the MAPI system.

Syntax

objSession.Logon([profileName, profilePassword, showDialog, newSession, parentWindow])

Parameters

objSession
Required. The Session object.

profileName
Optional. A string specifying the user's logon name. To prompt the user to enter a logon name, omit
profileName and set showDialog to TRUE. The default value is an empty string.

profilePassword
Optional. A string specifying the user's logon password. To prompt the user to enter a logon
password, omit profilePassword and set showDialog to TRUE. The default value is an empty string.

showDialog
Optional. Boolean. If TRUE, displays a logon dialog box. The default value is TRUE.

newSession
Optional. Boolean. Determines whether the application opens a new MAPI session or uses the
current shared MAPI session. If a shared MAPI session does not exist, newSession is ignored and a
new session is opened. If the shared MAPI session does exist, this argument takes the following
action:

Value Action
TRUE Opens an new MAPI session.
FALSE
(default)

Uses the current shared MAPI session.

parentWindow
Optional. Long (HWND). Specifies the parent window handle for the logon dialog box. A value of 0
(the default) specifies that any dialog box displayed is application modal. The parentWindow
parameter is ignored unless showDialog is TRUE.

Remarks

The user must log on before your application can use most MAPI objects.

The common MAPI dialog boxes automatically handle many of the error cases that can be
encountered during logon. When you call Logon and do not supply the optional profile name
parameter, the Choose Profile dialog box appears, asking the user to select a profile. When the
profileName parameter is supplied but is not valid, common dialog boxes indicate the error and prompt
the user to enter a valid name from the Choose Profile dialog box. When no profiles are defined, the
Profile Wizard walks the user through the creation of a new profile.

When your application calls the Logon method after the user has already successfully logged on, the
OLE Messaging Library generates the error MAPI_E_LOGON_FAILURE.

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object and
Recipients collection), AddressBook method (Session object).

Example

The first example displays a logon dialog box that prompts the user to enter a logon password. The
second example supplies the profileName parameter and does not display the dialog box:

' from the function Session_Logon
 Set objSession = CreateObject("MAPI.Session")
 If Not objSession Is Nothing Then
 objSession.Logon showDialog:=True
 End If

' from the function Session_Logon_NoDialog
Function Session_Logon_NoDialog()
 On Error GoTo error_olemsg
 ' can set strProfileName, strPassword from a custom form
 ' adjust these parameters for your configuration
 ' create a Session object if necessary here...
 '
 If Not objSession Is Nothing Then
 ' configure these parameters for your needs...
 objSession.Logon profileName:=strProfileName, showDialog:=False
 End If
 Exit Function

error_olemsg:
 If 1273 = Err Then
 MsgBox "cannot logon: incorrect profile name or password; change
global variable strProfileName in Util_Initialize"
 Exit Function
 End If
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

See Also

Starting A Session With MAPI

Logoff Method (Session Object)

 MAPIOBJECT Property (Session Object)

The MAPIOBJECT property returns an IUnknown pointer to this Session object. Not available to
Visual Basic applications. Read/write.

Syntax

objSession.MAPIOBJECT

Data Type

Variant (VT_UNKNOWN)

Remarks

The MAPIOBJECT property is not available to Visual Basic programs. It is available only to C/C++
programs that use the OLE Messaging Library. The MAPIOBJECT property is an IUnknown object,
which is not supported by Visual Basic. Visual Basic supports IDispatch objects. For more information,
see the Microsoft OLE Programmer's Reference.

See Also

Introduction to OLE Automation

 Name Property (Session Object)

The Name property returns the name of the profile logged on to this session. Read-only.

Syntax

objSession.Name

Data Type

String

Remarks

The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

Examples

' from the function Session_Name
 If objSession Is Nothing Then
 MsgBox "Must log on first: see Session menu"
 Exit Function
 End If
 MsgBox "Session name = " & objSession.Name

See Also

Session Object

 OperatingSystem Property (Session Object)

The OperatingSystem property returns the name and version number of the current operating system.
Read-only.

Syntax

objSession.OperatingSystem

Data Type

String

Remarks

The OLE Messaging Library returns strings in the following formats:

Operating system String value
Microsoft Windows NT Microsoft® Windows NT™ X.xx
Microsoft Windows for
Workgroups

Microsoft® Windows™ X.xx

The X.xx values are replaced with the actual version numbers. Note that Microsoft Windows for
Workgroups version 3.11 returns the string "Microsoft® Windows™ 3.10." This is a feature of that
operating system rather than a feature of the OLE Messaging Library.

Example

This example displays the name of the operating system:

' from the function Session_OperatingSystem
' assume objSession is a valid Session object
 MsgBox "Operating system = " & objSession.OperatingSystem

See Also

Version Property (Session Object)

 Outbox Property (Session Object)

The Outbox property returns a Folder object representing the current user's default Outbox folder.
Read-only.

Syntax

objSession.Outbox

Data Type

Object

Remarks

The property returns Nothing if the current user does not have or has not enabled the Outbox folder.

In addition to the general ability to navigate through the formal collection and object hierarchy, the OLE
Messaging Library supports properties that let your application directly access the most common folder
objects:

· The IPM subtree
· Inbox
· Outbox

Example

' from the function Session_Outbox
Dim objFolder As Object
' ...
 Set objFolder = objSession.Outbox
 If objFolder Is Nothing Then
 MsgBox "Failed to open Outbox"
 Exit Function
 End If
 MsgBox "Folder name = " & objFolder.Name
 Set objMessages = objFolder.Messages

See Also

Folder Object

Inbox Property (Session Object)

 Version Property (Session Object)

The Version property returns the version number of the OLE Messaging Library as a string, for
example, "1.00". Read-only.

Syntax

objSession.Version

Data Type

String

Remarks

The version number for the OLE Messaging Library is represented by a string in the form n.xx, where n
represents a major version number and xx represents a minor version number.

Example

' see the function Session_Version
 Dim objSession As Object
 Set objSession = CreateObject("MAPI.Session")
 ' error handling here...
 MsgBox "Version number is " & objSession.Version
MsgBox "Welcome to OLE Messaging Library version " & objSession.Version

See Also

OperatingSystem Property (Session Object)

Error Codes

MAPI can return the following values to the OLE Messaging Library:

MAPI error code HRESULT
(VB4 error
value)
(hexadecimal
)

Low-order
word + 1000
(VBA error
value)
(decimal)

MAPI_E_AMBIGUOUS_RECIP 0x80040700 2792
MAPI_E_BAD_CHARWIDTH 0x80040103 1259
MAPI_E_BAD_COLUMN 0x80040118 1280
MAPI_E_BAD_VALUE 0x80040301 1769
MAPI_E_BUSY 0x8004010b 1267
MAPI_E_CALL_FAILED 0x80004005 17389
MAPI_E_CANCEL 0x80040501 2281
MAPI_E_COLLISION 0x80040604 2540
MAPI_E_COMPUTED 0x8004011a 1282
MAPI_E_CORRUPT_DATA 0x8004011b 1283
MAPI_E_CORRUPT_STORE 0x80040600 2536
MAPI_E_DECLINE_COPY 0x80040306 1774
MAPI_E_DISK_ERROR 0x80040116 1278
MAPI_E_END_OF_SESSION 0x80040200 1512
MAPI_E_EXTENDED_ERROR 0x80040119 1281
MAPI_E_FAILONEPROVIDER 0x8004011d 1285
MAPI_E_FOLDER_CYCLE 0x8004060b 2547
MAPI_E_HAS_FOLDERS 0x80040609 2545
MAPI_E_HAS_MESSAGES 0x8004060a 2546
MAPI_E_INTERFACE_NOT
_SUPPORTED

0x80004002 17386

MAPI_E_INVALID_BOOKMARK 0x80040405 2029
MAPI_E_INVALID_ENTRYID 0x80040107 1263
MAPI_E_INVALID_OBJECT 0x80040108 1264
MAPI_E_INVALID_PARAMETE
R

0x80070057 1087

MAPI_E_INVALID_TYPE 0x80040302 1770
MAPI_E_LOGON_FAILED 0x80040111 1273
MAPI_E_MISSING_REQUIRED
_COLUMN

0x80040202 1514

MAPI_E_NETWORK_ERROR 0x80040115 1277
MAPI_E_NO_ACCESS 0x80070005 1005
MAPI_E_NO_RECIPIENTS 0x80040607 2543
MAPI_E_NO_SUPPORT 0x80040102 1258
MAPI_E_NO_SUPPRESS 0x80040602 2538
MAPI_E_NON_STANDARD 0x80040606 2542
MAPI_E_NOT_ENOUGH_DISK 0x8004010d 1269

MAPI_E_NOT_ENOUGH_MEM
ORY

0x8007000e 1014

MAPI_E_NOT_ENOUGH_RES
OURCES

0x8004010e 1270

MAPI_E_NOT_FOUND 0x8004010f 1271
MAPI_E_NOT_IN_QUEUE 0x80040601 2537
MAPI_E_NOT_INITIALIZED 0x80040605 2541
MAPI_E_NOT_ME 0x80040502 2282
MAPI_E_OBJECT_CHANGED 0x80040109 1265
MAPI_E_OBJECT_DELETED 0x8004010a 1266
MAPI_E_SESSION_LIMIT 0x80040112 1274
MAPI_E_STRING_TOO_LONG 0x80040105 1261
MAPI_E_SUBMITTED 0x80040608 2544
MAPI_E_TABLE_EMPTY 0x80040402 2026
MAPI_E_TABLE_TOO_BIG 0x80040403 2027
MAPI_E_TIMEOUT 0x80040401 2025
MAPI_E_TOO_BIG 0x80040305 1773
MAPI_E_TOO_COMPLEX 0x80040117 1279
MAPI_E_TYPE_NO_SUPPORT 0x80040303 1771
MAPI_E_UNABLE_TO_ABORT 0x80040114 1276
MAPI_E_UNABLE_TO_COMPL
ETE

0x80040400 2024

MAPI_E_UNCONFIGURED 0x8004011c 1284
MAPI_E_UNEXPECTED_ID 0x80040307 1775
MAPI_E_UNEXPECTED_TYPE 0x80040304 1772
MAPI_E_UNKNOWN_ENTRYID 0x80040201 1513
MAPI_E_UNKNOWN_FLAGS 0x80040106 1262
MAPI_E_USER_CANCEL 0x80040113 1275
MAPI_E_VERSION 0x80040110 1272
MAPI_E_WAIT 0x80040500 2280
MAPI_W_APPROX_COUNT 0x00040482 2154
MAPI_W_CANCEL_MESSAGE 0x00040580 2408
MAPI_W_ERRORS_RETURNE
D

0x00040380 1896

MAPI_W_NO_SERVICE 0x00040203 1515
MAPI_W_PARTIAL_COMPLETI
ON

0x00040680 2664

MAPI_W_POSITION_CHANGE
D

0x00040481 2153

The following table lists the MAPI return values in numeric order:

HRESULT
(VB4 error
value)
(hexadeci
mal)

Low-order
word + 1000
(VBA error
value)
(decimal)

MAPI error code

0x0004020
3

1515 MAPI_W_NO_SERVICE

0x0004038
0

1896 MAPI_W_ERRORS_RETURNE
D

0x0004048
1

2153 MAPI_W_POSITION_CHANGE
D

0x0004048
2

2154 MAPI_W_APPROX_COUNT

0x0004058
0

2408 MAPI_W_CANCEL_MESSAGE

0x0004068
0

2664 MAPI_W_PARTIAL_COMPLETI
ON

0x8000400
2

17386 MAPI_E_INTERFACE_NOT
_SUPPORTED

0x8000400
5

17389 MAPI_E_CALL_FAILED

0x8004010
2

1258 MAPI_E_NO_SUPPORT

0x8004010
3

1259 MAPI_E_BAD_CHARWIDTH

0x8004010
5

1261 MAPI_E_STRING_TOO_LONG

0x8004010
6

1262 MAPI_E_UNKNOWN_FLAGS

0x8004010
7

1263 MAPI_E_INVALID_ENTRYID

0x8004010
8

1264 MAPI_E_INVALID_OBJECT

0x8004010
9

1265 MAPI_E_OBJECT_CHANGED

0x8004010
a

1266 MAPI_E_OBJECT_DELETED

0x8004010
b

1267 MAPI_E_BUSY

0x8004010
d

1269 MAPI_E_NOT_ENOUGH_DISK

0x8004010
e

1270 MAPI_E_NOT_ENOUGH_RESO
URCES

0x8004010
f

1271 MAPI_E_NOT_FOUND

0x8004011
0

1272 MAPI_E_VERSION

0x8004011
1

1273 MAPI_E_LOGON_FAILED

0x8004011
2

1274 MAPI_E_SESSION_LIMIT

0x8004011
3

1275 MAPI_E_USER_CANCEL

0x8004011 1276 MAPI_E_UNABLE_TO_ABORT

4
0x8004011
5

1277 MAPI_E_NETWORK_ERROR

0x8004011
6

1278 MAPI_E_DISK_ERROR

0x8004011
7

1279 MAPI_E_TOO_COMPLEX

0x8004011
8

1280 MAPI_E_BAD_COLUMN

0x8004011
9

1281 MAPI_E_EXTENDED_ERROR

0x8004011
a

1282 MAPI_E_COMPUTED

0x8004011
b

1283 MAPI_E_CORRUPT_DATA

0x8004011
c

1284 MAPI_E_UNCONFIGURED

0x8004011
d

1285 MAPI_E_FAILONEPROVIDER

0x8004020
0

1512 MAPI_E_END_OF_SESSION

0x8004020
1

1513 MAPI_E_UNKNOWN_ENTRYID

0x8004020
2

1514 MAPI_E_MISSING_REQUIRED
_COLUMN

0x8004030
1

1769 MAPI_E_BAD_VALUE

0x8004030
2

1770 MAPI_E_INVALID_TYPE

0x8004030
3

1771 MAPI_E_TYPE_NO_SUPPORT

0x8004030
4

1772 MAPI_E_UNEXPECTED_TYPE

0x8004030
5

1773 MAPI_E_TOO_BIG

0x8004030
6

1774 MAPI_E_DECLINE_COPY

0x8004030
7

1775 MAPI_E_UNEXPECTED_ID

0x8004040
0

2024 MAPI_E_UNABLE_TO_COMPL
ETE

0x8004040
1

2025 MAPI_E_TIMEOUT

0x8004040
2

2026 MAPI_E_TABLE_EMPTY

0x8004040
3

2027 MAPI_E_TABLE_TOO_BIG

0x8004040
5

2029 MAPI_E_INVALID_BOOKMARK

0x8004050
0

2280 MAPI_E_WAIT

0x8004050
1

2281 MAPI_E_CANCEL

0x8004050
2

2282 MAPI_E_NOT_ME

0x8004060
0

2536 MAPI_E_CORRUPT_STORE

0x8004060
1

2537 MAPI_E_NOT_IN_QUEUE

0x8004060
2

2538 MAPI_E_NO_SUPPRESS

0x8004060
4

2540 MAPI_E_COLLISION

0x8004060
5

2541 MAPI_E_NOT_INITIALIZED

0x8004060
6

2542 MAPI_E_NON_STANDARD

0x8004060
7

2543 MAPI_E_NO_RECIPIENTS

0x8004060
8

2544 MAPI_E_SUBMITTED

0x8004060
9

2545 MAPI_E_HAS_FOLDERS

0x8004060
a

2546 MAPI_E_HAS_MESSAGES

0x8004060
b

2547 MAPI_E_FOLDER_CYCLE

0x8004070
0

2792 MAPI_E_AMBIGUOUS_RECIP

0x8007000
5

1005 MAPI_E_NO_ACCESS

0x8007000
e

1014 MAPI_E_NOT_ENOUGH_MEM
ORY

0x8007005
7

1087 MAPI_E_INVALID_PARAMETER

How Programmable Objects Work
How do programmable objects work? How does the OLE Messaging Library offer its powerful ability to
create and manage messaging objects?

This appendix provides a very short introduction to the Microsoft Component Object Model, OLE
Automation, and the OLE programmability interface IDispatch. For complete details, see the OLE
Programmer's Reference.

You do not need to understand this material in order to use the OLE Messaging Library.

COM Interfaces

With the combination of Microsoft RPC (Remote Procedure Call) and Microsoft OLE technology,
Microsoft began to shift the C/C++ programming model from individual API functions, such as those
offered in the Windows 3.1 SDK and Win32 SDK, to a distributed object model that is based on
interfaces. An interface is simply a group of logically-related functions. Note that the interface consists
only of functions. There are no facilities for directly accessing data within an interface, except through
the functions.

The benefit of such a distributed object model is that it allows developers to create small, independent,
self-managing software objects. This modular approach allows software functionality to be developed
in small "building blocks" that are then fitted together. Your application no longer has to handle every
possible data format or possible application feature, as long as it can be integrated with other objects
that can handle the desired formats and features.

The notion of objects is very familiar to Visual Basic developers. Many software industry analysts have
noted that the most visible success of object-oriented programming to date is the widespread use of
Microsoft Visual Basic custom controls.

One of the benefits of the modular, interface-based approach to software development is that individual
interfaces usually contain significantly fewer functions than libraries, with the promise of more efficient
use of memory. Whenever you want to use one function in a library, the entire library must be loaded
into memory. Splitting function libraries into smaller interfaces makes it more likely that you load only
the functions that you actually need. (Or at least that you load fewer that you don't need.)

By convention, interface names start with the letter "I". The functions are given a specific ordering
within the interface. Knowing the order of the functions is important for developers who must define
their own vtables, or function dispatch tables. The C++ compiler creates vtables for you, but if you are
writing in C, you must create your own.

The functions of an interface still physically reside in an .EXE or .DLL file, but Microsoft has defined
new rules for how these files are registered on the system and how they are loaded and unloaded from
memory. Microsoft refers to the new rules as the Component Object Model, or COM.

According to the rules, the first three functions in all interfaces are always QueryInterface (which
developers call "QI"), AddRef, and Release. These functions provide a pointer to the interface when
someone asks for it, keep track of the number of programs that are being served by the interface, and
control how the physical .DLL or .EXE file gets loaded and unloaded. Any other functions in the
interface are defined by the person who creates the interface. The interface that consists of these three
common functions, QueryInterface, AddRef, and Release, is called IUnknown. Developers can
always obtain a pointer to an IUnknown object.

The component object model, like RPC before it, makes a strong distinction between the definition of
the interface and its implementation. The interface functions and the data items that make up the
parameters are defined in a very precise way, using a special language designed specifically for
defining interfaces. These languages (such as MIDL, the Microsoft Interface Definition Language, and
ODL, the Object Definition Language) do not allow you to use indefinite type names, such as void *, or
types that change from computer to computer, such as int. The goal is to force you to specify the exact
size of all data. This makes it possible for one person to define an interface, a second person to
implement the interface, and a third person to write a program that calls the interface.

Developers who write C and C++ code that use these types of interfaces read the object's interface
definition language (IDL) files. They know exactly what functions are present in the interface and what
data is required. They can call the interfaces directly.

For developers who are not writing in C and C++, or do not have access to the object's interface
definition language files, Microsoft's component object model defines another way to use software
components. This is based on an interface named IDispatch.

IDispatch

IDispatch is a COM interface that is designed in such a way that it can call virtually any other COM
interface. Developers working in Visual Basic often cannot call COM interfaces directly, as they would
from C or C++. However, when their tool supports IDispatch, as Visual Basic does, and when the
object they want to call supports IDispatch, they can call its COM interfaces indirectly.

The main method offered by IDispatch is called Invoke. This method adds a level of indirection to the
control flow of the Component Object Model. In the standard model, an object obtains a pointer to an
interface and then calls a member function of the interface. IDispatch adds a level of indirection.
Instead of directly calling the member function of the interface, the program calls IDispatch::Invoke,
and IDispatch::Invoke calls the member function for you.

Invoke is a general method-calling machine. Its parameters include a value that identifies the method
that is to be called and the parameters that are to be sent to it. In order to be able to handle the wide
variety of parameters that other COM methods use, Invoke uses a self-describing data structure called
a VARIANTARG.

The VARIANTARG structure contains two parts: a type field, which represents the data type, and a
data field, which represents the actual value of the data. The values such as VT_I2, VT_I4, and so on,
are the constants that define valid values for the data types.

Associated with IDispatch is the notion of a type library. The type library publishes information about
an interface so that it is available to Visual Basic programs. The type library, or typelib, contains the
same kind of information that C or C++ programmers would obtain from a header file: the name of the
method and the sequence and types of its parameters.

An executable or DLL that exposes IDispatch and its type library is known as an OLE Automation
server. The OLE Messaging Library is such a server.

The OLE Messaging Library: An OLE Automation Server

So, let's put it all together, from the bottom up, to see how the OLE Messaging Library works.

· Service providers implement COM interfaces¾specifically, the MAPI interfaces¾as described in the
MAPI documentation.

· The OLE Messaging Library implements several objects (Session, Message, etc.) that act as clients
to these MAPI interfaces. That is, the OLE Messaging Library objects obtain pointers to the MAPI
interfaces and call methods.

· The OLE Messaging Library implements IDispatch and acts as an OLE Automation server so that it
can be called by tools that can use IDispatch, such as Visual Basic. That is, the OLE Messaging
Library allows other programs to call its IDispatch interface. It provides its own registration (.REG)
file so that it can be registered on a computer as an OLE Automation server.

· The OLE Messaging Library publishes a type library that contains information about the objects that
it makes available through IDispatch.

· Your Visual Basic application acts as a client to the OLE Messaging Library. It reads the OLE
Messaging Library's type library to obtain information about the objects, methods, and properties.
When your Visual Basic application declares a variable as an object (with code such as "Dim
objSession as Object") and uses that object's properties and methods (with code such as "MsgBox
objSession.Class"), Visual Basic makes calls to IDispatch on your behalf.

The relationships between these programs are shown in the following diagram. Visual Basic is a client
to the OLE Automation server, the OLE Messaging Library. The OLE Messaging Library, in turn, acts as
a client to the MAPI services.

{ewc msdncd, EWGraphic, groupx843 0 /a "MAPI.BMP"}

The OLE Messaging Library and MAPI

The OLE Messaging Library calls Microsoft MAPI interfaces for you. The following table describes the
MAPI interfaces that the OLE Messaging Library calls when you manipulate an OLE Messaging Library
object.

OLE Messaging
Library object

MAPI or OLE interface
called by the OLE Messaging Library

AddressEntry IABContainer, IMAPIProp
Attachment IAttach
Field IStream, IMAPIProp
Folder IMAPIFolder
InfoStore IMsgStore
Message IMessage
Recipient IMAPIProp
Session IMAPISession

For collection objects, the OLE Messaging Library calls the MAPI interface IMAPITable.

The OLE Messaging Library also calls the MAPI interface IMAPIProp. Many of the properties exposed
by the OLE Messaging Library are based on MAPI properties. The following table describes the
mapping between some OLE Messaging Library properties and the underlying MAPI properties.

OLE
Messaging
Library
object

Property MAPI property MAPI
property
type

AddressEnt
ry

Address PR_EMAIL_ADDRE
SS

PT_TSTRIN
G

AddressEnt
ry

ID PR_ENTRYID PT_BINARY

AddressEnt
ry

Name PR_DISPLAY_NAM
E

PT_TSTRIN
G

AddressEnt
ry

Type PR_ADDRTYPE PT_TSTRIN
G

Attachment Index PR_ATTACH_NUM PT_LONG
Attachment Name PR_ATTACH_

FILENAME
PT_TSTRIN
G

Attachment Position PR_RENDERING_
POSITION

PT_LONG

Attachment Source PR_ATTACH_
PATHNAME

PT_TSTRIN
G

Attachment Type PR_ATTACH_
METHOD

PT_LONG

Folder FolderID PR_PARENT_
ENTRYID

PT_BINARY

Folder ID PR_ENTRYID PT_BINARY
Folder Name PR_DISPLAY_NAM

E
PT_TSTRIN
G

Folder StoreID PR_STORE_ENTRY
ID

PT_BINARY

Message Conversation PR_CONVERSATIO
N_
KEY

PT_BINARY

Message ConversationI
ndex

PR_CONVERSATIO
N_
INDEX

PT_BINARY

Message Conversation
Topic

PR_CONVERSATIO
N_
TOPIC

PT_STRIN
G

Message DeliveryRecei
pt

PR_ORIGINATOR_
DELIVERY_REPOR
T_
REQUESTED

PT_BOOLE
AN

Message Encrypted PR_SECURITY PT_LONG
Message FolderID PR_PARENT_ENTR

YID
PT_BINARY

Message ID PR_ENTRYID PT_BINARY
Message Importance PR_IMPORTANCE PT_LONG
Message ReadReceipt PR_READ_RECEIP

T_
REQUESTED

PT_BOOLE
AN

Message Sender PR_SENDER_
ENTRYID

PT_BINARY

Message Sent PR_MESSAGE_FLA
GS

PT_LONG

Message Signed PR_SECURITY PT_LONG
Message Size PR_MESSAGE_SIZ

E
PT_LONG

Message StoreID PR_STORE_ENTRY
ID

PT_BINARY

Message Subject PR_SUBJECT PT_TSTRIN
G

Message Submitted PR_MESSAGE_FLA
GS

PT_LONG

Message Text PR_BODY PT_TSTRIN
G

Message TimeReceive
d

PR_MESSAGE_
DELIVERY_TIME

PT_SYSTI
ME

Message TimeSent PR_CLIENT_SUBMI
T_
TIME

PT_SYSTI
ME

Message Type PR_MESSAGE_CL
ASS

PT_TSTRIN
G

Message Unread PR_MESSAGE_FLA
GS

PT_LONG

Recipient Name PR_DISPLAY_NAM
E

PT_TSTRIN
G

Recipient Type PR_RECIPIENT_TY
PE

PT_LONG

Session Name PR_DISPLAY_NAM
E

PT_TSTRIN
G

For more information about MAPI properties, see the MAPI documentation.

Additional References

The following published references provide additional information about Visual Basic, Visual Basic for
Applications, and OLE.

· Microsoft Visual Basic Programmer's Guide, Chapter 23, "Programming Other Applications' Objects"
· Excel Visual Basic for Applications Step by Step, Microsoft Press
· Microsoft Excel Visual Basic User's Guide, Chapter 5, "Working with Objects in Visual Basic" and

Chapter 10, "Controlling and Communicating with Other Applications"
· Microsoft OLE Programmer's Reference, Microsoft Press
· Inside OLE, Microsoft Press

Note that this document contains the latest known information about the Microsoft OLE Messaging
Library at the time of publication. Where terms in this document differ from other Visual Basic, OLE, or
Component Object Model (COM) terms, this document should be viewed as the definition of the
specific implementation represented by the OLE Messaging Library.

Legal Information

Microsoft Exchange Client Extensions Programmer's Reference
This is a preliminary document and may be changed substantially prior to final commercial release.
This document is provided for informational purposes only and Microsoft Corporation makes no
warranties, either express or implied, in this document. The entire risk of the use or the results of the
use of this document remains with the user. Companies, names and data used in examples herein are
fictitious unless otherwise noted. No part of this document may be reproduced or transmitted in any
form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1996 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Press, Visual C++, Windows, Win32, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

U.S. Patent No. 4974159

Macintosh is a registered trademark of Apple Computer, Inc.

 About Client Extensions

Using the Client Extensions Programmer's Reference, it is possible to develop a wide variety of custom
client applications that access Microsoft Exchange services such as the information store. These
custom client applications can provide different views of data in the information store, data searching
and sorting capabilities, security, custom mail or messaging features, forms, workgroup capabilities,
and many other capabilities.

Advantages of Extending Microsoft Exchange

Before developing a completely custom client application, you might want to consider extending the
Microsoft Exchange client application. Microsoft Exchange provides a large number of features that
enable users to view, search and sort information in the information store. It also provides a
development platform for electronic mail, messaging, and workgroup applications that can handle a
broad spectrum of information sharing tasks.

Instead of recreating features that are already provided in Microsoft Exchange, you can leverage the
existing features and user interface of Microsoft Exchange and add your own custom features (also
known as "extensions"). You can even override the default behavior of almost any feature of Microsoft
Exchange. This can save a considerable amount of development effort that would otherwise be
devoted to creating a custom user interface and custom features.

Additionally, extending the Microsoft Exchange client benefits users by integrating capabilities from
many different ISVs into a single user interface, rather than having multiple interfaces through which
users accomplish their information sharing tasks.

Microsoft Exchange client extensions can run on any platform that is running the Microsoft Exchange
client. This includes Windows 3.1, Windows for Workgroups 3.1, Windows NT, and Windows 95. Since
the Microsoft Exchange client is included with Windows 95, any extension you develop can run on any
computer running Windows 95 ¾ it is not necessary for the user to purchase a separate product to use
your extension on Windows 95.

Extension Possibilities

There are many possible extensions that you can program to work with Microsoft Exchange. These
extensions generally fall into four categories, as shown in the following table.

Extension type Description
Command
extensions

Add new commands to the client's menus
and toolbar, or replace the behavior of
existing commands and toolbar buttons. For
example, you can add commands that are
specific to certain folders or selected
message types.

Event extensions Invoke custom behavior to handle events
such as the arrival of new messages,
reading and writing messages, sending
messages, reading and writing attached files
and selection changes in a window.

Property sheet
extensions

Add custom property sheet pages to an
object's properties dialog box, enabling users
or administrators to view or edit custom
message properties.

Advanced criteria
extensions

Implement your own custom advanced
criteria dialog boxes to be used when
searching for messages in the information
store. This is useful when you want to enable
users to search for custom message
properties.

Each of these extension types is described in greater detail in the following sections.

Command Extension Examples

Commands that invoke virtually any type of custom behavior can be added to the menus and toolbars
of Microsoft Exchange. For example:

· Integrated proofing tools. Custom spelling and grammar tools can be added to the Microsoft
Exchange menu. If a user has composed a message, choosing a custom Spelling or Grammar
command could invoke an ISV-supplied spell-checker or grammar-checker. It is also possible to add
a thesaurus, text formatting tools, and other functionality provided by many word processors.

· Public folder commands. When a specific public folder has the focus, menu items or toolbar
buttons can be enabled that are specific to that folder. For example, if the public folder is associated
with an on-line service, you might want to include a Retrieve Latest command that prompts the on-
line service to download the most current information into the selected topic area of the public folder.

· Message class commands. When messages of a specific class are selected, new application
behavior can be added to handle messages of that class in a specific way. For example, you might
want to replace the default behavior of the Microsoft Exchange Delete command when a message
of a specific class is selected. The new behavior might simply move the message into a certain
folder where it is processed at a later time.

Event Extension Examples

Event extensions enable developers to add or override behavior associated with certain events that
occur within Microsoft Exchange. For example:

· Attachment virus detection. You can write an extension that transparently scans message
attachments for viruses. When a message is received in a user's Inbox, the "message received"
event would trigger the virus detection program and the user could be prompted to take action if a
virus was found. This is especially useful in environments where users routinely attach executable
programs to messages.

· Message and attachment compression. You can write an extension that compresses and
decompresses messages when certain messaging events are detected. This can be especially
useful in an environment where large messages, such as attached documents containing bitmaps,
are routinely sent.

Property Sheet Extension Examples

Property sheet extensions are useful for displaying custom properties for messages of a particular
message class or for adding your own Microsoft Exchange options. For example:

· Custom form property sheets. If your application provides a custom form with custom properties,
you can display those properties in one or more property sheet pages. For example, the property
sheet of a custom routing form might display the name of the person who initiated the routing
process or the routing path of the form.

· Custom document property sheets. Your application can supply a custom property sheet that is
displayed for certain types of documents. For example, if your extension provides a document
archiving system, you might want to provide a property sheet that enables users to select archiving
options for documents.

Advanced Criteria Extension Example

Advanced criteria extensions enable you to create your own advanced criteria dialog box that can be
used to provide custom search capabilities. For example:

· Custom property searching. You can display a custom advanced criteria dialog box that enables
users to specify search criteria for custom properties. For example, in a public folder that receives
custom messages from an on-line service, there might be custom properties such as "Company" or
"Industry" that are defined for each of the messages. With a custom search dialog box, you can
supply criteria fields for these custom properties that enable users to perform custom searches. For
instance, a user could search for all messages with an Industry property equal to "Biomedical."

Modal and Modeless Extension Windows

You can create extensions that use modal or modeless windows. When a modal window is displayed,
users can only interact with the extension and not with Microsoft Exchange. For example, an extension
might display a modal Folder Backup dialog box that enables a user to choose a specific folder to back
up.

In contrast, some extensions can run modelessly, displaying windows that allow the user to switch their
input back and forth between Microsoft Exchange windows and the extension's windows. For example,
a Stock Quote extension could display a modeless window that displays dynamically changing stock
data while the user interacts with Microsoft Exchange windows.

For simplicity, an extension that displays only modal windows is referred to as a modal extension while
an extension that displays at least one modeless window is referred to as a modeless extension.

Some extensions can involve a combination of modeless and modal windows; that is, modeless
extensions might display modal windows at certain times. For example, the Stock Quote extension
mentioned previously might display a modal Options dialog box.

When writing modeless extensions, it is important to coordinate the actions of your extension's
windows with the windows of Microsoft Exchange. For example, if Microsoft Exchange displays a
modal window, modeless extensions should disable their windows. Interfaces that enable this
cooperation are implemented by Microsoft Exchange and extensions.

Extension Interfaces and Contexts

To implement any of the extension types supported by Microsoft Exchange, you create a single
dynamic link library (DLL) that contains one or more extension objects. An extension object is an object
that complies with the Microsoft Windows Component Object Model and implements a set of Microsoft
Exchange extensibility interfaces. Each extension type has more than one interface associated with it,
but some of these interfaces are optional, as the following table shows.

Extension type Interfaces to implement
Command
extensions

IExchExt (required).
IExchExtCommands (required).
IExchExtEvents (optional). Implement if your
command extension's enablement depends on
the current selection or a change in the current
object such as a folder, store, or message.

Event
extensions

IExchExt (required).
IExchExtEvents (optional). Implement if your
extension should respond when the object
being displayed in a window changes, or when
the selection within the window changes.
IExchExtSessionEvents (optional).
Implement if you want to customize the
behavior when new messages are delivered.
IExchExtUserEvents (optional). Implement if
you want to handle changes to the currently-
selected list box item, text, or object.
IExchExtMessageEvents (optional).
Implement if you want to customize the way
Microsoft Exchange manipulates messages.
IExchExtAttachedFileEvents (optional).
Implement if you want to customize the
handling of message file attachments.

Property sheet
extensions

IExchExt (required).
IExchExtPropertySheets (required).

Advanced
criteria
extensions

IExchExt (required).
IExchExtAdvancedCriteria (required).

If you implement an interface, you must implement all of its methods, even if your extension does not
use them. For those methods that your extension doesn't use, a default response can usually be
implemented with little effort. All extension objects need to implement the IExchExt : IUnknown
interface.

The interaction between Microsoft Exchange and an extension object is bidirectional and involves more
than simply calling an extension object's methods. To operate correctly, extension objects must gather
information about the version of Microsoft Exchange, the MAPI session, and menu, toolbar and window
handles. In most cases, they must also retrieve information from Microsoft Exchange about which
objects, such as messages and folders, are currently selected within Microsoft Exchange windows.
Retrieving this information is achieved with the IExchExtCallback : IUnknown interface, which is
passed to many extension object methods.

Before implementing interfaces within an extension object, it is important to know which contexts the
extension object will be associated with. A context is usually associated with a particular window within

the Microsoft Exchange client. Most extension objects are designed to operate only within a particular
context or set of contexts, but some can operate in all contexts. The following contexts are defined
within the Microsoft Exchange client:

Context Window
EECONTEXT_TASK The duration of the

Microsoft Exchange task,
from program start to
program exit. This may
span several logons. This
context does not
correspond to a Microsoft
Exchange window.

EECONTEXT_SESSION The duration of a Microsoft
Exchange session from
logon to logoff. Multiple
logons can occur during a
single execution of
Microsoft Exchange, but
they might not overlap. This
context does not
correspond to a Microsoft
Exchange window.

EECONTEXT_VIEWER The main Viewer window
that displays the folder
hierarchy in the left pane
and folder contents in the
right pane.

EECONTEXT_REMOTEVIEWER The Remote Mail window
that is displayed when the
user chooses the Remote
Mail command.

EECONTEXT_SEARCHVIEWER The Find window that is
displayed when the user
chooses the Find
command.

EECONTEXT_ADDRBOOK The Address Book window
that is displayed when the
user chooses the Address
Book command.

EECONTEXT_SENDNOTEMESSA
GE

The standard Compose
Note window in which
messages of class
IPM.Note are composed.

EECONTEXT_READNOTEMESSA
GE

The standard read note
window in which messages
of class IPM.Note are read
after they are received.

EECONTEXT_READREPORTMES
SAGE

The read report message
window in which report
messages (Read, Delivery,
Non-Read, Non-Delivery)
are read after they are

received.
EECONTEXT_SENDRESENDMES
SAGE

The send resend message
window that is displayed
when the user chooses the
Send Again command on
the non-delivery report.

EECONTEXT_SENDPOSTMESSA
GE

The standard posting
window in which existing
posting messages are
composed.

EECONTEXT_READPOSTMESSA
GE

The standard posting
window in which existing
posting messages are
read.

EECONTEXT_PROPERTYSHEETS A property sheet window.
EECONTEXT_ADVANCEDCRITERI
A

The dialog box in which the
user specifies advanced
search criteria.

Extensions register their "interest" in one or more of these contexts by placing entries in the
EXCHNG.INI file on 16-bit versions of Microsoft Windows or in the registry on Windows NT. When an
extension registers for a context, it means that events associated with this context will cause the
extension to be notified of the event. For example, if an extension registers for the
EECONTEXT_VIEWER context, and the user selects an object in the Viewer window, the extension
will be called by Microsoft Exchange to notify it of the event.

If an extension does not register interest in specific contexts, it will be loaded and prompted to install
itself in all contexts. Since loading extensions may reduce the performance of the Microsoft Exchange
client, it is strongly recommended that all extensions specifically include context information as part of
their registration.

Note If the standard compose note or post note form in the Microsoft Exchange Viewer window has
been replaced by a custom form, extensions that are normally called from the standard compose note
and post note windows will not be called unless the replacement IPM.Note form supports extensibility.
This means that the form must do all the same work that the Microsoft Exchange client does when
activating a form unless the implementor of this custom form explicitly implements this functionality.

How Extensions Work

When Microsoft Exchange is started, it reads its .INI file (on 16-bit versions of Windows) or the registry
database (on Windows NT) and activates all the extensions that have registered to participate within
the EECONTEXT_TASK context. Extensions that participate in other contexts are activated on-demand
when those contexts become current.

After Microsoft Exchange and its initial extensions have been loaded into memory, the interaction
between Microsoft Exchange and its extensions is determined mostly by the user's interaction with
Microsoft Exchange, but it can also be determined by events such as the arrival of a new message.
The following steps give an overview of how Microsoft Exchange interacts with its installed extensions:

1. A context activation occurs.
2. In the order in which they are listed in the .INI file or registry, Microsoft Exchange invokes the

IExchExt::Install method on each extension object that has registered to participate in the new
context. One of the parameters passed to each extension through Install is a pointer to a callback
object that supports the IExchExtCallback : IUnknown interface.

3. Each extension that was called in step 2 uses IExchExtCallback to retrieve information about the
environment, including the active menu, the active toolbar, the number of objects selected in the
current window, and the entry identifier of the selected item. Extensions can also use MAPI and
Windows API functions to retrieve information. Extensions use this information to determine if they
will participate in the new context.

4. If an extension determines that it will participate in the context, it will return S_OK from
IExchExt::Install. For example, an extension might need to participate in a context only if a certain
folder is open. Otherwise, it returns S_FALSE.

5. In the order in which they are listed in the .INI file or registry, Microsoft Exchange invokes
appropriate methods on all extensions that returned S_OK. The methods that are invoked depend
on the context. For example, if the context is EECONTEXT_SENDNOTEMESSAGE, Microsoft
Exchange first invokes the IExchExtCommands::InstallCommands method on all extensions that
are registered to participate in this context and which implement the IExchExtCommands :
IUnknown interface. Extensions can then add menu items to an existing menu and enable or
disable them using Windows API calls.

Context Lifetimes

Some contexts last only a short time while others can exist for the entire time that Microsoft Exchange
is running. For example, the EECONTEXT_TASK context exists all the time after Microsoft Exchange
has logged on because this context refers to the running Microsoft Exchange client application. In
contrast, the EECONTEXT_SEARCHVIEWER context exists only while the Find dialog box is
displayed.

An extension is loaded into memory the first time a context for which it is registered is created. Once an
extension is loaded into memory, it remains in memory for the lifetime of Microsoft Exchange. For
example, consider three extensions E1, E2, and E3. If E1 and E2 are both registered for
EECONTEXT_SESSION and E3 is registered for EECONTEXT_ADDRBOOK, then E1 and E2 will be
loaded when Microsoft Exchange logs on, but E3 will not be loaded until the Address Book is opened.
After the Address Book is opened, all three extensions will remain loaded until Microsoft Exchange is
closed.

More than one context can exist at the same time. For example, EECONTEXT_VIEWER and
EECONTEXT_ADDRBOOK exist simultaneously when the Viewer and the Address Book are active.
Additionally, more than one instance of the same context can be active at one time, such as when two
Find windows are open or two Compose Note windows are open. In these cases, two instances of the
same context are active. When a context is destroyed, all extensions that are instantiated in that
context are released but the extension DLLs remain in memory.

Context Interface Mappings

The following table shows which of the event interfaces can be called in each of the Microsoft
Exchange contexts. In addition to these, the required interface IExchExt : IUnknown is called in all
contexts.

Context Interfaces
EECONTEXT_TASK None. Only IExchExt::Install

and IUnknown::Release are
called from this context.

EECONTEXT_SESSION IExchExtSessionEvents
EECONTEXT_VIEWER,
EECONTEXT_REMOTEVIEWER,
EECONTEXT_SEARCHVIEWER

IExchExtCommands,
IExchExtUserEvents,
IExchExtPropertySheets

EECONTEXT_ADDRBOOK IExchExtCommands,
IExchExtUserEvents,
IExchExtPropertySheets

EECONTEXT_SENDNOTEMESSA
GE,
EECONTEXT_READNOTEMESSA
GE,
EECONTEXT_READREPORTMES
SAGE,
EECONTEXT_SENDRESENDMES
SAGE,
EECONTEXT_READPOSTMESSA
GE,
EECONTEXT_SENDPOSTMESSA
GE

IExchExtCommands,
IExchExtUserEvents,
IExchExtMessageEvents,
IExchExtAttachedFileEvent
s, IExchExtPropertySheets

EECONTEXT_PROPERTYSHEET
S

IExchExtPropertySheets

EECONTEXT_ADVANCEDCRITER
IA

IExchExtAdvancedCriteria

 Using Client Extensions

As described in the previous documentation, Microsoft Exchange client extensions can be grouped into
four categories:

· Command extensions
· Event extensions
· Property sheet extensions
· Advanced criteria extensions

You can also develop multi-purpose extensions that span two or more of these categories. For
example, you can develop an extension that adds menus to the Microsoft Exchange Viewer window
and also provides custom property sheets.

This section provides detailed information on how the Microsoft Exchange client interacts with the
major categories of extensions shown in the preceding list. Information is also provided on how to write
modeless extensions, how to register extensions within the EXCHEXT.INI file or the registry, and how
to optimize performance.

Note For sample code illustrating some of the concepts covered in this section, see the Win32 SDK.

Command Extensions

Command extensions add new commands to the menus or toolbar of the Microsoft Exchange client or
replace the behavior of existing menus and toolbar buttons. Consider an extension that adds a new
command to the menu bar of the standard send form. To install this new command on the menu bar
and handle a user's interaction with it, the extension object implements the IExchExt : IUnknown and
IExchExtCommands : IUnknown interfaces.

The sequence of events that should occur when Microsoft Exchange interacts with your extension
object to add new commands to the menu bar or new toolbar buttons in the
EECONTEXT_SENDNOTEMESSAGE context are as follows:

1. When the standard send form is activated, but not yet displayed, the Microsoft Exchange client calls
the IExchExt::Install method on all extensions registered to participate in that context and passes
each extension a pointer to an IExchExtCallback interface along with the active context, which in
this case is EECONTEXT_SENDNOTEMESSAGE.

2. All extensions that are registered to participate in the EECONTEXT_SENDNOTEMESSAGE context
and have determined that they will participate return S_OK to Microsoft Exchange.

3. After the New Message window is created, Microsoft Exchange invokes the
IExchExtCommands::InstallCommands method on all extension objects that returned S_OK to
IExchExt::Install. These extension objects then add their menu commands or toolbar buttons to the
New Message window using Windows API calls for adding menu commands and toolbar buttons.
After the commands and buttons are added, Microsoft Exchange displays the New Message
window, and the new commands are available to the user.

4. As the user interacts with the New Message window, Microsoft Exchange will frequently receive
WM_INITMENU messages. Each time this happens, Microsoft Exchange calls the
IExchExtCommands::InitMenu method for each extension to give that extension an opportunity to
enable, disable, or update its menu items before they are seen by the user. Microsoft Exchange then
calls the IExchExtCommands::QueryButtonInfo method for both standard Microsoft Exchange
toolbar buttons and any buttons installed by extensions.

5. When the user chooses a menu command or a toolbar button, the window receives a
WM_COMMAND message with the command identifier of the menu item or toolbar button that was
selected. Microsoft Exchange sequentially calls the IExchExtCommands::DoCommand method on
all extensions that have registered for that context and have implemented the
IExchExtCommands : IUnknown interface, passing the command identifier as an argument. Even
native Microsoft Exchange commands are passed to the extensions, enabling them to replace or
enhance these native commands. When an extension is called, it examines the command identifier
and determines if it should handle that command. If an extension isn't programmed to handle the
command identifier, it should return S_FALSE, and Microsoft Exchange will pass the command
identifier to the next extension. If an extension is programmed to handle the command, it should
return S_OK. In most cases, extensions will only handle commands that they added to the menu or
toolbar with the IExchExtCommands::InstallCommands method. If no extension handles the
command, Microsoft Exchange will handle the command if it recognizes it. If Microsoft Exchange
does not recognize a command, it is ignored.

The following table provides a summary of the interaction between a user, Microsoft Exchange and an
extension object following a series of user actions performed by a user with a custom command. It also
shows which component ¾ Microsoft Exchange or the client extension ¾ performs the step and in the
case of the client extension, what method is invoked.

User Microsoft Exchange Extension
InstallCommands
returns S_OK
QueryButtonInfo

Selects menu
command

Receives WM_INITMENU
message

InitMenu
Chooses
command

Receives WM_COMMAND
message

DoCommand returns
S_OK

For more information on the IExchExtCommands : IUnknown and IExchExt :IUnknown interfaces,
see Interfaces for Extending the Microsoft Exchange Client.

You can install commands on the Microsoft Exchange system menu using the same general process
as described in the section called Command Extensions, but instead of using the Windows GetMenu
function, you'll use GetSystemMenu. Once a custom command is installed, Microsoft Exchange
passes the command identifier of the system menu command to the extension when the user chooses
that command. Handling system commands enables an extension to override default Microsoft
Exchange behavior. For example, you might want your extension to override the system menu's Close
command and perform a few cleanup operations before terminating the application.

It is also possible to specify menu accelerators that can be used with menu items. These menu
accelerators can be invoked by users in the usual way by pressing Alt plus the access key of the menu
or command.

Note In accordance with standard user interface conventions, the Services and Options commands
on the Microsoft Exchange Tools menu should remain at the bottom of the menu. If your extension
adds commands to the Tools menu, it should add them above the Microsoft Exchange Services and
Options commands.

Event Extensions

An event extension is an extension that enables you to customize the handling of various events such
as new message delivery, reading messages, sending messages, reading and writing attached files,
and tracking object selection changes. Extensions that handle events can be installed in the following
contexts:

Window Context
Main Viewer window EECONTEXT_VIEWER
Remote Mail window EECONTEXT_REMOTEVIEWER
Find window EECONTEXT_SEARCHVIEWER
Address Book window EECONTEXT_ADDRBOOK
Session context EECONTEXT_SESSION

Additionally, user events, such as an object selection in a container, occur in the various message
windows.

Four categories of events are defined. These events, which are described in the following sections, are
passed to the Microsoft Exchange client when they occur.

User Events

When a Microsoft Exchange user changes the selection within a window or changes which object's
contents are being displayed in a window, a user event is sent to Microsoft Exchange extensions.
Within the main Viewer window, the selection can be a message store, a folder, or a message. Within
the Find window or the Remote Mail window, the selection is always a message. Within the Address
Book, it is an address entry.

Extensions that need to be notified whenever a selection or object changes must implement the
IExchExtUserEvents : IUnknown interface. This interface includes two methods:
IExchExtUserEvents::OnSelectionChange and IExchExtUserEvents::OnObjectChange.
Whenever a selection or object changes, Microsoft Exchange calls these methods on all extensions
that were installed for that context.

The two IExchExtUserEvents methods only pass the extension a pointer to the IExchExtCallBack :
IUnknown interface, which provides information about the current selection. Using this information, the
extension can then act appropriately. For example, it can enable or disable a toolbar button.

Session Events

When a new message arrives in a user's mailbox, a session event is sent to Microsoft Exchange.
Extensions can be notified when a new message arrives by installing themselves in the
EECONTEXT_SESSION context and by implementing the IExchExtSessionEvents : IUnknown
interface, which supports only one method: IExchExtSessionEvents::OnDelivery. Whenever a
session event occurs, Microsoft Exchange calls this method on all extensions that are registered to
handle these events.

OnDelivery passes a pointer to the IExchExtCallBack : IUnknown interface to the extension, which
uses the pointer to obtain details about the current context. The extension returns S_OK from
OnDelivery if it will handle the event. For example, an extension might use the IExchExtCallBack
pointer to determine the class of the newly arrived message. If the message class is of a specific type,
the extension might want to perform a custom operation on that message, such as extracting its
properties and storing them in a database.

Note IExchExtSessionEvents::OnDelivery is called after the server has processed the rules
attached to the folder. Therefore, OnDelivery cannot be called if it was previously handled. Because
this is a server process, rules processing is done regardless of any ordering specified in the
EXCHNG.INI file or the registry.

Message Events

The Microsoft Exchange client enables extensions to control various details of how a message is
handled when certain events occur. This is done with the IExchExtMessageEvents : IUnknown
interface, which allows extensions to intercept message events:

· Immediately before and immediately after a message's properties are read. For example, when an
extension displays a message in a form.

· Immediately before and immediately after a message's properties are written to the message store.
· Immediately before and immediately after Microsoft Exchange resolves unresolved addresses. For

example, when a user chooses the Check Names button.
· Immediately before and immediately after Microsoft Exchange submits an open message for

delivery.

For example, an extension might want to check spelling or validate data before it is written to the
properties of the message in the store and sent to another user.

Each one of the events in the preceeding list is associated with a method that is a member of
IExchExtMessageEvents. For example, the IExchExtMessageEvents::OnWrite method is invoked
whenever Microsoft Exchange is about to save the message properties.

Attachment Events

Attachment events occur when an attached file is being read, written, or opened. These events enable
extensions to control access to attachments and provide custom handling behavior. Attachment
extensions are useful for providing virus detection and compression of attached files. These extensions
are called from the context of the message containing the attachment.

Note Not all attachments are files. Attachment events apply only to attached files. Because
attachments can themselves be other messages (that is, messages can contain messages), another
context corresponding to the attached message might be created when an attached message is
opened.

Sending a Note with an Attachment
The following table shows the steps involved in sending a standard message with an attachment. It
also shows which component ¾ Microsoft Exchange client or the extension ¾ performs the step and in
the case of the client extension, what method is invoked.

User Microsoft Exchange Extension
Chooses New
Message from
the Compose
menu

Receives
WM_COMMAND
message, calls
command extensions,
and creates
SENDNOTEMESSAGE
context

Install(SENDNOTEMESSAG
E) returns S_OK

Installs command
extensions

Types recipient,
subject, and
text. Drags file
attachment to
message text.

OnReadPattFromSzFile
Displays attached file in
window

Chooses Send
from the File
menu

Receives
WM_COMMAND
message, calls
command extensions,
and handles command
itself

OnCheckNames

OnCheckNamesComplete
OnSubmit
OnWrite
OnWriteComplete
OnSubmitComplete

Closes send window
Release on extension
objects

Destroys
SENDNOTEMESSAGE
context

Reading a Message and Opening its Attachment
The following table shows the steps involved in reading a message and opening its attachment. It also
shows which component ¾ the Microsoft Exchange client or the extension ¾ performs the step, and
in the case of the extension, shows what method is invoked.

User Microsoft Exchange Extension
Chooses Open
from the File
menu after
selecting a
message

Receives
WM_COMMAND
message, calls command
extensions, and creates
READNOTEMESSAGE
context

OnRead
OnReadComplete

Installs command
extensions
Displays read note

Double clicks on
file attachment

QueryDisallowOpenPatt
returns S_OK
OnWritePattToSzFile
OpenSzFile

Opens file
Changes, saves
and closes file
Chooses Close
from the File
menu

Receives
WM_COMMAND
message, calls command

extensions
Chooses Yes in
the Save dialog
box

OnWrite
OnReadPattFromSzFile
OnWriteComplete

Closes read window
Release on extension
objects

Destroys
READNOTEMESSAGE
context

Property Sheet Extensions

Property sheet extensions enable you to add custom property sheet pages for information stores,
folders, and messages. These pages can be added to property sheets that are displayed in a variety of
contexts. For example, you can add a page to the folder property sheet that is displayed when a user
chooses the Properties command from the File menu in the main Viewer window when a folder is
selected.

Property sheet extensions are useful for displaying custom properties for messages of a particular
message class or for adding your own Microsoft Exchange options. For example, if you wrote an
application that created and managed a specific public folder, you could add a property sheet page that
would enable users to set various application-specific properties for the folder.

The sequence of events that should occur when Microsoft Exchange interacts with your extension
object to install and use custom property sheet pages is as follows:

1. When the user opens a property sheet, Microsoft Exchange sequentially calls the IExchExt::Install
method on all extensions registered to participate in the EECONTEXT_PROPERTYSHEETS context
and passes each extension a pointer to an IExchExtCallback interface. These extensions, along
with extensions that have registered for the context in which the property sheet is displayed will be
called to add property sheet pages. For example, if a property sheet is displayed in the Viewer
window, extensions registered for the EECONTEXT_PROPERTYSHEETS or
EECONTEXT_VIEWER context will be called.

2. Microsoft Exchange calls the IExchExtPropertySheets::GetMaxPageCount method on each
extension that returned S_OK from Install. This enables Microsoft Exchange to allocate sufficient
memory for the property sheet page array.

3. When Microsoft Exchange is ready to build the property sheet, it calls the
IExchExtPropertySheets::GetPages method so that the extension can specify a pointer to the
pages it will append. GetPages is called immediately before the property sheet is displayed and
enables the extension to fill in the pages it wants appended to the Microsoft Exchange Properties
dialog box. The standard Microsoft Exchange pages are added first, followed by pages from each
extension in the order the extensions are installed. GetPages uses the
IExchExtCallback::GetObject method to retrieve the object for which the information should be
displayed and the store which contains that object. The extension must use the standard property
sheet structures specified by the Windows API. One of the parameters passed to the extension in
GetPages is the type of property sheet being displayed ¾ for example, message, folder, or store
property sheet.

4. When the user closes the property sheet, Microsoft Exchange calls the
IExchExtPropertySheets::FreePages method which instructs the extension to free any resources
associated with the property sheet pages that were specified in GetPages.

The following table summarizes the interaction between a user, Microsoft Exchange and an extension
object when a custom property sheet is being added to the Microsoft Exchange client. It also shows
which component ¾ the Microsoft Exchange client or the extension ¾ performs the step and in the
case of the extension, what method is invoked. To simplify this table, the installation of command
extensions is not included. Command extensions are called in the context of a user choosing the
Properties command from the File menu.

User Microsoft Exchange Extension
Chooses
Properties
from the File
menu

Receives WM_COMMAND
message, calls command

extensions, and creates a
PROPERTYSHEETS context

For extensions
registered for the
PROPERTYSHEETS
context,
Install(PROPERTYSHE
ETS) is called
GetMaxPageCount
returns S_OK

Allocates property sheet page
array

GetPages returns
S_OK

Displays dialog box
Chooses OK
or Cancel
button

Closes dialog box
FreePages
Release on extensions
which were loaded in
the
PROPERTYSHEETS
context

Advanced Criteria Extensions

Advanced criteria extensions enable you to create your own advanced criteria window that can be used
when searching for messages. This is especially useful when you want to enable users to search for
custom message properties.

Although several extensions that supply advanced criteria dialog boxes might be available, only one
advanced criteria window at a time can be displayed from a single context. Multiple advanced criteria
contexts can be active at the same time; for example, when more than one Find window is open. It is
important to remember that extensions are called in the order in which they were installed.

Because multiple advanced criteria extensions might be installed, it is important to ensure that your
advanced criteria extension follows a few guidelines. The primary guideline is to be as selective as
possible before choosing to install extensions into an advanced criteria context. For instance, a public
folder application should only choose to install its advanced criteria interface when its public folder is
open or highlighted. Advanced criteria extensions that are more selective should be listed ahead of
more general ones in the EXCHNG.INI file or the registry. Because Microsoft Exchange itself uses very
general advanced criteria, most extensions should register themselves before Microsoft Exchange. If
two or more such general advanced criteria extensions are present, the first one installed will always
be used. The ordering of extensions is determined by their entry order in the EXCHNG.INI file or in the
registry. For more information on creating extension entries, see the "Registering Extensions" section
later in this chapter.

The sequence of events that should occur when Microsoft Exchange interacts with your extension
object to add a custom advanced criteria dialog box to the Microsoft Exchange client is as follows:

1. When the user chooses the command that displays the Microsoft Exchange Find dialog box,
Microsoft Exchange calls the IExchExt::Install method on all extension objects with the
EECONTEXT_ADVANCEDCRITERIA bit set in the context map. During the call, it passes each
extension a pointer to an IExchExtCallback interface along with the context, which in this case is
EECONTEXT_ADVANCEDCRITERIA. The IExchExtCallBack pointer enables the extension to
retrieve information about the current context. In this case, the current message store and folder will
probably be useful.

2. Microsoft Exchange calls the IExchExtAdvancedCriteria::InstallAdvancedCriteria method on the
first extension to return S_OK from Install. Microsoft Exchange uses InstallAdvancedCriteria to
pass information to the extension, including the window handle of the Find dialog box, the current
advanced criteria restriction, and an array of folder entry identifiers to which the criteria will be
applied. If the extension returns S_OK from InstallAdvancedCriteria, Microsoft Exchange will call
the IExchExtAdvancedCriteria::DoDialog method when the user selects the Advanced button in
the Find dialog box.
If S_FALSE is returned from InstallAdvancedCriteria, remaining extensions will be given the
opportunity to examine the current search restriction and display a custom search dialog box. If no
extension returns S_OK, Microsoft Exchange will display a default advanced criteria dialog box.

3. If the user chooses the New Search button, changes folders, or closes the Find dialog box after
Microsoft Exchange calls InstallAdvancedCriteria, Microsoft Exchange calls the
IExchExtAdvancedCriteria::Clear, IExchExtAdvancedCriteria::SetFolders, or
IExchExtAdvancedCriteria::QueryRestriction methods respectively to inform the extension of the
changes.

4. When the user closes the advanced criteria window, Microsoft Exchange calls the
IExchExtAdvancedCriteria::UninstallAdvancedCriteria method, which allows the extension to
free any resources associated with the advanced criteria window that it displayed.

The following table summarizes the interaction between a user, Microsoft Exchange and an extension
object when using a custom advanced criteria dialog box. It also shows which component ¾ Microsoft
Exchange or the client extension ¾ performs the step and in the case of the client extension, what
method is invoked.

User Microsoft Exchange Extension
Chooses Find from the
Tools menu

Receives
WM_COMMAND
message, calls command
extensions, and creates
SEARCHVIEWER and
ADVANCEDCRITERIA
contexts

Install(ADVANCED
CRITERIA) returns
S_OK

Installs command
extensions

InstallAdvancedCr
iteria returns S_OK

Displays Find window
Chooses Folder in the
Find dialog box

Shows Choose Folder
dialog box

Changes the folders to
search in and chooses
OK

Closes Choose Folder
dialog box

SetFolders
Chooses New Search in
the Find dialog box

Clear
Chooses Advanced in
the Find dialog box

DoDialog
Specifies criteria and
chooses OK

returning S_OK
from DoDialog

Chooses Find Now in
the Find dialog box

QueryRestriction
Performs search

Closes Find dialog box
UninstallAdvanced
Criteria

Closes Find window
Release on
extension object

Destroys

SEARCHVIEWER and
ADVANCEDCRITERIA
contexts

Task and Session Extensions

In some cases, an extension needs to run when the user starts Microsoft Exchange or right after the
user logs on. For example, an extension that integrates with a corporate database may want to
establish a connection to the database as part of the logon process.

As shown in the following table, the client extension implements the TASK, SESSION, and VIEWER
contexts with only the IExchExt : IUnknown interface using the IExchExt:Install method (and the
IUnknown::Release method).

The following table summarizes the interaction between a user, Microsoft Exchange and an extension
object when a user launches Microsoft Exchange or logs on to a MAPI session. It also shows which
component ¾ Microsoft Exchange or the client extension ¾ performs the step and in the case of the
client extension, what method is invoked.

User Microsoft Exchange Extension
Launches
Microsoft
Exchange

Creates TASK context
Install(TASK) returns
S_OK

Logs on with
profile and
password

Creates SESSION context
Install(SESSION) returns
S_OK

Creates VIEWER context
Install(VIEWER) returns
S_OK

Chooses Exit and
Logoff from the
File menu

Release on VIEWER
object

Destroys VIEWER context
Release on SESSION
object

Destroys SESSION
context

Release on TASK object
Destroys TASK context
Shuts down application

Writing Modeless Extensions

As mentioned previously in this chapter, extension windows can be either modal or modeless. When
writing extensions that use modeless windows, it is a good idea to design your code to cooperate with
Microsoft Exchange. The most common scenario for this cooperation is enabling or disabling modeless
windows when the user switches between Microsoft Exchange windows and the windows of your
extension.

Coordination between Microsoft Exchange and modeless extensions is achieved using two interfaces:
IExchExtModeless : IUnknown and IExchExtModelessCallback : IUnknown. Microsoft Exchange
implements IExchExtModelessCallback and client extensions implement IExchExtModeless.

Initializing a Modeless Extension

A modeless extension must first indicate to Microsoft Exchange that it will be displaying modeless. This
is done by calling the IExchExtCallback::RegisterModeless method. If an extension does not call this
method, Microsoft Exchange assumes by default that the extension's window is displayed modally and
the extension will not be able to coordinate its actions with those of Microsoft Exchange.

When calling RegisterModeless, the extension must pass to Microsoft Exchange a a modeless object
that implements the IExchExtModeless interface. This interface enables Microsoft Exchange to
communicate with the extension object about the state of its windows.

How Modeless Coordination Works

When Microsoft Exchange runs, it creates a modeless callback object with which extensions can
communicate. This callback object implements the IExchExtModelessCallback : IUnknown interface.

Before displaying a modal window, Microsoft Exchange invokes the
IExchExtModeless::EnableModeless method on all modeless objects. In this case, the fEnable
parameter of IExchExtModeless::EnableModeless is set to FALSE, indicating that the extension
should disable its modeless windows. When Microsoft Exchange removes its modal window, it calls
IExchExtModeless::EnableModeless with the fEnable parameter set to TRUE. The extension can
then re-enable its modeless windows.

Similary, if a modeless extension needs to display a modal window, it should call the
IExchExtModelessCallback::EnableModeless method with the fEnable parameter set to FALSE.
Microsoft Exchange then disables its modeless windows. When the extension removes its modal
window, it should call IExchExtModeless::EnableModeless with the fEnable parameter set to TRUE,
enabling Microsoft Exchange to re-enable its modeless windows.

Additional Programming Considerations

When creating extensions for the Microsoft Exchange client, there are a number of programming
considerations you will want to keep in mind beyond the basic technique of implementing extension
interfaces. These considerations generally fall into the following categories:

· Performance
· Error handling
· Cooperation with other extensions
· Programming practices

Optimizing Performance

Because the Microsoft Exchange client polls installed extensions every time a context change occurs,
Microsoft Exchange can exhibit decreased performance or response time if several extensions are
installed. In particular, performance can be affected when displaying menus, sending and receiving
messages, or selecting different messages and folders. This performance degradation can be caused
by extensions that respond to events that are not applicable to the functionality they provide. It can also
be caused by extensions that take a long time to respond when Microsoft Exchange invokes their
methods.

When developing an extension, you can reduce the impact on the performance of Microsoft Exchange
by keeping the following programming guidelines in mind:

· Register your extension only for contexts that are applicable to it. This can be done by placing the
appropriate values in the context map in the EXCHNG.INI file or the registry. The context map
designates contexts in which an extension will participate. Although specifying a context map is
optional, it is highly recommended. If you don't specify a context map, an attempt will be made to
install your extension in all contexts and it will be loaded at all times. For more information about
context maps, see the "Registering Extensions" section later in this chapter.

· Register your extension only for interfaces that are applicable to it. This can be done by placing the
appropriate values in the interface map in the EXCHNG.INI file or the registry. Although specifying
an interface map is optional, it is highly recommended. The interface map prevents Microsoft
Exchange from making calls to IUnknown::QueryInterface for interfaces that are not supported.
This can improve the performance of context creation and application startup.

· Optimize the efficiency of functions that handle various events received by your extension. For
example, event-handling functions should minimize the use of any time-consuming calculations,
loops, lookups, and file input and output.

· Keep the memory footprint of your extensions to a minimum because once loaded, it remains loaded
until Microsoft Exchange is closed. To keep your memory footprint small, you might want to split your
extension DLL into two separate DLLs. The first DLL should be a handler that handles most of the
extension interaction, especially the default responses that ignore unwanted events. The second
DLL should be activated when "real" work must be done, such as executing a custom command.
This is especially important for large extensions that are infrequently used.

Handling Error Values

Extensions are responsible for handling and displaying their own errors. Microsoft Exchange handles
error return values by not continuing with the current operation. Microsoft Exchange does not display
error messages because the extension is usually better aware of what caused the error and what steps
should be taken to correct it.

Cooperating with other Extensions

Because extensions that you distribute to customers might be installed alongside extensions
developed by other programmers, it is important to design your extensions so they cooperate with
other extensions. Cooperation among extensions is important because the order in which extensions
are listed in the EXCHNG.INI file or the registry determines the order in which extensions are called to
respond to context changes in Microsoft Exchange. Because extensions are called sequentially,
extensions that are not designed to operate cooperatively can "block" the execution of other
extensions.

For example, suppose a user double clicks on a folder to display its messages. When this happens,
Microsoft Exchange will call each extension to determine if it wants to participate in the event. If a
"misbehaved" extension handles the event without being selective about the context in which it has
been installed, it will block the execution of other extensions that fall after it in the calling sequence.
One of these other extensions might be programmed specifically to handle that event, but it will not be
given a chance.

To avoid blocking other extensions, your extension should be highly selective in determining when it
runs. When Microsoft Exchange passes your extension a pointer to the IExchExtCallback : IUnknown
interface, your extension should use the methods of this interface to thoroughly examine the current
context. An extension should run only if it determines that the current context is specific to it, for
example, if the current selection is a custom message type understood only by your extension.

To avoid collisions, consider the following guidelines:

· Avoid programming extensions that provide broad or general behavior for features such as the
advanced criteria dialog box that can only have one active extension. Most extensions should
operate only in contexts that can be considered extension-specific.

· Extensions that are selective and highly context-specific should be registered at the beginning of the
[Extensions] section of the .INI file. Those that exhibit more general behavior should be entered at
the end of the [Extensions] section. For example, the standard Microsoft Exchange extension that
handles the advanced criteria dialog box always returns S_OK to the
IExchExtAdvancedCriteria::InstallAdvancedCriteria method. More selective advanced criteria
dialog boxes must come before this entry or they will never be called.

Programming Practices

When writing an extension, you can reduce the number of bugs and other problems by observing the
following programming practices:

· Do not store pointers to callback functions for later use outside of the current function. The same
advice applies for pointers returned from callback functions. The reason for not storing these
pointers is that they can become invalid shortly after they are used within the scope of a single
function.

· Try not to perform special "tricks" with hMenu or hWnd pointers. Although creative use of these
pointer types may not cause problems in the current version of Microsoft Exchange, they may create
problems in future versions.

· Avoid adding menus to Microsoft Exchange outside the scope of the
IExchExtCommands::InstallCommands method.

· When adding menu commands for your provider extension, place these menu commands
underneath the Find command on the Tools menu.

· When adding your provider-specific Help command, place it underneath the Microsoft Exchange
Help Topics command on the Help menu.

Registering Extensions

Before an extension can be used within the Microsoft Exchange client, it must be registered.
Registering an extension lets Microsoft Exchange know about its existence and provides other
information about the extension so that Microsoft Exchange can work with it in an efficient manner.

On 16-bit versions of Windows, extensions are registered by adding entries to the [Extensions] section
of the EXCHNG.INI file. These 16-bit clients include Windows 3.1 and Windows for Workgroups 3.x.

On 32-bit versions of Windows, Microsoft Exchange obtains extension-specific information from
HKEY_LOCAL_MACHINE\Software\Microsoft\Exchange\Client\Options in the Windows NT or
Windows 95 registry.

Information on shared extensions is read from the [Extensions] section of the SHARED.INI file on 16-
bit versions of Windows or from the SHARED32.INI file on 32-bit versions of Windows. The location of
the SHARED.INI file is specified by the SharedExtsDir entry in the [Exchange] section of the
EXCHNG.INI file. The location of the SHARED32.INI file is specified in the SharedExtsDir entry in
HKEY_LOCAL_MACHINE\Software\Microsoft\Exchange\Client\Options.

If the directory is on a network drive, the SharedExtsServer entry can contain the name of the server
and the SharedExtsPassword entry contains an unencrypted password. If this is the case, a connection
to the server is made without redirecting a local device name.

The 32-bit clients cannot use 16-bit extensions nor can 16-bit clients use 32-bit extensions.

When registering an extension, you need to conform to a specific syntax when placing your entry in the
INI file or registry. This syntax is as follows:

Syntax

Tag=Version;<ExtsDir>DllName;[Ordinal];[ContextMap];[InterfaceMap];[Provider]

Parameters

The following table shows the parameters used in the syntax line.

Parameter Description
Tag An extension identifier that uniquely identifies the .INI entry

from other .INI entries.
Version The version number of the syntax; for example '4.0'.
DllName The path to the DLL containing the extension.
Ordinal An optional field that specifies the entry point in the DLL to

retrieve the extension object. If this field is empty, the default
value is 1.

ContextMap An optional string made up of '0' and '1' characters which
indicate the contexts in which the extension should be
loaded. Any unspecified values after the end of the string are
assumed to be zero. If no context map is provided, the
extension will be loaded in all contexts. For more information
on context map bit positions, see the table later in this
section.

InterfaceMa
p

An optional string made up of '0' and '1' characters that
indicates the interfaces the extension supports. Although
supported interfaces can be obtained through
IUnknown::QueryInterface, registering which interfaces
your extension supports can increase system performance.
For more information on interface map bit positions, see the
table later in this section.

Provider An optional string containing the PR_SERVICE_NAME, not
the display name, of an ISV-supplied provider that your
extension is designed to work with. For example, if your
extension is designed to work with a custom address book
provider, place the PR_SERVICE_NAME of the address
book provider in this parameter. If your extension is not
provider-specific, this parameter should be omitted.

Example

MyExtension=4.0;<ExtsDir>MYEXT.DLL;2;010001;1100000

In this example, EECONTEXT_VIEWER=0x00000002 and EECONTEXT_SENDNOTEMESSAGE
=0x00000006 so the ContextMap string '010001' indicates that the extension located at MYEXT.DLL;2
should be loaded only for these two contexts. The interface map, specified by the string 1100000,
indicates that the extension is registered only for the IExchExtCommands : IUnknown and
IExchExtUserEvents : IUnknown interfaces.

Throughout the string, all occurrences of the string '<ExtsDir>' are replaced with the value of the
SharedExtsDir entry described below.

The following tables indicate which positions in the Context Map and Interface Map correspond to
which contexts and interfaces, respectively.

Context Map Bit Positions
Position Context
1 EECONTEXT_SESSION
2 EECONTEXT_VIEWER
3 EECONTEXT_REMOTEVIEWER
4 EECONTEXT_SEARCHVIEWER
5 EECONTEXT_ADDRBOOK
6 EECONTEXT_SENDNOTEMESSAGE
7 EECONTEXT_READNOTEMESSAGE
8 EECONTEXT_SENDPOSTMESSAGE
9 EECONTEXT_READPOSTMESSAGE
10 EECONTEXT_READREPORTMESSAGE
11 EECONTEXT_SENDRESENDMESSAGE
12 EECONTEXT_PROPERTYSHEETS
13 EECONTEXT_ADVANCEDCRITERIA
14 EECONTEXT_TASK

Interface Map Bit Positions
Position Interface
1 IExchExtCommands
2 IExchExtUserEvents
3 IExchExtSessionEvents
4 IExchExtMessageEvents
5 IExchExtAttachedFileEvents
6 IExchExtPropertySheets
7 IExchExtAdvancedCriteria

Provider Parameter

In some cases, your extension might be designed to work only with a custom provider. For example,
your extension might only work with a custom address book provider that replaces the default address
book provider of Microsoft Exchange. Under these circumstances, your extension should be prevented
from loading if its associated provider is not loaded.

This situation is handled by specifying the name of the extension's associated provider in the [Provider]
parameter of your extension's registration line. If you specify the provider, your extension will not be
loaded unless the provider has been loaded. This can save some programming effort because it might
be difficult for your extension to determine whether a specific provider has been loaded.

When Microsoft Exchange starts, it reads the current profile and attempts to start all providers listed
there. After attempting to load all providers specified in the profile, it reads the extension registration
lines of its .INI file or registry and omits all extensions that specify a provider that was not in the profile
or failed to load.

